bdi: make inode_to_bdi() inline
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 /**
69 * writeback_in_progress - determine whether there is writeback in progress
70 * @bdi: the device's backing_dev_info structure.
71 *
72 * Determine whether there is writeback waiting to be handled against a
73 * backing device.
74 */
75 int writeback_in_progress(struct backing_dev_info *bdi)
76 {
77 return test_bit(WB_writeback_running, &bdi->wb.state);
78 }
79 EXPORT_SYMBOL(writeback_in_progress);
80
81 static inline struct inode *wb_inode(struct list_head *head)
82 {
83 return list_entry(head, struct inode, i_wb_list);
84 }
85
86 /*
87 * Include the creation of the trace points after defining the
88 * wb_writeback_work structure and inline functions so that the definition
89 * remains local to this file.
90 */
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/writeback.h>
93
94 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
95
96 static void wb_wakeup(struct bdi_writeback *wb)
97 {
98 spin_lock_bh(&wb->work_lock);
99 if (test_bit(WB_registered, &wb->state))
100 mod_delayed_work(bdi_wq, &wb->dwork, 0);
101 spin_unlock_bh(&wb->work_lock);
102 }
103
104 static void wb_queue_work(struct bdi_writeback *wb,
105 struct wb_writeback_work *work)
106 {
107 trace_writeback_queue(wb->bdi, work);
108
109 spin_lock_bh(&wb->work_lock);
110 if (!test_bit(WB_registered, &wb->state)) {
111 if (work->done)
112 complete(work->done);
113 goto out_unlock;
114 }
115 list_add_tail(&work->list, &wb->work_list);
116 mod_delayed_work(bdi_wq, &wb->dwork, 0);
117 out_unlock:
118 spin_unlock_bh(&wb->work_lock);
119 }
120
121 static void __wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
122 bool range_cyclic, enum wb_reason reason)
123 {
124 struct wb_writeback_work *work;
125
126 /*
127 * This is WB_SYNC_NONE writeback, so if allocation fails just
128 * wakeup the thread for old dirty data writeback
129 */
130 work = kzalloc(sizeof(*work), GFP_ATOMIC);
131 if (!work) {
132 trace_writeback_nowork(wb->bdi);
133 wb_wakeup(wb);
134 return;
135 }
136
137 work->sync_mode = WB_SYNC_NONE;
138 work->nr_pages = nr_pages;
139 work->range_cyclic = range_cyclic;
140 work->reason = reason;
141
142 wb_queue_work(wb, work);
143 }
144
145 /**
146 * bdi_start_writeback - start writeback
147 * @bdi: the backing device to write from
148 * @nr_pages: the number of pages to write
149 * @reason: reason why some writeback work was initiated
150 *
151 * Description:
152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
153 * started when this function returns, we make no guarantees on
154 * completion. Caller need not hold sb s_umount semaphore.
155 *
156 */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 enum wb_reason reason)
159 {
160 __wb_start_writeback(&bdi->wb, nr_pages, true, reason);
161 }
162
163 /**
164 * bdi_start_background_writeback - start background writeback
165 * @bdi: the backing device to write from
166 *
167 * Description:
168 * This makes sure WB_SYNC_NONE background writeback happens. When
169 * this function returns, it is only guaranteed that for given BDI
170 * some IO is happening if we are over background dirty threshold.
171 * Caller need not hold sb s_umount semaphore.
172 */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175 /*
176 * We just wake up the flusher thread. It will perform background
177 * writeback as soon as there is no other work to do.
178 */
179 trace_writeback_wake_background(bdi);
180 wb_wakeup(&bdi->wb);
181 }
182
183 /*
184 * Remove the inode from the writeback list it is on.
185 */
186 void inode_wb_list_del(struct inode *inode)
187 {
188 struct backing_dev_info *bdi = inode_to_bdi(inode);
189
190 spin_lock(&bdi->wb.list_lock);
191 list_del_init(&inode->i_wb_list);
192 spin_unlock(&bdi->wb.list_lock);
193 }
194
195 /*
196 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
197 * furthest end of its superblock's dirty-inode list.
198 *
199 * Before stamping the inode's ->dirtied_when, we check to see whether it is
200 * already the most-recently-dirtied inode on the b_dirty list. If that is
201 * the case then the inode must have been redirtied while it was being written
202 * out and we don't reset its dirtied_when.
203 */
204 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
205 {
206 assert_spin_locked(&wb->list_lock);
207 if (!list_empty(&wb->b_dirty)) {
208 struct inode *tail;
209
210 tail = wb_inode(wb->b_dirty.next);
211 if (time_before(inode->dirtied_when, tail->dirtied_when))
212 inode->dirtied_when = jiffies;
213 }
214 list_move(&inode->i_wb_list, &wb->b_dirty);
215 }
216
217 /*
218 * requeue inode for re-scanning after bdi->b_io list is exhausted.
219 */
220 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
221 {
222 assert_spin_locked(&wb->list_lock);
223 list_move(&inode->i_wb_list, &wb->b_more_io);
224 }
225
226 static void inode_sync_complete(struct inode *inode)
227 {
228 inode->i_state &= ~I_SYNC;
229 /* If inode is clean an unused, put it into LRU now... */
230 inode_add_lru(inode);
231 /* Waiters must see I_SYNC cleared before being woken up */
232 smp_mb();
233 wake_up_bit(&inode->i_state, __I_SYNC);
234 }
235
236 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 {
238 bool ret = time_after(inode->dirtied_when, t);
239 #ifndef CONFIG_64BIT
240 /*
241 * For inodes being constantly redirtied, dirtied_when can get stuck.
242 * It _appears_ to be in the future, but is actually in distant past.
243 * This test is necessary to prevent such wrapped-around relative times
244 * from permanently stopping the whole bdi writeback.
245 */
246 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
247 #endif
248 return ret;
249 }
250
251 #define EXPIRE_DIRTY_ATIME 0x0001
252
253 /*
254 * Move expired (dirtied before work->older_than_this) dirty inodes from
255 * @delaying_queue to @dispatch_queue.
