writeback: implement bdi_wait_for_completion()
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 struct wb_completion {
38 atomic_t cnt;
39 };
40
41 /*
42 * Passed into wb_writeback(), essentially a subset of writeback_control
43 */
44 struct wb_writeback_work {
45 long nr_pages;
46 struct super_block *sb;
47 unsigned long *older_than_this;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int auto_free:1; /* free on completion */
55 enum wb_reason reason; /* why was writeback initiated? */
56
57 struct list_head list; /* pending work list */
58 struct wb_completion *done; /* set if the caller waits */
59 };
60
61 /*
62 * If one wants to wait for one or more wb_writeback_works, each work's
63 * ->done should be set to a wb_completion defined using the following
64 * macro. Once all work items are issued with wb_queue_work(), the caller
65 * can wait for the completion of all using wb_wait_for_completion(). Work
66 * items which are waited upon aren't freed automatically on completion.
67 */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
69 struct wb_completion cmpl = { \
70 .cnt = ATOMIC_INIT(1), \
71 }
72
73
74 /*
75 * If an inode is constantly having its pages dirtied, but then the
76 * updates stop dirtytime_expire_interval seconds in the past, it's
77 * possible for the worst case time between when an inode has its
78 * timestamps updated and when they finally get written out to be two
79 * dirtytime_expire_intervals. We set the default to 12 hours (in
80 * seconds), which means most of the time inodes will have their
81 * timestamps written to disk after 12 hours, but in the worst case a
82 * few inodes might not their timestamps updated for 24 hours.
83 */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85
86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88 return list_entry(head, struct inode, i_wb_list);
89 }
90
91 /*
92 * Include the creation of the trace points after defining the
93 * wb_writeback_work structure and inline functions so that the definition
94 * remains local to this file.
95 */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100
101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103 if (wb_has_dirty_io(wb)) {
104 return false;
105 } else {
106 set_bit(WB_has_dirty_io, &wb->state);
107 WARN_ON_ONCE(!wb->avg_write_bandwidth);
108 atomic_long_add(wb->avg_write_bandwidth,
109 &wb->bdi->tot_write_bandwidth);
110 return true;
111 }
112 }
113
114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118 clear_bit(WB_has_dirty_io, &wb->state);
119 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120 &wb->bdi->tot_write_bandwidth) < 0);
121 }
122 }
123
124 /**
125 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
126 * @inode: inode to be moved
127 * @wb: target bdi_writeback
128 * @head: one of @wb->b_{dirty|io|more_io}
129 *
130 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
131 * Returns %true if @inode is the first occupant of the !dirty_time IO
132 * lists; otherwise, %false.
133 */
134 static bool inode_wb_list_move_locked(struct inode *inode,
135 struct bdi_writeback *wb,
136 struct list_head *head)
137 {
138 assert_spin_locked(&wb->list_lock);
139
140 list_move(&inode->i_wb_list, head);
141
142 /* dirty_time doesn't count as dirty_io until expiration */
143 if (head != &wb->b_dirty_time)
144 return wb_io_lists_populated(wb);
145
146 wb_io_lists_depopulated(wb);
147 return false;
148 }
149
150 /**
151 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
152 * @inode: inode to be removed
153 * @wb: bdi_writeback @inode is being removed from
154 *
155 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156 * clear %WB_has_dirty_io if all are empty afterwards.
157 */
158 static void inode_wb_list_del_locked(struct inode *inode,
159 struct bdi_writeback *wb)
160 {
161 assert_spin_locked(&wb->list_lock);
162
163 list_del_init(&inode->i_wb_list);
164 wb_io_lists_depopulated(wb);
165 }
166
167 static void wb_wakeup(struct bdi_writeback *wb)
168 {
169 spin_lock_bh(&wb->work_lock);
170 if (test_bit(WB_registered, &wb->state))
171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 spin_unlock_bh(&wb->work_lock);
173 }
174
175 static void wb_queue_work(struct bdi_writeback *wb,
176 struct wb_writeback_work *work)
177 {
178 trace_writeback_queue(wb->bdi, work);
179
180 spin_lock_bh(&wb->work_lock);
181 if (!test_bit(WB_registered, &wb->state))
182 goto out_unlock;
183 if (work->done)
184 atomic_inc(&work->done->cnt);
185 list_add_tail(&work->list, &wb->work_list);
186 mod_delayed_work(bdi_wq, &wb->dwork, 0);
187 out_unlock:
188 spin_unlock_bh(&wb->work_lock);
189 }
190
191 /**
192 * wb_wait_for_completion - wait for completion of bdi_writeback_works
193 * @bdi: bdi work items were issued to
194 * @done: target wb_completion
195 *
196 * Wait for one or more work items issued to @bdi with their ->done field
197 * set to @done, which should have been defined with
198 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
199 * work items are completed. Work items which are waited upon aren't freed
200 * automatically on completion.
201 */
202 static void wb_wait_for_completion(struct backing_dev_info *bdi,
203 struct wb_completion *done)
204 {
205 atomic_dec(&done->cnt); /* put down the initial count */
206 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
207 }
208
209 #ifdef CONFIG_CGROUP_WRITEBACK
210
211 /**
212 * inode_congested - test whether an inode is congested
213 * @inode: inode to test for congestion
214 * @cong_bits: mask of WB_[a]sync_congested bits to test
215 *
216 * Tests whether @inode is congested. @cong_bits is the mask of congestion
217 * bits to test and the return value is the mask of set bits.
218 *
219 * If cgroup writeback is enabled for @inode, the congestion state is
220 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
221 * associated with @inode is congested; otherwise, the root wb's congestion
222 * state is used.
223 */
224 int inode_congested(struct inode *inode, int cong_bits)
225 {
226 if (inode) {
227 struct bdi_writeback *wb = inode_to_wb(inode);
228 if (wb)
229 return wb_congested(wb, cong_bits);
230 }
231
232 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
233 }
234 EXPORT_SYMBOL_GPL(inode_congested);
235
236 /**
237 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
238 * @wb: target bdi_writeback to split @nr_pages to
239 * @nr_pages: number of pages to write for the whole bdi
240 *
241 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
242 * relation to the total write bandwidth of all wb's w/ dirty inodes on
243 * @wb->bdi.
244 */
245 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
246 {
247 unsigned long this_bw = wb->avg_write_bandwidth;
248 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
249
250 if (nr_pages == LONG_MAX)
251 return LONG_MAX;
252
253 /*
254 * This may be called on clean wb's and proportional distribution
255 * may not make sense, just use the original @nr_pages in those
256 * cases. In general, we wanna err on the side of writing more.
