writeback: remove bdi_start_writeback()
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 /**
69 * writeback_in_progress - determine whether there is writeback in progress
70 * @bdi: the device's backing_dev_info structure.
71 *
72 * Determine whether there is writeback waiting to be handled against a
73 * backing device.
74 */
75 int writeback_in_progress(struct backing_dev_info *bdi)
76 {
77 return test_bit(WB_writeback_running, &bdi->wb.state);
78 }
79 EXPORT_SYMBOL(writeback_in_progress);
80
81 static inline struct inode *wb_inode(struct list_head *head)
82 {
83 return list_entry(head, struct inode, i_wb_list);
84 }
85
86 /*
87 * Include the creation of the trace points after defining the
88 * wb_writeback_work structure and inline functions so that the definition
89 * remains local to this file.
90 */
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/writeback.h>
93
94 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
95
96 static bool wb_io_lists_populated(struct bdi_writeback *wb)
97 {
98 if (wb_has_dirty_io(wb)) {
99 return false;
100 } else {
101 set_bit(WB_has_dirty_io, &wb->state);
102 WARN_ON_ONCE(!wb->avg_write_bandwidth);
103 atomic_long_add(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth);
105 return true;
106 }
107 }
108
109 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
110 {
111 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
112 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
113 clear_bit(WB_has_dirty_io, &wb->state);
114 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
115 &wb->bdi->tot_write_bandwidth) < 0);
116 }
117 }
118
119 /**
120 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
121 * @inode: inode to be moved
122 * @wb: target bdi_writeback
123 * @head: one of @wb->b_{dirty|io|more_io}
124 *
125 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
126 * Returns %true if @inode is the first occupant of the !dirty_time IO
127 * lists; otherwise, %false.
128 */
129 static bool inode_wb_list_move_locked(struct inode *inode,
130 struct bdi_writeback *wb,
131 struct list_head *head)
132 {
133 assert_spin_locked(&wb->list_lock);
134
135 list_move(&inode->i_wb_list, head);
136
137 /* dirty_time doesn't count as dirty_io until expiration */
138 if (head != &wb->b_dirty_time)
139 return wb_io_lists_populated(wb);
140
141 wb_io_lists_depopulated(wb);
142 return false;
143 }
144
145 /**
146 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
147 * @inode: inode to be removed
148 * @wb: bdi_writeback @inode is being removed from
149 *
150 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
151 * clear %WB_has_dirty_io if all are empty afterwards.
152 */
153 static void inode_wb_list_del_locked(struct inode *inode,
154 struct bdi_writeback *wb)
155 {
156 assert_spin_locked(&wb->list_lock);
157
158 list_del_init(&inode->i_wb_list);
159 wb_io_lists_depopulated(wb);
160 }
161
162 static void wb_wakeup(struct bdi_writeback *wb)
163 {
164 spin_lock_bh(&wb->work_lock);
165 if (test_bit(WB_registered, &wb->state))
166 mod_delayed_work(bdi_wq, &wb->dwork, 0);
167 spin_unlock_bh(&wb->work_lock);
168 }
169
170 static void wb_queue_work(struct bdi_writeback *wb,
171 struct wb_writeback_work *work)
172 {
173 trace_writeback_queue(wb->bdi, work);
174
175 spin_lock_bh(&wb->work_lock);
176 if (!test_bit(WB_registered, &wb->state)) {
177 if (work->done)
178 complete(work->done);
179 goto out_unlock;
180 }
181 list_add_tail(&work->list, &wb->work_list);
182 mod_delayed_work(bdi_wq, &wb->dwork, 0);
183 out_unlock:
184 spin_unlock_bh(&wb->work_lock);
185 }
186
187 #ifdef CONFIG_CGROUP_WRITEBACK
188
189 /**
190 * inode_congested - test whether an inode is congested
191 * @inode: inode to test for congestion
192 * @cong_bits: mask of WB_[a]sync_congested bits to test
193 *
194 * Tests whether @inode is congested. @cong_bits is the mask of congestion
195 * bits to test and the return value is the mask of set bits.
196 *
197 * If cgroup writeback is enabled for @inode, the congestion state is
198 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
199 * associated with @inode is congested; otherwise, the root wb's congestion
200 * state is used.
201 */
202 int inode_congested(struct inode *inode, int cong_bits)
203 {
204 if (inode) {
205 struct bdi_writeback *wb = inode_to_wb(inode);
206 if (wb)
207 return wb_congested(wb, cong_bits);
208 }
209
210 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
211 }
212 EXPORT_SYMBOL_GPL(inode_congested);
213
214 #endif /* CONFIG_CGROUP_WRITEBACK */
215
216 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
217 bool range_cyclic, enum wb_reason reason)
218 {
219 struct wb_writeback_work *work;
220
221 if (!wb_has_dirty_io(wb))
222 return;
223
224 /*
225 * This is WB_SYNC_NONE writeback, so if allocation fails just
226 * wakeup the thread for old dirty data writeback
227 */
228 work = kzalloc(sizeof(*work), GFP_ATOMIC);
229 if (!work) {
230 trace_writeback_nowork(wb->bdi);
231 wb_wakeup(wb);
232 return;
233 }
234
235 work->sync_mode = WB_SYNC_NONE;
236 work->nr_pages = nr_pages;
237 work->range_cyclic = range_cyclic;
238 work->reason = reason;
239
240 wb_queue_work(wb, work);
241 }
242
243 /**
244 * bdi_start_background_writeback - start background writeback
245 * @bdi: the backing device to write from
246 *
247 * Description:
248 * This makes sure WB_SYNC_NONE background writeback happens. When
249 * this function returns, it is only guaranteed that for given BDI
250 * some IO is happening if we are over background dirty threshold.
251 * Caller need not hold sb s_umount semaphore.
252 */
253 void bdi_start_background_writeback(struct backing_dev_info *bdi)
254 {
255 /*
256 * We just wake up the flusher thread. It will perform background
257 * writeback as soon as there is no other work to do.
258 */
259 trace_writeback_wake_background(bdi);
260 wb_wakeup(&bdi->wb);
261 }
262
263 /*
264 * Remove the inode from the writeback list it is on.
