writeback: make writeback initiation functions handle multiple bdi_writeback's
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 struct wb_completion {
38 atomic_t cnt;
39 };
40
41 /*
42 * Passed into wb_writeback(), essentially a subset of writeback_control
43 */
44 struct wb_writeback_work {
45 long nr_pages;
46 struct super_block *sb;
47 unsigned long *older_than_this;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int auto_free:1; /* free on completion */
55 unsigned int single_wait:1;
56 unsigned int single_done:1;
57 enum wb_reason reason; /* why was writeback initiated? */
58
59 struct list_head list; /* pending work list */
60 struct wb_completion *done; /* set if the caller waits */
61 };
62
63 /*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
76 /*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90 return list_entry(head, struct inode, i_wb_list);
91 }
92
93 /*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
112 return true;
113 }
114 }
115
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120 clear_bit(WB_has_dirty_io, &wb->state);
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
123 }
124 }
125
126 /**
127 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
130 * @head: one of @wb->b_{dirty|io|more_io}
131 *
132 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
136 static bool inode_wb_list_move_locked(struct inode *inode,
137 struct bdi_writeback *wb,
138 struct list_head *head)
139 {
140 assert_spin_locked(&wb->list_lock);
141
142 list_move(&inode->i_wb_list, head);
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150 }
151
152 /**
153 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
160 static void inode_wb_list_del_locked(struct inode *inode,
161 struct bdi_writeback *wb)
162 {
163 assert_spin_locked(&wb->list_lock);
164
165 list_del_init(&inode->i_wb_list);
166 wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void wb_queue_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179 {
180 trace_writeback_queue(wb->bdi, work);
181
182 spin_lock_bh(&wb->work_lock);
183 if (!test_bit(WB_registered, &wb->state)) {
184 if (work->single_wait)
185 work->single_done = 1;
186 goto out_unlock;
187 }
188 if (work->done)
189 atomic_inc(&work->done->cnt);
190 list_add_tail(&work->list, &wb->work_list);
191 mod_delayed_work(bdi_wq, &wb->dwork, 0);
192 out_unlock:
193 spin_unlock_bh(&wb->work_lock);
194 }
195
196 /**
197 * wb_wait_for_completion - wait for completion of bdi_writeback_works
198 * @bdi: bdi work items were issued to
199 * @done: target wb_completion
200 *
201 * Wait for one or more work items issued to @bdi with their ->done field
202 * set to @done, which should have been defined with
203 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
204 * work items are completed. Work items which are waited upon aren't freed
205 * automatically on completion.
206 */
207 static void wb_wait_for_completion(struct backing_dev_info *bdi,
208 struct wb_completion *done)
209 {
210 atomic_dec(&done->cnt); /* put down the initial count */
211 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
212 }
213
214 #ifdef CONFIG_CGROUP_WRITEBACK
215
216 /**
217 * inode_congested - test whether an inode is congested
218 * @inode: inode to test for congestion
219 * @cong_bits: mask of WB_[a]sync_congested bits to test
220 *
221 * Tests whether @inode is congested. @cong_bits is the mask of congestion
222 * bits to test and the return value is the mask of set bits.
223 *
224 * If cgroup writeback is enabled for @inode, the congestion state is
225 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
226 * associated with @inode is congested; otherwise, the root wb's congestion
227 * state is used.
228 */
229 int inode_congested(struct inode *inode, int cong_bits)
230 {
231 if (inode) {
232 struct bdi_writeback *wb = inode_to_wb(inode);
233 if (wb)
234 return wb_congested(wb, cong_bits);
235 }
236
237 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
238 }
239 EXPORT_SYMBOL_GPL(inode_congested);
240
241 /**
242 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
243 * @bdi: bdi the work item was issued to
244 * @work: work item to wait for
245 *
246 * Wait for the completion of @work which was issued to one of @bdi's
247 * bdi_writeback's. The caller must have set @work->single_wait before
248 * issuing it. This wait operates independently fo
249 * wb_wait_for_completion() and also disables automatic freeing of @work.
250 */
251 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
252 struct wb_writeback_work *work)
253 {
254 if (WARN_ON_ONCE(!work->single_wait))
255 return;
256
257 wait_event(bdi->wb_waitq, work->single_done);
258
259 /*
260 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
261 * modifications to @work prior to assertion of ->single_done is
262 * visible to the caller once this function returns.
263 */
264 smp_rmb();
265 }
266
267 /**
268 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
269 * @wb: target bdi_writeback to split @nr_pages to
270 * @nr_pages: number of pages to write for the whole bdi
271 *
272 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
273 * relation to the total write bandwidth of all wb's w/ dirty inodes on
274 * @wb->bdi.
275 */
276 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
277 {
278 unsigned long this_bw = wb->avg_write_bandwidth;
279 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
280
281 if (nr_pages == LONG_MAX)
282 return LONG_MAX;
283
284 /*
285 * This may be called on clean wb's and proportional distribution
286 * may not make sense, just use the original @nr_pages in those
287 * cases. In general, we wanna err on the side of writing more.
288 */
289 if (!tot_bw || this_bw >= tot_bw)
290 return nr_pages;
291 else
292 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
293 }
294
295 /**
296 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
297 * @wb: target bdi_writeback
298 * @base_work: source wb_writeback_work
299 *
300 * Try to make a clone of @base_work and issue it to @wb. If cloning
301 * succeeds, %true is returned; otherwise, @base_work is issued directly
302 * and %false is returned. In the latter case, the caller is required to
303 * wait for @base_work's completion using wb_wait_for_single_work().
304 *
305 * A clone is auto-freed on completion. @base_work never is.
306 */
307 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
308 struct wb_writeback_work *base_work)
309 {
310 struct wb_writeback_work *work;
311
312 work = kmalloc(sizeof(*work), GFP_ATOMIC);
313 if (work) {
314 *work = *base_work;
315 work->auto_free = 1;
316 work->single_wait = 0;
317 } else {
318 work = base_work;
319 work->auto_free = 0;
320 work->single_wait = 1;
321 }
322 work->single_done = 0;
323 wb_queue_work(wb, work);
324 return work != base_work;
325 }
326
327 /**
328 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
329 * @bdi: target backing_dev_info
330 * @base_work: wb_writeback_work to issue
331 * @skip_if_busy: skip wb's which already have writeback in progress
332 *
333 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
334 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
335 * distributed to the busy wbs according to each wb's proportion in the
336 * total active write bandwidth of @bdi.