257 */
258 if (!tot_bw || this_bw >= tot_bw)
259 return nr_pages;
260 else
261 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
262 }
263
264 #else /* CONFIG_CGROUP_WRITEBACK */
265
266 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
267 {
268 return nr_pages;
269 }
270
271 #endif /* CONFIG_CGROUP_WRITEBACK */
272
273 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
274 bool range_cyclic, enum wb_reason reason)
275 {
276 struct wb_writeback_work *work;
277
278 if (!wb_has_dirty_io(wb))
279 return;
280
281 /*
282 * This is WB_SYNC_NONE writeback, so if allocation fails just
283 * wakeup the thread for old dirty data writeback
284 */
285 work = kzalloc(sizeof(*work), GFP_ATOMIC);
286 if (!work) {
287 trace_writeback_nowork(wb->bdi);
288 wb_wakeup(wb);
289 return;
290 }
291
292 work->sync_mode = WB_SYNC_NONE;
293 work->nr_pages = nr_pages;
294 work->range_cyclic = range_cyclic;
295 work->reason = reason;
296 work->auto_free = 1;
297
298 wb_queue_work(wb, work);
299 }
300
301 /**
302 * wb_start_background_writeback - start background writeback
303 * @wb: bdi_writback to write from
304 *
305 * Description:
306 * This makes sure WB_SYNC_NONE background writeback happens. When
307 * this function returns, it is only guaranteed that for given wb
308 * some IO is happening if we are over background dirty threshold.
309 * Caller need not hold sb s_umount semaphore.
310 */
311 void wb_start_background_writeback(struct bdi_writeback *wb)
312 {
313 /*
314 * We just wake up the flusher thread. It will perform background
315 * writeback as soon as there is no other work to do.
316 */
317 trace_writeback_wake_background(wb->bdi);
318 wb_wakeup(wb);
319 }
320
321 /*
322 * Remove the inode from the writeback list it is on.
323 */
324 void inode_wb_list_del(struct inode *inode)
325 {
326 struct bdi_writeback *wb = inode_to_wb(inode);
327
328 spin_lock(&wb->list_lock);
329 inode_wb_list_del_locked(inode, wb);
330 spin_unlock(&wb->list_lock);
331 }
332
333 /*
334 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
335 * furthest end of its superblock's dirty-inode list.
336 *
337 * Before stamping the inode's ->dirtied_when, we check to see whether it is
338 * already the most-recently-dirtied inode on the b_dirty list. If that is
339 * the case then the inode must have been redirtied while it was being written
340 * out and we don't reset its dirtied_when.
341 */
342 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
343 {
344 if (!list_empty(&wb->b_dirty)) {
345 struct inode *tail;
346
347 tail = wb_inode(wb->b_dirty.next);
348 if (time_before(inode->dirtied_when, tail->dirtied_when))
349 inode->dirtied_when = jiffies;
350 }
351 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
352 }
353
354 /*
355 * requeue inode for re-scanning after bdi->b_io list is exhausted.
356 */
357 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
358 {
359 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
360 }
361
362 static void inode_sync_complete(struct inode *inode)
363 {
364 inode->i_state &= ~I_SYNC;
365 /* If inode is clean an unused, put it into LRU now... */
366 inode_add_lru(inode);
367 /* Waiters must see I_SYNC cleared before being woken up */
368 smp_mb();
369 wake_up_bit(&inode->i_state, __I_SYNC);
370 }
371
372 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
373 {
374 bool ret = time_after(inode->dirtied_when, t);
375 #ifndef CONFIG_64BIT
376 /*
377 * For inodes being constantly redirtied, dirtied_when can get stuck.
378 * It _appears_ to be in the future, but is actually in distant past.
379 * This test is necessary to prevent such wrapped-around relative times
380 * from permanently stopping the whole bdi writeback.
381 */
382 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
383 #endif
384 return ret;
385 }
386
387 #define EXPIRE_DIRTY_ATIME 0x0001
388
389 /*
390 * Move expired (dirtied before work->older_than_this) dirty inodes from
391 * @delaying_queue to @dispatch_queue.
392 */
393 static int move_expired_inodes(struct list_head *delaying_queue,
394 struct list_head *dispatch_queue,
395 int flags,
396 struct wb_writeback_work *work)
397 {
398 unsigned long *older_than_this = NULL;
399 unsigned long expire_time;
400 LIST_HEAD(tmp);
401 struct list_head *pos, *node;
402 struct super_block *sb = NULL;
403 struct inode *inode;
404 int do_sb_sort = 0;
405 int moved = 0;
406
407 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
408 older_than_this = work->older_than_this;
409 else if (!work->for_sync) {
410 expire_time = jiffies - (dirtytime_expire_interval * HZ);
411 older_than_this = &expire_time;
412 }
413 while (!list_empty(delaying_queue)) {
414 inode = wb_inode(delaying_queue->prev);
415 if (older_than_this &&
416 inode_dirtied_after(inode, *older_than_this))
417 break;
418 list_move(&inode->i_wb_list, &tmp);
419 moved++;
420 if (flags & EXPIRE_DIRTY_ATIME)
421 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
422 if (sb_is_blkdev_sb(inode->i_sb))
423 continue;
424 if (sb && sb != inode->i_sb)
425 do_sb_sort = 1;
426 sb = inode->i_sb;
427 }
428
429 /* just one sb in list, splice to dispatch_queue and we're done */
430 if (!do_sb_sort) {
431 list_splice(&tmp, dispatch_queue);
432 goto out;
433 }
434
435 /* Move inodes from one superblock together */
436 while (!list_empty(&tmp)) {
437 sb = wb_inode(tmp.prev)->i_sb;
438 list_for_each_prev_safe(pos, node, &tmp) {
439 inode = wb_inode(pos);
440 if (inode->i_sb == sb)
441 list_move(&inode->i_wb_list, dispatch_queue);
442 }
443 }
444 out:
445 return moved;
446 }
447
448 /*
449 * Queue all expired dirty inodes for io, eldest first.
450 * Before
451 * newly dirtied b_dirty b_io b_more_io
452 * =============> gf edc BA
453 * After
454 * newly dirtied b_dirty b_io b_more_io
455 * =============> g fBAedc
456 * |
457 * +--> dequeue for IO
458 */
459 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
460 {
461 int moved;
462
463 assert_spin_locked(&wb->list_lock);
464 list_splice_init(&wb->b_more_io, &wb->b_io);
465 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
466 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
467 EXPIRE_DIRTY_ATIME, work);
468 if (moved)
469 wb_io_lists_populated(wb);
470 trace_writeback_queue_io(wb, work, moved);
471 }
472
473 static int write_inode(struct inode *inode, struct writeback_control *wbc)
474 {
475 int ret;
476
477 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
478 trace_writeback_write_inode_start(inode, wbc);
479 ret = inode->i_sb->s_op->write_inode(inode, wbc);
480 trace_writeback_write_inode(inode, wbc);
481 return ret;
482 }
483 return 0;
484 }
485
486 /*
487 * Wait for writeback on an inode to complete. Called with i_lock held.