256 */
257 static int move_expired_inodes(struct list_head *delaying_queue,
258 struct list_head *dispatch_queue,
259 int flags,
260 struct wb_writeback_work *work)
261 {
262 unsigned long *older_than_this = NULL;
263 unsigned long expire_time;
264 LIST_HEAD(tmp);
265 struct list_head *pos, *node;
266 struct super_block *sb = NULL;
267 struct inode *inode;
268 int do_sb_sort = 0;
269 int moved = 0;
270
271 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
272 older_than_this = work->older_than_this;
273 else if (!work->for_sync) {
274 expire_time = jiffies - (dirtytime_expire_interval * HZ);
275 older_than_this = &expire_time;
276 }
277 while (!list_empty(delaying_queue)) {
278 inode = wb_inode(delaying_queue->prev);
279 if (older_than_this &&
280 inode_dirtied_after(inode, *older_than_this))
281 break;
282 list_move(&inode->i_wb_list, &tmp);
283 moved++;
284 if (flags & EXPIRE_DIRTY_ATIME)
285 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
286 if (sb_is_blkdev_sb(inode->i_sb))
287 continue;
288 if (sb && sb != inode->i_sb)
289 do_sb_sort = 1;
290 sb = inode->i_sb;
291 }
292
293 /* just one sb in list, splice to dispatch_queue and we're done */
294 if (!do_sb_sort) {
295 list_splice(&tmp, dispatch_queue);
296 goto out;
297 }
298
299 /* Move inodes from one superblock together */
300 while (!list_empty(&tmp)) {
301 sb = wb_inode(tmp.prev)->i_sb;
302 list_for_each_prev_safe(pos, node, &tmp) {
303 inode = wb_inode(pos);
304 if (inode->i_sb == sb)
305 list_move(&inode->i_wb_list, dispatch_queue);
306 }
307 }
308 out:
309 return moved;
310 }
311
312 /*
313 * Queue all expired dirty inodes for io, eldest first.
314 * Before
315 * newly dirtied b_dirty b_io b_more_io
316 * =============> gf edc BA
317 * After
318 * newly dirtied b_dirty b_io b_more_io
319 * =============> g fBAedc
320 * |
321 * +--> dequeue for IO
322 */
323 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
324 {
325 int moved;
326
327 assert_spin_locked(&wb->list_lock);
328 list_splice_init(&wb->b_more_io, &wb->b_io);
329 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
330 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
331 EXPIRE_DIRTY_ATIME, work);
332 trace_writeback_queue_io(wb, work, moved);
333 }
334
335 static int write_inode(struct inode *inode, struct writeback_control *wbc)
336 {
337 int ret;
338
339 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
340 trace_writeback_write_inode_start(inode, wbc);
341 ret = inode->i_sb->s_op->write_inode(inode, wbc);
342 trace_writeback_write_inode(inode, wbc);
343 return ret;
344 }
345 return 0;
346 }
347
348 /*
349 * Wait for writeback on an inode to complete. Called with i_lock held.
350 * Caller must make sure inode cannot go away when we drop i_lock.
351 */
352 static void __inode_wait_for_writeback(struct inode *inode)
353 __releases(inode->i_lock)
354 __acquires(inode->i_lock)
355 {
356 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
357 wait_queue_head_t *wqh;
358
359 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
360 while (inode->i_state & I_SYNC) {
361 spin_unlock(&inode->i_lock);
362 __wait_on_bit(wqh, &wq, bit_wait,
363 TASK_UNINTERRUPTIBLE);
364 spin_lock(&inode->i_lock);
365 }
366 }
367
368 /*
369 * Wait for writeback on an inode to complete. Caller must have inode pinned.
370 */
371 void inode_wait_for_writeback(struct inode *inode)
372 {
373 spin_lock(&inode->i_lock);
374 __inode_wait_for_writeback(inode);
375 spin_unlock(&inode->i_lock);
376 }
377
378 /*
379 * Sleep until I_SYNC is cleared. This function must be called with i_lock
380 * held and drops it. It is aimed for callers not holding any inode reference
381 * so once i_lock is dropped, inode can go away.
382 */
383 static void inode_sleep_on_writeback(struct inode *inode)
384 __releases(inode->i_lock)
385 {
386 DEFINE_WAIT(wait);
387 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
388 int sleep;
389
390 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
391 sleep = inode->i_state & I_SYNC;
392 spin_unlock(&inode->i_lock);
393 if (sleep)
394 schedule();
395 finish_wait(wqh, &wait);
396 }
397
398 /*
399 * Find proper writeback list for the inode depending on its current state and
400 * possibly also change of its state while we were doing writeback. Here we
401 * handle things such as livelock prevention or fairness of writeback among
402 * inodes. This function can be called only by flusher thread - noone else
403 * processes all inodes in writeback lists and requeueing inodes behind flusher
404 * thread's back can have unexpected consequences.
405 */
406 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
407 struct writeback_control *wbc)
408 {
409 if (inode->i_state & I_FREEING)
410 return;
411
412 /*
413 * Sync livelock prevention. Each inode is tagged and synced in one
414 * shot. If still dirty, it will be redirty_tail()'ed below. Update
415 * the dirty time to prevent enqueue and sync it again.
416 */
417 if ((inode->i_state & I_DIRTY) &&
418 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
419 inode->dirtied_when = jiffies;
420
421 if (wbc->pages_skipped) {
422 /*
423 * writeback is not making progress due to locked
424 * buffers. Skip this inode for now.
425 */
426 redirty_tail(inode, wb);
427 return;
428 }
429
430 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
431 /*
432 * We didn't write back all the pages. nfs_writepages()
433 * sometimes bales out without doing anything.
434 */
435 if (wbc->nr_to_write <= 0) {
436 /* Slice used up. Queue for next turn. */
437 requeue_io(inode, wb);
438 } else {
439 /*
440 * Writeback blocked by something other than
441 * congestion. Delay the inode for some time to
442 * avoid spinning on the CPU (100% iowait)
443 * retrying writeback of the dirty page/inode
444 * that cannot be performed immediately.
