writeback: don't issue wb_writeback_work if clean
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 /**
69 * writeback_in_progress - determine whether there is writeback in progress
70 * @bdi: the device's backing_dev_info structure.
71 *
72 * Determine whether there is writeback waiting to be handled against a
73 * backing device.
74 */
75 int writeback_in_progress(struct backing_dev_info *bdi)
76 {
77 return test_bit(WB_writeback_running, &bdi->wb.state);
78 }
79 EXPORT_SYMBOL(writeback_in_progress);
80
81 static inline struct inode *wb_inode(struct list_head *head)
82 {
83 return list_entry(head, struct inode, i_wb_list);
84 }
85
86 /*
87 * Include the creation of the trace points after defining the
88 * wb_writeback_work structure and inline functions so that the definition
89 * remains local to this file.
90 */
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/writeback.h>
93
94 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
95
96 static bool wb_io_lists_populated(struct bdi_writeback *wb)
97 {
98 if (wb_has_dirty_io(wb)) {
99 return false;
100 } else {
101 set_bit(WB_has_dirty_io, &wb->state);
102 WARN_ON_ONCE(!wb->avg_write_bandwidth);
103 atomic_long_add(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth);
105 return true;
106 }
107 }
108
109 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
110 {
111 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
112 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
113 clear_bit(WB_has_dirty_io, &wb->state);
114 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
115 &wb->bdi->tot_write_bandwidth) < 0);
116 }
117 }
118
119 /**
120 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
121 * @inode: inode to be moved
122 * @wb: target bdi_writeback
123 * @head: one of @wb->b_{dirty|io|more_io}
124 *
125 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
126 * Returns %true if @inode is the first occupant of the !dirty_time IO
127 * lists; otherwise, %false.
128 */
129 static bool inode_wb_list_move_locked(struct inode *inode,
130 struct bdi_writeback *wb,
131 struct list_head *head)
132 {
133 assert_spin_locked(&wb->list_lock);
134
135 list_move(&inode->i_wb_list, head);
136
137 /* dirty_time doesn't count as dirty_io until expiration */
138 if (head != &wb->b_dirty_time)
139 return wb_io_lists_populated(wb);
140
141 wb_io_lists_depopulated(wb);
142 return false;
143 }
144
145 /**
146 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
147 * @inode: inode to be removed
148 * @wb: bdi_writeback @inode is being removed from
149 *
150 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
151 * clear %WB_has_dirty_io if all are empty afterwards.
152 */
153 static void inode_wb_list_del_locked(struct inode *inode,
154 struct bdi_writeback *wb)
155 {
156 assert_spin_locked(&wb->list_lock);
157
158 list_del_init(&inode->i_wb_list);
159 wb_io_lists_depopulated(wb);
160 }
161
162 static void wb_wakeup(struct bdi_writeback *wb)
163 {
164 spin_lock_bh(&wb->work_lock);
165 if (test_bit(WB_registered, &wb->state))
166 mod_delayed_work(bdi_wq, &wb->dwork, 0);
167 spin_unlock_bh(&wb->work_lock);
168 }
169
170 static void wb_queue_work(struct bdi_writeback *wb,
171 struct wb_writeback_work *work)
172 {
173 trace_writeback_queue(wb->bdi, work);
174
175 spin_lock_bh(&wb->work_lock);
176 if (!test_bit(WB_registered, &wb->state)) {
177 if (work->done)
178 complete(work->done);
179 goto out_unlock;
180 }
181 list_add_tail(&work->list, &wb->work_list);
182 mod_delayed_work(bdi_wq, &wb->dwork, 0);
183 out_unlock:
184 spin_unlock_bh(&wb->work_lock);
185 }
186
187 static void __wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
188 bool range_cyclic, enum wb_reason reason)
189 {
190 struct wb_writeback_work *work;
191
192 if (!wb_has_dirty_io(wb))
193 return;
194
195 /*
196 * This is WB_SYNC_NONE writeback, so if allocation fails just
197 * wakeup the thread for old dirty data writeback
198 */
199 work = kzalloc(sizeof(*work), GFP_ATOMIC);
200 if (!work) {
201 trace_writeback_nowork(wb->bdi);
202 wb_wakeup(wb);
203 return;
204 }
205
206 work->sync_mode = WB_SYNC_NONE;
207 work->nr_pages = nr_pages;
208 work->range_cyclic = range_cyclic;
209 work->reason = reason;
210
211 wb_queue_work(wb, work);
212 }
213
214 #ifdef CONFIG_CGROUP_WRITEBACK
215
216 /**
217 * inode_congested - test whether an inode is congested
218 * @inode: inode to test for congestion
219 * @cong_bits: mask of WB_[a]sync_congested bits to test
220 *
221 * Tests whether @inode is congested. @cong_bits is the mask of congestion
222 * bits to test and the return value is the mask of set bits.