488 * Caller must make sure inode cannot go away when we drop i_lock.
489 */
490 static void __inode_wait_for_writeback(struct inode *inode)
491 __releases(inode->i_lock)
492 __acquires(inode->i_lock)
493 {
494 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
495 wait_queue_head_t *wqh;
496
497 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
498 while (inode->i_state & I_SYNC) {
499 spin_unlock(&inode->i_lock);
500 __wait_on_bit(wqh, &wq, bit_wait,
501 TASK_UNINTERRUPTIBLE);
502 spin_lock(&inode->i_lock);
503 }
504 }
505
506 /*
507 * Wait for writeback on an inode to complete. Caller must have inode pinned.
508 */
509 void inode_wait_for_writeback(struct inode *inode)
510 {
511 spin_lock(&inode->i_lock);
512 __inode_wait_for_writeback(inode);
513 spin_unlock(&inode->i_lock);
514 }
515
516 /*
517 * Sleep until I_SYNC is cleared. This function must be called with i_lock
518 * held and drops it. It is aimed for callers not holding any inode reference
519 * so once i_lock is dropped, inode can go away.
520 */
521 static void inode_sleep_on_writeback(struct inode *inode)
522 __releases(inode->i_lock)
523 {
524 DEFINE_WAIT(wait);
525 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
526 int sleep;
527
528 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
529 sleep = inode->i_state & I_SYNC;
530 spin_unlock(&inode->i_lock);
531 if (sleep)
532 schedule();
533 finish_wait(wqh, &wait);
534 }
535
536 /*
537 * Find proper writeback list for the inode depending on its current state and
538 * possibly also change of its state while we were doing writeback. Here we
539 * handle things such as livelock prevention or fairness of writeback among
540 * inodes. This function can be called only by flusher thread - noone else
541 * processes all inodes in writeback lists and requeueing inodes behind flusher
542 * thread's back can have unexpected consequences.
543 */
544 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
545 struct writeback_control *wbc)
546 {
547 if (inode->i_state & I_FREEING)
548 return;
549
550 /*
551 * Sync livelock prevention. Each inode is tagged and synced in one
552 * shot. If still dirty, it will be redirty_tail()'ed below. Update
553 * the dirty time to prevent enqueue and sync it again.
554 */
555 if ((inode->i_state & I_DIRTY) &&
556 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
557 inode->dirtied_when = jiffies;
558
559 if (wbc->pages_skipped) {
560 /*
561 * writeback is not making progress due to locked
562 * buffers. Skip this inode for now.
563 */
564 redirty_tail(inode, wb);
565 return;
566 }
567
568 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
569 /*
570 * We didn't write back all the pages. nfs_writepages()
571 * sometimes bales out without doing anything.
572 */
573 if (wbc->nr_to_write <= 0) {
574 /* Slice used up. Queue for next turn. */
575 requeue_io(inode, wb);
576 } else {
577 /*
578 * Writeback blocked by something other than
579 * congestion. Delay the inode for some time to
580 * avoid spinning on the CPU (100% iowait)
581 * retrying writeback of the dirty page/inode
582 * that cannot be performed immediately.
583 */
584 redirty_tail(inode, wb);
585 }
586 } else if (inode->i_state & I_DIRTY) {
587 /*
588 * Filesystems can dirty the inode during writeback operations,
589 * such as delayed allocation during submission or metadata
590 * updates after data IO completion.
591 */
592 redirty_tail(inode, wb);
593 } else if (inode->i_state & I_DIRTY_TIME) {
594 inode->dirtied_when = jiffies;
595 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
596 } else {
597 /* The inode is clean. Remove from writeback lists. */
598 inode_wb_list_del_locked(inode, wb);
599 }
600 }
601
602 /*
603 * Write out an inode and its dirty pages. Do not update the writeback list
604 * linkage. That is left to the caller. The caller is also responsible for
605 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
606 */
607 static int
608 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
609 {
610 struct address_space *mapping = inode->i_mapping;
611 long nr_to_write = wbc->nr_to_write;
612 unsigned dirty;
613 int ret;
614
615 WARN_ON(!(inode->i_state & I_SYNC));
616
617 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
618
619 ret = do_writepages(mapping, wbc);
620
621 /*
622 * Make sure to wait on the data before writing out the metadata.
623 * This is important for filesystems that modify metadata on data
624 * I/O completion. We don't do it for sync(2) writeback because it has a
625 * separate, external IO completion path and ->sync_fs for guaranteeing
626 * inode metadata is written back correctly.
627 */
628 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
629 int err = filemap_fdatawait(mapping);
630 if (ret == 0)
631 ret = err;
632 }
633
634 /*
635 * Some filesystems may redirty the inode during the writeback
636 * due to delalloc, clear dirty metadata flags right before
637 * write_inode()
638 */
639 spin_lock(&inode->i_lock);
640
641 dirty = inode->i_state & I_DIRTY;
642 if (inode->i_state & I_DIRTY_TIME) {
643 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
644 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
645 unlikely(time_after(jiffies,
646 (inode->dirtied_time_when +
647 dirtytime_expire_interval * HZ)))) {
648 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
649 trace_writeback_lazytime(inode);
650 }
651 } else
652 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
653 inode->i_state &= ~dirty;
654
655 /*
656 * Paired with smp_mb() in __mark_inode_dirty(). This allows
657 * __mark_inode_dirty() to test i_state without grabbing i_lock -
658 * either they see the I_DIRTY bits cleared or we see the dirtied
659 * inode.
660 *
661 * I_DIRTY_PAGES is always cleared together above even if @mapping
662 * still has dirty pages. The flag is reinstated after smp_mb() if
663 * necessary. This guarantees that either __mark_inode_dirty()
664 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
665 */
666 smp_mb();
667
668 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
669 inode->i_state |= I_DIRTY_PAGES;
670
671 spin_unlock(&inode->i_lock);
672
673 if (dirty & I_DIRTY_TIME)
674 mark_inode_dirty_sync(inode);
675 /* Don't write the inode if only I_DIRTY_PAGES was set */
676 if (dirty & ~I_DIRTY_PAGES) {
677 int err = write_inode(inode, wbc);
678 if (ret == 0)
679 ret = err;
680 }
681 trace_writeback_single_inode(inode, wbc, nr_to_write);
682 return ret;
683 }
684
685 /*
686 * Write out an inode's dirty pages. Either the caller has an active reference
687 * on the inode or the inode has I_WILL_FREE set.