337 */
338 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
339 struct wb_writeback_work *base_work,
340 bool skip_if_busy)
341 {
342 long nr_pages = base_work->nr_pages;
343 int next_blkcg_id = 0;
344 struct bdi_writeback *wb;
345 struct wb_iter iter;
346
347 might_sleep();
348
349 if (!bdi_has_dirty_io(bdi))
350 return;
351 restart:
352 rcu_read_lock();
353 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
354 if (!wb_has_dirty_io(wb) ||
355 (skip_if_busy && writeback_in_progress(wb)))
356 continue;
357
358 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
359 if (!wb_clone_and_queue_work(wb, base_work)) {
360 next_blkcg_id = wb->blkcg_css->id + 1;
361 rcu_read_unlock();
362 wb_wait_for_single_work(bdi, base_work);
363 goto restart;
364 }
365 }
366 rcu_read_unlock();
367 }
368
369 #else /* CONFIG_CGROUP_WRITEBACK */
370
371 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
372 {
373 return nr_pages;
374 }
375
376 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
377 struct wb_writeback_work *base_work,
378 bool skip_if_busy)
379 {
380 might_sleep();
381
382 if (bdi_has_dirty_io(bdi) &&
383 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
384 base_work->auto_free = 0;
385 base_work->single_wait = 0;
386 base_work->single_done = 0;
387 wb_queue_work(&bdi->wb, base_work);
388 }
389 }
390
391 #endif /* CONFIG_CGROUP_WRITEBACK */
392
393 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
394 bool range_cyclic, enum wb_reason reason)
395 {
396 struct wb_writeback_work *work;
397
398 if (!wb_has_dirty_io(wb))
399 return;
400
401 /*
402 * This is WB_SYNC_NONE writeback, so if allocation fails just
403 * wakeup the thread for old dirty data writeback
404 */
405 work = kzalloc(sizeof(*work), GFP_ATOMIC);
406 if (!work) {
407 trace_writeback_nowork(wb->bdi);
408 wb_wakeup(wb);
409 return;
410 }
411
412 work->sync_mode = WB_SYNC_NONE;
413 work->nr_pages = nr_pages;
414 work->range_cyclic = range_cyclic;
415 work->reason = reason;
416 work->auto_free = 1;
417
418 wb_queue_work(wb, work);
419 }
420
421 /**
422 * wb_start_background_writeback - start background writeback
423 * @wb: bdi_writback to write from
424 *
425 * Description:
426 * This makes sure WB_SYNC_NONE background writeback happens. When
427 * this function returns, it is only guaranteed that for given wb
428 * some IO is happening if we are over background dirty threshold.
429 * Caller need not hold sb s_umount semaphore.
430 */
431 void wb_start_background_writeback(struct bdi_writeback *wb)
432 {
433 /*
434 * We just wake up the flusher thread. It will perform background
435 * writeback as soon as there is no other work to do.
436 */
437 trace_writeback_wake_background(wb->bdi);
438 wb_wakeup(wb);
439 }
440
441 /*
442 * Remove the inode from the writeback list it is on.
443 */
444 void inode_wb_list_del(struct inode *inode)
445 {
446 struct bdi_writeback *wb = inode_to_wb(inode);
447
448 spin_lock(&wb->list_lock);
449 inode_wb_list_del_locked(inode, wb);
450 spin_unlock(&wb->list_lock);
451 }
452
453 /*
454 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
455 * furthest end of its superblock's dirty-inode list.
456 *
457 * Before stamping the inode's ->dirtied_when, we check to see whether it is
458 * already the most-recently-dirtied inode on the b_dirty list. If that is
459 * the case then the inode must have been redirtied while it was being written
460 * out and we don't reset its dirtied_when.
461 */
462 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
463 {
464 if (!list_empty(&wb->b_dirty)) {
465 struct inode *tail;
466
467 tail = wb_inode(wb->b_dirty.next);
468 if (time_before(inode->dirtied_when, tail->dirtied_when))
469 inode->dirtied_when = jiffies;
470 }
471 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
472 }
473
474 /*
475 * requeue inode for re-scanning after bdi->b_io list is exhausted.
476 */
477 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
478 {
479 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
480 }
481
482 static void inode_sync_complete(struct inode *inode)
483 {
484 inode->i_state &= ~I_SYNC;
485 /* If inode is clean an unused, put it into LRU now... */
486 inode_add_lru(inode);
487 /* Waiters must see I_SYNC cleared before being woken up */
488 smp_mb();
489 wake_up_bit(&inode->i_state, __I_SYNC);
490 }
491
492 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
493 {
494 bool ret = time_after(inode->dirtied_when, t);
495 #ifndef CONFIG_64BIT
496 /*
497 * For inodes being constantly redirtied, dirtied_when can get stuck.
498 * It _appears_ to be in the future, but is actually in distant past.
499 * This test is necessary to prevent such wrapped-around relative times
500 * from permanently stopping the whole bdi writeback.
501 */
502 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
503 #endif
504 return ret;
505 }
506
507 #define EXPIRE_DIRTY_ATIME 0x0001
508
509 /*
510 * Move expired (dirtied before work->older_than_this) dirty inodes from
511 * @delaying_queue to @dispatch_queue.
512 */
513 static int move_expired_inodes(struct list_head *delaying_queue,
514 struct list_head *dispatch_queue,
515 int flags,
516 struct wb_writeback_work *work)
517 {
518 unsigned long *older_than_this = NULL;
519 unsigned long expire_time;
520 LIST_HEAD(tmp);
521 struct list_head *pos, *node;
522 struct super_block *sb = NULL;
523 struct inode *inode;
524 int do_sb_sort = 0;
525 int moved = 0;
526
527 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
528 older_than_this = work->older_than_this;
529 else if (!work->for_sync) {
530 expire_time = jiffies - (dirtytime_expire_interval * HZ);
531 older_than_this = &expire_time;
532 }
533 while (!list_empty(delaying_queue)) {
534 inode = wb_inode(delaying_queue->prev);
535 if (older_than_this &&
536 inode_dirtied_after(inode, *older_than_this))
537 break;
538 list_move(&inode->i_wb_list, &tmp);
539 moved++;
540 if (flags & EXPIRE_DIRTY_ATIME)
541 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
542 if (sb_is_blkdev_sb(inode->i_sb))
543 continue;
544 if (sb && sb != inode->i_sb)
545 do_sb_sort = 1;
546 sb = inode->i_sb;
547 }
548
549 /* just one sb in list, splice to dispatch_queue and we're done */
550 if (!do_sb_sort) {
551 list_splice(&tmp, dispatch_queue);
552 goto out;
553 }
554
555 /* Move inodes from one superblock together */
556 while (!list_empty(&tmp)) {
557 sb = wb_inode(tmp.prev)->i_sb;
558 list_for_each_prev_safe(pos, node, &tmp) {
559 inode = wb_inode(pos);
560 if (inode->i_sb == sb)
561 list_move(&inode->i_wb_list, dispatch_queue);
562 }
563 }
564 out:
565 return moved;
566 }
567
568 /*
569 * Queue all expired dirty inodes for io, eldest first.
