writeback: make writeback_control track the inode being written back
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
58 enum wb_reason reason; /* why was writeback initiated? */
59
60 struct list_head list; /* pending work list */
61 struct wb_completion *done; /* set if the caller waits */
62 };
63
64 /*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
77 /*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91 return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
113 return true;
114 }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121 clear_bit(WB_has_dirty_io, &wb->state);
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
124 }
125 }
126
127 /**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140 {
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151 }
152
153 /**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161 static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163 {
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
180 {
181 trace_writeback_queue(wb->bdi, work);
182
183 spin_lock_bh(&wb->work_lock);
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
187 goto out_unlock;
188 }
189 if (work->done)
190 atomic_inc(&work->done->cnt);
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194 spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210 {
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 void __inode_attach_wb(struct inode *inode, struct page *page)
218 {
219 struct backing_dev_info *bdi = inode_to_bdi(inode);
220 struct bdi_writeback *wb = NULL;
221
222 if (inode_cgwb_enabled(inode)) {
223 struct cgroup_subsys_state *memcg_css;
224
225 if (page) {
226 memcg_css = mem_cgroup_css_from_page(page);
227 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
228 } else {
229 /* must pin memcg_css, see wb_get_create() */
230 memcg_css = task_get_css(current, memory_cgrp_id);
231 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
232 css_put(memcg_css);
233 }
234 }
235
236 if (!wb)
237 wb = &bdi->wb;
238
239 /*
240 * There may be multiple instances of this function racing to
241 * update the same inode. Use cmpxchg() to tell the winner.
242 */
243 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
244 wb_put(wb);
245 }
246
247 /**
248 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
249 * @wbc: writeback_control of interest
250 * @inode: target inode
251 *
252 * @inode is locked and about to be written back under the control of @wbc.
253 * Record @inode's writeback context into @wbc and unlock the i_lock. On
254 * writeback completion, wbc_detach_inode() should be called. This is used
255 * to track the cgroup writeback context.
256 */
257 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
258 struct inode *inode)
259 {
260 wbc->wb = inode_to_wb(inode);
261 wb_get(wbc->wb);
262 spin_unlock(&inode->i_lock);
263 }
264
265 /**
266 * wbc_detach_inode - disassociate wbc from its target inode
267 * @wbc: writeback_control of interest
268 *
269 * To be called after a writeback attempt of an inode finishes and undoes
270 * wbc_attach_and_unlock_inode(). Can be called under any context.
271 */
272 void wbc_detach_inode(struct writeback_control *wbc)
273 {
274 wb_put(wbc->wb);
275 wbc->wb = NULL;
276 }
277
278 /**
279 * inode_congested - test whether an inode is congested
280 * @inode: inode to test for congestion
281 * @cong_bits: mask of WB_[a]sync_congested bits to test
282 *
283 * Tests whether @inode is congested. @cong_bits is the mask of congestion
284 * bits to test and the return value is the mask of set bits.
285 *
286 * If cgroup writeback is enabled for @inode, the congestion state is
287 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
288 * associated with @inode is congested; otherwise, the root wb's congestion
289 * state is used.
290 */
291 int inode_congested(struct inode *inode, int cong_bits)
292 {
293 if (inode) {
294 struct bdi_writeback *wb = inode_to_wb(inode);
295 if (wb)
296 return wb_congested(wb, cong_bits);
297 }
298
299 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
300 }
301 EXPORT_SYMBOL_GPL(inode_congested);
302
303 /**
304 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
305 * @bdi: bdi the work item was issued to
306 * @work: work item to wait for
307 *
308 * Wait for the completion of @work which was issued to one of @bdi's
309 * bdi_writeback's. The caller must have set @work->single_wait before
310 * issuing it. This wait operates independently fo
311 * wb_wait_for_completion() and also disables automatic freeing of @work.
312 */
313 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
314 struct wb_writeback_work *work)
315 {
316 if (WARN_ON_ONCE(!work->single_wait))
317 return;
318
319 wait_event(bdi->wb_waitq, work->single_done);
320
321 /*
322 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
323 * modifications to @work prior to assertion of ->single_done is
324 * visible to the caller once this function returns.
325 */
326 smp_rmb();
327 }
328
329 /**
330 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
331 * @wb: target bdi_writeback to split @nr_pages to
332 * @nr_pages: number of pages to write for the whole bdi
333 *
334 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
335 * relation to the total write bandwidth of all wb's w/ dirty inodes on
336 * @wb->bdi.
337 */
338 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
339 {
340 unsigned long this_bw = wb->avg_write_bandwidth;
341 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
342
343 if (nr_pages == LONG_MAX)
344 return LONG_MAX;
345
346 /*
347 * This may be called on clean wb's and proportional distribution
348 * may not make sense, just use the original @nr_pages in those
349 * cases. In general, we wanna err on the side of writing more.
350 */
351 if (!tot_bw || this_bw >= tot_bw)
352 return nr_pages;
353 else
354 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
355 }
356
357 /**
358 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
359 * @wb: target bdi_writeback
360 * @base_work: source wb_writeback_work
361 *
362 * Try to make a clone of @base_work and issue it to @wb. If cloning
363 * succeeds, %true is returned; otherwise, @base_work is issued directly
364 * and %false is returned. In the latter case, the caller is required to
365 * wait for @base_work's completion using wb_wait_for_single_work().
366 *
367 * A clone is auto-freed on completion. @base_work never is.
368 */
369 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
370 struct wb_writeback_work *base_work)
371 {
372 struct wb_writeback_work *work;
373
374 work = kmalloc(sizeof(*work), GFP_ATOMIC);
375 if (work) {
376 *work = *base_work;
377 work->auto_free = 1;
378 work->single_wait = 0;
379 } else {
380 work = base_work;
381 work->auto_free = 0;
382 work->single_wait = 1;
383 }
384 work->single_done = 0;
385 wb_queue_work(wb, work);
386 return work != base_work;
387 }
388
389 /**
390 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
391 * @bdi: target backing_dev_info
392 * @base_work: wb_writeback_work to issue
393 * @skip_if_busy: skip wb's which already have writeback in progress
394 *
395 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
396 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
397 * distributed to the busy wbs according to each wb's proportion in the
398 * total active write bandwidth of @bdi.