688 *
689 * This function is designed to be called for writing back one inode which
690 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
691 * and does more profound writeback list handling in writeback_sb_inodes().
692 */
693 static int
694 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
695 struct writeback_control *wbc)
696 {
697 int ret = 0;
698
699 spin_lock(&inode->i_lock);
700 if (!atomic_read(&inode->i_count))
701 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
702 else
703 WARN_ON(inode->i_state & I_WILL_FREE);
704
705 if (inode->i_state & I_SYNC) {
706 if (wbc->sync_mode != WB_SYNC_ALL)
707 goto out;
708 /*
709 * It's a data-integrity sync. We must wait. Since callers hold
710 * inode reference or inode has I_WILL_FREE set, it cannot go
711 * away under us.
712 */
713 __inode_wait_for_writeback(inode);
714 }
715 WARN_ON(inode->i_state & I_SYNC);
716 /*
717 * Skip inode if it is clean and we have no outstanding writeback in
718 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
719 * function since flusher thread may be doing for example sync in
720 * parallel and if we move the inode, it could get skipped. So here we
721 * make sure inode is on some writeback list and leave it there unless
722 * we have completely cleaned the inode.
723 */
724 if (!(inode->i_state & I_DIRTY_ALL) &&
725 (wbc->sync_mode != WB_SYNC_ALL ||
726 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
727 goto out;
728 inode->i_state |= I_SYNC;
729 spin_unlock(&inode->i_lock);
730
731 ret = __writeback_single_inode(inode, wbc);
732
733 spin_lock(&wb->list_lock);
734 spin_lock(&inode->i_lock);
735 /*
736 * If inode is clean, remove it from writeback lists. Otherwise don't
737 * touch it. See comment above for explanation.
738 */
739 if (!(inode->i_state & I_DIRTY_ALL))
740 inode_wb_list_del_locked(inode, wb);
741 spin_unlock(&wb->list_lock);
742 inode_sync_complete(inode);
743 out:
744 spin_unlock(&inode->i_lock);
745 return ret;
746 }
747
748 static long writeback_chunk_size(struct bdi_writeback *wb,
749 struct wb_writeback_work *work)
750 {
751 long pages;
752
753 /*
754 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
755 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
756 * here avoids calling into writeback_inodes_wb() more than once.
757 *
758 * The intended call sequence for WB_SYNC_ALL writeback is:
759 *
760 * wb_writeback()
761 * writeback_sb_inodes() <== called only once
762 * write_cache_pages() <== called once for each inode
763 * (quickly) tag currently dirty pages
764 * (maybe slowly) sync all tagged pages
765 */
766 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
767 pages = LONG_MAX;
768 else {
769 pages = min(wb->avg_write_bandwidth / 2,
770 global_dirty_limit / DIRTY_SCOPE);
771 pages = min(pages, work->nr_pages);
772 pages = round_down(pages + MIN_WRITEBACK_PAGES,
773 MIN_WRITEBACK_PAGES);
774 }
775
776 return pages;
777 }
778
779 /*
780 * Write a portion of b_io inodes which belong to @sb.
781 *
782 * Return the number of pages and/or inodes written.
783 */
784 static long writeback_sb_inodes(struct super_block *sb,
785 struct bdi_writeback *wb,
786 struct wb_writeback_work *work)
787 {
788 struct writeback_control wbc = {
789 .sync_mode = work->sync_mode,
790 .tagged_writepages = work->tagged_writepages,
791 .for_kupdate = work->for_kupdate,
792 .for_background = work->for_background,
793 .for_sync = work->for_sync,
794 .range_cyclic = work->range_cyclic,
795 .range_start = 0,
796 .range_end = LLONG_MAX,
797 };
798 unsigned long start_time = jiffies;
799 long write_chunk;
800 long wrote = 0; /* count both pages and inodes */
801
802 while (!list_empty(&wb->b_io)) {
803 struct inode *inode = wb_inode(wb->b_io.prev);
804
805 if (inode->i_sb != sb) {
806 if (work->sb) {
807 /*
808 * We only want to write back data for this
809 * superblock, move all inodes not belonging
810 * to it back onto the dirty list.
811 */
812 redirty_tail(inode, wb);
813 continue;
814 }
815
816 /*
817 * The inode belongs to a different superblock.
818 * Bounce back to the caller to unpin this and
819 * pin the next superblock.
820 */
821 break;
822 }
823
824 /*
825 * Don't bother with new inodes or inodes being freed, first
826 * kind does not need periodic writeout yet, and for the latter
827 * kind writeout is handled by the freer.
828 */
829 spin_lock(&inode->i_lock);
830 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
831 spin_unlock(&inode->i_lock);
832 redirty_tail(inode, wb);
833 continue;
834 }
835 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
836 /*
837 * If this inode is locked for writeback and we are not
838 * doing writeback-for-data-integrity, move it to
839 * b_more_io so that writeback can proceed with the
840 * other inodes on s_io.
841 *
842 * We'll have another go at writing back this inode
843 * when we completed a full scan of b_io.
844 */
845 spin_unlock(&inode->i_lock);
846 requeue_io(inode, wb);
847 trace_writeback_sb_inodes_requeue(inode);
848 continue;
849 }
850 spin_unlock(&wb->list_lock);
851
852 /*
853 * We already requeued the inode if it had I_SYNC set and we
854 * are doing WB_SYNC_NONE writeback. So this catches only the
855 * WB_SYNC_ALL case.
856 */
857 if (inode->i_state & I_SYNC) {
858 /* Wait for I_SYNC. This function drops i_lock... */
859 inode_sleep_on_writeback(inode);
860 /* Inode may be gone, start again */
861 spin_lock(&wb->list_lock);
862 continue;
863 }
864 inode->i_state |= I_SYNC;
865 spin_unlock(&inode->i_lock);
866
867 write_chunk = writeback_chunk_size(wb, work);
868 wbc.nr_to_write = write_chunk;
869 wbc.pages_skipped = 0;
870
871 /*
872 * We use I_SYNC to pin the inode in memory. While it is set
873 * evict_inode() will wait so the inode cannot be freed.
874 */
875 __writeback_single_inode(inode, &wbc);
876
877 work->nr_pages -= write_chunk - wbc.nr_to_write;
878 wrote += write_chunk - wbc.nr_to_write;
879 spin_lock(&wb->list_lock);
880 spin_lock(&inode->i_lock);
881 if (!(inode->i_state & I_DIRTY_ALL))
882 wrote++;
883 requeue_inode(inode, wb, &wbc);
884 inode_sync_complete(inode);
885 spin_unlock(&inode->i_lock);
886 cond_resched_lock(&wb->list_lock);
887 /*
888 * bail out to wb_writeback() often enough to check
889 * background threshold and other termination conditions.