445 */
446 redirty_tail(inode, wb);
447 }
448 } else if (inode->i_state & I_DIRTY) {
449 /*
450 * Filesystems can dirty the inode during writeback operations,
451 * such as delayed allocation during submission or metadata
452 * updates after data IO completion.
453 */
454 redirty_tail(inode, wb);
455 } else if (inode->i_state & I_DIRTY_TIME) {
456 inode->dirtied_when = jiffies;
457 list_move(&inode->i_wb_list, &wb->b_dirty_time);
458 } else {
459 /* The inode is clean. Remove from writeback lists. */
460 list_del_init(&inode->i_wb_list);
461 }
462 }
463
464 /*
465 * Write out an inode and its dirty pages. Do not update the writeback list
466 * linkage. That is left to the caller. The caller is also responsible for
467 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
468 */
469 static int
470 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
471 {
472 struct address_space *mapping = inode->i_mapping;
473 long nr_to_write = wbc->nr_to_write;
474 unsigned dirty;
475 int ret;
476
477 WARN_ON(!(inode->i_state & I_SYNC));
478
479 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
480
481 ret = do_writepages(mapping, wbc);
482
483 /*
484 * Make sure to wait on the data before writing out the metadata.
485 * This is important for filesystems that modify metadata on data
486 * I/O completion. We don't do it for sync(2) writeback because it has a
487 * separate, external IO completion path and ->sync_fs for guaranteeing
488 * inode metadata is written back correctly.
489 */
490 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
491 int err = filemap_fdatawait(mapping);
492 if (ret == 0)
493 ret = err;
494 }
495
496 /*
497 * Some filesystems may redirty the inode during the writeback
498 * due to delalloc, clear dirty metadata flags right before
499 * write_inode()
500 */
501 spin_lock(&inode->i_lock);
502
503 dirty = inode->i_state & I_DIRTY;
504 if (inode->i_state & I_DIRTY_TIME) {
505 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
506 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
507 unlikely(time_after(jiffies,
508 (inode->dirtied_time_when +
509 dirtytime_expire_interval * HZ)))) {
510 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
511 trace_writeback_lazytime(inode);
512 }
513 } else
514 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
515 inode->i_state &= ~dirty;
516
517 /*
518 * Paired with smp_mb() in __mark_inode_dirty(). This allows
519 * __mark_inode_dirty() to test i_state without grabbing i_lock -
520 * either they see the I_DIRTY bits cleared or we see the dirtied
521 * inode.
522 *
523 * I_DIRTY_PAGES is always cleared together above even if @mapping
524 * still has dirty pages. The flag is reinstated after smp_mb() if
525 * necessary. This guarantees that either __mark_inode_dirty()
526 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
527 */
528 smp_mb();
529
530 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
531 inode->i_state |= I_DIRTY_PAGES;
532
533 spin_unlock(&inode->i_lock);
534
535 if (dirty & I_DIRTY_TIME)
536 mark_inode_dirty_sync(inode);
537 /* Don't write the inode if only I_DIRTY_PAGES was set */
538 if (dirty & ~I_DIRTY_PAGES) {
539 int err = write_inode(inode, wbc);
540 if (ret == 0)
541 ret = err;
542 }
543 trace_writeback_single_inode(inode, wbc, nr_to_write);
544 return ret;
545 }
546
547 /*
548 * Write out an inode's dirty pages. Either the caller has an active reference
549 * on the inode or the inode has I_WILL_FREE set.
550 *
551 * This function is designed to be called for writing back one inode which
552 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
553 * and does more profound writeback list handling in writeback_sb_inodes().
554 */
555 static int
556 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
557 struct writeback_control *wbc)
558 {
559 int ret = 0;
560
561 spin_lock(&inode->i_lock);
562 if (!atomic_read(&inode->i_count))
563 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
564 else
565 WARN_ON(inode->i_state & I_WILL_FREE);
566
567 if (inode->i_state & I_SYNC) {
568 if (wbc->sync_mode != WB_SYNC_ALL)
569 goto out;
570 /*
571 * It's a data-integrity sync. We must wait. Since callers hold
572 * inode reference or inode has I_WILL_FREE set, it cannot go
573 * away under us.
574 */
575 __inode_wait_for_writeback(inode);
576 }
577 WARN_ON(inode->i_state & I_SYNC);
578 /*
579 * Skip inode if it is clean and we have no outstanding writeback in
580 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
581 * function since flusher thread may be doing for example sync in
582 * parallel and if we move the inode, it could get skipped. So here we
583 * make sure inode is on some writeback list and leave it there unless
584 * we have completely cleaned the inode.
585 */
586 if (!(inode->i_state & I_DIRTY_ALL) &&
587 (wbc->sync_mode != WB_SYNC_ALL ||
588 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
589 goto out;
590 inode->i_state |= I_SYNC;
591 spin_unlock(&inode->i_lock);
592
593 ret = __writeback_single_inode(inode, wbc);
594
595 spin_lock(&wb->list_lock);
596 spin_lock(&inode->i_lock);
597 /*
598 * If inode is clean, remove it from writeback lists. Otherwise don't
599 * touch it. See comment above for explanation.
600 */
601 if (!(inode->i_state & I_DIRTY_ALL))
602 list_del_init(&inode->i_wb_list);
603 spin_unlock(&wb->list_lock);
604 inode_sync_complete(inode);
605 out:
606 spin_unlock(&inode->i_lock);
607 return ret;
608 }
609
610 static long writeback_chunk_size(struct bdi_writeback *wb,
611 struct wb_writeback_work *work)
612 {
613 long pages;
614
615 /*
616 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
617 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
618 * here avoids calling into writeback_inodes_wb() more than once.