570 * Before
571 * newly dirtied b_dirty b_io b_more_io
572 * =============> gf edc BA
573 * After
574 * newly dirtied b_dirty b_io b_more_io
575 * =============> g fBAedc
576 * |
577 * +--> dequeue for IO
578 */
579 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
580 {
581 int moved;
582
583 assert_spin_locked(&wb->list_lock);
584 list_splice_init(&wb->b_more_io, &wb->b_io);
585 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
586 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
587 EXPIRE_DIRTY_ATIME, work);
588 if (moved)
589 wb_io_lists_populated(wb);
590 trace_writeback_queue_io(wb, work, moved);
591 }
592
593 static int write_inode(struct inode *inode, struct writeback_control *wbc)
594 {
595 int ret;
596
597 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
598 trace_writeback_write_inode_start(inode, wbc);
599 ret = inode->i_sb->s_op->write_inode(inode, wbc);
600 trace_writeback_write_inode(inode, wbc);
601 return ret;
602 }
603 return 0;
604 }
605
606 /*
607 * Wait for writeback on an inode to complete. Called with i_lock held.
608 * Caller must make sure inode cannot go away when we drop i_lock.
609 */
610 static void __inode_wait_for_writeback(struct inode *inode)
611 __releases(inode->i_lock)
612 __acquires(inode->i_lock)
613 {
614 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
615 wait_queue_head_t *wqh;
616
617 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
618 while (inode->i_state & I_SYNC) {
619 spin_unlock(&inode->i_lock);
620 __wait_on_bit(wqh, &wq, bit_wait,
621 TASK_UNINTERRUPTIBLE);
622 spin_lock(&inode->i_lock);
623 }
624 }
625
626 /*
627 * Wait for writeback on an inode to complete. Caller must have inode pinned.
628 */
629 void inode_wait_for_writeback(struct inode *inode)
630 {
631 spin_lock(&inode->i_lock);
632 __inode_wait_for_writeback(inode);
633 spin_unlock(&inode->i_lock);
634 }
635
636 /*
637 * Sleep until I_SYNC is cleared. This function must be called with i_lock
638 * held and drops it. It is aimed for callers not holding any inode reference
639 * so once i_lock is dropped, inode can go away.
640 */
641 static void inode_sleep_on_writeback(struct inode *inode)
642 __releases(inode->i_lock)
643 {
644 DEFINE_WAIT(wait);
645 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
646 int sleep;
647
648 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
649 sleep = inode->i_state & I_SYNC;
650 spin_unlock(&inode->i_lock);
651 if (sleep)
652 schedule();
653 finish_wait(wqh, &wait);
654 }
655
656 /*
657 * Find proper writeback list for the inode depending on its current state and
658 * possibly also change of its state while we were doing writeback. Here we
659 * handle things such as livelock prevention or fairness of writeback among
660 * inodes. This function can be called only by flusher thread - noone else
661 * processes all inodes in writeback lists and requeueing inodes behind flusher
662 * thread's back can have unexpected consequences.
663 */
664 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
665 struct writeback_control *wbc)
666 {
667 if (inode->i_state & I_FREEING)
668 return;
669
670 /*
671 * Sync livelock prevention. Each inode is tagged and synced in one
672 * shot. If still dirty, it will be redirty_tail()'ed below. Update
673 * the dirty time to prevent enqueue and sync it again.
674 */
675 if ((inode->i_state & I_DIRTY) &&
676 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
677 inode->dirtied_when = jiffies;
678
679 if (wbc->pages_skipped) {
680 /*
681 * writeback is not making progress due to locked
682 * buffers. Skip this inode for now.
683 */
684 redirty_tail(inode, wb);
685 return;
686 }
687
688 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
689 /*
690 * We didn't write back all the pages. nfs_writepages()
691 * sometimes bales out without doing anything.
692 */
693 if (wbc->nr_to_write <= 0) {
694 /* Slice used up. Queue for next turn. */
695 requeue_io(inode, wb);
696 } else {
697 /*
698 * Writeback blocked by something other than
699 * congestion. Delay the inode for some time to
700 * avoid spinning on the CPU (100% iowait)
701 * retrying writeback of the dirty page/inode
702 * that cannot be performed immediately.
703 */
704 redirty_tail(inode, wb);
705 }
706 } else if (inode->i_state & I_DIRTY) {
707 /*
708 * Filesystems can dirty the inode during writeback operations,
709 * such as delayed allocation during submission or metadata
710 * updates after data IO completion.
711 */
712 redirty_tail(inode, wb);
713 } else if (inode->i_state & I_DIRTY_TIME) {
714 inode->dirtied_when = jiffies;
715 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
716 } else {
717 /* The inode is clean. Remove from writeback lists. */
718 inode_wb_list_del_locked(inode, wb);
719 }
720 }
721
722 /*
723 * Write out an inode and its dirty pages. Do not update the writeback list
724 * linkage. That is left to the caller. The caller is also responsible for
725 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
726 */
727 static int
728 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
729 {
730 struct address_space *mapping = inode->i_mapping;
731 long nr_to_write = wbc->nr_to_write;
732 unsigned dirty;
733 int ret;
734
735 WARN_ON(!(inode->i_state & I_SYNC));
736
737 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
738
739 ret = do_writepages(mapping, wbc);
740
741 /*
742 * Make sure to wait on the data before writing out the metadata.
743 * This is important for filesystems that modify metadata on data
744 * I/O completion. We don't do it for sync(2) writeback because it has a
745 * separate, external IO completion path and ->sync_fs for guaranteeing
746 * inode metadata is written back correctly.
747 */
748 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
749 int err = filemap_fdatawait(mapping);
750 if (ret == 0)
751 ret = err;
752 }
753
754 /*
755 * Some filesystems may redirty the inode during the writeback
756 * due to delalloc, clear dirty metadata flags right before
757 * write_inode()
758 */
759 spin_lock(&inode->i_lock);
760
761 dirty = inode->i_state & I_DIRTY;
762 if (inode->i_state & I_DIRTY_TIME) {
763 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
764 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
765 unlikely(time_after(jiffies,
766 (inode->dirtied_time_when +
767 dirtytime_expire_interval * HZ)))) {
768 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
769 trace_writeback_lazytime(inode);
770 }
771 } else
772 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
773 inode->i_state &= ~dirty;
774
775 /*
776 * Paired with smp_mb() in __mark_inode_dirty(). This allows
777 * __mark_inode_dirty() to test i_state without grabbing i_lock -
778 * either they see the I_DIRTY bits cleared or we see the dirtied
779 * inode.