890 */
891 if (wrote) {
892 if (time_is_before_jiffies(start_time + HZ / 10UL))
893 break;
894 if (work->nr_pages <= 0)
895 break;
896 }
897 }
898 return wrote;
899 }
900
901 static long __writeback_inodes_wb(struct bdi_writeback *wb,
902 struct wb_writeback_work *work)
903 {
904 unsigned long start_time = jiffies;
905 long wrote = 0;
906
907 while (!list_empty(&wb->b_io)) {
908 struct inode *inode = wb_inode(wb->b_io.prev);
909 struct super_block *sb = inode->i_sb;
910
911 if (!trylock_super(sb)) {
912 /*
913 * trylock_super() may fail consistently due to
914 * s_umount being grabbed by someone else. Don't use
915 * requeue_io() to avoid busy retrying the inode/sb.
916 */
917 redirty_tail(inode, wb);
918 continue;
919 }
920 wrote += writeback_sb_inodes(sb, wb, work);
921 up_read(&sb->s_umount);
922
923 /* refer to the same tests at the end of writeback_sb_inodes */
924 if (wrote) {
925 if (time_is_before_jiffies(start_time + HZ / 10UL))
926 break;
927 if (work->nr_pages <= 0)
928 break;
929 }
930 }
931 /* Leave any unwritten inodes on b_io */
932 return wrote;
933 }
934
935 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
936 enum wb_reason reason)
937 {
938 struct wb_writeback_work work = {
939 .nr_pages = nr_pages,
940 .sync_mode = WB_SYNC_NONE,
941 .range_cyclic = 1,
942 .reason = reason,
943 };
944
945 spin_lock(&wb->list_lock);
946 if (list_empty(&wb->b_io))
947 queue_io(wb, &work);
948 __writeback_inodes_wb(wb, &work);
949 spin_unlock(&wb->list_lock);
950
951 return nr_pages - work.nr_pages;
952 }
953
954 static bool over_bground_thresh(struct bdi_writeback *wb)
955 {
956 unsigned long background_thresh, dirty_thresh;
957
958 global_dirty_limits(&background_thresh, &dirty_thresh);
959
960 if (global_page_state(NR_FILE_DIRTY) +
961 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
962 return true;
963
964 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
965 return true;
966
967 return false;
968 }
969
970 /*
971 * Called under wb->list_lock. If there are multiple wb per bdi,
972 * only the flusher working on the first wb should do it.
973 */
974 static void wb_update_bandwidth(struct bdi_writeback *wb,
975 unsigned long start_time)
976 {
977 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
978 }
979
980 /*
981 * Explicit flushing or periodic writeback of "old" data.
982 *
983 * Define "old": the first time one of an inode's pages is dirtied, we mark the
984 * dirtying-time in the inode's address_space. So this periodic writeback code
985 * just walks the superblock inode list, writing back any inodes which are
986 * older than a specific point in time.
987 *
988 * Try to run once per dirty_writeback_interval. But if a writeback event
989 * takes longer than a dirty_writeback_interval interval, then leave a
990 * one-second gap.
991 *
992 * older_than_this takes precedence over nr_to_write. So we'll only write back
993 * all dirty pages if they are all attached to "old" mappings.
994 */
995 static long wb_writeback(struct bdi_writeback *wb,
996 struct wb_writeback_work *work)
997 {
998 unsigned long wb_start = jiffies;
999 long nr_pages = work->nr_pages;
1000 unsigned long oldest_jif;
1001 struct inode *inode;
1002 long progress;
1003
1004 oldest_jif = jiffies;
1005 work->older_than_this = &oldest_jif;
1006
1007 spin_lock(&wb->list_lock);
1008 for (;;) {
1009 /*
1010 * Stop writeback when nr_pages has been consumed
1011 */
1012 if (work->nr_pages <= 0)
1013 break;
1014
1015 /*
1016 * Background writeout and kupdate-style writeback may
1017 * run forever. Stop them if there is other work to do
1018 * so that e.g. sync can proceed. They'll be restarted
1019 * after the other works are all done.
1020 */
1021 if ((work->for_background || work->for_kupdate) &&
1022 !list_empty(&wb->work_list))
1023 break;
1024
1025 /*
1026 * For background writeout, stop when we are below the
1027 * background dirty threshold
1028 */
1029 if (work->for_background && !over_bground_thresh(wb))
1030 break;
1031
1032 /*
1033 * Kupdate and background works are special and we want to
1034 * include all inodes that need writing. Livelock avoidance is
1035 * handled by these works yielding to any other work so we are
1036 * safe.
1037 */
1038 if (work->for_kupdate) {
1039 oldest_jif = jiffies -
1040 msecs_to_jiffies(dirty_expire_interval * 10);
1041 } else if (work->for_background)
1042 oldest_jif = jiffies;
1043
1044 trace_writeback_start(wb->bdi, work);
1045 if (list_empty(&wb->b_io))
1046 queue_io(wb, work);
1047 if (work->sb)
1048 progress = writeback_sb_inodes(work->sb, wb, work);
1049 else
1050 progress = __writeback_inodes_wb(wb, work);
1051 trace_writeback_written(wb->bdi, work);
1052
1053 wb_update_bandwidth(wb, wb_start);
1054
1055 /*
1056 * Did we write something? Try for more
1057 *
1058 * Dirty inodes are moved to b_io for writeback in batches.
1059 * The completion of the current batch does not necessarily
1060 * mean the overall work is done. So we keep looping as long
1061 * as made some progress on cleaning pages or inodes.
1062 */
1063 if (progress)
1064 continue;
1065 /*
1066 * No more inodes for IO, bail
1067 */
1068 if (list_empty(&wb->b_more_io))
1069 break;
1070 /*
1071 * Nothing written. Wait for some inode to
1072 * become available for writeback. Otherwise
1073 * we'll just busyloop.
1074 */
1075 if (!list_empty(&wb->b_more_io)) {
1076 trace_writeback_wait(wb->bdi, work);
1077 inode = wb_inode(wb->b_more_io.prev);
1078 spin_lock(&inode->i_lock);
1079 spin_unlock(&wb->list_lock);
1080 /* This function drops i_lock... */
1081 inode_sleep_on_writeback(inode);
1082 spin_lock(&wb->list_lock);
1083 }
1084 }
1085 spin_unlock(&wb->list_lock);
1086
1087 return nr_pages - work->nr_pages;
1088 }
1089
1090 /*
1091 * Return the next wb_writeback_work struct that hasn't been processed yet.