619 *
620 * The intended call sequence for WB_SYNC_ALL writeback is:
621 *
622 * wb_writeback()
623 * writeback_sb_inodes() <== called only once
624 * write_cache_pages() <== called once for each inode
625 * (quickly) tag currently dirty pages
626 * (maybe slowly) sync all tagged pages
627 */
628 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
629 pages = LONG_MAX;
630 else {
631 pages = min(wb->avg_write_bandwidth / 2,
632 global_dirty_limit / DIRTY_SCOPE);
633 pages = min(pages, work->nr_pages);
634 pages = round_down(pages + MIN_WRITEBACK_PAGES,
635 MIN_WRITEBACK_PAGES);
636 }
637
638 return pages;
639 }
640
641 /*
642 * Write a portion of b_io inodes which belong to @sb.
643 *
644 * Return the number of pages and/or inodes written.
645 */
646 static long writeback_sb_inodes(struct super_block *sb,
647 struct bdi_writeback *wb,
648 struct wb_writeback_work *work)
649 {
650 struct writeback_control wbc = {
651 .sync_mode = work->sync_mode,
652 .tagged_writepages = work->tagged_writepages,
653 .for_kupdate = work->for_kupdate,
654 .for_background = work->for_background,
655 .for_sync = work->for_sync,
656 .range_cyclic = work->range_cyclic,
657 .range_start = 0,
658 .range_end = LLONG_MAX,
659 };
660 unsigned long start_time = jiffies;
661 long write_chunk;
662 long wrote = 0; /* count both pages and inodes */
663
664 while (!list_empty(&wb->b_io)) {
665 struct inode *inode = wb_inode(wb->b_io.prev);
666
667 if (inode->i_sb != sb) {
668 if (work->sb) {
669 /*
670 * We only want to write back data for this
671 * superblock, move all inodes not belonging
672 * to it back onto the dirty list.
673 */
674 redirty_tail(inode, wb);
675 continue;
676 }
677
678 /*
679 * The inode belongs to a different superblock.
680 * Bounce back to the caller to unpin this and
681 * pin the next superblock.
682 */
683 break;
684 }
685
686 /*
687 * Don't bother with new inodes or inodes being freed, first
688 * kind does not need periodic writeout yet, and for the latter
689 * kind writeout is handled by the freer.
690 */
691 spin_lock(&inode->i_lock);
692 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
693 spin_unlock(&inode->i_lock);
694 redirty_tail(inode, wb);
695 continue;
696 }
697 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
698 /*
699 * If this inode is locked for writeback and we are not
700 * doing writeback-for-data-integrity, move it to
701 * b_more_io so that writeback can proceed with the
702 * other inodes on s_io.
703 *
704 * We'll have another go at writing back this inode
705 * when we completed a full scan of b_io.
706 */
707 spin_unlock(&inode->i_lock);
708 requeue_io(inode, wb);
709 trace_writeback_sb_inodes_requeue(inode);
710 continue;
711 }
712 spin_unlock(&wb->list_lock);
713
714 /*
715 * We already requeued the inode if it had I_SYNC set and we
716 * are doing WB_SYNC_NONE writeback. So this catches only the
717 * WB_SYNC_ALL case.
718 */
719 if (inode->i_state & I_SYNC) {
720 /* Wait for I_SYNC. This function drops i_lock... */
721 inode_sleep_on_writeback(inode);
722 /* Inode may be gone, start again */
723 spin_lock(&wb->list_lock);
724 continue;
725 }
726 inode->i_state |= I_SYNC;
727 spin_unlock(&inode->i_lock);
728
729 write_chunk = writeback_chunk_size(wb, work);
730 wbc.nr_to_write = write_chunk;
731 wbc.pages_skipped = 0;
732
733 /*
734 * We use I_SYNC to pin the inode in memory. While it is set
735 * evict_inode() will wait so the inode cannot be freed.
736 */
737 __writeback_single_inode(inode, &wbc);
738
739 work->nr_pages -= write_chunk - wbc.nr_to_write;
740 wrote += write_chunk - wbc.nr_to_write;
741 spin_lock(&wb->list_lock);
742 spin_lock(&inode->i_lock);
743 if (!(inode->i_state & I_DIRTY_ALL))
744 wrote++;
745 requeue_inode(inode, wb, &wbc);
746 inode_sync_complete(inode);
747 spin_unlock(&inode->i_lock);
748 cond_resched_lock(&wb->list_lock);
749 /*
750 * bail out to wb_writeback() often enough to check
751 * background threshold and other termination conditions.
752 */
753 if (wrote) {
754 if (time_is_before_jiffies(start_time + HZ / 10UL))
755 break;
756 if (work->nr_pages <= 0)
757 break;
758 }
759 }
760 return wrote;
761 }
762
763 static long __writeback_inodes_wb(struct bdi_writeback *wb,
764 struct wb_writeback_work *work)
765 {
766 unsigned long start_time = jiffies;
767 long wrote = 0;
768
769 while (!list_empty(&wb->b_io)) {
770 struct inode *inode = wb_inode(wb->b_io.prev);
771 struct super_block *sb = inode->i_sb;
772
773 if (!trylock_super(sb)) {
774 /*
775 * trylock_super() may fail consistently due to
776 * s_umount being grabbed by someone else. Don't use
777 * requeue_io() to avoid busy retrying the inode/sb.
778 */
779 redirty_tail(inode, wb);
780 continue;
781 }
782 wrote += writeback_sb_inodes(sb, wb, work);
783 up_read(&sb->s_umount);
784
785 /* refer to the same tests at the end of writeback_sb_inodes */
786 if (wrote) {
787 if (time_is_before_jiffies(start_time + HZ / 10UL))
788 break;
789 if (work->nr_pages <= 0)
790 break;
791 }
792 }
793 /* Leave any unwritten inodes on b_io */
794 return wrote;
795 }
796
797 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
798 enum wb_reason reason)
799 {
800 struct wb_writeback_work work = {
801 .nr_pages = nr_pages,
802 .sync_mode = WB_SYNC_NONE,
803 .range_cyclic = 1,
804 .reason = reason,
805 };
806
807 spin_lock(&wb->list_lock);
808 if (list_empty(&wb->b_io))
809 queue_io(wb, &work);
810 __writeback_inodes_wb(wb, &work);
811 spin_unlock(&wb->list_lock);
812
813 return nr_pages - work.nr_pages;
814 }
815
816 static bool over_bground_thresh(struct bdi_writeback *wb)
817 {
818 unsigned long background_thresh, dirty_thresh;
819
820 global_dirty_limits(&background_thresh, &dirty_thresh);
821
822 if (global_page_state(NR_FILE_DIRTY) +
823 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
824 return true;
825
826 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
827 return true;
828
829 return false;
830 }
831
832 /*
833 * Called under wb->list_lock. If there are multiple wb per bdi,
834 * only the flusher working on the first wb should do it.