780 *
781 * I_DIRTY_PAGES is always cleared together above even if @mapping
782 * still has dirty pages. The flag is reinstated after smp_mb() if
783 * necessary. This guarantees that either __mark_inode_dirty()
784 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
785 */
786 smp_mb();
787
788 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
789 inode->i_state |= I_DIRTY_PAGES;
790
791 spin_unlock(&inode->i_lock);
792
793 if (dirty & I_DIRTY_TIME)
794 mark_inode_dirty_sync(inode);
795 /* Don't write the inode if only I_DIRTY_PAGES was set */
796 if (dirty & ~I_DIRTY_PAGES) {
797 int err = write_inode(inode, wbc);
798 if (ret == 0)
799 ret = err;
800 }
801 trace_writeback_single_inode(inode, wbc, nr_to_write);
802 return ret;
803 }
804
805 /*
806 * Write out an inode's dirty pages. Either the caller has an active reference
807 * on the inode or the inode has I_WILL_FREE set.
808 *
809 * This function is designed to be called for writing back one inode which
810 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
811 * and does more profound writeback list handling in writeback_sb_inodes().
812 */
813 static int
814 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
815 struct writeback_control *wbc)
816 {
817 int ret = 0;
818
819 spin_lock(&inode->i_lock);
820 if (!atomic_read(&inode->i_count))
821 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
822 else
823 WARN_ON(inode->i_state & I_WILL_FREE);
824
825 if (inode->i_state & I_SYNC) {
826 if (wbc->sync_mode != WB_SYNC_ALL)
827 goto out;
828 /*
829 * It's a data-integrity sync. We must wait. Since callers hold
830 * inode reference or inode has I_WILL_FREE set, it cannot go
831 * away under us.
832 */
833 __inode_wait_for_writeback(inode);
834 }
835 WARN_ON(inode->i_state & I_SYNC);
836 /*
837 * Skip inode if it is clean and we have no outstanding writeback in
838 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
839 * function since flusher thread may be doing for example sync in
840 * parallel and if we move the inode, it could get skipped. So here we
841 * make sure inode is on some writeback list and leave it there unless
842 * we have completely cleaned the inode.
843 */
844 if (!(inode->i_state & I_DIRTY_ALL) &&
845 (wbc->sync_mode != WB_SYNC_ALL ||
846 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
847 goto out;
848 inode->i_state |= I_SYNC;
849 spin_unlock(&inode->i_lock);
850
851 ret = __writeback_single_inode(inode, wbc);
852
853 spin_lock(&wb->list_lock);
854 spin_lock(&inode->i_lock);
855 /*
856 * If inode is clean, remove it from writeback lists. Otherwise don't
857 * touch it. See comment above for explanation.
858 */
859 if (!(inode->i_state & I_DIRTY_ALL))
860 inode_wb_list_del_locked(inode, wb);
861 spin_unlock(&wb->list_lock);
862 inode_sync_complete(inode);
863 out:
864 spin_unlock(&inode->i_lock);
865 return ret;
866 }
867
868 static long writeback_chunk_size(struct bdi_writeback *wb,
869 struct wb_writeback_work *work)
870 {
871 long pages;
872
873 /*
874 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
875 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
876 * here avoids calling into writeback_inodes_wb() more than once.
877 *
878 * The intended call sequence for WB_SYNC_ALL writeback is:
879 *
880 * wb_writeback()
881 * writeback_sb_inodes() <== called only once
882 * write_cache_pages() <== called once for each inode
883 * (quickly) tag currently dirty pages
884 * (maybe slowly) sync all tagged pages
885 */
886 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
887 pages = LONG_MAX;
888 else {
889 pages = min(wb->avg_write_bandwidth / 2,
890 global_dirty_limit / DIRTY_SCOPE);
891 pages = min(pages, work->nr_pages);
892 pages = round_down(pages + MIN_WRITEBACK_PAGES,
893 MIN_WRITEBACK_PAGES);
894 }
895
896 return pages;
897 }
898
899 /*
900 * Write a portion of b_io inodes which belong to @sb.
901 *
902 * Return the number of pages and/or inodes written.
903 */
904 static long writeback_sb_inodes(struct super_block *sb,
905 struct bdi_writeback *wb,
906 struct wb_writeback_work *work)
907 {
908 struct writeback_control wbc = {
909 .sync_mode = work->sync_mode,
910 .tagged_writepages = work->tagged_writepages,
911 .for_kupdate = work->for_kupdate,
912 .for_background = work->for_background,
913 .for_sync = work->for_sync,
914 .range_cyclic = work->range_cyclic,
915 .range_start = 0,
916 .range_end = LLONG_MAX,
917 };
918 unsigned long start_time = jiffies;
919 long write_chunk;
920 long wrote = 0; /* count both pages and inodes */
921
922 while (!list_empty(&wb->b_io)) {
923 struct inode *inode = wb_inode(wb->b_io.prev);
924
925 if (inode->i_sb != sb) {
926 if (work->sb) {
927 /*
928 * We only want to write back data for this
929 * superblock, move all inodes not belonging
930 * to it back onto the dirty list.
931 */
932 redirty_tail(inode, wb);
933 continue;
934 }
935
936 /*
937 * The inode belongs to a different superblock.
938 * Bounce back to the caller to unpin this and
939 * pin the next superblock.
940 */
941 break;
942 }
943
944 /*
945 * Don't bother with new inodes or inodes being freed, first
946 * kind does not need periodic writeout yet, and for the latter
947 * kind writeout is handled by the freer.
948 */
949 spin_lock(&inode->i_lock);
950 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
951 spin_unlock(&inode->i_lock);
952 redirty_tail(inode, wb);
953 continue;
954 }
955 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
956 /*
957 * If this inode is locked for writeback and we are not
958 * doing writeback-for-data-integrity, move it to
959 * b_more_io so that writeback can proceed with the
960 * other inodes on s_io.
961 *
962 * We'll have another go at writing back this inode
963 * when we completed a full scan of b_io.
964 */
965 spin_unlock(&inode->i_lock);
966 requeue_io(inode, wb);
967 trace_writeback_sb_inodes_requeue(inode);
968 continue;
969 }
970 spin_unlock(&wb->list_lock);
971
972 /*
973 * We already requeued the inode if it had I_SYNC set and we
974 * are doing WB_SYNC_NONE writeback. So this catches only the
975 * WB_SYNC_ALL case.
976 */
977 if (inode->i_state & I_SYNC) {
978 /* Wait for I_SYNC. This function drops i_lock... */
979 inode_sleep_on_writeback(inode);
980 /* Inode may be gone, start again */
981 spin_lock(&wb->list_lock);
982 continue;
983 }
984 inode->i_state |= I_SYNC;
985 spin_unlock(&inode->i_lock);
986
987 write_chunk = writeback_chunk_size(wb, work);
988 wbc.nr_to_write = write_chunk;
989 wbc.pages_skipped = 0;
990
991 /*
992 * We use I_SYNC to pin the inode in memory. While it is set
993 * evict_inode() will wait so the inode cannot be freed.