1092 */
1093 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1094 {
1095 struct wb_writeback_work *work = NULL;
1096
1097 spin_lock_bh(&wb->work_lock);
1098 if (!list_empty(&wb->work_list)) {
1099 work = list_entry(wb->work_list.next,
1100 struct wb_writeback_work, list);
1101 list_del_init(&work->list);
1102 }
1103 spin_unlock_bh(&wb->work_lock);
1104 return work;
1105 }
1106
1107 /*
1108 * Add in the number of potentially dirty inodes, because each inode
1109 * write can dirty pagecache in the underlying blockdev.
1110 */
1111 static unsigned long get_nr_dirty_pages(void)
1112 {
1113 return global_page_state(NR_FILE_DIRTY) +
1114 global_page_state(NR_UNSTABLE_NFS) +
1115 get_nr_dirty_inodes();
1116 }
1117
1118 static long wb_check_background_flush(struct bdi_writeback *wb)
1119 {
1120 if (over_bground_thresh(wb)) {
1121
1122 struct wb_writeback_work work = {
1123 .nr_pages = LONG_MAX,
1124 .sync_mode = WB_SYNC_NONE,
1125 .for_background = 1,
1126 .range_cyclic = 1,
1127 .reason = WB_REASON_BACKGROUND,
1128 };
1129
1130 return wb_writeback(wb, &work);
1131 }
1132
1133 return 0;
1134 }
1135
1136 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1137 {
1138 unsigned long expired;
1139 long nr_pages;
1140
1141 /*
1142 * When set to zero, disable periodic writeback
1143 */
1144 if (!dirty_writeback_interval)
1145 return 0;
1146
1147 expired = wb->last_old_flush +
1148 msecs_to_jiffies(dirty_writeback_interval * 10);
1149 if (time_before(jiffies, expired))
1150 return 0;
1151
1152 wb->last_old_flush = jiffies;
1153 nr_pages = get_nr_dirty_pages();
1154
1155 if (nr_pages) {
1156 struct wb_writeback_work work = {
1157 .nr_pages = nr_pages,
1158 .sync_mode = WB_SYNC_NONE,
1159 .for_kupdate = 1,
1160 .range_cyclic = 1,
1161 .reason = WB_REASON_PERIODIC,
1162 };
1163
1164 return wb_writeback(wb, &work);
1165 }
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * Retrieve work items and do the writeback they describe
1172 */
1173 static long wb_do_writeback(struct bdi_writeback *wb)
1174 {
1175 struct wb_writeback_work *work;
1176 long wrote = 0;
1177
1178 set_bit(WB_writeback_running, &wb->state);
1179 while ((work = get_next_work_item(wb)) != NULL) {
1180 struct wb_completion *done = work->done;
1181
1182 trace_writeback_exec(wb->bdi, work);
1183
1184 wrote += wb_writeback(wb, work);
1185
1186 if (work->auto_free)
1187 kfree(work);
1188 if (done && atomic_dec_and_test(&done->cnt))
1189 wake_up_all(&wb->bdi->wb_waitq);
1190 }
1191
1192 /*
1193 * Check for periodic writeback, kupdated() style
1194 */
1195 wrote += wb_check_old_data_flush(wb);
1196 wrote += wb_check_background_flush(wb);
1197 clear_bit(WB_writeback_running, &wb->state);
1198
1199 return wrote;
1200 }
1201
1202 /*
1203 * Handle writeback of dirty data for the device backed by this bdi. Also
1204 * reschedules periodically and does kupdated style flushing.
1205 */
1206 void wb_workfn(struct work_struct *work)
1207 {
1208 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1209 struct bdi_writeback, dwork);
1210 long pages_written;
1211
1212 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1213 current->flags |= PF_SWAPWRITE;
1214
1215 if (likely(!current_is_workqueue_rescuer() ||
1216 !test_bit(WB_registered, &wb->state))) {
1217 /*
1218 * The normal path. Keep writing back @wb until its
1219 * work_list is empty. Note that this path is also taken
1220 * if @wb is shutting down even when we're running off the
1221 * rescuer as work_list needs to be drained.
1222 */
1223 do {
1224 pages_written = wb_do_writeback(wb);
1225 trace_writeback_pages_written(pages_written);
1226 } while (!list_empty(&wb->work_list));
1227 } else {
1228 /*
1229 * bdi_wq can't get enough workers and we're running off
1230 * the emergency worker. Don't hog it. Hopefully, 1024 is
1231 * enough for efficient IO.
1232 */
1233 pages_written = writeback_inodes_wb(wb, 1024,
1234 WB_REASON_FORKER_THREAD);
1235 trace_writeback_pages_written(pages_written);
1236 }
1237
1238 if (!list_empty(&wb->work_list))
1239 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1240 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1241 wb_wakeup_delayed(wb);
1242
1243 current->flags &= ~PF_SWAPWRITE;
1244 }
1245
1246 /*
1247 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1248 * the whole world.
1249 */
1250 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1251 {
1252 struct backing_dev_info *bdi;
1253
1254 if (!nr_pages)
1255 nr_pages = get_nr_dirty_pages();
1256
1257 rcu_read_lock();
1258 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1259 struct bdi_writeback *wb;
1260 struct wb_iter iter;
1261
1262 if (!bdi_has_dirty_io(bdi))
1263 continue;
1264
1265 bdi_for_each_wb(wb, bdi, &iter, 0)
1266 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1267 false, reason);
1268 }
1269 rcu_read_unlock();
1270 }
1271
1272 /*
1273 * Wake up bdi's periodically to make sure dirtytime inodes gets
1274 * written back periodically. We deliberately do *not* check the
1275 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1276 * kernel to be constantly waking up once there are any dirtytime
1277 * inodes on the system. So instead we define a separate delayed work
1278 * function which gets called much more rarely. (By default, only
1279 * once every 12 hours.)
1280 *
1281 * If there is any other write activity going on in the file system,
1282 * this function won't be necessary. But if the only thing that has
1283 * happened on the file system is a dirtytime inode caused by an atime
1284 * update, we need this infrastructure below to make sure that inode
1285 * eventually gets pushed out to disk.