835 */
836 static void wb_update_bandwidth(struct bdi_writeback *wb,
837 unsigned long start_time)
838 {
839 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
840 }
841
842 /*
843 * Explicit flushing or periodic writeback of "old" data.
844 *
845 * Define "old": the first time one of an inode's pages is dirtied, we mark the
846 * dirtying-time in the inode's address_space. So this periodic writeback code
847 * just walks the superblock inode list, writing back any inodes which are
848 * older than a specific point in time.
849 *
850 * Try to run once per dirty_writeback_interval. But if a writeback event
851 * takes longer than a dirty_writeback_interval interval, then leave a
852 * one-second gap.
853 *
854 * older_than_this takes precedence over nr_to_write. So we'll only write back
855 * all dirty pages if they are all attached to "old" mappings.
856 */
857 static long wb_writeback(struct bdi_writeback *wb,
858 struct wb_writeback_work *work)
859 {
860 unsigned long wb_start = jiffies;
861 long nr_pages = work->nr_pages;
862 unsigned long oldest_jif;
863 struct inode *inode;
864 long progress;
865
866 oldest_jif = jiffies;
867 work->older_than_this = &oldest_jif;
868
869 spin_lock(&wb->list_lock);
870 for (;;) {
871 /*
872 * Stop writeback when nr_pages has been consumed
873 */
874 if (work->nr_pages <= 0)
875 break;
876
877 /*
878 * Background writeout and kupdate-style writeback may
879 * run forever. Stop them if there is other work to do
880 * so that e.g. sync can proceed. They'll be restarted
881 * after the other works are all done.
882 */
883 if ((work->for_background || work->for_kupdate) &&
884 !list_empty(&wb->work_list))
885 break;
886
887 /*
888 * For background writeout, stop when we are below the
889 * background dirty threshold
890 */
891 if (work->for_background && !over_bground_thresh(wb))
892 break;
893
894 /*
895 * Kupdate and background works are special and we want to
896 * include all inodes that need writing. Livelock avoidance is
897 * handled by these works yielding to any other work so we are
898 * safe.
899 */
900 if (work->for_kupdate) {
901 oldest_jif = jiffies -
902 msecs_to_jiffies(dirty_expire_interval * 10);
903 } else if (work->for_background)
904 oldest_jif = jiffies;
905
906 trace_writeback_start(wb->bdi, work);
907 if (list_empty(&wb->b_io))
908 queue_io(wb, work);
909 if (work->sb)
910 progress = writeback_sb_inodes(work->sb, wb, work);
911 else
912 progress = __writeback_inodes_wb(wb, work);
913 trace_writeback_written(wb->bdi, work);
914
915 wb_update_bandwidth(wb, wb_start);
916
917 /*
918 * Did we write something? Try for more
919 *
920 * Dirty inodes are moved to b_io for writeback in batches.
921 * The completion of the current batch does not necessarily
922 * mean the overall work is done. So we keep looping as long
923 * as made some progress on cleaning pages or inodes.
924 */
925 if (progress)
926 continue;
927 /*
928 * No more inodes for IO, bail
929 */
930 if (list_empty(&wb->b_more_io))
931 break;
932 /*
933 * Nothing written. Wait for some inode to
934 * become available for writeback. Otherwise
935 * we'll just busyloop.
936 */
937 if (!list_empty(&wb->b_more_io)) {
938 trace_writeback_wait(wb->bdi, work);
939 inode = wb_inode(wb->b_more_io.prev);
940 spin_lock(&inode->i_lock);
941 spin_unlock(&wb->list_lock);
942 /* This function drops i_lock... */
943 inode_sleep_on_writeback(inode);
944 spin_lock(&wb->list_lock);
945 }
946 }
947 spin_unlock(&wb->list_lock);
948
949 return nr_pages - work->nr_pages;
950 }
951
952 /*
953 * Return the next wb_writeback_work struct that hasn't been processed yet.
954 */
955 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
956 {
957 struct wb_writeback_work *work = NULL;
958
959 spin_lock_bh(&wb->work_lock);
960 if (!list_empty(&wb->work_list)) {
961 work = list_entry(wb->work_list.next,
962 struct wb_writeback_work, list);
963 list_del_init(&work->list);
964 }
965 spin_unlock_bh(&wb->work_lock);
966 return work;
967 }
968
969 /*
970 * Add in the number of potentially dirty inodes, because each inode
971 * write can dirty pagecache in the underlying blockdev.