399 */
400 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
401 struct wb_writeback_work *base_work,
402 bool skip_if_busy)
403 {
404 long nr_pages = base_work->nr_pages;
405 int next_blkcg_id = 0;
406 struct bdi_writeback *wb;
407 struct wb_iter iter;
408
409 might_sleep();
410
411 if (!bdi_has_dirty_io(bdi))
412 return;
413 restart:
414 rcu_read_lock();
415 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
416 if (!wb_has_dirty_io(wb) ||
417 (skip_if_busy && writeback_in_progress(wb)))
418 continue;
419
420 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
421 if (!wb_clone_and_queue_work(wb, base_work)) {
422 next_blkcg_id = wb->blkcg_css->id + 1;
423 rcu_read_unlock();
424 wb_wait_for_single_work(bdi, base_work);
425 goto restart;
426 }
427 }
428 rcu_read_unlock();
429 }
430
431 #else /* CONFIG_CGROUP_WRITEBACK */
432
433 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
434 {
435 return nr_pages;
436 }
437
438 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
439 struct wb_writeback_work *base_work,
440 bool skip_if_busy)
441 {
442 might_sleep();
443
444 if (bdi_has_dirty_io(bdi) &&
445 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
446 base_work->auto_free = 0;
447 base_work->single_wait = 0;
448 base_work->single_done = 0;
449 wb_queue_work(&bdi->wb, base_work);
450 }
451 }
452
453 #endif /* CONFIG_CGROUP_WRITEBACK */
454
455 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
456 bool range_cyclic, enum wb_reason reason)
457 {
458 struct wb_writeback_work *work;
459
460 if (!wb_has_dirty_io(wb))
461 return;
462
463 /*
464 * This is WB_SYNC_NONE writeback, so if allocation fails just
465 * wakeup the thread for old dirty data writeback
466 */
467 work = kzalloc(sizeof(*work), GFP_ATOMIC);
468 if (!work) {
469 trace_writeback_nowork(wb->bdi);
470 wb_wakeup(wb);
471 return;
472 }
473
474 work->sync_mode = WB_SYNC_NONE;
475 work->nr_pages = nr_pages;
476 work->range_cyclic = range_cyclic;
477 work->reason = reason;
478 work->auto_free = 1;
479
480 wb_queue_work(wb, work);
481 }
482
483 /**
484 * wb_start_background_writeback - start background writeback
485 * @wb: bdi_writback to write from
486 *
487 * Description:
488 * This makes sure WB_SYNC_NONE background writeback happens. When
489 * this function returns, it is only guaranteed that for given wb
490 * some IO is happening if we are over background dirty threshold.
491 * Caller need not hold sb s_umount semaphore.
492 */
493 void wb_start_background_writeback(struct bdi_writeback *wb)
494 {
495 /*
496 * We just wake up the flusher thread. It will perform background
497 * writeback as soon as there is no other work to do.
498 */
499 trace_writeback_wake_background(wb->bdi);
500 wb_wakeup(wb);
501 }
502
503 /*
504 * Remove the inode from the writeback list it is on.
505 */
506 void inode_wb_list_del(struct inode *inode)
507 {
508 struct bdi_writeback *wb = inode_to_wb(inode);
509
510 spin_lock(&wb->list_lock);
511 inode_wb_list_del_locked(inode, wb);
512 spin_unlock(&wb->list_lock);
513 }
514
515 /*
516 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
517 * furthest end of its superblock's dirty-inode list.
518 *
519 * Before stamping the inode's ->dirtied_when, we check to see whether it is
520 * already the most-recently-dirtied inode on the b_dirty list. If that is
521 * the case then the inode must have been redirtied while it was being written
522 * out and we don't reset its dirtied_when.
523 */
524 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
525 {
526 if (!list_empty(&wb->b_dirty)) {
527 struct inode *tail;
528
529 tail = wb_inode(wb->b_dirty.next);
530 if (time_before(inode->dirtied_when, tail->dirtied_when))
531 inode->dirtied_when = jiffies;
532 }
533 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
534 }
535
536 /*
537 * requeue inode for re-scanning after bdi->b_io list is exhausted.
538 */
539 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
540 {
541 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
542 }
543
544 static void inode_sync_complete(struct inode *inode)
545 {
546 inode->i_state &= ~I_SYNC;
547 /* If inode is clean an unused, put it into LRU now... */
548 inode_add_lru(inode);
549 /* Waiters must see I_SYNC cleared before being woken up */
550 smp_mb();
551 wake_up_bit(&inode->i_state, __I_SYNC);
552 }
553
554 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
555 {
556 bool ret = time_after(inode->dirtied_when, t);
557 #ifndef CONFIG_64BIT
558 /*
559 * For inodes being constantly redirtied, dirtied_when can get stuck.
560 * It _appears_ to be in the future, but is actually in distant past.
561 * This test is necessary to prevent such wrapped-around relative times
562 * from permanently stopping the whole bdi writeback.
563 */
564 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
565 #endif
566 return ret;
567 }
568
569 #define EXPIRE_DIRTY_ATIME 0x0001
570
571 /*
572 * Move expired (dirtied before work->older_than_this) dirty inodes from
573 * @delaying_queue to @dispatch_queue.
574 */
575 static int move_expired_inodes(struct list_head *delaying_queue,
576 struct list_head *dispatch_queue,
577 int flags,
578 struct wb_writeback_work *work)
579 {
580 unsigned long *older_than_this = NULL;
581 unsigned long expire_time;
582 LIST_HEAD(tmp);
583 struct list_head *pos, *node;
584 struct super_block *sb = NULL;
585 struct inode *inode;
586 int do_sb_sort = 0;
587 int moved = 0;
588
589 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
590 older_than_this = work->older_than_this;
591 else if (!work->for_sync) {
592 expire_time = jiffies - (dirtytime_expire_interval * HZ);
593 older_than_this = &expire_time;
594 }
595 while (!list_empty(delaying_queue)) {
596 inode = wb_inode(delaying_queue->prev);
597 if (older_than_this &&
598 inode_dirtied_after(inode, *older_than_this))
599 break;
600 list_move(&inode->i_wb_list, &tmp);
601 moved++;
602 if (flags & EXPIRE_DIRTY_ATIME)
603 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
604 if (sb_is_blkdev_sb(inode->i_sb))
605 continue;
606 if (sb && sb != inode->i_sb)
607 do_sb_sort = 1;
608 sb = inode->i_sb;
609 }
610
611 /* just one sb in list, splice to dispatch_queue and we're done */
612 if (!do_sb_sort) {
613 list_splice(&tmp, dispatch_queue);
614 goto out;
615 }
616
617 /* Move inodes from one superblock together */
618 while (!list_empty(&tmp)) {
619 sb = wb_inode(tmp.prev)->i_sb;
620 list_for_each_prev_safe(pos, node, &tmp) {
621 inode = wb_inode(pos);
622 if (inode->i_sb == sb)
623 list_move(&inode->i_wb_list, dispatch_queue);
624 }
625 }
626 out:
627 return moved;
628 }
629
630 /*
631 * Queue all expired dirty inodes for io, eldest first.