223 *
224 * If cgroup writeback is enabled for @inode, the congestion state is
225 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
226 * associated with @inode is congested; otherwise, the root wb's congestion
227 * state is used.
228 */
229 int inode_congested(struct inode *inode, int cong_bits)
230 {
231 if (inode) {
232 struct bdi_writeback *wb = inode_to_wb(inode);
233 if (wb)
234 return wb_congested(wb, cong_bits);
235 }
236
237 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
238 }
239 EXPORT_SYMBOL_GPL(inode_congested);
240
241 #endif /* CONFIG_CGROUP_WRITEBACK */
242
243 /**
244 * bdi_start_writeback - start writeback
245 * @bdi: the backing device to write from
246 * @nr_pages: the number of pages to write
247 * @reason: reason why some writeback work was initiated
248 *
249 * Description:
250 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
251 * started when this function returns, we make no guarantees on
252 * completion. Caller need not hold sb s_umount semaphore.
253 *
254 */
255 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
256 enum wb_reason reason)
257 {
258 __wb_start_writeback(&bdi->wb, nr_pages, true, reason);
259 }
260
261 /**
262 * bdi_start_background_writeback - start background writeback
263 * @bdi: the backing device to write from
264 *
265 * Description:
266 * This makes sure WB_SYNC_NONE background writeback happens. When
267 * this function returns, it is only guaranteed that for given BDI
268 * some IO is happening if we are over background dirty threshold.
269 * Caller need not hold sb s_umount semaphore.
270 */
271 void bdi_start_background_writeback(struct backing_dev_info *bdi)
272 {
273 /*
274 * We just wake up the flusher thread. It will perform background
275 * writeback as soon as there is no other work to do.
276 */
277 trace_writeback_wake_background(bdi);
278 wb_wakeup(&bdi->wb);
279 }
280
281 /*
282 * Remove the inode from the writeback list it is on.
283 */
284 void inode_wb_list_del(struct inode *inode)
285 {
286 struct bdi_writeback *wb = inode_to_wb(inode);
287
288 spin_lock(&wb->list_lock);
289 inode_wb_list_del_locked(inode, wb);
290 spin_unlock(&wb->list_lock);
291 }
292
293 /*
294 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
295 * furthest end of its superblock's dirty-inode list.
296 *
297 * Before stamping the inode's ->dirtied_when, we check to see whether it is
298 * already the most-recently-dirtied inode on the b_dirty list. If that is
299 * the case then the inode must have been redirtied while it was being written
300 * out and we don't reset its dirtied_when.
301 */
302 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
303 {
304 if (!list_empty(&wb->b_dirty)) {
305 struct inode *tail;
306
307 tail = wb_inode(wb->b_dirty.next);
308 if (time_before(inode->dirtied_when, tail->dirtied_when))
309 inode->dirtied_when = jiffies;
310 }
311 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
312 }
313
314 /*
315 * requeue inode for re-scanning after bdi->b_io list is exhausted.