972 */
973 static unsigned long get_nr_dirty_pages(void)
974 {
975 return global_page_state(NR_FILE_DIRTY) +
976 global_page_state(NR_UNSTABLE_NFS) +
977 get_nr_dirty_inodes();
978 }
979
980 static long wb_check_background_flush(struct bdi_writeback *wb)
981 {
982 if (over_bground_thresh(wb)) {
983
984 struct wb_writeback_work work = {
985 .nr_pages = LONG_MAX,
986 .sync_mode = WB_SYNC_NONE,
987 .for_background = 1,
988 .range_cyclic = 1,
989 .reason = WB_REASON_BACKGROUND,
990 };
991
992 return wb_writeback(wb, &work);
993 }
994
995 return 0;
996 }
997
998 static long wb_check_old_data_flush(struct bdi_writeback *wb)
999 {
1000 unsigned long expired;
1001 long nr_pages;
1002
1003 /*
1004 * When set to zero, disable periodic writeback
1005 */
1006 if (!dirty_writeback_interval)
1007 return 0;
1008
1009 expired = wb->last_old_flush +
1010 msecs_to_jiffies(dirty_writeback_interval * 10);
1011 if (time_before(jiffies, expired))
1012 return 0;
1013
1014 wb->last_old_flush = jiffies;
1015 nr_pages = get_nr_dirty_pages();
1016
1017 if (nr_pages) {
1018 struct wb_writeback_work work = {
1019 .nr_pages = nr_pages,
1020 .sync_mode = WB_SYNC_NONE,
1021 .for_kupdate = 1,
1022 .range_cyclic = 1,
1023 .reason = WB_REASON_PERIODIC,
1024 };
1025
1026 return wb_writeback(wb, &work);
1027 }
1028
1029 return 0;
1030 }
1031
1032 /*
1033 * Retrieve work items and do the writeback they describe
1034 */
1035 static long wb_do_writeback(struct bdi_writeback *wb)
1036 {
1037 struct wb_writeback_work *work;
1038 long wrote = 0;
1039
1040 set_bit(WB_writeback_running, &wb->state);
1041 while ((work = get_next_work_item(wb)) != NULL) {
1042
1043 trace_writeback_exec(wb->bdi, work);
1044
1045 wrote += wb_writeback(wb, work);
1046
1047 /*
1048 * Notify the caller of completion if this is a synchronous
1049 * work item, otherwise just free it.
1050 */
1051 if (work->done)
1052 complete(work->done);
1053 else
1054 kfree(work);
1055 }
1056
1057 /*
1058 * Check for periodic writeback, kupdated() style
1059 */
1060 wrote += wb_check_old_data_flush(wb);
1061 wrote += wb_check_background_flush(wb);
1062 clear_bit(WB_writeback_running, &wb->state);
1063
1064 return wrote;
1065 }
1066
1067 /*
1068 * Handle writeback of dirty data for the device backed by this bdi. Also
1069 * reschedules periodically and does kupdated style flushing.
1070 */
1071 void wb_workfn(struct work_struct *work)
1072 {
1073 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1074 struct bdi_writeback, dwork);
1075 long pages_written;
1076
1077 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1078 current->flags |= PF_SWAPWRITE;
1079
1080 if (likely(!current_is_workqueue_rescuer() ||
1081 !test_bit(WB_registered, &wb->state))) {
1082 /*
1083 * The normal path. Keep writing back @wb until its
1084 * work_list is empty. Note that this path is also taken
1085 * if @wb is shutting down even when we're running off the
1086 * rescuer as work_list needs to be drained.
1087 */
1088 do {
1089 pages_written = wb_do_writeback(wb);
1090 trace_writeback_pages_written(pages_written);
1091 } while (!list_empty(&wb->work_list));
1092 } else {
1093 /*
1094 * bdi_wq can't get enough workers and we're running off
1095 * the emergency worker. Don't hog it. Hopefully, 1024 is
1096 * enough for efficient IO.
1097 */
1098 pages_written = writeback_inodes_wb(wb, 1024,
1099 WB_REASON_FORKER_THREAD);
1100 trace_writeback_pages_written(pages_written);
1101 }
1102
1103 if (!list_empty(&wb->work_list))
1104 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1105 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1106 wb_wakeup_delayed(wb);
1107
1108 current->flags &= ~PF_SWAPWRITE;
1109 }
1110
1111 /*
1112 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1113 * the whole world.
1114 */
1115 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1116 {
1117 struct backing_dev_info *bdi;
1118
1119 if (!nr_pages)
1120 nr_pages = get_nr_dirty_pages();
1121
1122 rcu_read_lock();
1123 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1124 if (!bdi_has_dirty_io(bdi))
1125 continue;
1126 __wb_start_writeback(&bdi->wb, nr_pages, false, reason);
1127 }
1128 rcu_read_unlock();
1129 }
1130
1131 /*
1132 * Wake up bdi's periodically to make sure dirtytime inodes gets
1133 * written back periodically. We deliberately do *not* check the
1134 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1135 * kernel to be constantly waking up once there are any dirtytime
1136 * inodes on the system. So instead we define a separate delayed work
1137 * function which gets called much more rarely. (By default, only
1138 * once every 12 hours.)
1139 *
1140 * If there is any other write activity going on in the file system,
1141 * this function won't be necessary. But if the only thing that has
1142 * happened on the file system is a dirtytime inode caused by an atime
1143 * update, we need this infrastructure below to make sure that inode
1144 * eventually gets pushed out to disk.
1145 */
1146 static void wakeup_dirtytime_writeback(struct work_struct *w);
1147 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1148
1149 static void wakeup_dirtytime_writeback(struct work_struct *w)
1150 {
1151 struct backing_dev_info *bdi;
1152
1153 rcu_read_lock();
1154 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1155 if (list_empty(&bdi->wb.b_dirty_time))
1156 continue;
1157 wb_wakeup(&bdi->wb);
1158 }
1159 rcu_read_unlock();
1160 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1161 }
1162
1163 static int __init start_dirtytime_writeback(void)
1164 {
1165 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1166 return 0;
1167 }
1168 __initcall(start_dirtytime_writeback);
1169
1170 int dirtytime_interval_handler(struct ctl_table *table, int write,
1171 void __user *buffer, size_t *lenp, loff_t *ppos)
1172 {
1173 int ret;
1174
1175 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1176 if (ret == 0 && write)
1177 mod_delayed_work(system_wq, &dirtytime_work, 0);
1178 return ret;
1179 }
1180
1181 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1182 {
1183 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1184 struct dentry *dentry;
1185 const char *name = "?";
1186
1187 dentry = d_find_alias(inode);
1188 if (dentry) {
1189 spin_lock(&dentry->d_lock);
1190 name = (const char *) dentry->d_name.name;
1191 }
1192 printk(KERN_DEBUG
1193 "%s(%d): dirtied inode %lu (%s) on %s\n",
1194 current->comm, task_pid_nr(current), inode->i_ino,
1195 name, inode->i_sb->s_id);
1196 if (dentry) {
1197 spin_unlock(&dentry->d_lock);
1198 dput(dentry);
1199 }
1200 }
1201 }
1202
1203 /**
1204 * __mark_inode_dirty - internal function
1205 * @inode: inode to mark
1206 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1207 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1208 * mark_inode_dirty_sync.