265 */
266 void inode_wb_list_del(struct inode *inode)
267 {
268 struct bdi_writeback *wb = inode_to_wb(inode);
269
270 spin_lock(&wb->list_lock);
271 inode_wb_list_del_locked(inode, wb);
272 spin_unlock(&wb->list_lock);
273 }
274
275 /*
276 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
277 * furthest end of its superblock's dirty-inode list.
278 *
279 * Before stamping the inode's ->dirtied_when, we check to see whether it is
280 * already the most-recently-dirtied inode on the b_dirty list. If that is
281 * the case then the inode must have been redirtied while it was being written
282 * out and we don't reset its dirtied_when.
283 */
284 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
285 {
286 if (!list_empty(&wb->b_dirty)) {
287 struct inode *tail;
288
289 tail = wb_inode(wb->b_dirty.next);
290 if (time_before(inode->dirtied_when, tail->dirtied_when))
291 inode->dirtied_when = jiffies;
292 }
293 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
294 }
295
296 /*
297 * requeue inode for re-scanning after bdi->b_io list is exhausted.
298 */
299 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
300 {
301 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
302 }
303
304 static void inode_sync_complete(struct inode *inode)
305 {
306 inode->i_state &= ~I_SYNC;
307 /* If inode is clean an unused, put it into LRU now... */
308 inode_add_lru(inode);
309 /* Waiters must see I_SYNC cleared before being woken up */
310 smp_mb();
311 wake_up_bit(&inode->i_state, __I_SYNC);
312 }
313
314 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
315 {
316 bool ret = time_after(inode->dirtied_when, t);
317 #ifndef CONFIG_64BIT
318 /*
319 * For inodes being constantly redirtied, dirtied_when can get stuck.
320 * It _appears_ to be in the future, but is actually in distant past.
321 * This test is necessary to prevent such wrapped-around relative times
322 * from permanently stopping the whole bdi writeback.
323 */
324 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
325 #endif
326 return ret;
327 }
328
329 #define EXPIRE_DIRTY_ATIME 0x0001
330
331 /*
332 * Move expired (dirtied before work->older_than_this) dirty inodes from
333 * @delaying_queue to @dispatch_queue.
334 */
335 static int move_expired_inodes(struct list_head *delaying_queue,
336 struct list_head *dispatch_queue,
337 int flags,
338 struct wb_writeback_work *work)
339 {
340 unsigned long *older_than_this = NULL;
341 unsigned long expire_time;
342 LIST_HEAD(tmp);
343 struct list_head *pos, *node;
344 struct super_block *sb = NULL;
345 struct inode *inode;
346 int do_sb_sort = 0;
347 int moved = 0;
348
349 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
350 older_than_this = work->older_than_this;
351 else if (!work->for_sync) {
352 expire_time = jiffies - (dirtytime_expire_interval * HZ);
353 older_than_this = &expire_time;
354 }
355 while (!list_empty(delaying_queue)) {
356 inode = wb_inode(delaying_queue->prev);
357 if (older_than_this &&
358 inode_dirtied_after(inode, *older_than_this))
359 break;
360 list_move(&inode->i_wb_list, &tmp);
361 moved++;
362 if (flags & EXPIRE_DIRTY_ATIME)
363 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
364 if (sb_is_blkdev_sb(inode->i_sb))
365 continue;
366 if (sb && sb != inode->i_sb)
367 do_sb_sort = 1;
368 sb = inode->i_sb;
369 }
370
371 /* just one sb in list, splice to dispatch_queue and we're done */
372 if (!do_sb_sort) {
373 list_splice(&tmp, dispatch_queue);
374 goto out;
375 }
376
377 /* Move inodes from one superblock together */
378 while (!list_empty(&tmp)) {
379 sb = wb_inode(tmp.prev)->i_sb;
380 list_for_each_prev_safe(pos, node, &tmp) {
381 inode = wb_inode(pos);
382 if (inode->i_sb == sb)
383 list_move(&inode->i_wb_list, dispatch_queue);
384 }
385 }
386 out:
387 return moved;
388 }
389
390 /*
391 * Queue all expired dirty inodes for io, eldest first.
392 * Before
393 * newly dirtied b_dirty b_io b_more_io
394 * =============> gf edc BA
395 * After
396 * newly dirtied b_dirty b_io b_more_io
397 * =============> g fBAedc
398 * |
399 * +--> dequeue for IO
400 */
401 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
402 {
403 int moved;
404
405 assert_spin_locked(&wb->list_lock);
406 list_splice_init(&wb->b_more_io, &wb->b_io);
407 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
408 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
409 EXPIRE_DIRTY_ATIME, work);
410 if (moved)
411 wb_io_lists_populated(wb);
412 trace_writeback_queue_io(wb, work, moved);
413 }
414
415 static int write_inode(struct inode *inode, struct writeback_control *wbc)
416 {
417 int ret;
418
419 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
420 trace_writeback_write_inode_start(inode, wbc);
421 ret = inode->i_sb->s_op->write_inode(inode, wbc);
422 trace_writeback_write_inode(inode, wbc);
423 return ret;
424 }
425 return 0;
426 }
427
428 /*
429 * Wait for writeback on an inode to complete. Called with i_lock held.
430 * Caller must make sure inode cannot go away when we drop i_lock.
431 */
432 static void __inode_wait_for_writeback(struct inode *inode)
433 __releases(inode->i_lock)
434 __acquires(inode->i_lock)
435 {
436 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
437 wait_queue_head_t *wqh;
438
439 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
440 while (inode->i_state & I_SYNC) {
441 spin_unlock(&inode->i_lock);
442 __wait_on_bit(wqh, &wq, bit_wait,
443 TASK_UNINTERRUPTIBLE);
444 spin_lock(&inode->i_lock);
445 }
446 }
447
448 /*
449 * Wait for writeback on an inode to complete. Caller must have inode pinned.
450 */
451 void inode_wait_for_writeback(struct inode *inode)
452 {
453 spin_lock(&inode->i_lock);
454 __inode_wait_for_writeback(inode);
455 spin_unlock(&inode->i_lock);
456 }
457
458 /*
459 * Sleep until I_SYNC is cleared. This function must be called with i_lock
460 * held and drops it. It is aimed for callers not holding any inode reference
461 * so once i_lock is dropped, inode can go away.