316 */
317 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
318 {
319 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
320 }
321
322 static void inode_sync_complete(struct inode *inode)
323 {
324 inode->i_state &= ~I_SYNC;
325 /* If inode is clean an unused, put it into LRU now... */
326 inode_add_lru(inode);
327 /* Waiters must see I_SYNC cleared before being woken up */
328 smp_mb();
329 wake_up_bit(&inode->i_state, __I_SYNC);
330 }
331
332 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
333 {
334 bool ret = time_after(inode->dirtied_when, t);
335 #ifndef CONFIG_64BIT
336 /*
337 * For inodes being constantly redirtied, dirtied_when can get stuck.
338 * It _appears_ to be in the future, but is actually in distant past.
339 * This test is necessary to prevent such wrapped-around relative times
340 * from permanently stopping the whole bdi writeback.
341 */
342 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
343 #endif
344 return ret;
345 }
346
347 #define EXPIRE_DIRTY_ATIME 0x0001
348
349 /*
350 * Move expired (dirtied before work->older_than_this) dirty inodes from
351 * @delaying_queue to @dispatch_queue.
352 */
353 static int move_expired_inodes(struct list_head *delaying_queue,
354 struct list_head *dispatch_queue,
355 int flags,
356 struct wb_writeback_work *work)
357 {
358 unsigned long *older_than_this = NULL;
359 unsigned long expire_time;
360 LIST_HEAD(tmp);
361 struct list_head *pos, *node;
362 struct super_block *sb = NULL;
363 struct inode *inode;
364 int do_sb_sort = 0;
365 int moved = 0;
366
367 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
368 older_than_this = work->older_than_this;
369 else if (!work->for_sync) {
370 expire_time = jiffies - (dirtytime_expire_interval * HZ);
371 older_than_this = &expire_time;
372 }
373 while (!list_empty(delaying_queue)) {
374 inode = wb_inode(delaying_queue->prev);
375 if (older_than_this &&
376 inode_dirtied_after(inode, *older_than_this))
377 break;
378 list_move(&inode->i_wb_list, &tmp);
379 moved++;
380 if (flags & EXPIRE_DIRTY_ATIME)
381 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
382 if (sb_is_blkdev_sb(inode->i_sb))
383 continue;
384 if (sb && sb != inode->i_sb)
385 do_sb_sort = 1;
386 sb = inode->i_sb;
387 }
388
389 /* just one sb in list, splice to dispatch_queue and we're done */
390 if (!do_sb_sort) {
391 list_splice(&tmp, dispatch_queue);
392 goto out;
393 }
394
395 /* Move inodes from one superblock together */
396 while (!list_empty(&tmp)) {
397 sb = wb_inode(tmp.prev)->i_sb;
398 list_for_each_prev_safe(pos, node, &tmp) {
399 inode = wb_inode(pos);
400 if (inode->i_sb == sb)
401 list_move(&inode->i_wb_list, dispatch_queue);
402 }
403 }
404 out:
405 return moved;
406 }
407
408 /*
409 * Queue all expired dirty inodes for io, eldest first.
410 * Before
411 * newly dirtied b_dirty b_io b_more_io
412 * =============> gf edc BA
413 * After
414 * newly dirtied b_dirty b_io b_more_io
415 * =============> g fBAedc
416 * |
417 * +--> dequeue for IO
418 */
419 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
420 {
421 int moved;
422
423 assert_spin_locked(&wb->list_lock);
424 list_splice_init(&wb->b_more_io, &wb->b_io);
425 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
426 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
427 EXPIRE_DIRTY_ATIME, work);
428 if (moved)
429 wb_io_lists_populated(wb);
430 trace_writeback_queue_io(wb, work, moved);
431 }
432
433 static int write_inode(struct inode *inode, struct writeback_control *wbc)
434 {
435 int ret;
436
437 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
438 trace_writeback_write_inode_start(inode, wbc);
439 ret = inode->i_sb->s_op->write_inode(inode, wbc);
440 trace_writeback_write_inode(inode, wbc);
441 return ret;
442 }
443 return 0;
444 }
445
446 /*
447 * Wait for writeback on an inode to complete. Called with i_lock held.