1286 */
1287 static void wakeup_dirtytime_writeback(struct work_struct *w);
1288 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1289
1290 static void wakeup_dirtytime_writeback(struct work_struct *w)
1291 {
1292 struct backing_dev_info *bdi;
1293
1294 rcu_read_lock();
1295 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1296 struct bdi_writeback *wb;
1297 struct wb_iter iter;
1298
1299 bdi_for_each_wb(wb, bdi, &iter, 0)
1300 if (!list_empty(&bdi->wb.b_dirty_time))
1301 wb_wakeup(&bdi->wb);
1302 }
1303 rcu_read_unlock();
1304 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1305 }
1306
1307 static int __init start_dirtytime_writeback(void)
1308 {
1309 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1310 return 0;
1311 }
1312 __initcall(start_dirtytime_writeback);
1313
1314 int dirtytime_interval_handler(struct ctl_table *table, int write,
1315 void __user *buffer, size_t *lenp, loff_t *ppos)
1316 {
1317 int ret;
1318
1319 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1320 if (ret == 0 && write)
1321 mod_delayed_work(system_wq, &dirtytime_work, 0);
1322 return ret;
1323 }
1324
1325 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1326 {
1327 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1328 struct dentry *dentry;
1329 const char *name = "?";
1330
1331 dentry = d_find_alias(inode);
1332 if (dentry) {
1333 spin_lock(&dentry->d_lock);
1334 name = (const char *) dentry->d_name.name;
1335 }
1336 printk(KERN_DEBUG
1337 "%s(%d): dirtied inode %lu (%s) on %s\n",
1338 current->comm, task_pid_nr(current), inode->i_ino,
1339 name, inode->i_sb->s_id);
1340 if (dentry) {
1341 spin_unlock(&dentry->d_lock);
1342 dput(dentry);
1343 }
1344 }
1345 }
1346
1347 /**
1348 * __mark_inode_dirty - internal function
1349 * @inode: inode to mark
1350 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1351 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1352 * mark_inode_dirty_sync.
1353 *
1354 * Put the inode on the super block's dirty list.
1355 *
1356 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1357 * dirty list only if it is hashed or if it refers to a blockdev.
1358 * If it was not hashed, it will never be added to the dirty list
1359 * even if it is later hashed, as it will have been marked dirty already.
1360 *
1361 * In short, make sure you hash any inodes _before_ you start marking
1362 * them dirty.
1363 *
1364 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1365 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1366 * the kernel-internal blockdev inode represents the dirtying time of the
1367 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1368 * page->mapping->host, so the page-dirtying time is recorded in the internal
1369 * blockdev inode.
1370 */
1371 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1372 void __mark_inode_dirty(struct inode *inode, int flags)
1373 {
1374 struct super_block *sb = inode->i_sb;
1375 struct backing_dev_info *bdi = NULL;
1376 int dirtytime;
1377
1378 trace_writeback_mark_inode_dirty(inode, flags);
1379
1380 /*
1381 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1382 * dirty the inode itself
1383 */
1384 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1385 trace_writeback_dirty_inode_start(inode, flags);
1386
1387 if (sb->s_op->dirty_inode)
1388 sb->s_op->dirty_inode(inode, flags);
1389
1390 trace_writeback_dirty_inode(inode, flags);
1391 }
1392 if (flags & I_DIRTY_INODE)
1393 flags &= ~I_DIRTY_TIME;
1394 dirtytime = flags & I_DIRTY_TIME;
1395
1396 /*
1397 * Paired with smp_mb() in __writeback_single_inode() for the
1398 * following lockless i_state test. See there for details.
1399 */
1400 smp_mb();
1401
1402 if (((inode->i_state & flags) == flags) ||
1403 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1404 return;
1405
1406 if (unlikely(block_dump))
1407 block_dump___mark_inode_dirty(inode);
1408
1409 spin_lock(&inode->i_lock);
1410 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1411 goto out_unlock_inode;
1412 if ((inode->i_state & flags) != flags) {
1413 const int was_dirty = inode->i_state & I_DIRTY;
1414
1415 inode_attach_wb(inode, NULL);
1416
1417 if (flags & I_DIRTY_INODE)
1418 inode->i_state &= ~I_DIRTY_TIME;
1419 inode->i_state |= flags;
1420
1421 /*
1422 * If the inode is being synced, just update its dirty state.
1423 * The unlocker will place the inode on the appropriate
1424 * superblock list, based upon its state.
1425 */
1426 if (inode->i_state & I_SYNC)
1427 goto out_unlock_inode;
1428
1429 /*
1430 * Only add valid (hashed) inodes to the superblock's
1431 * dirty list. Add blockdev inodes as well.
1432 */
1433 if (!S_ISBLK(inode->i_mode)) {
1434 if (inode_unhashed(inode))
1435 goto out_unlock_inode;
1436 }
1437 if (inode->i_state & I_FREEING)
1438 goto out_unlock_inode;
1439
1440 /*
1441 * If the inode was already on b_dirty/b_io/b_more_io, don't
1442 * reposition it (that would break b_dirty time-ordering).
1443 */
1444 if (!was_dirty) {
1445 struct list_head *dirty_list;
1446 bool wakeup_bdi = false;
1447 bdi = inode_to_bdi(inode);
1448
1449 spin_unlock(&inode->i_lock);
1450 spin_lock(&bdi->wb.list_lock);
1451
1452 WARN(bdi_cap_writeback_dirty(bdi) &&
1453 !test_bit(WB_registered, &bdi->wb.state),
1454 "bdi-%s not registered\n", bdi->name);
1455
1456 inode->dirtied_when = jiffies;
1457 if (dirtytime)
1458 inode->dirtied_time_when = jiffies;
1459
1460 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1461 dirty_list = &bdi->wb.b_dirty;
1462 else
1463 dirty_list = &bdi->wb.b_dirty_time;
1464
1465 wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1466 dirty_list);
1467
1468 spin_unlock(&bdi->wb.list_lock);
1469 trace_writeback_dirty_inode_enqueue(inode);
1470
1471 /*
1472 * If this is the first dirty inode for this bdi,
1473 * we have to wake-up the corresponding bdi thread
1474 * to make sure background write-back happens
1475 * later.
1476 */
1477 if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1478 wb_wakeup_delayed(&bdi->wb);
1479 return;
1480 }
1481 }
1482 out_unlock_inode:
1483 spin_unlock(&inode->i_lock);
1484
1485 }
1486 EXPORT_SYMBOL(__mark_inode_dirty);
1487
1488 static void wait_sb_inodes(struct super_block *sb)
1489 {
1490 struct inode *inode, *old_inode = NULL;
1491
1492 /*
1493 * We need to be protected against the filesystem going from
1494 * r/o to r/w or vice versa.
1495 */
1496 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1497
1498 spin_lock(&inode_sb_list_lock);
1499
1500 /*
1501 * Data integrity sync. Must wait for all pages under writeback,
1502 * because there may have been pages dirtied before our sync
1503 * call, but which had writeout started before we write it out.
1504 * In which case, the inode may not be on the dirty list, but
1505 * we still have to wait for that writeout.