632 * Before
633 * newly dirtied b_dirty b_io b_more_io
634 * =============> gf edc BA
635 * After
636 * newly dirtied b_dirty b_io b_more_io
637 * =============> g fBAedc
638 * |
639 * +--> dequeue for IO
640 */
641 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
642 {
643 int moved;
644
645 assert_spin_locked(&wb->list_lock);
646 list_splice_init(&wb->b_more_io, &wb->b_io);
647 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
648 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
649 EXPIRE_DIRTY_ATIME, work);
650 if (moved)
651 wb_io_lists_populated(wb);
652 trace_writeback_queue_io(wb, work, moved);
653 }
654
655 static int write_inode(struct inode *inode, struct writeback_control *wbc)
656 {
657 int ret;
658
659 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
660 trace_writeback_write_inode_start(inode, wbc);
661 ret = inode->i_sb->s_op->write_inode(inode, wbc);
662 trace_writeback_write_inode(inode, wbc);
663 return ret;
664 }
665 return 0;
666 }
667
668 /*
669 * Wait for writeback on an inode to complete. Called with i_lock held.
670 * Caller must make sure inode cannot go away when we drop i_lock.
671 */
672 static void __inode_wait_for_writeback(struct inode *inode)
673 __releases(inode->i_lock)
674 __acquires(inode->i_lock)
675 {
676 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
677 wait_queue_head_t *wqh;
678
679 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
680 while (inode->i_state & I_SYNC) {
681 spin_unlock(&inode->i_lock);
682 __wait_on_bit(wqh, &wq, bit_wait,
683 TASK_UNINTERRUPTIBLE);
684 spin_lock(&inode->i_lock);
685 }
686 }
687
688 /*
689 * Wait for writeback on an inode to complete. Caller must have inode pinned.
690 */
691 void inode_wait_for_writeback(struct inode *inode)
692 {
693 spin_lock(&inode->i_lock);
694 __inode_wait_for_writeback(inode);
695 spin_unlock(&inode->i_lock);
696 }
697
698 /*
699 * Sleep until I_SYNC is cleared. This function must be called with i_lock
700 * held and drops it. It is aimed for callers not holding any inode reference
701 * so once i_lock is dropped, inode can go away.
702 */
703 static void inode_sleep_on_writeback(struct inode *inode)
704 __releases(inode->i_lock)
705 {
706 DEFINE_WAIT(wait);
707 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
708 int sleep;
709
710 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
711 sleep = inode->i_state & I_SYNC;
712 spin_unlock(&inode->i_lock);
713 if (sleep)
714 schedule();
715 finish_wait(wqh, &wait);
716 }
717
718 /*
719 * Find proper writeback list for the inode depending on its current state and
720 * possibly also change of its state while we were doing writeback. Here we
721 * handle things such as livelock prevention or fairness of writeback among
722 * inodes. This function can be called only by flusher thread - noone else
723 * processes all inodes in writeback lists and requeueing inodes behind flusher
724 * thread's back can have unexpected consequences.
725 */
726 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
727 struct writeback_control *wbc)
728 {
729 if (inode->i_state & I_FREEING)
730 return;
731
732 /*
733 * Sync livelock prevention. Each inode is tagged and synced in one
734 * shot. If still dirty, it will be redirty_tail()'ed below. Update
735 * the dirty time to prevent enqueue and sync it again.
736 */
737 if ((inode->i_state & I_DIRTY) &&
738 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
739 inode->dirtied_when = jiffies;
740
741 if (wbc->pages_skipped) {
742 /*
743 * writeback is not making progress due to locked
744 * buffers. Skip this inode for now.
745 */
746 redirty_tail(inode, wb);
747 return;
748 }
749
750 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
751 /*
752 * We didn't write back all the pages. nfs_writepages()
753 * sometimes bales out without doing anything.
754 */
755 if (wbc->nr_to_write <= 0) {
756 /* Slice used up. Queue for next turn. */
757 requeue_io(inode, wb);
758 } else {
759 /*
760 * Writeback blocked by something other than
761 * congestion. Delay the inode for some time to
762 * avoid spinning on the CPU (100% iowait)
763 * retrying writeback of the dirty page/inode
764 * that cannot be performed immediately.
765 */
766 redirty_tail(inode, wb);
767 }
768 } else if (inode->i_state & I_DIRTY) {
769 /*
770 * Filesystems can dirty the inode during writeback operations,
771 * such as delayed allocation during submission or metadata
772 * updates after data IO completion.
773 */
774 redirty_tail(inode, wb);
775 } else if (inode->i_state & I_DIRTY_TIME) {
776 inode->dirtied_when = jiffies;
777 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
778 } else {
779 /* The inode is clean. Remove from writeback lists. */
780 inode_wb_list_del_locked(inode, wb);
781 }
782 }
783
784 /*
785 * Write out an inode and its dirty pages. Do not update the writeback list
786 * linkage. That is left to the caller. The caller is also responsible for
787 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
788 */
789 static int
790 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
791 {
792 struct address_space *mapping = inode->i_mapping;
793 long nr_to_write = wbc->nr_to_write;
794 unsigned dirty;
795 int ret;
796
797 WARN_ON(!(inode->i_state & I_SYNC));
798
799 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
800
801 ret = do_writepages(mapping, wbc);
802
803 /*
804 * Make sure to wait on the data before writing out the metadata.
805 * This is important for filesystems that modify metadata on data
806 * I/O completion. We don't do it for sync(2) writeback because it has a
807 * separate, external IO completion path and ->sync_fs for guaranteeing
808 * inode metadata is written back correctly.
809 */
810 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
811 int err = filemap_fdatawait(mapping);
812 if (ret == 0)
813 ret = err;
814 }
815
816 /*
817 * Some filesystems may redirty the inode during the writeback
818 * due to delalloc, clear dirty metadata flags right before
819 * write_inode()
820 */
821 spin_lock(&inode->i_lock);
822
823 dirty = inode->i_state & I_DIRTY;
824 if (inode->i_state & I_DIRTY_TIME) {
825 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
826 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
827 unlikely(time_after(jiffies,
828 (inode->dirtied_time_when +
829 dirtytime_expire_interval * HZ)))) {
830 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
831 trace_writeback_lazytime(inode);
832 }
833 } else
834 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
835 inode->i_state &= ~dirty;
836
837 /*
838 * Paired with smp_mb() in __mark_inode_dirty(). This allows
839 * __mark_inode_dirty() to test i_state without grabbing i_lock -
840 * either they see the I_DIRTY bits cleared or we see the dirtied
841 * inode.