994 */
995 __writeback_single_inode(inode, &wbc);
996
997 work->nr_pages -= write_chunk - wbc.nr_to_write;
998 wrote += write_chunk - wbc.nr_to_write;
999 spin_lock(&wb->list_lock);
1000 spin_lock(&inode->i_lock);
1001 if (!(inode->i_state & I_DIRTY_ALL))
1002 wrote++;
1003 requeue_inode(inode, wb, &wbc);
1004 inode_sync_complete(inode);
1005 spin_unlock(&inode->i_lock);
1006 cond_resched_lock(&wb->list_lock);
1007 /*
1008 * bail out to wb_writeback() often enough to check
1009 * background threshold and other termination conditions.
1010 */
1011 if (wrote) {
1012 if (time_is_before_jiffies(start_time + HZ / 10UL))
1013 break;
1014 if (work->nr_pages <= 0)
1015 break;
1016 }
1017 }
1018 return wrote;
1019 }
1020
1021 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1022 struct wb_writeback_work *work)
1023 {
1024 unsigned long start_time = jiffies;
1025 long wrote = 0;
1026
1027 while (!list_empty(&wb->b_io)) {
1028 struct inode *inode = wb_inode(wb->b_io.prev);
1029 struct super_block *sb = inode->i_sb;
1030
1031 if (!trylock_super(sb)) {
1032 /*
1033 * trylock_super() may fail consistently due to
1034 * s_umount being grabbed by someone else. Don't use
1035 * requeue_io() to avoid busy retrying the inode/sb.
1036 */
1037 redirty_tail(inode, wb);
1038 continue;
1039 }
1040 wrote += writeback_sb_inodes(sb, wb, work);
1041 up_read(&sb->s_umount);
1042
1043 /* refer to the same tests at the end of writeback_sb_inodes */
1044 if (wrote) {
1045 if (time_is_before_jiffies(start_time + HZ / 10UL))
1046 break;
1047 if (work->nr_pages <= 0)
1048 break;
1049 }
1050 }
1051 /* Leave any unwritten inodes on b_io */
1052 return wrote;
1053 }
1054
1055 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1056 enum wb_reason reason)
1057 {
1058 struct wb_writeback_work work = {
1059 .nr_pages = nr_pages,
1060 .sync_mode = WB_SYNC_NONE,
1061 .range_cyclic = 1,
1062 .reason = reason,
1063 };
1064
1065 spin_lock(&wb->list_lock);
1066 if (list_empty(&wb->b_io))
1067 queue_io(wb, &work);
1068 __writeback_inodes_wb(wb, &work);
1069 spin_unlock(&wb->list_lock);
1070
1071 return nr_pages - work.nr_pages;
1072 }
1073
1074 static bool over_bground_thresh(struct bdi_writeback *wb)
1075 {
1076 unsigned long background_thresh, dirty_thresh;
1077
1078 global_dirty_limits(&background_thresh, &dirty_thresh);
1079
1080 if (global_page_state(NR_FILE_DIRTY) +
1081 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
1082 return true;
1083
1084 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /*
1091 * Called under wb->list_lock. If there are multiple wb per bdi,
1092 * only the flusher working on the first wb should do it.
1093 */
1094 static void wb_update_bandwidth(struct bdi_writeback *wb,
1095 unsigned long start_time)
1096 {
1097 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
1098 }
1099
1100 /*
1101 * Explicit flushing or periodic writeback of "old" data.
1102 *
1103 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1104 * dirtying-time in the inode's address_space. So this periodic writeback code
1105 * just walks the superblock inode list, writing back any inodes which are
1106 * older than a specific point in time.
1107 *
1108 * Try to run once per dirty_writeback_interval. But if a writeback event
1109 * takes longer than a dirty_writeback_interval interval, then leave a
1110 * one-second gap.
1111 *
1112 * older_than_this takes precedence over nr_to_write. So we'll only write back
1113 * all dirty pages if they are all attached to "old" mappings.
1114 */
1115 static long wb_writeback(struct bdi_writeback *wb,
1116 struct wb_writeback_work *work)
1117 {
1118 unsigned long wb_start = jiffies;
1119 long nr_pages = work->nr_pages;
1120 unsigned long oldest_jif;
1121 struct inode *inode;
1122 long progress;
1123
1124 oldest_jif = jiffies;
1125 work->older_than_this = &oldest_jif;
1126
1127 spin_lock(&wb->list_lock);
1128 for (;;) {
1129 /*
1130 * Stop writeback when nr_pages has been consumed
1131 */
1132 if (work->nr_pages <= 0)
1133 break;
1134
1135 /*
1136 * Background writeout and kupdate-style writeback may
1137 * run forever. Stop them if there is other work to do
1138 * so that e.g. sync can proceed. They'll be restarted
1139 * after the other works are all done.
1140 */
1141 if ((work->for_background || work->for_kupdate) &&
1142 !list_empty(&wb->work_list))
1143 break;
1144
1145 /*
1146 * For background writeout, stop when we are below the
1147 * background dirty threshold
1148 */
1149 if (work->for_background && !over_bground_thresh(wb))
1150 break;
1151
1152 /*
1153 * Kupdate and background works are special and we want to
1154 * include all inodes that need writing. Livelock avoidance is
1155 * handled by these works yielding to any other work so we are
1156 * safe.
1157 */
1158 if (work->for_kupdate) {
1159 oldest_jif = jiffies -
1160 msecs_to_jiffies(dirty_expire_interval * 10);
1161 } else if (work->for_background)
1162 oldest_jif = jiffies;
1163
1164 trace_writeback_start(wb->bdi, work);
1165 if (list_empty(&wb->b_io))
1166 queue_io(wb, work);
1167 if (work->sb)
1168 progress = writeback_sb_inodes(work->sb, wb, work);
1169 else
1170 progress = __writeback_inodes_wb(wb, work);
1171 trace_writeback_written(wb->bdi, work);
1172
1173 wb_update_bandwidth(wb, wb_start);
1174
1175 /*
1176 * Did we write something? Try for more
1177 *
1178 * Dirty inodes are moved to b_io for writeback in batches.
1179 * The completion of the current batch does not necessarily
1180 * mean the overall work is done. So we keep looping as long
1181 * as made some progress on cleaning pages or inodes.
1182 */
1183 if (progress)
1184 continue;
1185 /*
1186 * No more inodes for IO, bail
1187 */
1188 if (list_empty(&wb->b_more_io))
1189 break;
1190 /*
1191 * Nothing written. Wait for some inode to
1192 * become available for writeback. Otherwise
1193 * we'll just busyloop.
1194 */
1195 if (!list_empty(&wb->b_more_io)) {
1196 trace_writeback_wait(wb->bdi, work);
1197 inode = wb_inode(wb->b_more_io.prev);
1198 spin_lock(&inode->i_lock);
1199 spin_unlock(&wb->list_lock);
1200 /* This function drops i_lock... */
1201 inode_sleep_on_writeback(inode);
1202 spin_lock(&wb->list_lock);
1203 }
1204 }
1205 spin_unlock(&wb->list_lock);
1206
1207 return nr_pages - work->nr_pages;
1208 }
1209
1210 /*
1211 * Return the next wb_writeback_work struct that hasn't been processed yet.