462 */
463 static void inode_sleep_on_writeback(struct inode *inode)
464 __releases(inode->i_lock)
465 {
466 DEFINE_WAIT(wait);
467 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
468 int sleep;
469
470 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
471 sleep = inode->i_state & I_SYNC;
472 spin_unlock(&inode->i_lock);
473 if (sleep)
474 schedule();
475 finish_wait(wqh, &wait);
476 }
477
478 /*
479 * Find proper writeback list for the inode depending on its current state and
480 * possibly also change of its state while we were doing writeback. Here we
481 * handle things such as livelock prevention or fairness of writeback among
482 * inodes. This function can be called only by flusher thread - noone else
483 * processes all inodes in writeback lists and requeueing inodes behind flusher
484 * thread's back can have unexpected consequences.
485 */
486 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
487 struct writeback_control *wbc)
488 {
489 if (inode->i_state & I_FREEING)
490 return;
491
492 /*
493 * Sync livelock prevention. Each inode is tagged and synced in one
494 * shot. If still dirty, it will be redirty_tail()'ed below. Update
495 * the dirty time to prevent enqueue and sync it again.
496 */
497 if ((inode->i_state & I_DIRTY) &&
498 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
499 inode->dirtied_when = jiffies;
500
501 if (wbc->pages_skipped) {
502 /*
503 * writeback is not making progress due to locked
504 * buffers. Skip this inode for now.
505 */
506 redirty_tail(inode, wb);
507 return;
508 }
509
510 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
511 /*
512 * We didn't write back all the pages. nfs_writepages()
513 * sometimes bales out without doing anything.
514 */
515 if (wbc->nr_to_write <= 0) {
516 /* Slice used up. Queue for next turn. */
517 requeue_io(inode, wb);
518 } else {
519 /*
520 * Writeback blocked by something other than
521 * congestion. Delay the inode for some time to
522 * avoid spinning on the CPU (100% iowait)
523 * retrying writeback of the dirty page/inode
524 * that cannot be performed immediately.
525 */
526 redirty_tail(inode, wb);
527 }
528 } else if (inode->i_state & I_DIRTY) {
529 /*
530 * Filesystems can dirty the inode during writeback operations,
531 * such as delayed allocation during submission or metadata
532 * updates after data IO completion.
533 */
534 redirty_tail(inode, wb);
535 } else if (inode->i_state & I_DIRTY_TIME) {
536 inode->dirtied_when = jiffies;
537 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
538 } else {
539 /* The inode is clean. Remove from writeback lists. */
540 inode_wb_list_del_locked(inode, wb);
541 }
542 }
543
544 /*
545 * Write out an inode and its dirty pages. Do not update the writeback list
546 * linkage. That is left to the caller. The caller is also responsible for
547 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
548 */
549 static int
550 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
551 {
552 struct address_space *mapping = inode->i_mapping;
553 long nr_to_write = wbc->nr_to_write;
554 unsigned dirty;
555 int ret;
556
557 WARN_ON(!(inode->i_state & I_SYNC));
558
559 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
560
561 ret = do_writepages(mapping, wbc);
562
563 /*
564 * Make sure to wait on the data before writing out the metadata.
565 * This is important for filesystems that modify metadata on data
566 * I/O completion. We don't do it for sync(2) writeback because it has a
567 * separate, external IO completion path and ->sync_fs for guaranteeing
568 * inode metadata is written back correctly.
569 */
570 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
571 int err = filemap_fdatawait(mapping);
572 if (ret == 0)
573 ret = err;
574 }
575
576 /*
577 * Some filesystems may redirty the inode during the writeback
578 * due to delalloc, clear dirty metadata flags right before
579 * write_inode()
580 */
581 spin_lock(&inode->i_lock);
582
583 dirty = inode->i_state & I_DIRTY;
584 if (inode->i_state & I_DIRTY_TIME) {
585 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
586 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
587 unlikely(time_after(jiffies,
588 (inode->dirtied_time_when +
589 dirtytime_expire_interval * HZ)))) {
590 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
591 trace_writeback_lazytime(inode);
592 }
593 } else
594 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
595 inode->i_state &= ~dirty;
596
597 /*
598 * Paired with smp_mb() in __mark_inode_dirty(). This allows
599 * __mark_inode_dirty() to test i_state without grabbing i_lock -
600 * either they see the I_DIRTY bits cleared or we see the dirtied
601 * inode.
602 *
603 * I_DIRTY_PAGES is always cleared together above even if @mapping
604 * still has dirty pages. The flag is reinstated after smp_mb() if
605 * necessary. This guarantees that either __mark_inode_dirty()
606 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
607 */
608 smp_mb();
609
610 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
611 inode->i_state |= I_DIRTY_PAGES;
612
613 spin_unlock(&inode->i_lock);
614
615 if (dirty & I_DIRTY_TIME)
616 mark_inode_dirty_sync(inode);
617 /* Don't write the inode if only I_DIRTY_PAGES was set */
618 if (dirty & ~I_DIRTY_PAGES) {
619 int err = write_inode(inode, wbc);
620 if (ret == 0)
621 ret = err;
622 }
623 trace_writeback_single_inode(inode, wbc, nr_to_write);
624 return ret;
625 }
626
627 /*
628 * Write out an inode's dirty pages. Either the caller has an active reference
629 * on the inode or the inode has I_WILL_FREE set.
630 *
631 * This function is designed to be called for writing back one inode which
632 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
633 * and does more profound writeback list handling in writeback_sb_inodes().
634 */
635 static int
636 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
637 struct writeback_control *wbc)
638 {
639 int ret = 0;
640
641 spin_lock(&inode->i_lock);
642 if (!atomic_read(&inode->i_count))
643 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
644 else
645 WARN_ON(inode->i_state & I_WILL_FREE);
646
647 if (inode->i_state & I_SYNC) {
648 if (wbc->sync_mode != WB_SYNC_ALL)
649 goto out;
650 /*
651 * It's a data-integrity sync. We must wait. Since callers hold
652 * inode reference or inode has I_WILL_FREE set, it cannot go
653 * away under us.
654 */
655 __inode_wait_for_writeback(inode);
656 }
657 WARN_ON(inode->i_state & I_SYNC);
658 /*
659 * Skip inode if it is clean and we have no outstanding writeback in
660 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
661 * function since flusher thread may be doing for example sync in
662 * parallel and if we move the inode, it could get skipped. So here we
663 * make sure inode is on some writeback list and leave it there unless
664 * we have completely cleaned the inode.