1209 *
1210 * Put the inode on the super block's dirty list.
1211 *
1212 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1213 * dirty list only if it is hashed or if it refers to a blockdev.
1214 * If it was not hashed, it will never be added to the dirty list
1215 * even if it is later hashed, as it will have been marked dirty already.
1216 *
1217 * In short, make sure you hash any inodes _before_ you start marking
1218 * them dirty.
1219 *
1220 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1221 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1222 * the kernel-internal blockdev inode represents the dirtying time of the
1223 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1224 * page->mapping->host, so the page-dirtying time is recorded in the internal
1225 * blockdev inode.
1226 */
1227 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1228 void __mark_inode_dirty(struct inode *inode, int flags)
1229 {
1230 struct super_block *sb = inode->i_sb;
1231 struct backing_dev_info *bdi = NULL;
1232 int dirtytime;
1233
1234 trace_writeback_mark_inode_dirty(inode, flags);
1235
1236 /*
1237 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1238 * dirty the inode itself
1239 */
1240 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1241 trace_writeback_dirty_inode_start(inode, flags);
1242
1243 if (sb->s_op->dirty_inode)
1244 sb->s_op->dirty_inode(inode, flags);
1245
1246 trace_writeback_dirty_inode(inode, flags);
1247 }
1248 if (flags & I_DIRTY_INODE)
1249 flags &= ~I_DIRTY_TIME;
1250 dirtytime = flags & I_DIRTY_TIME;
1251
1252 /*
1253 * Paired with smp_mb() in __writeback_single_inode() for the
1254 * following lockless i_state test. See there for details.
1255 */
1256 smp_mb();
1257
1258 if (((inode->i_state & flags) == flags) ||
1259 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1260 return;
1261
1262 if (unlikely(block_dump))
1263 block_dump___mark_inode_dirty(inode);
1264
1265 spin_lock(&inode->i_lock);
1266 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1267 goto out_unlock_inode;
1268 if ((inode->i_state & flags) != flags) {
1269 const int was_dirty = inode->i_state & I_DIRTY;
1270
1271 if (flags & I_DIRTY_INODE)
1272 inode->i_state &= ~I_DIRTY_TIME;
1273 inode->i_state |= flags;
1274
1275 /*
1276 * If the inode is being synced, just update its dirty state.
1277 * The unlocker will place the inode on the appropriate
1278 * superblock list, based upon its state.
1279 */
1280 if (inode->i_state & I_SYNC)
1281 goto out_unlock_inode;
1282
1283 /*
1284 * Only add valid (hashed) inodes to the superblock's
1285 * dirty list. Add blockdev inodes as well.
1286 */
1287 if (!S_ISBLK(inode->i_mode)) {
1288 if (inode_unhashed(inode))
1289 goto out_unlock_inode;
1290 }
1291 if (inode->i_state & I_FREEING)
1292 goto out_unlock_inode;
1293
1294 /*
1295 * If the inode was already on b_dirty/b_io/b_more_io, don't
1296 * reposition it (that would break b_dirty time-ordering).
1297 */
1298 if (!was_dirty) {
1299 bool wakeup_bdi = false;
1300 bdi = inode_to_bdi(inode);
1301
1302 spin_unlock(&inode->i_lock);
1303 spin_lock(&bdi->wb.list_lock);
1304 if (bdi_cap_writeback_dirty(bdi)) {
1305 WARN(!test_bit(WB_registered, &bdi->wb.state),
1306 "bdi-%s not registered\n", bdi->name);
1307
1308 /*
1309 * If this is the first dirty inode for this
1310 * bdi, we have to wake-up the corresponding
1311 * bdi thread to make sure background
1312 * write-back happens later.
1313 */
1314 if (!wb_has_dirty_io(&bdi->wb))
1315 wakeup_bdi = true;
1316 }
1317
1318 inode->dirtied_when = jiffies;
1319 if (dirtytime)
1320 inode->dirtied_time_when = jiffies;
1321 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1322 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1323 else
1324 list_move(&inode->i_wb_list,
1325 &bdi->wb.b_dirty_time);
1326 spin_unlock(&bdi->wb.list_lock);
1327 trace_writeback_dirty_inode_enqueue(inode);
1328
1329 if (wakeup_bdi)
1330 wb_wakeup_delayed(&bdi->wb);
1331 return;
1332 }
1333 }
1334 out_unlock_inode:
1335 spin_unlock(&inode->i_lock);
1336
1337 }
1338 EXPORT_SYMBOL(__mark_inode_dirty);
1339
1340 static void wait_sb_inodes(struct super_block *sb)
1341 {
1342 struct inode *inode, *old_inode = NULL;
1343
1344 /*
1345 * We need to be protected against the filesystem going from
1346 * r/o to r/w or vice versa.
1347 */
1348 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1349
1350 spin_lock(&inode_sb_list_lock);
1351
1352 /*
1353 * Data integrity sync. Must wait for all pages under writeback,
1354 * because there may have been pages dirtied before our sync
1355 * call, but which had writeout started before we write it out.
1356 * In which case, the inode may not be on the dirty list, but
1357 * we still have to wait for that writeout.
1358 */
1359 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1360 struct address_space *mapping = inode->i_mapping;
1361
1362 spin_lock(&inode->i_lock);
1363 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1364 (mapping->nrpages == 0)) {
1365 spin_unlock(&inode->i_lock);
1366 continue;
1367 }
1368 __iget(inode);
1369 spin_unlock(&inode->i_lock);
1370 spin_unlock(&inode_sb_list_lock);
1371
1372 /*
1373 * We hold a reference to 'inode' so it couldn't have been
1374 * removed from s_inodes list while we dropped the
1375 * inode_sb_list_lock. We cannot iput the inode now as we can
1376 * be holding the last reference and we cannot iput it under
1377 * inode_sb_list_lock. So we keep the reference and iput it
1378 * later.