1506 */
1507 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1508 struct address_space *mapping = inode->i_mapping;
1509
1510 spin_lock(&inode->i_lock);
1511 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1512 (mapping->nrpages == 0)) {
1513 spin_unlock(&inode->i_lock);
1514 continue;
1515 }
1516 __iget(inode);
1517 spin_unlock(&inode->i_lock);
1518 spin_unlock(&inode_sb_list_lock);
1519
1520 /*
1521 * We hold a reference to 'inode' so it couldn't have been
1522 * removed from s_inodes list while we dropped the
1523 * inode_sb_list_lock. We cannot iput the inode now as we can
1524 * be holding the last reference and we cannot iput it under
1525 * inode_sb_list_lock. So we keep the reference and iput it
1526 * later.
1527 */
1528 iput(old_inode);
1529 old_inode = inode;
1530
1531 filemap_fdatawait(mapping);
1532
1533 cond_resched();
1534
1535 spin_lock(&inode_sb_list_lock);
1536 }
1537 spin_unlock(&inode_sb_list_lock);
1538 iput(old_inode);
1539 }
1540
1541 /**
1542 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1543 * @sb: the superblock
1544 * @nr: the number of pages to write
1545 * @reason: reason why some writeback work initiated
1546 *
1547 * Start writeback on some inodes on this super_block. No guarantees are made
1548 * on how many (if any) will be written, and this function does not wait
1549 * for IO completion of submitted IO.
1550 */
1551 void writeback_inodes_sb_nr(struct super_block *sb,
1552 unsigned long nr,
1553 enum wb_reason reason)
1554 {
1555 DEFINE_WB_COMPLETION_ONSTACK(done);
1556 struct wb_writeback_work work = {
1557 .sb = sb,
1558 .sync_mode = WB_SYNC_NONE,
1559 .tagged_writepages = 1,
1560 .done = &done,
1561 .nr_pages = nr,
1562 .reason = reason,
1563 };
1564 struct backing_dev_info *bdi = sb->s_bdi;
1565
1566 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1567 return;
1568 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1569 wb_queue_work(&bdi->wb, &work);
1570 wb_wait_for_completion(bdi, &done);
1571 }
1572 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1573
1574 /**
1575 * writeback_inodes_sb - writeback dirty inodes from given super_block
1576 * @sb: the superblock
1577 * @reason: reason why some writeback work was initiated
1578 *
1579 * Start writeback on some inodes on this super_block. No guarantees are made
1580 * on how many (if any) will be written, and this function does not wait
1581 * for IO completion of submitted IO.
1582 */
1583 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1584 {
1585 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1586 }
1587 EXPORT_SYMBOL(writeback_inodes_sb);
1588
1589 /**
1590 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1591 * @sb: the superblock
1592 * @nr: the number of pages to write
1593 * @reason: the reason of writeback
1594 *
1595 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1596 * Returns 1 if writeback was started, 0 if not.
1597 */
1598 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1599 unsigned long nr,
1600 enum wb_reason reason)
1601 {
1602 if (writeback_in_progress(&sb->s_bdi->wb))
1603 return 1;
1604
1605 if (!down_read_trylock(&sb->s_umount))
1606 return 0;
1607
1608 writeback_inodes_sb_nr(sb, nr, reason);
1609 up_read(&sb->s_umount);
1610 return 1;
1611 }
1612 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1613
1614 /**
1615 * try_to_writeback_inodes_sb - try to start writeback if none underway
1616 * @sb: the superblock
1617 * @reason: reason why some writeback work was initiated
1618 *
1619 * Implement by try_to_writeback_inodes_sb_nr()
1620 * Returns 1 if writeback was started, 0 if not.
1621 */
1622 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1623 {
1624 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1625 }
1626 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1627
1628 /**
1629 * sync_inodes_sb - sync sb inode pages
1630 * @sb: the superblock
1631 *
1632 * This function writes and waits on any dirty inode belonging to this
1633 * super_block.
1634 */
1635 void sync_inodes_sb(struct super_block *sb)
1636 {
1637 DEFINE_WB_COMPLETION_ONSTACK(done);
1638 struct wb_writeback_work work = {
1639 .sb = sb,
1640 .sync_mode = WB_SYNC_ALL,
1641 .nr_pages = LONG_MAX,
1642 .range_cyclic = 0,
1643 .done = &done,
1644 .reason = WB_REASON_SYNC,
1645 .for_sync = 1,
1646 };
1647 struct backing_dev_info *bdi = sb->s_bdi;
1648
1649 /* Nothing to do? */
1650 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1651 return;
1652 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1653
1654 wb_queue_work(&bdi->wb, &work);
1655 wb_wait_for_completion(bdi, &done);
1656
1657 wait_sb_inodes(sb);
1658 }
1659 EXPORT_SYMBOL(sync_inodes_sb);
1660
1661 /**
1662 * write_inode_now - write an inode to disk
1663 * @inode: inode to write to disk
1664 * @sync: whether the write should be synchronous or not
1665 *
1666 * This function commits an inode to disk immediately if it is dirty. This is
1667 * primarily needed by knfsd.
1668 *
1669 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1670 */
1671 int write_inode_now(struct inode *inode, int sync)
1672 {
1673 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1674 struct writeback_control wbc = {
1675 .nr_to_write = LONG_MAX,
1676 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1677 .range_start = 0,
1678 .range_end = LLONG_MAX,
1679 };
1680
1681 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1682 wbc.nr_to_write = 0;
1683
1684 might_sleep();
1685 return writeback_single_inode(inode, wb, &wbc);
1686 }
1687 EXPORT_SYMBOL(write_inode_now);
1688
1689 /**
1690 * sync_inode - write an inode and its pages to disk.
1691 * @inode: the inode to sync
1692 * @wbc: controls the writeback mode
1693 *
1694 * sync_inode() will write an inode and its pages to disk. It will also
1695 * correctly update the inode on its superblock's dirty inode lists and will
1696 * update inode->i_state.
1697 *
1698 * The caller must have a ref on the inode.
1699 */
1700 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1701 {
1702 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1703 }
1704 EXPORT_SYMBOL(sync_inode);
1705
1706 /**
1707 * sync_inode_metadata - write an inode to disk
1708 * @inode: the inode to sync
1709 * @wait: wait for I/O to complete.
1710 *
1711 * Write an inode to disk and adjust its dirty state after completion.
1712 *
1713 * Note: only writes the actual inode, no associated data or other metadata.
1714 */
1715 int sync_inode_metadata(struct inode *inode, int wait)
1716 {
1717 struct writeback_control wbc = {
1718 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1719 .nr_to_write = 0, /* metadata-only */
1720 };
1721
1722 return sync_inode(inode, &wbc);
1723 }
1724 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.075023 seconds and 6 git commands to generate.