665 */
666 if (!(inode->i_state & I_DIRTY_ALL) &&
667 (wbc->sync_mode != WB_SYNC_ALL ||
668 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
669 goto out;
670 inode->i_state |= I_SYNC;
671 spin_unlock(&inode->i_lock);
672
673 ret = __writeback_single_inode(inode, wbc);
674
675 spin_lock(&wb->list_lock);
676 spin_lock(&inode->i_lock);
677 /*
678 * If inode is clean, remove it from writeback lists. Otherwise don't
679 * touch it. See comment above for explanation.
680 */
681 if (!(inode->i_state & I_DIRTY_ALL))
682 inode_wb_list_del_locked(inode, wb);
683 spin_unlock(&wb->list_lock);
684 inode_sync_complete(inode);
685 out:
686 spin_unlock(&inode->i_lock);
687 return ret;
688 }
689
690 static long writeback_chunk_size(struct bdi_writeback *wb,
691 struct wb_writeback_work *work)
692 {
693 long pages;
694
695 /*
696 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
697 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
698 * here avoids calling into writeback_inodes_wb() more than once.
699 *
700 * The intended call sequence for WB_SYNC_ALL writeback is:
701 *
702 * wb_writeback()
703 * writeback_sb_inodes() <== called only once
704 * write_cache_pages() <== called once for each inode
705 * (quickly) tag currently dirty pages
706 * (maybe slowly) sync all tagged pages
707 */
708 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
709 pages = LONG_MAX;
710 else {
711 pages = min(wb->avg_write_bandwidth / 2,
712 global_dirty_limit / DIRTY_SCOPE);
713 pages = min(pages, work->nr_pages);
714 pages = round_down(pages + MIN_WRITEBACK_PAGES,
715 MIN_WRITEBACK_PAGES);
716 }
717
718 return pages;
719 }
720
721 /*
722 * Write a portion of b_io inodes which belong to @sb.
723 *
724 * Return the number of pages and/or inodes written.
725 */
726 static long writeback_sb_inodes(struct super_block *sb,
727 struct bdi_writeback *wb,
728 struct wb_writeback_work *work)
729 {
730 struct writeback_control wbc = {
731 .sync_mode = work->sync_mode,
732 .tagged_writepages = work->tagged_writepages,
733 .for_kupdate = work->for_kupdate,
734 .for_background = work->for_background,
735 .for_sync = work->for_sync,
736 .range_cyclic = work->range_cyclic,
737 .range_start = 0,
738 .range_end = LLONG_MAX,
739 };
740 unsigned long start_time = jiffies;
741 long write_chunk;
742 long wrote = 0; /* count both pages and inodes */
743
744 while (!list_empty(&wb->b_io)) {
745 struct inode *inode = wb_inode(wb->b_io.prev);
746
747 if (inode->i_sb != sb) {
748 if (work->sb) {
749 /*
750 * We only want to write back data for this
751 * superblock, move all inodes not belonging
752 * to it back onto the dirty list.
753 */
754 redirty_tail(inode, wb);
755 continue;
756 }
757
758 /*
759 * The inode belongs to a different superblock.
760 * Bounce back to the caller to unpin this and
761 * pin the next superblock.
762 */
763 break;
764 }
765
766 /*
767 * Don't bother with new inodes or inodes being freed, first
768 * kind does not need periodic writeout yet, and for the latter
769 * kind writeout is handled by the freer.
770 */
771 spin_lock(&inode->i_lock);
772 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
773 spin_unlock(&inode->i_lock);
774 redirty_tail(inode, wb);
775 continue;
776 }
777 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
778 /*
779 * If this inode is locked for writeback and we are not
780 * doing writeback-for-data-integrity, move it to
781 * b_more_io so that writeback can proceed with the
782 * other inodes on s_io.
783 *
784 * We'll have another go at writing back this inode
785 * when we completed a full scan of b_io.
786 */
787 spin_unlock(&inode->i_lock);
788 requeue_io(inode, wb);
789 trace_writeback_sb_inodes_requeue(inode);
790 continue;
791 }
792 spin_unlock(&wb->list_lock);
793
794 /*
795 * We already requeued the inode if it had I_SYNC set and we
796 * are doing WB_SYNC_NONE writeback. So this catches only the
797 * WB_SYNC_ALL case.
798 */
799 if (inode->i_state & I_SYNC) {
800 /* Wait for I_SYNC. This function drops i_lock... */
801 inode_sleep_on_writeback(inode);
802 /* Inode may be gone, start again */
803 spin_lock(&wb->list_lock);
804 continue;
805 }
806 inode->i_state |= I_SYNC;
807 spin_unlock(&inode->i_lock);
808
809 write_chunk = writeback_chunk_size(wb, work);
810 wbc.nr_to_write = write_chunk;
811 wbc.pages_skipped = 0;
812
813 /*
814 * We use I_SYNC to pin the inode in memory. While it is set
815 * evict_inode() will wait so the inode cannot be freed.
816 */
817 __writeback_single_inode(inode, &wbc);
818
819 work->nr_pages -= write_chunk - wbc.nr_to_write;
820 wrote += write_chunk - wbc.nr_to_write;
821 spin_lock(&wb->list_lock);
822 spin_lock(&inode->i_lock);
823 if (!(inode->i_state & I_DIRTY_ALL))
824 wrote++;
825 requeue_inode(inode, wb, &wbc);
826 inode_sync_complete(inode);
827 spin_unlock(&inode->i_lock);
828 cond_resched_lock(&wb->list_lock);
829 /*
830 * bail out to wb_writeback() often enough to check
831 * background threshold and other termination conditions.
832 */
833 if (wrote) {
834 if (time_is_before_jiffies(start_time + HZ / 10UL))
835 break;
836 if (work->nr_pages <= 0)
837 break;
838 }
839 }
840 return wrote;
841 }
842
843 static long __writeback_inodes_wb(struct bdi_writeback *wb,
844 struct wb_writeback_work *work)
845 {
846 unsigned long start_time = jiffies;
847 long wrote = 0;
848
849 while (!list_empty(&wb->b_io)) {
850 struct inode *inode = wb_inode(wb->b_io.prev);
851 struct super_block *sb = inode->i_sb;
852
853 if (!trylock_super(sb)) {
854 /*
855 * trylock_super() may fail consistently due to
856 * s_umount being grabbed by someone else. Don't use
857 * requeue_io() to avoid busy retrying the inode/sb.