842 *
843 * I_DIRTY_PAGES is always cleared together above even if @mapping
844 * still has dirty pages. The flag is reinstated after smp_mb() if
845 * necessary. This guarantees that either __mark_inode_dirty()
846 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
847 */
848 smp_mb();
849
850 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
851 inode->i_state |= I_DIRTY_PAGES;
852
853 spin_unlock(&inode->i_lock);
854
855 if (dirty & I_DIRTY_TIME)
856 mark_inode_dirty_sync(inode);
857 /* Don't write the inode if only I_DIRTY_PAGES was set */
858 if (dirty & ~I_DIRTY_PAGES) {
859 int err = write_inode(inode, wbc);
860 if (ret == 0)
861 ret = err;
862 }
863 trace_writeback_single_inode(inode, wbc, nr_to_write);
864 return ret;
865 }
866
867 /*
868 * Write out an inode's dirty pages. Either the caller has an active reference
869 * on the inode or the inode has I_WILL_FREE set.
870 *
871 * This function is designed to be called for writing back one inode which
872 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
873 * and does more profound writeback list handling in writeback_sb_inodes().
874 */
875 static int
876 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
877 struct writeback_control *wbc)
878 {
879 int ret = 0;
880
881 spin_lock(&inode->i_lock);
882 if (!atomic_read(&inode->i_count))
883 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
884 else
885 WARN_ON(inode->i_state & I_WILL_FREE);
886
887 if (inode->i_state & I_SYNC) {
888 if (wbc->sync_mode != WB_SYNC_ALL)
889 goto out;
890 /*
891 * It's a data-integrity sync. We must wait. Since callers hold
892 * inode reference or inode has I_WILL_FREE set, it cannot go
893 * away under us.
894 */
895 __inode_wait_for_writeback(inode);
896 }
897 WARN_ON(inode->i_state & I_SYNC);
898 /*
899 * Skip inode if it is clean and we have no outstanding writeback in
900 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
901 * function since flusher thread may be doing for example sync in
902 * parallel and if we move the inode, it could get skipped. So here we
903 * make sure inode is on some writeback list and leave it there unless
904 * we have completely cleaned the inode.
905 */
906 if (!(inode->i_state & I_DIRTY_ALL) &&
907 (wbc->sync_mode != WB_SYNC_ALL ||
908 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
909 goto out;
910 inode->i_state |= I_SYNC;
911 wbc_attach_and_unlock_inode(wbc, inode);
912
913 ret = __writeback_single_inode(inode, wbc);
914
915 wbc_detach_inode(wbc);
916 spin_lock(&wb->list_lock);
917 spin_lock(&inode->i_lock);
918 /*
919 * If inode is clean, remove it from writeback lists. Otherwise don't
920 * touch it. See comment above for explanation.
921 */
922 if (!(inode->i_state & I_DIRTY_ALL))
923 inode_wb_list_del_locked(inode, wb);
924 spin_unlock(&wb->list_lock);
925 inode_sync_complete(inode);
926 out:
927 spin_unlock(&inode->i_lock);
928 return ret;
929 }
930
931 static long writeback_chunk_size(struct bdi_writeback *wb,
932 struct wb_writeback_work *work)
933 {
934 long pages;
935
936 /*
937 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
938 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
939 * here avoids calling into writeback_inodes_wb() more than once.
940 *
941 * The intended call sequence for WB_SYNC_ALL writeback is:
942 *
943 * wb_writeback()
944 * writeback_sb_inodes() <== called only once
945 * write_cache_pages() <== called once for each inode
946 * (quickly) tag currently dirty pages
947 * (maybe slowly) sync all tagged pages
948 */
949 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
950 pages = LONG_MAX;
951 else {
952 pages = min(wb->avg_write_bandwidth / 2,
953 global_wb_domain.dirty_limit / DIRTY_SCOPE);
954 pages = min(pages, work->nr_pages);
955 pages = round_down(pages + MIN_WRITEBACK_PAGES,
956 MIN_WRITEBACK_PAGES);
957 }
958
959 return pages;
960 }
961
962 /*
963 * Write a portion of b_io inodes which belong to @sb.
964 *
965 * Return the number of pages and/or inodes written.
966 */
967 static long writeback_sb_inodes(struct super_block *sb,
968 struct bdi_writeback *wb,
969 struct wb_writeback_work *work)
970 {
971 struct writeback_control wbc = {
972 .sync_mode = work->sync_mode,
973 .tagged_writepages = work->tagged_writepages,
974 .for_kupdate = work->for_kupdate,
975 .for_background = work->for_background,
976 .for_sync = work->for_sync,
977 .range_cyclic = work->range_cyclic,
978 .range_start = 0,
979 .range_end = LLONG_MAX,
980 };
981 unsigned long start_time = jiffies;
982 long write_chunk;
983 long wrote = 0; /* count both pages and inodes */
984
985 while (!list_empty(&wb->b_io)) {
986 struct inode *inode = wb_inode(wb->b_io.prev);
987
988 if (inode->i_sb != sb) {
989 if (work->sb) {
990 /*
991 * We only want to write back data for this
992 * superblock, move all inodes not belonging
993 * to it back onto the dirty list.
994 */
995 redirty_tail(inode, wb);
996 continue;
997 }
998
999 /*
1000 * The inode belongs to a different superblock.
1001 * Bounce back to the caller to unpin this and
1002 * pin the next superblock.
1003 */
1004 break;
1005 }
1006
1007 /*
1008 * Don't bother with new inodes or inodes being freed, first
1009 * kind does not need periodic writeout yet, and for the latter
1010 * kind writeout is handled by the freer.
1011 */
1012 spin_lock(&inode->i_lock);
1013 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1014 spin_unlock(&inode->i_lock);
1015 redirty_tail(inode, wb);
1016 continue;
1017 }
1018 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1019 /*
1020 * If this inode is locked for writeback and we are not
1021 * doing writeback-for-data-integrity, move it to
1022 * b_more_io so that writeback can proceed with the
1023 * other inodes on s_io.
1024 *
1025 * We'll have another go at writing back this inode
1026 * when we completed a full scan of b_io.
1027 */
1028 spin_unlock(&inode->i_lock);
1029 requeue_io(inode, wb);
1030 trace_writeback_sb_inodes_requeue(inode);
1031 continue;
1032 }
1033 spin_unlock(&wb->list_lock);
1034
1035 /*
1036 * We already requeued the inode if it had I_SYNC set and we
1037 * are doing WB_SYNC_NONE writeback. So this catches only the
1038 * WB_SYNC_ALL case.
1039 */
1040 if (inode->i_state & I_SYNC) {
1041 /* Wait for I_SYNC. This function drops i_lock... */
1042 inode_sleep_on_writeback(inode);
1043 /* Inode may be gone, start again */
1044 spin_lock(&wb->list_lock);
1045 continue;
1046 }
1047 inode->i_state |= I_SYNC;
1048 wbc_attach_and_unlock_inode(&wbc, inode);
1049
1050 write_chunk = writeback_chunk_size(wb, work);
1051 wbc.nr_to_write = write_chunk;
1052 wbc.pages_skipped = 0;
1053
1054 /*
1055 * We use I_SYNC to pin the inode in memory. While it is set
1056 * evict_inode() will wait so the inode cannot be freed.