1212 */
1213 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1214 {
1215 struct wb_writeback_work *work = NULL;
1216
1217 spin_lock_bh(&wb->work_lock);
1218 if (!list_empty(&wb->work_list)) {
1219 work = list_entry(wb->work_list.next,
1220 struct wb_writeback_work, list);
1221 list_del_init(&work->list);
1222 }
1223 spin_unlock_bh(&wb->work_lock);
1224 return work;
1225 }
1226
1227 /*
1228 * Add in the number of potentially dirty inodes, because each inode
1229 * write can dirty pagecache in the underlying blockdev.
1230 */
1231 static unsigned long get_nr_dirty_pages(void)
1232 {
1233 return global_page_state(NR_FILE_DIRTY) +
1234 global_page_state(NR_UNSTABLE_NFS) +
1235 get_nr_dirty_inodes();
1236 }
1237
1238 static long wb_check_background_flush(struct bdi_writeback *wb)
1239 {
1240 if (over_bground_thresh(wb)) {
1241
1242 struct wb_writeback_work work = {
1243 .nr_pages = LONG_MAX,
1244 .sync_mode = WB_SYNC_NONE,
1245 .for_background = 1,
1246 .range_cyclic = 1,
1247 .reason = WB_REASON_BACKGROUND,
1248 };
1249
1250 return wb_writeback(wb, &work);
1251 }
1252
1253 return 0;
1254 }
1255
1256 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1257 {
1258 unsigned long expired;
1259 long nr_pages;
1260
1261 /*
1262 * When set to zero, disable periodic writeback
1263 */
1264 if (!dirty_writeback_interval)
1265 return 0;
1266
1267 expired = wb->last_old_flush +
1268 msecs_to_jiffies(dirty_writeback_interval * 10);
1269 if (time_before(jiffies, expired))
1270 return 0;
1271
1272 wb->last_old_flush = jiffies;
1273 nr_pages = get_nr_dirty_pages();
1274
1275 if (nr_pages) {
1276 struct wb_writeback_work work = {
1277 .nr_pages = nr_pages,
1278 .sync_mode = WB_SYNC_NONE,
1279 .for_kupdate = 1,
1280 .range_cyclic = 1,
1281 .reason = WB_REASON_PERIODIC,
1282 };
1283
1284 return wb_writeback(wb, &work);
1285 }
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Retrieve work items and do the writeback they describe
1292 */
1293 static long wb_do_writeback(struct bdi_writeback *wb)
1294 {
1295 struct wb_writeback_work *work;
1296 long wrote = 0;
1297
1298 set_bit(WB_writeback_running, &wb->state);
1299 while ((work = get_next_work_item(wb)) != NULL) {
1300 struct wb_completion *done = work->done;
1301 bool need_wake_up = false;
1302
1303 trace_writeback_exec(wb->bdi, work);
1304
1305 wrote += wb_writeback(wb, work);
1306
1307 if (work->single_wait) {
1308 WARN_ON_ONCE(work->auto_free);
1309 /* paired w/ rmb in wb_wait_for_single_work() */
1310 smp_wmb();
1311 work->single_done = 1;
1312 need_wake_up = true;
1313 } else if (work->auto_free) {
1314 kfree(work);
1315 }
1316
1317 if (done && atomic_dec_and_test(&done->cnt))
1318 need_wake_up = true;
1319
1320 if (need_wake_up)
1321 wake_up_all(&wb->bdi->wb_waitq);
1322 }
1323
1324 /*
1325 * Check for periodic writeback, kupdated() style
1326 */
1327 wrote += wb_check_old_data_flush(wb);
1328 wrote += wb_check_background_flush(wb);
1329 clear_bit(WB_writeback_running, &wb->state);
1330
1331 return wrote;
1332 }
1333
1334 /*
1335 * Handle writeback of dirty data for the device backed by this bdi. Also
1336 * reschedules periodically and does kupdated style flushing.
1337 */
1338 void wb_workfn(struct work_struct *work)
1339 {
1340 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1341 struct bdi_writeback, dwork);
1342 long pages_written;
1343
1344 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1345 current->flags |= PF_SWAPWRITE;
1346
1347 if (likely(!current_is_workqueue_rescuer() ||
1348 !test_bit(WB_registered, &wb->state))) {
1349 /*
1350 * The normal path. Keep writing back @wb until its
1351 * work_list is empty. Note that this path is also taken
1352 * if @wb is shutting down even when we're running off the
1353 * rescuer as work_list needs to be drained.
1354 */
1355 do {
1356 pages_written = wb_do_writeback(wb);
1357 trace_writeback_pages_written(pages_written);
1358 } while (!list_empty(&wb->work_list));
1359 } else {
1360 /*
1361 * bdi_wq can't get enough workers and we're running off
1362 * the emergency worker. Don't hog it. Hopefully, 1024 is
1363 * enough for efficient IO.
1364 */
1365 pages_written = writeback_inodes_wb(wb, 1024,
1366 WB_REASON_FORKER_THREAD);
1367 trace_writeback_pages_written(pages_written);
1368 }
1369
1370 if (!list_empty(&wb->work_list))
1371 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1372 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1373 wb_wakeup_delayed(wb);
1374
1375 current->flags &= ~PF_SWAPWRITE;
1376 }
1377
1378 /*
1379 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1380 * the whole world.
1381 */
1382 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1383 {
1384 struct backing_dev_info *bdi;
1385
1386 if (!nr_pages)
1387 nr_pages = get_nr_dirty_pages();
1388
1389 rcu_read_lock();
1390 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1391 struct bdi_writeback *wb;
1392 struct wb_iter iter;
1393
1394 if (!bdi_has_dirty_io(bdi))
1395 continue;
1396
1397 bdi_for_each_wb(wb, bdi, &iter, 0)
1398 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1399 false, reason);
1400 }
1401 rcu_read_unlock();
1402 }
1403
1404 /*
1405 * Wake up bdi's periodically to make sure dirtytime inodes gets
1406 * written back periodically. We deliberately do *not* check the
1407 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1408 * kernel to be constantly waking up once there are any dirtytime
1409 * inodes on the system. So instead we define a separate delayed work
1410 * function which gets called much more rarely. (By default, only
1411 * once every 12 hours.)
1412 *
1413 * If there is any other write activity going on in the file system,
1414 * this function won't be necessary. But if the only thing that has
1415 * happened on the file system is a dirtytime inode caused by an atime
1416 * update, we need this infrastructure below to make sure that inode
1417 * eventually gets pushed out to disk.