1379 */
1380 iput(old_inode);
1381 old_inode = inode;
1382
1383 filemap_fdatawait(mapping);
1384
1385 cond_resched();
1386
1387 spin_lock(&inode_sb_list_lock);
1388 }
1389 spin_unlock(&inode_sb_list_lock);
1390 iput(old_inode);
1391 }
1392
1393 /**
1394 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1395 * @sb: the superblock
1396 * @nr: the number of pages to write
1397 * @reason: reason why some writeback work initiated
1398 *
1399 * Start writeback on some inodes on this super_block. No guarantees are made
1400 * on how many (if any) will be written, and this function does not wait
1401 * for IO completion of submitted IO.
1402 */
1403 void writeback_inodes_sb_nr(struct super_block *sb,
1404 unsigned long nr,
1405 enum wb_reason reason)
1406 {
1407 DECLARE_COMPLETION_ONSTACK(done);
1408 struct wb_writeback_work work = {
1409 .sb = sb,
1410 .sync_mode = WB_SYNC_NONE,
1411 .tagged_writepages = 1,
1412 .done = &done,
1413 .nr_pages = nr,
1414 .reason = reason,
1415 };
1416
1417 if (sb->s_bdi == &noop_backing_dev_info)
1418 return;
1419 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1420 wb_queue_work(&sb->s_bdi->wb, &work);
1421 wait_for_completion(&done);
1422 }
1423 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1424
1425 /**
1426 * writeback_inodes_sb - writeback dirty inodes from given super_block
1427 * @sb: the superblock
1428 * @reason: reason why some writeback work was initiated
1429 *
1430 * Start writeback on some inodes on this super_block. No guarantees are made
1431 * on how many (if any) will be written, and this function does not wait
1432 * for IO completion of submitted IO.
1433 */
1434 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1435 {
1436 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1437 }
1438 EXPORT_SYMBOL(writeback_inodes_sb);
1439
1440 /**
1441 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1442 * @sb: the superblock
1443 * @nr: the number of pages to write
1444 * @reason: the reason of writeback
1445 *
1446 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1447 * Returns 1 if writeback was started, 0 if not.
1448 */
1449 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1450 unsigned long nr,
1451 enum wb_reason reason)
1452 {
1453 if (writeback_in_progress(sb->s_bdi))
1454 return 1;
1455
1456 if (!down_read_trylock(&sb->s_umount))
1457 return 0;
1458
1459 writeback_inodes_sb_nr(sb, nr, reason);
1460 up_read(&sb->s_umount);
1461 return 1;
1462 }
1463 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1464
1465 /**
1466 * try_to_writeback_inodes_sb - try to start writeback if none underway
1467 * @sb: the superblock
1468 * @reason: reason why some writeback work was initiated
1469 *
1470 * Implement by try_to_writeback_inodes_sb_nr()
1471 * Returns 1 if writeback was started, 0 if not.
1472 */
1473 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1474 {
1475 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1476 }
1477 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1478
1479 /**
1480 * sync_inodes_sb - sync sb inode pages
1481 * @sb: the superblock
1482 *
1483 * This function writes and waits on any dirty inode belonging to this
1484 * super_block.
1485 */
1486 void sync_inodes_sb(struct super_block *sb)
1487 {
1488 DECLARE_COMPLETION_ONSTACK(done);
1489 struct wb_writeback_work work = {
1490 .sb = sb,
1491 .sync_mode = WB_SYNC_ALL,
1492 .nr_pages = LONG_MAX,
1493 .range_cyclic = 0,
1494 .done = &done,
1495 .reason = WB_REASON_SYNC,
1496 .for_sync = 1,
1497 };
1498
1499 /* Nothing to do? */
1500 if (sb->s_bdi == &noop_backing_dev_info)
1501 return;
1502 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1503
1504 wb_queue_work(&sb->s_bdi->wb, &work);
1505 wait_for_completion(&done);
1506
1507 wait_sb_inodes(sb);
1508 }
1509 EXPORT_SYMBOL(sync_inodes_sb);
1510
1511 /**
1512 * write_inode_now - write an inode to disk
1513 * @inode: inode to write to disk
1514 * @sync: whether the write should be synchronous or not
1515 *
1516 * This function commits an inode to disk immediately if it is dirty. This is
1517 * primarily needed by knfsd.
1518 *
1519 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1520 */
1521 int write_inode_now(struct inode *inode, int sync)
1522 {
1523 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1524 struct writeback_control wbc = {
1525 .nr_to_write = LONG_MAX,
1526 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1527 .range_start = 0,
1528 .range_end = LLONG_MAX,
1529 };
1530
1531 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1532 wbc.nr_to_write = 0;
1533
1534 might_sleep();
1535 return writeback_single_inode(inode, wb, &wbc);
1536 }
1537 EXPORT_SYMBOL(write_inode_now);
1538
1539 /**
1540 * sync_inode - write an inode and its pages to disk.
1541 * @inode: the inode to sync
1542 * @wbc: controls the writeback mode
1543 *
1544 * sync_inode() will write an inode and its pages to disk. It will also
1545 * correctly update the inode on its superblock's dirty inode lists and will
1546 * update inode->i_state.
1547 *
1548 * The caller must have a ref on the inode.
1549 */
1550 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1551 {
1552 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1553 }
1554 EXPORT_SYMBOL(sync_inode);
1555
1556 /**
1557 * sync_inode_metadata - write an inode to disk
1558 * @inode: the inode to sync
1559 * @wait: wait for I/O to complete.
1560 *
1561 * Write an inode to disk and adjust its dirty state after completion.
1562 *
1563 * Note: only writes the actual inode, no associated data or other metadata.
1564 */
1565 int sync_inode_metadata(struct inode *inode, int wait)
1566 {
1567 struct writeback_control wbc = {
1568 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1569 .nr_to_write = 0, /* metadata-only */
1570 };
1571
1572 return sync_inode(inode, &wbc);
1573 }
1574 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.062101 seconds and 6 git commands to generate.