1057 */
1058 __writeback_single_inode(inode, &wbc);
1059
1060 wbc_detach_inode(&wbc);
1061 work->nr_pages -= write_chunk - wbc.nr_to_write;
1062 wrote += write_chunk - wbc.nr_to_write;
1063 spin_lock(&wb->list_lock);
1064 spin_lock(&inode->i_lock);
1065 if (!(inode->i_state & I_DIRTY_ALL))
1066 wrote++;
1067 requeue_inode(inode, wb, &wbc);
1068 inode_sync_complete(inode);
1069 spin_unlock(&inode->i_lock);
1070 cond_resched_lock(&wb->list_lock);
1071 /*
1072 * bail out to wb_writeback() often enough to check
1073 * background threshold and other termination conditions.
1074 */
1075 if (wrote) {
1076 if (time_is_before_jiffies(start_time + HZ / 10UL))
1077 break;
1078 if (work->nr_pages <= 0)
1079 break;
1080 }
1081 }
1082 return wrote;
1083 }
1084
1085 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1086 struct wb_writeback_work *work)
1087 {
1088 unsigned long start_time = jiffies;
1089 long wrote = 0;
1090
1091 while (!list_empty(&wb->b_io)) {
1092 struct inode *inode = wb_inode(wb->b_io.prev);
1093 struct super_block *sb = inode->i_sb;
1094
1095 if (!trylock_super(sb)) {
1096 /*
1097 * trylock_super() may fail consistently due to
1098 * s_umount being grabbed by someone else. Don't use
1099 * requeue_io() to avoid busy retrying the inode/sb.
1100 */
1101 redirty_tail(inode, wb);
1102 continue;
1103 }
1104 wrote += writeback_sb_inodes(sb, wb, work);
1105 up_read(&sb->s_umount);
1106
1107 /* refer to the same tests at the end of writeback_sb_inodes */
1108 if (wrote) {
1109 if (time_is_before_jiffies(start_time + HZ / 10UL))
1110 break;
1111 if (work->nr_pages <= 0)
1112 break;
1113 }
1114 }
1115 /* Leave any unwritten inodes on b_io */
1116 return wrote;
1117 }
1118
1119 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1120 enum wb_reason reason)
1121 {
1122 struct wb_writeback_work work = {
1123 .nr_pages = nr_pages,
1124 .sync_mode = WB_SYNC_NONE,
1125 .range_cyclic = 1,
1126 .reason = reason,
1127 };
1128
1129 spin_lock(&wb->list_lock);
1130 if (list_empty(&wb->b_io))
1131 queue_io(wb, &work);
1132 __writeback_inodes_wb(wb, &work);
1133 spin_unlock(&wb->list_lock);
1134
1135 return nr_pages - work.nr_pages;
1136 }
1137
1138 /*
1139 * Explicit flushing or periodic writeback of "old" data.
1140 *
1141 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1142 * dirtying-time in the inode's address_space. So this periodic writeback code
1143 * just walks the superblock inode list, writing back any inodes which are
1144 * older than a specific point in time.
1145 *
1146 * Try to run once per dirty_writeback_interval. But if a writeback event
1147 * takes longer than a dirty_writeback_interval interval, then leave a
1148 * one-second gap.
1149 *
1150 * older_than_this takes precedence over nr_to_write. So we'll only write back
1151 * all dirty pages if they are all attached to "old" mappings.
1152 */
1153 static long wb_writeback(struct bdi_writeback *wb,
1154 struct wb_writeback_work *work)
1155 {
1156 unsigned long wb_start = jiffies;
1157 long nr_pages = work->nr_pages;
1158 unsigned long oldest_jif;
1159 struct inode *inode;
1160 long progress;
1161
1162 oldest_jif = jiffies;
1163 work->older_than_this = &oldest_jif;
1164
1165 spin_lock(&wb->list_lock);
1166 for (;;) {
1167 /*
1168 * Stop writeback when nr_pages has been consumed
1169 */
1170 if (work->nr_pages <= 0)
1171 break;
1172
1173 /*
1174 * Background writeout and kupdate-style writeback may
1175 * run forever. Stop them if there is other work to do
1176 * so that e.g. sync can proceed. They'll be restarted
1177 * after the other works are all done.
1178 */
1179 if ((work->for_background || work->for_kupdate) &&
1180 !list_empty(&wb->work_list))
1181 break;
1182
1183 /*
1184 * For background writeout, stop when we are below the
1185 * background dirty threshold
1186 */
1187 if (work->for_background && !wb_over_bg_thresh(wb))
1188 break;
1189
1190 /*
1191 * Kupdate and background works are special and we want to
1192 * include all inodes that need writing. Livelock avoidance is
1193 * handled by these works yielding to any other work so we are
1194 * safe.
1195 */
1196 if (work->for_kupdate) {
1197 oldest_jif = jiffies -
1198 msecs_to_jiffies(dirty_expire_interval * 10);
1199 } else if (work->for_background)
1200 oldest_jif = jiffies;
1201
1202 trace_writeback_start(wb->bdi, work);
1203 if (list_empty(&wb->b_io))
1204 queue_io(wb, work);
1205 if (work->sb)
1206 progress = writeback_sb_inodes(work->sb, wb, work);
1207 else
1208 progress = __writeback_inodes_wb(wb, work);
1209 trace_writeback_written(wb->bdi, work);
1210
1211 wb_update_bandwidth(wb, wb_start);
1212
1213 /*
1214 * Did we write something? Try for more
1215 *
1216 * Dirty inodes are moved to b_io for writeback in batches.
1217 * The completion of the current batch does not necessarily
1218 * mean the overall work is done. So we keep looping as long
1219 * as made some progress on cleaning pages or inodes.
1220 */
1221 if (progress)
1222 continue;
1223 /*
1224 * No more inodes for IO, bail
1225 */
1226 if (list_empty(&wb->b_more_io))
1227 break;
1228 /*
1229 * Nothing written. Wait for some inode to
1230 * become available for writeback. Otherwise
1231 * we'll just busyloop.
1232 */
1233 if (!list_empty(&wb->b_more_io)) {
1234 trace_writeback_wait(wb->bdi, work);
1235 inode = wb_inode(wb->b_more_io.prev);
1236 spin_lock(&inode->i_lock);
1237 spin_unlock(&wb->list_lock);
1238 /* This function drops i_lock... */
1239 inode_sleep_on_writeback(inode);
1240 spin_lock(&wb->list_lock);
1241 }
1242 }
1243 spin_unlock(&wb->list_lock);
1244
1245 return nr_pages - work->nr_pages;
1246 }
1247
1248 /*
1249 * Return the next wb_writeback_work struct that hasn't been processed yet.