858 */
859 redirty_tail(inode, wb);
860 continue;
861 }
862 wrote += writeback_sb_inodes(sb, wb, work);
863 up_read(&sb->s_umount);
864
865 /* refer to the same tests at the end of writeback_sb_inodes */
866 if (wrote) {
867 if (time_is_before_jiffies(start_time + HZ / 10UL))
868 break;
869 if (work->nr_pages <= 0)
870 break;
871 }
872 }
873 /* Leave any unwritten inodes on b_io */
874 return wrote;
875 }
876
877 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
878 enum wb_reason reason)
879 {
880 struct wb_writeback_work work = {
881 .nr_pages = nr_pages,
882 .sync_mode = WB_SYNC_NONE,
883 .range_cyclic = 1,
884 .reason = reason,
885 };
886
887 spin_lock(&wb->list_lock);
888 if (list_empty(&wb->b_io))
889 queue_io(wb, &work);
890 __writeback_inodes_wb(wb, &work);
891 spin_unlock(&wb->list_lock);
892
893 return nr_pages - work.nr_pages;
894 }
895
896 static bool over_bground_thresh(struct bdi_writeback *wb)
897 {
898 unsigned long background_thresh, dirty_thresh;
899
900 global_dirty_limits(&background_thresh, &dirty_thresh);
901
902 if (global_page_state(NR_FILE_DIRTY) +
903 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
904 return true;
905
906 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
907 return true;
908
909 return false;
910 }
911
912 /*
913 * Called under wb->list_lock. If there are multiple wb per bdi,
914 * only the flusher working on the first wb should do it.
915 */
916 static void wb_update_bandwidth(struct bdi_writeback *wb,
917 unsigned long start_time)
918 {
919 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
920 }
921
922 /*
923 * Explicit flushing or periodic writeback of "old" data.
924 *
925 * Define "old": the first time one of an inode's pages is dirtied, we mark the
926 * dirtying-time in the inode's address_space. So this periodic writeback code
927 * just walks the superblock inode list, writing back any inodes which are
928 * older than a specific point in time.
929 *
930 * Try to run once per dirty_writeback_interval. But if a writeback event
931 * takes longer than a dirty_writeback_interval interval, then leave a
932 * one-second gap.
933 *
934 * older_than_this takes precedence over nr_to_write. So we'll only write back
935 * all dirty pages if they are all attached to "old" mappings.
936 */
937 static long wb_writeback(struct bdi_writeback *wb,
938 struct wb_writeback_work *work)
939 {
940 unsigned long wb_start = jiffies;
941 long nr_pages = work->nr_pages;
942 unsigned long oldest_jif;
943 struct inode *inode;
944 long progress;
945
946 oldest_jif = jiffies;
947 work->older_than_this = &oldest_jif;
948
949 spin_lock(&wb->list_lock);
950 for (;;) {
951 /*
952 * Stop writeback when nr_pages has been consumed
953 */
954 if (work->nr_pages <= 0)
955 break;
956
957 /*
958 * Background writeout and kupdate-style writeback may
959 * run forever. Stop them if there is other work to do
960 * so that e.g. sync can proceed. They'll be restarted
961 * after the other works are all done.
962 */
963 if ((work->for_background || work->for_kupdate) &&
964 !list_empty(&wb->work_list))
965 break;
966
967 /*
968 * For background writeout, stop when we are below the
969 * background dirty threshold
970 */
971 if (work->for_background && !over_bground_thresh(wb))
972 break;
973
974 /*
975 * Kupdate and background works are special and we want to
976 * include all inodes that need writing. Livelock avoidance is
977 * handled by these works yielding to any other work so we are
978 * safe.
979 */
980 if (work->for_kupdate) {
981 oldest_jif = jiffies -
982 msecs_to_jiffies(dirty_expire_interval * 10);
983 } else if (work->for_background)
984 oldest_jif = jiffies;
985
986 trace_writeback_start(wb->bdi, work);
987 if (list_empty(&wb->b_io))
988 queue_io(wb, work);
989 if (work->sb)
990 progress = writeback_sb_inodes(work->sb, wb, work);
991 else
992 progress = __writeback_inodes_wb(wb, work);
993 trace_writeback_written(wb->bdi, work);
994
995 wb_update_bandwidth(wb, wb_start);
996
997 /*
998 * Did we write something? Try for more
999 *
1000 * Dirty inodes are moved to b_io for writeback in batches.
1001 * The completion of the current batch does not necessarily
1002 * mean the overall work is done. So we keep looping as long
1003 * as made some progress on cleaning pages or inodes.
1004 */
1005 if (progress)
1006 continue;
1007 /*
1008 * No more inodes for IO, bail
1009 */
1010 if (list_empty(&wb->b_more_io))
1011 break;
1012 /*
1013 * Nothing written. Wait for some inode to
1014 * become available for writeback. Otherwise
1015 * we'll just busyloop.
1016 */
1017 if (!list_empty(&wb->b_more_io)) {
1018 trace_writeback_wait(wb->bdi, work);
1019 inode = wb_inode(wb->b_more_io.prev);
1020 spin_lock(&inode->i_lock);
1021 spin_unlock(&wb->list_lock);
1022 /* This function drops i_lock... */
1023 inode_sleep_on_writeback(inode);
1024 spin_lock(&wb->list_lock);
1025 }
1026 }
1027 spin_unlock(&wb->list_lock);
1028
1029 return nr_pages - work->nr_pages;
1030 }
1031
1032 /*
1033 * Return the next wb_writeback_work struct that hasn't been processed yet.
1034 */
1035 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1036 {
1037 struct wb_writeback_work *work = NULL;
1038
1039 spin_lock_bh(&wb->work_lock);
1040 if (!list_empty(&wb->work_list)) {
1041 work = list_entry(wb->work_list.next,
1042 struct wb_writeback_work, list);
1043 list_del_init(&work->list);
1044 }
1045 spin_unlock_bh(&wb->work_lock);
1046 return work;
1047 }
1048
1049 /*
1050 * Add in the number of potentially dirty inodes, because each inode
1051 * write can dirty pagecache in the underlying blockdev.