1418 */
1419 static void wakeup_dirtytime_writeback(struct work_struct *w);
1420 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1421
1422 static void wakeup_dirtytime_writeback(struct work_struct *w)
1423 {
1424 struct backing_dev_info *bdi;
1425
1426 rcu_read_lock();
1427 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1428 struct bdi_writeback *wb;
1429 struct wb_iter iter;
1430
1431 bdi_for_each_wb(wb, bdi, &iter, 0)
1432 if (!list_empty(&bdi->wb.b_dirty_time))
1433 wb_wakeup(&bdi->wb);
1434 }
1435 rcu_read_unlock();
1436 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1437 }
1438
1439 static int __init start_dirtytime_writeback(void)
1440 {
1441 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1442 return 0;
1443 }
1444 __initcall(start_dirtytime_writeback);
1445
1446 int dirtytime_interval_handler(struct ctl_table *table, int write,
1447 void __user *buffer, size_t *lenp, loff_t *ppos)
1448 {
1449 int ret;
1450
1451 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1452 if (ret == 0 && write)
1453 mod_delayed_work(system_wq, &dirtytime_work, 0);
1454 return ret;
1455 }
1456
1457 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1458 {
1459 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1460 struct dentry *dentry;
1461 const char *name = "?";
1462
1463 dentry = d_find_alias(inode);
1464 if (dentry) {
1465 spin_lock(&dentry->d_lock);
1466 name = (const char *) dentry->d_name.name;
1467 }
1468 printk(KERN_DEBUG
1469 "%s(%d): dirtied inode %lu (%s) on %s\n",
1470 current->comm, task_pid_nr(current), inode->i_ino,
1471 name, inode->i_sb->s_id);
1472 if (dentry) {
1473 spin_unlock(&dentry->d_lock);
1474 dput(dentry);
1475 }
1476 }
1477 }
1478
1479 /**
1480 * __mark_inode_dirty - internal function
1481 * @inode: inode to mark
1482 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1483 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1484 * mark_inode_dirty_sync.
1485 *
1486 * Put the inode on the super block's dirty list.
1487 *
1488 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1489 * dirty list only if it is hashed or if it refers to a blockdev.
1490 * If it was not hashed, it will never be added to the dirty list
1491 * even if it is later hashed, as it will have been marked dirty already.
1492 *
1493 * In short, make sure you hash any inodes _before_ you start marking
1494 * them dirty.
1495 *
1496 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1497 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1498 * the kernel-internal blockdev inode represents the dirtying time of the
1499 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1500 * page->mapping->host, so the page-dirtying time is recorded in the internal
1501 * blockdev inode.
1502 */
1503 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1504 void __mark_inode_dirty(struct inode *inode, int flags)
1505 {
1506 struct super_block *sb = inode->i_sb;
1507 struct backing_dev_info *bdi = NULL;
1508 int dirtytime;
1509
1510 trace_writeback_mark_inode_dirty(inode, flags);
1511
1512 /*
1513 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1514 * dirty the inode itself
1515 */
1516 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1517 trace_writeback_dirty_inode_start(inode, flags);
1518
1519 if (sb->s_op->dirty_inode)
1520 sb->s_op->dirty_inode(inode, flags);
1521
1522 trace_writeback_dirty_inode(inode, flags);
1523 }
1524 if (flags & I_DIRTY_INODE)
1525 flags &= ~I_DIRTY_TIME;
1526 dirtytime = flags & I_DIRTY_TIME;
1527
1528 /*
1529 * Paired with smp_mb() in __writeback_single_inode() for the
1530 * following lockless i_state test. See there for details.
1531 */
1532 smp_mb();
1533
1534 if (((inode->i_state & flags) == flags) ||
1535 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1536 return;
1537
1538 if (unlikely(block_dump))
1539 block_dump___mark_inode_dirty(inode);
1540
1541 spin_lock(&inode->i_lock);
1542 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1543 goto out_unlock_inode;
1544 if ((inode->i_state & flags) != flags) {
1545 const int was_dirty = inode->i_state & I_DIRTY;
1546
1547 inode_attach_wb(inode, NULL);
1548
1549 if (flags & I_DIRTY_INODE)
1550 inode->i_state &= ~I_DIRTY_TIME;
1551 inode->i_state |= flags;
1552
1553 /*
1554 * If the inode is being synced, just update its dirty state.
1555 * The unlocker will place the inode on the appropriate
1556 * superblock list, based upon its state.
1557 */
1558 if (inode->i_state & I_SYNC)
1559 goto out_unlock_inode;
1560
1561 /*
1562 * Only add valid (hashed) inodes to the superblock's
1563 * dirty list. Add blockdev inodes as well.
1564 */
1565 if (!S_ISBLK(inode->i_mode)) {
1566 if (inode_unhashed(inode))
1567 goto out_unlock_inode;
1568 }
1569 if (inode->i_state & I_FREEING)
1570 goto out_unlock_inode;
1571
1572 /*
1573 * If the inode was already on b_dirty/b_io/b_more_io, don't
1574 * reposition it (that would break b_dirty time-ordering).
1575 */
1576 if (!was_dirty) {
1577 struct list_head *dirty_list;
1578 bool wakeup_bdi = false;
1579 bdi = inode_to_bdi(inode);
1580
1581 spin_unlock(&inode->i_lock);
1582 spin_lock(&bdi->wb.list_lock);
1583
1584 WARN(bdi_cap_writeback_dirty(bdi) &&
1585 !test_bit(WB_registered, &bdi->wb.state),
1586 "bdi-%s not registered\n", bdi->name);
1587
1588 inode->dirtied_when = jiffies;
1589 if (dirtytime)
1590 inode->dirtied_time_when = jiffies;
1591
1592 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1593 dirty_list = &bdi->wb.b_dirty;
1594 else
1595 dirty_list = &bdi->wb.b_dirty_time;
1596
1597 wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1598 dirty_list);
1599
1600 spin_unlock(&bdi->wb.list_lock);
1601 trace_writeback_dirty_inode_enqueue(inode);
1602
1603 /*
1604 * If this is the first dirty inode for this bdi,
1605 * we have to wake-up the corresponding bdi thread
1606 * to make sure background write-back happens
1607 * later.
1608 */
1609 if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1610 wb_wakeup_delayed(&bdi->wb);
1611 return;
1612 }
1613 }
1614 out_unlock_inode:
1615 spin_unlock(&inode->i_lock);
1616
1617 }
1618 EXPORT_SYMBOL(__mark_inode_dirty);
1619
1620 static void wait_sb_inodes(struct super_block *sb)
1621 {
1622 struct inode *inode, *old_inode = NULL;
1623
1624 /*
1625 * We need to be protected against the filesystem going from
1626 * r/o to r/w or vice versa.
1627 */
1628 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1629
1630 spin_lock(&inode_sb_list_lock);
1631
1632 /*
1633 * Data integrity sync. Must wait for all pages under writeback,
1634 * because there may have been pages dirtied before our sync
1635 * call, but which had writeout started before we write it out.