1250 */
1251 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1252 {
1253 struct wb_writeback_work *work = NULL;
1254
1255 spin_lock_bh(&wb->work_lock);
1256 if (!list_empty(&wb->work_list)) {
1257 work = list_entry(wb->work_list.next,
1258 struct wb_writeback_work, list);
1259 list_del_init(&work->list);
1260 }
1261 spin_unlock_bh(&wb->work_lock);
1262 return work;
1263 }
1264
1265 /*
1266 * Add in the number of potentially dirty inodes, because each inode
1267 * write can dirty pagecache in the underlying blockdev.
1268 */
1269 static unsigned long get_nr_dirty_pages(void)
1270 {
1271 return global_page_state(NR_FILE_DIRTY) +
1272 global_page_state(NR_UNSTABLE_NFS) +
1273 get_nr_dirty_inodes();
1274 }
1275
1276 static long wb_check_background_flush(struct bdi_writeback *wb)
1277 {
1278 if (wb_over_bg_thresh(wb)) {
1279
1280 struct wb_writeback_work work = {
1281 .nr_pages = LONG_MAX,
1282 .sync_mode = WB_SYNC_NONE,
1283 .for_background = 1,
1284 .range_cyclic = 1,
1285 .reason = WB_REASON_BACKGROUND,
1286 };
1287
1288 return wb_writeback(wb, &work);
1289 }
1290
1291 return 0;
1292 }
1293
1294 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1295 {
1296 unsigned long expired;
1297 long nr_pages;
1298
1299 /*
1300 * When set to zero, disable periodic writeback
1301 */
1302 if (!dirty_writeback_interval)
1303 return 0;
1304
1305 expired = wb->last_old_flush +
1306 msecs_to_jiffies(dirty_writeback_interval * 10);
1307 if (time_before(jiffies, expired))
1308 return 0;
1309
1310 wb->last_old_flush = jiffies;
1311 nr_pages = get_nr_dirty_pages();
1312
1313 if (nr_pages) {
1314 struct wb_writeback_work work = {
1315 .nr_pages = nr_pages,
1316 .sync_mode = WB_SYNC_NONE,
1317 .for_kupdate = 1,
1318 .range_cyclic = 1,
1319 .reason = WB_REASON_PERIODIC,
1320 };
1321
1322 return wb_writeback(wb, &work);
1323 }
1324
1325 return 0;
1326 }
1327
1328 /*
1329 * Retrieve work items and do the writeback they describe
1330 */
1331 static long wb_do_writeback(struct bdi_writeback *wb)
1332 {
1333 struct wb_writeback_work *work;
1334 long wrote = 0;
1335
1336 set_bit(WB_writeback_running, &wb->state);
1337 while ((work = get_next_work_item(wb)) != NULL) {
1338 struct wb_completion *done = work->done;
1339 bool need_wake_up = false;
1340
1341 trace_writeback_exec(wb->bdi, work);
1342
1343 wrote += wb_writeback(wb, work);
1344
1345 if (work->single_wait) {
1346 WARN_ON_ONCE(work->auto_free);
1347 /* paired w/ rmb in wb_wait_for_single_work() */
1348 smp_wmb();
1349 work->single_done = 1;
1350 need_wake_up = true;
1351 } else if (work->auto_free) {
1352 kfree(work);
1353 }
1354
1355 if (done && atomic_dec_and_test(&done->cnt))
1356 need_wake_up = true;
1357
1358 if (need_wake_up)
1359 wake_up_all(&wb->bdi->wb_waitq);
1360 }
1361
1362 /*
1363 * Check for periodic writeback, kupdated() style
1364 */
1365 wrote += wb_check_old_data_flush(wb);
1366 wrote += wb_check_background_flush(wb);
1367 clear_bit(WB_writeback_running, &wb->state);
1368
1369 return wrote;
1370 }
1371
1372 /*
1373 * Handle writeback of dirty data for the device backed by this bdi. Also
1374 * reschedules periodically and does kupdated style flushing.
1375 */
1376 void wb_workfn(struct work_struct *work)
1377 {
1378 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1379 struct bdi_writeback, dwork);
1380 long pages_written;
1381
1382 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1383 current->flags |= PF_SWAPWRITE;
1384
1385 if (likely(!current_is_workqueue_rescuer() ||
1386 !test_bit(WB_registered, &wb->state))) {
1387 /*
1388 * The normal path. Keep writing back @wb until its
1389 * work_list is empty. Note that this path is also taken
1390 * if @wb is shutting down even when we're running off the
1391 * rescuer as work_list needs to be drained.
1392 */
1393 do {
1394 pages_written = wb_do_writeback(wb);
1395 trace_writeback_pages_written(pages_written);
1396 } while (!list_empty(&wb->work_list));
1397 } else {
1398 /*
1399 * bdi_wq can't get enough workers and we're running off
1400 * the emergency worker. Don't hog it. Hopefully, 1024 is
1401 * enough for efficient IO.
1402 */
1403 pages_written = writeback_inodes_wb(wb, 1024,
1404 WB_REASON_FORKER_THREAD);
1405 trace_writeback_pages_written(pages_written);
1406 }
1407
1408 if (!list_empty(&wb->work_list))
1409 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1410 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1411 wb_wakeup_delayed(wb);
1412
1413 current->flags &= ~PF_SWAPWRITE;
1414 }
1415
1416 /*
1417 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1418 * the whole world.
1419 */
1420 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1421 {
1422 struct backing_dev_info *bdi;
1423
1424 if (!nr_pages)
1425 nr_pages = get_nr_dirty_pages();
1426
1427 rcu_read_lock();
1428 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1429 struct bdi_writeback *wb;
1430 struct wb_iter iter;
1431
1432 if (!bdi_has_dirty_io(bdi))
1433 continue;
1434
1435 bdi_for_each_wb(wb, bdi, &iter, 0)
1436 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1437 false, reason);
1438 }
1439 rcu_read_unlock();
1440 }
1441
1442 /*
1443 * Wake up bdi's periodically to make sure dirtytime inodes gets
1444 * written back periodically. We deliberately do *not* check the
1445 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1446 * kernel to be constantly waking up once there are any dirtytime
1447 * inodes on the system. So instead we define a separate delayed work
1448 * function which gets called much more rarely. (By default, only
1449 * once every 12 hours.)
1450 *
1451 * If there is any other write activity going on in the file system,
1452 * this function won't be necessary. But if the only thing that has
1453 * happened on the file system is a dirtytime inode caused by an atime
1454 * update, we need this infrastructure below to make sure that inode
1455 * eventually gets pushed out to disk.