1052 */
1053 static unsigned long get_nr_dirty_pages(void)
1054 {
1055 return global_page_state(NR_FILE_DIRTY) +
1056 global_page_state(NR_UNSTABLE_NFS) +
1057 get_nr_dirty_inodes();
1058 }
1059
1060 static long wb_check_background_flush(struct bdi_writeback *wb)
1061 {
1062 if (over_bground_thresh(wb)) {
1063
1064 struct wb_writeback_work work = {
1065 .nr_pages = LONG_MAX,
1066 .sync_mode = WB_SYNC_NONE,
1067 .for_background = 1,
1068 .range_cyclic = 1,
1069 .reason = WB_REASON_BACKGROUND,
1070 };
1071
1072 return wb_writeback(wb, &work);
1073 }
1074
1075 return 0;
1076 }
1077
1078 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1079 {
1080 unsigned long expired;
1081 long nr_pages;
1082
1083 /*
1084 * When set to zero, disable periodic writeback
1085 */
1086 if (!dirty_writeback_interval)
1087 return 0;
1088
1089 expired = wb->last_old_flush +
1090 msecs_to_jiffies(dirty_writeback_interval * 10);
1091 if (time_before(jiffies, expired))
1092 return 0;
1093
1094 wb->last_old_flush = jiffies;
1095 nr_pages = get_nr_dirty_pages();
1096
1097 if (nr_pages) {
1098 struct wb_writeback_work work = {
1099 .nr_pages = nr_pages,
1100 .sync_mode = WB_SYNC_NONE,
1101 .for_kupdate = 1,
1102 .range_cyclic = 1,
1103 .reason = WB_REASON_PERIODIC,
1104 };
1105
1106 return wb_writeback(wb, &work);
1107 }
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * Retrieve work items and do the writeback they describe
1114 */
1115 static long wb_do_writeback(struct bdi_writeback *wb)
1116 {
1117 struct wb_writeback_work *work;
1118 long wrote = 0;
1119
1120 set_bit(WB_writeback_running, &wb->state);
1121 while ((work = get_next_work_item(wb)) != NULL) {
1122
1123 trace_writeback_exec(wb->bdi, work);
1124
1125 wrote += wb_writeback(wb, work);
1126
1127 /*
1128 * Notify the caller of completion if this is a synchronous
1129 * work item, otherwise just free it.
1130 */
1131 if (work->done)
1132 complete(work->done);
1133 else
1134 kfree(work);
1135 }
1136
1137 /*
1138 * Check for periodic writeback, kupdated() style
1139 */
1140 wrote += wb_check_old_data_flush(wb);
1141 wrote += wb_check_background_flush(wb);
1142 clear_bit(WB_writeback_running, &wb->state);
1143
1144 return wrote;
1145 }
1146
1147 /*
1148 * Handle writeback of dirty data for the device backed by this bdi. Also
1149 * reschedules periodically and does kupdated style flushing.
1150 */
1151 void wb_workfn(struct work_struct *work)
1152 {
1153 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1154 struct bdi_writeback, dwork);
1155 long pages_written;
1156
1157 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1158 current->flags |= PF_SWAPWRITE;
1159
1160 if (likely(!current_is_workqueue_rescuer() ||
1161 !test_bit(WB_registered, &wb->state))) {
1162 /*
1163 * The normal path. Keep writing back @wb until its
1164 * work_list is empty. Note that this path is also taken
1165 * if @wb is shutting down even when we're running off the
1166 * rescuer as work_list needs to be drained.
1167 */
1168 do {
1169 pages_written = wb_do_writeback(wb);
1170 trace_writeback_pages_written(pages_written);
1171 } while (!list_empty(&wb->work_list));
1172 } else {
1173 /*
1174 * bdi_wq can't get enough workers and we're running off
1175 * the emergency worker. Don't hog it. Hopefully, 1024 is
1176 * enough for efficient IO.
1177 */
1178 pages_written = writeback_inodes_wb(wb, 1024,
1179 WB_REASON_FORKER_THREAD);
1180 trace_writeback_pages_written(pages_written);
1181 }
1182
1183 if (!list_empty(&wb->work_list))
1184 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1185 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1186 wb_wakeup_delayed(wb);
1187
1188 current->flags &= ~PF_SWAPWRITE;
1189 }
1190
1191 /*
1192 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1193 * the whole world.
1194 */
1195 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1196 {
1197 struct backing_dev_info *bdi;
1198
1199 if (!nr_pages)
1200 nr_pages = get_nr_dirty_pages();
1201
1202 rcu_read_lock();
1203 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1204 wb_start_writeback(&bdi->wb, nr_pages, false, reason);
1205 rcu_read_unlock();
1206 }
1207
1208 /*
1209 * Wake up bdi's periodically to make sure dirtytime inodes gets
1210 * written back periodically. We deliberately do *not* check the
1211 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1212 * kernel to be constantly waking up once there are any dirtytime
1213 * inodes on the system. So instead we define a separate delayed work
1214 * function which gets called much more rarely. (By default, only
1215 * once every 12 hours.)
1216 *
1217 * If there is any other write activity going on in the file system,
1218 * this function won't be necessary. But if the only thing that has
1219 * happened on the file system is a dirtytime inode caused by an atime
1220 * update, we need this infrastructure below to make sure that inode
1221 * eventually gets pushed out to disk.
1222 */
1223 static void wakeup_dirtytime_writeback(struct work_struct *w);
1224 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1225
1226 static void wakeup_dirtytime_writeback(struct work_struct *w)
1227 {
1228 struct backing_dev_info *bdi;
1229
1230 rcu_read_lock();
1231 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1232 if (list_empty(&bdi->wb.b_dirty_time))
1233 continue;
1234 wb_wakeup(&bdi->wb);
1235 }
1236 rcu_read_unlock();
1237 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1238 }
1239
1240 static int __init start_dirtytime_writeback(void)
1241 {
1242 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1243 return 0;
1244 }
1245 __initcall(start_dirtytime_writeback);
1246
1247 int dirtytime_interval_handler(struct ctl_table *table, int write,
1248 void __user *buffer, size_t *lenp, loff_t *ppos)
1249 {
1250 int ret;
1251
1252 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1253 if (ret == 0 && write)
1254 mod_delayed_work(system_wq, &dirtytime_work, 0);
1255 return ret;
1256 }
1257
1258 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1259 {
1260 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1261 struct dentry *dentry;
1262 const char *name = "?";
1263
1264 dentry = d_find_alias(inode);
1265 if (dentry) {
1266 spin_lock(&dentry->d_lock);
1267 name = (const char *) dentry->d_name.name;
1268 }
1269 printk(KERN_DEBUG
1270 "%s(%d): dirtied inode %lu (%s) on %s\n",
1271 current->comm, task_pid_nr(current), inode->i_ino,
1272 name, inode->i_sb->s_id);
1273 if (dentry) {
1274 spin_unlock(&dentry->d_lock);
1275 dput(dentry);
1276 }
1277 }
1278 }
1279
1280 /**
1281 * __mark_inode_dirty - internal function
1282 * @inode: inode to mark
1283 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1284 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1285 * mark_inode_dirty_sync.