1636 * In which case, the inode may not be on the dirty list, but
1637 * we still have to wait for that writeout.
1638 */
1639 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1640 struct address_space *mapping = inode->i_mapping;
1641
1642 spin_lock(&inode->i_lock);
1643 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1644 (mapping->nrpages == 0)) {
1645 spin_unlock(&inode->i_lock);
1646 continue;
1647 }
1648 __iget(inode);
1649 spin_unlock(&inode->i_lock);
1650 spin_unlock(&inode_sb_list_lock);
1651
1652 /*
1653 * We hold a reference to 'inode' so it couldn't have been
1654 * removed from s_inodes list while we dropped the
1655 * inode_sb_list_lock. We cannot iput the inode now as we can
1656 * be holding the last reference and we cannot iput it under
1657 * inode_sb_list_lock. So we keep the reference and iput it
1658 * later.
1659 */
1660 iput(old_inode);
1661 old_inode = inode;
1662
1663 filemap_fdatawait(mapping);
1664
1665 cond_resched();
1666
1667 spin_lock(&inode_sb_list_lock);
1668 }
1669 spin_unlock(&inode_sb_list_lock);
1670 iput(old_inode);
1671 }
1672
1673 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1674 enum wb_reason reason, bool skip_if_busy)
1675 {
1676 DEFINE_WB_COMPLETION_ONSTACK(done);
1677 struct wb_writeback_work work = {
1678 .sb = sb,
1679 .sync_mode = WB_SYNC_NONE,
1680 .tagged_writepages = 1,
1681 .done = &done,
1682 .nr_pages = nr,
1683 .reason = reason,
1684 };
1685 struct backing_dev_info *bdi = sb->s_bdi;
1686
1687 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1688 return;
1689 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1690
1691 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1692 wb_wait_for_completion(bdi, &done);
1693 }
1694
1695 /**
1696 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1697 * @sb: the superblock
1698 * @nr: the number of pages to write
1699 * @reason: reason why some writeback work initiated
1700 *
1701 * Start writeback on some inodes on this super_block. No guarantees are made
1702 * on how many (if any) will be written, and this function does not wait
1703 * for IO completion of submitted IO.
1704 */
1705 void writeback_inodes_sb_nr(struct super_block *sb,
1706 unsigned long nr,
1707 enum wb_reason reason)
1708 {
1709 __writeback_inodes_sb_nr(sb, nr, reason, false);
1710 }
1711 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1712
1713 /**
1714 * writeback_inodes_sb - writeback dirty inodes from given super_block
1715 * @sb: the superblock
1716 * @reason: reason why some writeback work was initiated
1717 *
1718 * Start writeback on some inodes on this super_block. No guarantees are made
1719 * on how many (if any) will be written, and this function does not wait
1720 * for IO completion of submitted IO.
1721 */
1722 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1723 {
1724 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1725 }
1726 EXPORT_SYMBOL(writeback_inodes_sb);
1727
1728 /**
1729 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1730 * @sb: the superblock
1731 * @nr: the number of pages to write
1732 * @reason: the reason of writeback
1733 *
1734 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1735 * Returns 1 if writeback was started, 0 if not.
1736 */
1737 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1738 enum wb_reason reason)
1739 {
1740 if (!down_read_trylock(&sb->s_umount))
1741 return false;
1742
1743 __writeback_inodes_sb_nr(sb, nr, reason, true);
1744 up_read(&sb->s_umount);
1745 return true;
1746 }
1747 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1748
1749 /**
1750 * try_to_writeback_inodes_sb - try to start writeback if none underway
1751 * @sb: the superblock
1752 * @reason: reason why some writeback work was initiated
1753 *
1754 * Implement by try_to_writeback_inodes_sb_nr()
1755 * Returns 1 if writeback was started, 0 if not.
1756 */
1757 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1758 {
1759 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1760 }
1761 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1762
1763 /**
1764 * sync_inodes_sb - sync sb inode pages
1765 * @sb: the superblock
1766 *
1767 * This function writes and waits on any dirty inode belonging to this
1768 * super_block.
1769 */
1770 void sync_inodes_sb(struct super_block *sb)
1771 {
1772 DEFINE_WB_COMPLETION_ONSTACK(done);
1773 struct wb_writeback_work work = {
1774 .sb = sb,
1775 .sync_mode = WB_SYNC_ALL,
1776 .nr_pages = LONG_MAX,
1777 .range_cyclic = 0,
1778 .done = &done,
1779 .reason = WB_REASON_SYNC,
1780 .for_sync = 1,
1781 };
1782 struct backing_dev_info *bdi = sb->s_bdi;
1783
1784 /* Nothing to do? */
1785 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1786 return;
1787 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1788
1789 bdi_split_work_to_wbs(bdi, &work, false);
1790 wb_wait_for_completion(bdi, &done);
1791
1792 wait_sb_inodes(sb);
1793 }
1794 EXPORT_SYMBOL(sync_inodes_sb);
1795
1796 /**
1797 * write_inode_now - write an inode to disk
1798 * @inode: inode to write to disk
1799 * @sync: whether the write should be synchronous or not
1800 *
1801 * This function commits an inode to disk immediately if it is dirty. This is
1802 * primarily needed by knfsd.
1803 *
1804 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1805 */
1806 int write_inode_now(struct inode *inode, int sync)
1807 {
1808 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1809 struct writeback_control wbc = {
1810 .nr_to_write = LONG_MAX,
1811 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1812 .range_start = 0,
1813 .range_end = LLONG_MAX,
1814 };
1815
1816 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1817 wbc.nr_to_write = 0;
1818
1819 might_sleep();
1820 return writeback_single_inode(inode, wb, &wbc);
1821 }
1822 EXPORT_SYMBOL(write_inode_now);
1823
1824 /**
1825 * sync_inode - write an inode and its pages to disk.
1826 * @inode: the inode to sync
1827 * @wbc: controls the writeback mode
1828 *
1829 * sync_inode() will write an inode and its pages to disk. It will also
1830 * correctly update the inode on its superblock's dirty inode lists and will
1831 * update inode->i_state.
1832 *
1833 * The caller must have a ref on the inode.
1834 */
1835 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1836 {
1837 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1838 }
1839 EXPORT_SYMBOL(sync_inode);
1840
1841 /**
1842 * sync_inode_metadata - write an inode to disk
1843 * @inode: the inode to sync
1844 * @wait: wait for I/O to complete.
1845 *
1846 * Write an inode to disk and adjust its dirty state after completion.
1847 *
1848 * Note: only writes the actual inode, no associated data or other metadata.
1849 */
1850 int sync_inode_metadata(struct inode *inode, int wait)
1851 {
1852 struct writeback_control wbc = {
1853 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1854 .nr_to_write = 0, /* metadata-only */
1855 };
1856
1857 return sync_inode(inode, &wbc);
1858 }
1859 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.068743 seconds and 6 git commands to generate.