1456 */
1457 static void wakeup_dirtytime_writeback(struct work_struct *w);
1458 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1459
1460 static void wakeup_dirtytime_writeback(struct work_struct *w)
1461 {
1462 struct backing_dev_info *bdi;
1463
1464 rcu_read_lock();
1465 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1466 struct bdi_writeback *wb;
1467 struct wb_iter iter;
1468
1469 bdi_for_each_wb(wb, bdi, &iter, 0)
1470 if (!list_empty(&bdi->wb.b_dirty_time))
1471 wb_wakeup(&bdi->wb);
1472 }
1473 rcu_read_unlock();
1474 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1475 }
1476
1477 static int __init start_dirtytime_writeback(void)
1478 {
1479 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1480 return 0;
1481 }
1482 __initcall(start_dirtytime_writeback);
1483
1484 int dirtytime_interval_handler(struct ctl_table *table, int write,
1485 void __user *buffer, size_t *lenp, loff_t *ppos)
1486 {
1487 int ret;
1488
1489 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1490 if (ret == 0 && write)
1491 mod_delayed_work(system_wq, &dirtytime_work, 0);
1492 return ret;
1493 }
1494
1495 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1496 {
1497 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1498 struct dentry *dentry;
1499 const char *name = "?";
1500
1501 dentry = d_find_alias(inode);
1502 if (dentry) {
1503 spin_lock(&dentry->d_lock);
1504 name = (const char *) dentry->d_name.name;
1505 }
1506 printk(KERN_DEBUG
1507 "%s(%d): dirtied inode %lu (%s) on %s\n",
1508 current->comm, task_pid_nr(current), inode->i_ino,
1509 name, inode->i_sb->s_id);
1510 if (dentry) {
1511 spin_unlock(&dentry->d_lock);
1512 dput(dentry);
1513 }
1514 }
1515 }
1516
1517 /**
1518 * __mark_inode_dirty - internal function
1519 * @inode: inode to mark
1520 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1521 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1522 * mark_inode_dirty_sync.
1523 *
1524 * Put the inode on the super block's dirty list.
1525 *
1526 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1527 * dirty list only if it is hashed or if it refers to a blockdev.
1528 * If it was not hashed, it will never be added to the dirty list
1529 * even if it is later hashed, as it will have been marked dirty already.
1530 *
1531 * In short, make sure you hash any inodes _before_ you start marking
1532 * them dirty.
1533 *
1534 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1535 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1536 * the kernel-internal blockdev inode represents the dirtying time of the
1537 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1538 * page->mapping->host, so the page-dirtying time is recorded in the internal
1539 * blockdev inode.
1540 */
1541 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1542 void __mark_inode_dirty(struct inode *inode, int flags)
1543 {
1544 struct super_block *sb = inode->i_sb;
1545 int dirtytime;
1546
1547 trace_writeback_mark_inode_dirty(inode, flags);
1548
1549 /*
1550 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1551 * dirty the inode itself
1552 */
1553 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1554 trace_writeback_dirty_inode_start(inode, flags);
1555
1556 if (sb->s_op->dirty_inode)
1557 sb->s_op->dirty_inode(inode, flags);
1558
1559 trace_writeback_dirty_inode(inode, flags);
1560 }
1561 if (flags & I_DIRTY_INODE)
1562 flags &= ~I_DIRTY_TIME;
1563 dirtytime = flags & I_DIRTY_TIME;
1564
1565 /*
1566 * Paired with smp_mb() in __writeback_single_inode() for the
1567 * following lockless i_state test. See there for details.
1568 */
1569 smp_mb();
1570
1571 if (((inode->i_state & flags) == flags) ||
1572 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1573 return;
1574
1575 if (unlikely(block_dump))
1576 block_dump___mark_inode_dirty(inode);
1577
1578 spin_lock(&inode->i_lock);
1579 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1580 goto out_unlock_inode;
1581 if ((inode->i_state & flags) != flags) {
1582 const int was_dirty = inode->i_state & I_DIRTY;
1583
1584 inode_attach_wb(inode, NULL);
1585
1586 if (flags & I_DIRTY_INODE)
1587 inode->i_state &= ~I_DIRTY_TIME;
1588 inode->i_state |= flags;
1589
1590 /*
1591 * If the inode is being synced, just update its dirty state.
1592 * The unlocker will place the inode on the appropriate
1593 * superblock list, based upon its state.
1594 */
1595 if (inode->i_state & I_SYNC)
1596 goto out_unlock_inode;
1597
1598 /*
1599 * Only add valid (hashed) inodes to the superblock's
1600 * dirty list. Add blockdev inodes as well.
1601 */
1602 if (!S_ISBLK(inode->i_mode)) {
1603 if (inode_unhashed(inode))
1604 goto out_unlock_inode;
1605 }
1606 if (inode->i_state & I_FREEING)
1607 goto out_unlock_inode;
1608
1609 /*
1610 * If the inode was already on b_dirty/b_io/b_more_io, don't
1611 * reposition it (that would break b_dirty time-ordering).
1612 */
1613 if (!was_dirty) {
1614 struct bdi_writeback *wb = inode_to_wb(inode);
1615 struct list_head *dirty_list;
1616 bool wakeup_bdi = false;
1617
1618 spin_unlock(&inode->i_lock);
1619 spin_lock(&wb->list_lock);
1620
1621 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1622 !test_bit(WB_registered, &wb->state),
1623 "bdi-%s not registered\n", wb->bdi->name);
1624
1625 inode->dirtied_when = jiffies;
1626 if (dirtytime)
1627 inode->dirtied_time_when = jiffies;
1628
1629 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1630 dirty_list = &wb->b_dirty;
1631 else
1632 dirty_list = &wb->b_dirty_time;
1633
1634 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1635 dirty_list);
1636
1637 spin_unlock(&wb->list_lock);
1638 trace_writeback_dirty_inode_enqueue(inode);
1639
1640 /*
1641 * If this is the first dirty inode for this bdi,
1642 * we have to wake-up the corresponding bdi thread
1643 * to make sure background write-back happens
1644 * later.
1645 */
1646 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1647 wb_wakeup_delayed(wb);
1648 return;
1649 }
1650 }
1651 out_unlock_inode:
1652 spin_unlock(&inode->i_lock);
1653
1654 }
1655 EXPORT_SYMBOL(__mark_inode_dirty);
1656
1657 static void wait_sb_inodes(struct super_block *sb)
1658 {
1659 struct inode *inode, *old_inode = NULL;
1660
1661 /*
1662 * We need to be protected against the filesystem going from
1663 * r/o to r/w or vice versa.
1664 */
1665 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1666
1667 spin_lock(&inode_sb_list_lock);
1668
1669 /*
1670 * Data integrity sync. Must wait for all pages under writeback,
1671 * because there may have been pages dirtied before our sync
1672 * call, but which had writeout started before we write it out.
1673 * In which case, the inode may not be on the dirty list, but
1674 * we still have to wait for that writeout.