1286 *
1287 * Put the inode on the super block's dirty list.
1288 *
1289 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1290 * dirty list only if it is hashed or if it refers to a blockdev.
1291 * If it was not hashed, it will never be added to the dirty list
1292 * even if it is later hashed, as it will have been marked dirty already.
1293 *
1294 * In short, make sure you hash any inodes _before_ you start marking
1295 * them dirty.
1296 *
1297 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1298 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1299 * the kernel-internal blockdev inode represents the dirtying time of the
1300 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1301 * page->mapping->host, so the page-dirtying time is recorded in the internal
1302 * blockdev inode.
1303 */
1304 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1305 void __mark_inode_dirty(struct inode *inode, int flags)
1306 {
1307 struct super_block *sb = inode->i_sb;
1308 struct backing_dev_info *bdi = NULL;
1309 int dirtytime;
1310
1311 trace_writeback_mark_inode_dirty(inode, flags);
1312
1313 /*
1314 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1315 * dirty the inode itself
1316 */
1317 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1318 trace_writeback_dirty_inode_start(inode, flags);
1319
1320 if (sb->s_op->dirty_inode)
1321 sb->s_op->dirty_inode(inode, flags);
1322
1323 trace_writeback_dirty_inode(inode, flags);
1324 }
1325 if (flags & I_DIRTY_INODE)
1326 flags &= ~I_DIRTY_TIME;
1327 dirtytime = flags & I_DIRTY_TIME;
1328
1329 /*
1330 * Paired with smp_mb() in __writeback_single_inode() for the
1331 * following lockless i_state test. See there for details.
1332 */
1333 smp_mb();
1334
1335 if (((inode->i_state & flags) == flags) ||
1336 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1337 return;
1338
1339 if (unlikely(block_dump))
1340 block_dump___mark_inode_dirty(inode);
1341
1342 spin_lock(&inode->i_lock);
1343 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1344 goto out_unlock_inode;
1345 if ((inode->i_state & flags) != flags) {
1346 const int was_dirty = inode->i_state & I_DIRTY;
1347
1348 inode_attach_wb(inode, NULL);
1349
1350 if (flags & I_DIRTY_INODE)
1351 inode->i_state &= ~I_DIRTY_TIME;
1352 inode->i_state |= flags;
1353
1354 /*
1355 * If the inode is being synced, just update its dirty state.
1356 * The unlocker will place the inode on the appropriate
1357 * superblock list, based upon its state.
1358 */
1359 if (inode->i_state & I_SYNC)
1360 goto out_unlock_inode;
1361
1362 /*
1363 * Only add valid (hashed) inodes to the superblock's
1364 * dirty list. Add blockdev inodes as well.
1365 */
1366 if (!S_ISBLK(inode->i_mode)) {
1367 if (inode_unhashed(inode))
1368 goto out_unlock_inode;
1369 }
1370 if (inode->i_state & I_FREEING)
1371 goto out_unlock_inode;
1372
1373 /*
1374 * If the inode was already on b_dirty/b_io/b_more_io, don't
1375 * reposition it (that would break b_dirty time-ordering).
1376 */
1377 if (!was_dirty) {
1378 struct list_head *dirty_list;
1379 bool wakeup_bdi = false;
1380 bdi = inode_to_bdi(inode);
1381
1382 spin_unlock(&inode->i_lock);
1383 spin_lock(&bdi->wb.list_lock);
1384
1385 WARN(bdi_cap_writeback_dirty(bdi) &&
1386 !test_bit(WB_registered, &bdi->wb.state),
1387 "bdi-%s not registered\n", bdi->name);
1388
1389 inode->dirtied_when = jiffies;
1390 if (dirtytime)
1391 inode->dirtied_time_when = jiffies;
1392
1393 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1394 dirty_list = &bdi->wb.b_dirty;
1395 else
1396 dirty_list = &bdi->wb.b_dirty_time;
1397
1398 wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1399 dirty_list);
1400
1401 spin_unlock(&bdi->wb.list_lock);
1402 trace_writeback_dirty_inode_enqueue(inode);
1403
1404 /*
1405 * If this is the first dirty inode for this bdi,
1406 * we have to wake-up the corresponding bdi thread
1407 * to make sure background write-back happens
1408 * later.
1409 */
1410 if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1411 wb_wakeup_delayed(&bdi->wb);
1412 return;
1413 }
1414 }
1415 out_unlock_inode:
1416 spin_unlock(&inode->i_lock);
1417
1418 }
1419 EXPORT_SYMBOL(__mark_inode_dirty);
1420
1421 static void wait_sb_inodes(struct super_block *sb)
1422 {
1423 struct inode *inode, *old_inode = NULL;
1424
1425 /*
1426 * We need to be protected against the filesystem going from
1427 * r/o to r/w or vice versa.
1428 */
1429 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1430
1431 spin_lock(&inode_sb_list_lock);
1432
1433 /*
1434 * Data integrity sync. Must wait for all pages under writeback,
1435 * because there may have been pages dirtied before our sync
1436 * call, but which had writeout started before we write it out.
1437 * In which case, the inode may not be on the dirty list, but
1438 * we still have to wait for that writeout.
1439 */
1440 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1441 struct address_space *mapping = inode->i_mapping;
1442
1443 spin_lock(&inode->i_lock);
1444 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1445 (mapping->nrpages == 0)) {
1446 spin_unlock(&inode->i_lock);
1447 continue;
1448 }
1449 __iget(inode);
1450 spin_unlock(&inode->i_lock);
1451 spin_unlock(&inode_sb_list_lock);
1452
1453 /*
1454 * We hold a reference to 'inode' so it couldn't have been
1455 * removed from s_inodes list while we dropped the
1456 * inode_sb_list_lock. We cannot iput the inode now as we can
1457 * be holding the last reference and we cannot iput it under
1458 * inode_sb_list_lock. So we keep the reference and iput it
1459 * later.