1675 */
1676 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1677 struct address_space *mapping = inode->i_mapping;
1678
1679 spin_lock(&inode->i_lock);
1680 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1681 (mapping->nrpages == 0)) {
1682 spin_unlock(&inode->i_lock);
1683 continue;
1684 }
1685 __iget(inode);
1686 spin_unlock(&inode->i_lock);
1687 spin_unlock(&inode_sb_list_lock);
1688
1689 /*
1690 * We hold a reference to 'inode' so it couldn't have been
1691 * removed from s_inodes list while we dropped the
1692 * inode_sb_list_lock. We cannot iput the inode now as we can
1693 * be holding the last reference and we cannot iput it under
1694 * inode_sb_list_lock. So we keep the reference and iput it
1695 * later.
1696 */
1697 iput(old_inode);
1698 old_inode = inode;
1699
1700 filemap_fdatawait(mapping);
1701
1702 cond_resched();
1703
1704 spin_lock(&inode_sb_list_lock);
1705 }
1706 spin_unlock(&inode_sb_list_lock);
1707 iput(old_inode);
1708 }
1709
1710 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1711 enum wb_reason reason, bool skip_if_busy)
1712 {
1713 DEFINE_WB_COMPLETION_ONSTACK(done);
1714 struct wb_writeback_work work = {
1715 .sb = sb,
1716 .sync_mode = WB_SYNC_NONE,
1717 .tagged_writepages = 1,
1718 .done = &done,
1719 .nr_pages = nr,
1720 .reason = reason,
1721 };
1722 struct backing_dev_info *bdi = sb->s_bdi;
1723
1724 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1725 return;
1726 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1727
1728 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1729 wb_wait_for_completion(bdi, &done);
1730 }
1731
1732 /**
1733 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1734 * @sb: the superblock
1735 * @nr: the number of pages to write
1736 * @reason: reason why some writeback work initiated
1737 *
1738 * Start writeback on some inodes on this super_block. No guarantees are made
1739 * on how many (if any) will be written, and this function does not wait
1740 * for IO completion of submitted IO.
1741 */
1742 void writeback_inodes_sb_nr(struct super_block *sb,
1743 unsigned long nr,
1744 enum wb_reason reason)
1745 {
1746 __writeback_inodes_sb_nr(sb, nr, reason, false);
1747 }
1748 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1749
1750 /**
1751 * writeback_inodes_sb - writeback dirty inodes from given super_block
1752 * @sb: the superblock
1753 * @reason: reason why some writeback work was initiated
1754 *
1755 * Start writeback on some inodes on this super_block. No guarantees are made
1756 * on how many (if any) will be written, and this function does not wait
1757 * for IO completion of submitted IO.
1758 */
1759 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1760 {
1761 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1762 }
1763 EXPORT_SYMBOL(writeback_inodes_sb);
1764
1765 /**
1766 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1767 * @sb: the superblock
1768 * @nr: the number of pages to write
1769 * @reason: the reason of writeback
1770 *
1771 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1772 * Returns 1 if writeback was started, 0 if not.
1773 */
1774 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1775 enum wb_reason reason)
1776 {
1777 if (!down_read_trylock(&sb->s_umount))
1778 return false;
1779
1780 __writeback_inodes_sb_nr(sb, nr, reason, true);
1781 up_read(&sb->s_umount);
1782 return true;
1783 }
1784 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1785
1786 /**
1787 * try_to_writeback_inodes_sb - try to start writeback if none underway
1788 * @sb: the superblock
1789 * @reason: reason why some writeback work was initiated
1790 *
1791 * Implement by try_to_writeback_inodes_sb_nr()
1792 * Returns 1 if writeback was started, 0 if not.
1793 */
1794 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1795 {
1796 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1797 }
1798 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1799
1800 /**
1801 * sync_inodes_sb - sync sb inode pages
1802 * @sb: the superblock
1803 *
1804 * This function writes and waits on any dirty inode belonging to this
1805 * super_block.
1806 */
1807 void sync_inodes_sb(struct super_block *sb)
1808 {
1809 DEFINE_WB_COMPLETION_ONSTACK(done);
1810 struct wb_writeback_work work = {
1811 .sb = sb,
1812 .sync_mode = WB_SYNC_ALL,
1813 .nr_pages = LONG_MAX,
1814 .range_cyclic = 0,
1815 .done = &done,
1816 .reason = WB_REASON_SYNC,
1817 .for_sync = 1,
1818 };
1819 struct backing_dev_info *bdi = sb->s_bdi;
1820
1821 /* Nothing to do? */
1822 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1823 return;
1824 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1825
1826 bdi_split_work_to_wbs(bdi, &work, false);
1827 wb_wait_for_completion(bdi, &done);
1828
1829 wait_sb_inodes(sb);
1830 }
1831 EXPORT_SYMBOL(sync_inodes_sb);
1832
1833 /**
1834 * write_inode_now - write an inode to disk
1835 * @inode: inode to write to disk
1836 * @sync: whether the write should be synchronous or not
1837 *
1838 * This function commits an inode to disk immediately if it is dirty. This is
1839 * primarily needed by knfsd.
1840 *
1841 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1842 */
1843 int write_inode_now(struct inode *inode, int sync)
1844 {
1845 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1846 struct writeback_control wbc = {
1847 .nr_to_write = LONG_MAX,
1848 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1849 .range_start = 0,
1850 .range_end = LLONG_MAX,
1851 };
1852
1853 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1854 wbc.nr_to_write = 0;
1855
1856 might_sleep();
1857 return writeback_single_inode(inode, wb, &wbc);
1858 }
1859 EXPORT_SYMBOL(write_inode_now);
1860
1861 /**
1862 * sync_inode - write an inode and its pages to disk.
1863 * @inode: the inode to sync
1864 * @wbc: controls the writeback mode
1865 *
1866 * sync_inode() will write an inode and its pages to disk. It will also
1867 * correctly update the inode on its superblock's dirty inode lists and will
1868 * update inode->i_state.
1869 *
1870 * The caller must have a ref on the inode.
1871 */
1872 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1873 {
1874 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1875 }
1876 EXPORT_SYMBOL(sync_inode);
1877
1878 /**
1879 * sync_inode_metadata - write an inode to disk
1880 * @inode: the inode to sync
1881 * @wait: wait for I/O to complete.
1882 *
1883 * Write an inode to disk and adjust its dirty state after completion.
1884 *
1885 * Note: only writes the actual inode, no associated data or other metadata.
1886 */
1887 int sync_inode_metadata(struct inode *inode, int wait)
1888 {
1889 struct writeback_control wbc = {
1890 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1891 .nr_to_write = 0, /* metadata-only */
1892 };
1893
1894 return sync_inode(inode, &wbc);
1895 }
1896 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.0671349999999999 seconds and 6 git commands to generate.