1460 */
1461 iput(old_inode);
1462 old_inode = inode;
1463
1464 filemap_fdatawait(mapping);
1465
1466 cond_resched();
1467
1468 spin_lock(&inode_sb_list_lock);
1469 }
1470 spin_unlock(&inode_sb_list_lock);
1471 iput(old_inode);
1472 }
1473
1474 /**
1475 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1476 * @sb: the superblock
1477 * @nr: the number of pages to write
1478 * @reason: reason why some writeback work initiated
1479 *
1480 * Start writeback on some inodes on this super_block. No guarantees are made
1481 * on how many (if any) will be written, and this function does not wait
1482 * for IO completion of submitted IO.
1483 */
1484 void writeback_inodes_sb_nr(struct super_block *sb,
1485 unsigned long nr,
1486 enum wb_reason reason)
1487 {
1488 DECLARE_COMPLETION_ONSTACK(done);
1489 struct wb_writeback_work work = {
1490 .sb = sb,
1491 .sync_mode = WB_SYNC_NONE,
1492 .tagged_writepages = 1,
1493 .done = &done,
1494 .nr_pages = nr,
1495 .reason = reason,
1496 };
1497 struct backing_dev_info *bdi = sb->s_bdi;
1498
1499 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1500 return;
1501 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1502 wb_queue_work(&bdi->wb, &work);
1503 wait_for_completion(&done);
1504 }
1505 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1506
1507 /**
1508 * writeback_inodes_sb - writeback dirty inodes from given super_block
1509 * @sb: the superblock
1510 * @reason: reason why some writeback work was initiated
1511 *
1512 * Start writeback on some inodes on this super_block. No guarantees are made
1513 * on how many (if any) will be written, and this function does not wait
1514 * for IO completion of submitted IO.
1515 */
1516 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1517 {
1518 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1519 }
1520 EXPORT_SYMBOL(writeback_inodes_sb);
1521
1522 /**
1523 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1524 * @sb: the superblock
1525 * @nr: the number of pages to write
1526 * @reason: the reason of writeback
1527 *
1528 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1529 * Returns 1 if writeback was started, 0 if not.
1530 */
1531 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1532 unsigned long nr,
1533 enum wb_reason reason)
1534 {
1535 if (writeback_in_progress(sb->s_bdi))
1536 return 1;
1537
1538 if (!down_read_trylock(&sb->s_umount))
1539 return 0;
1540
1541 writeback_inodes_sb_nr(sb, nr, reason);
1542 up_read(&sb->s_umount);
1543 return 1;
1544 }
1545 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1546
1547 /**
1548 * try_to_writeback_inodes_sb - try to start writeback if none underway
1549 * @sb: the superblock
1550 * @reason: reason why some writeback work was initiated
1551 *
1552 * Implement by try_to_writeback_inodes_sb_nr()
1553 * Returns 1 if writeback was started, 0 if not.
1554 */
1555 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1556 {
1557 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1558 }
1559 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1560
1561 /**
1562 * sync_inodes_sb - sync sb inode pages
1563 * @sb: the superblock
1564 *
1565 * This function writes and waits on any dirty inode belonging to this
1566 * super_block.
1567 */
1568 void sync_inodes_sb(struct super_block *sb)
1569 {
1570 DECLARE_COMPLETION_ONSTACK(done);
1571 struct wb_writeback_work work = {
1572 .sb = sb,
1573 .sync_mode = WB_SYNC_ALL,
1574 .nr_pages = LONG_MAX,
1575 .range_cyclic = 0,
1576 .done = &done,
1577 .reason = WB_REASON_SYNC,
1578 .for_sync = 1,
1579 };
1580 struct backing_dev_info *bdi = sb->s_bdi;
1581
1582 /* Nothing to do? */
1583 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1584 return;
1585 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1586
1587 wb_queue_work(&bdi->wb, &work);
1588 wait_for_completion(&done);
1589
1590 wait_sb_inodes(sb);
1591 }
1592 EXPORT_SYMBOL(sync_inodes_sb);
1593
1594 /**
1595 * write_inode_now - write an inode to disk
1596 * @inode: inode to write to disk
1597 * @sync: whether the write should be synchronous or not
1598 *
1599 * This function commits an inode to disk immediately if it is dirty. This is
1600 * primarily needed by knfsd.
1601 *
1602 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1603 */
1604 int write_inode_now(struct inode *inode, int sync)
1605 {
1606 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1607 struct writeback_control wbc = {
1608 .nr_to_write = LONG_MAX,
1609 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1610 .range_start = 0,
1611 .range_end = LLONG_MAX,
1612 };
1613
1614 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1615 wbc.nr_to_write = 0;
1616
1617 might_sleep();
1618 return writeback_single_inode(inode, wb, &wbc);
1619 }
1620 EXPORT_SYMBOL(write_inode_now);
1621
1622 /**
1623 * sync_inode - write an inode and its pages to disk.
1624 * @inode: the inode to sync
1625 * @wbc: controls the writeback mode
1626 *
1627 * sync_inode() will write an inode and its pages to disk. It will also
1628 * correctly update the inode on its superblock's dirty inode lists and will
1629 * update inode->i_state.
1630 *
1631 * The caller must have a ref on the inode.
1632 */
1633 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1634 {
1635 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1636 }
1637 EXPORT_SYMBOL(sync_inode);
1638
1639 /**
1640 * sync_inode_metadata - write an inode to disk
1641 * @inode: the inode to sync
1642 * @wait: wait for I/O to complete.
1643 *
1644 * Write an inode to disk and adjust its dirty state after completion.
1645 *
1646 * Note: only writes the actual inode, no associated data or other metadata.
1647 */
1648 int sync_inode_metadata(struct inode *inode, int wait)
1649 {
1650 struct writeback_control wbc = {
1651 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1652 .nr_to_write = 0, /* metadata-only */
1653 };
1654
1655 return sync_inode(inode, &wbc);
1656 }
1657 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.074571 seconds and 6 git commands to generate.