448 * Caller must make sure inode cannot go away when we drop i_lock.
449 */
450 static void __inode_wait_for_writeback(struct inode *inode)
451 __releases(inode->i_lock)
452 __acquires(inode->i_lock)
453 {
454 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
455 wait_queue_head_t *wqh;
456
457 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
458 while (inode->i_state & I_SYNC) {
459 spin_unlock(&inode->i_lock);
460 __wait_on_bit(wqh, &wq, bit_wait,
461 TASK_UNINTERRUPTIBLE);
462 spin_lock(&inode->i_lock);
463 }
464 }
465
466 /*
467 * Wait for writeback on an inode to complete. Caller must have inode pinned.
468 */
469 void inode_wait_for_writeback(struct inode *inode)
470 {
471 spin_lock(&inode->i_lock);
472 __inode_wait_for_writeback(inode);
473 spin_unlock(&inode->i_lock);
474 }
475
476 /*
477 * Sleep until I_SYNC is cleared. This function must be called with i_lock
478 * held and drops it. It is aimed for callers not holding any inode reference
479 * so once i_lock is dropped, inode can go away.
480 */
481 static void inode_sleep_on_writeback(struct inode *inode)
482 __releases(inode->i_lock)
483 {
484 DEFINE_WAIT(wait);
485 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
486 int sleep;
487
488 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
489 sleep = inode->i_state & I_SYNC;
490 spin_unlock(&inode->i_lock);
491 if (sleep)
492 schedule();
493 finish_wait(wqh, &wait);
494 }
495
496 /*
497 * Find proper writeback list for the inode depending on its current state and
498 * possibly also change of its state while we were doing writeback. Here we
499 * handle things such as livelock prevention or fairness of writeback among
500 * inodes. This function can be called only by flusher thread - noone else
501 * processes all inodes in writeback lists and requeueing inodes behind flusher
502 * thread's back can have unexpected consequences.
503 */
504 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
505 struct writeback_control *wbc)
506 {
507 if (inode->i_state & I_FREEING)
508 return;
509
510 /*
511 * Sync livelock prevention. Each inode is tagged and synced in one
512 * shot. If still dirty, it will be redirty_tail()'ed below. Update
513 * the dirty time to prevent enqueue and sync it again.
514 */
515 if ((inode->i_state & I_DIRTY) &&
516 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
517 inode->dirtied_when = jiffies;
518
519 if (wbc->pages_skipped) {
520 /*
521 * writeback is not making progress due to locked
522 * buffers. Skip this inode for now.
523 */
524 redirty_tail(inode, wb);
525 return;
526 }
527
528 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
529 /*
530 * We didn't write back all the pages. nfs_writepages()
531 * sometimes bales out without doing anything.
532 */
533 if (wbc->nr_to_write <= 0) {
534 /* Slice used up. Queue for next turn. */
535 requeue_io(inode, wb);
536 } else {
537 /*
538 * Writeback blocked by something other than
539 * congestion. Delay the inode for some time to
540 * avoid spinning on the CPU (100% iowait)
541 * retrying writeback of the dirty page/inode
542 * that cannot be performed immediately.
543 */
544 redirty_tail(inode, wb);
545 }
546 } else if (inode->i_state & I_DIRTY) {
547 /*
548 * Filesystems can dirty the inode during writeback operations,
549 * such as delayed allocation during submission or metadata
550 * updates after data IO completion.
551 */
552 redirty_tail(inode, wb);
553 } else if (inode->i_state & I_DIRTY_TIME) {
554 inode->dirtied_when = jiffies;
555 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
556 } else {
557 /* The inode is clean. Remove from writeback lists. */
558 inode_wb_list_del_locked(inode, wb);
559 }
560 }
561
562 /*
563 * Write out an inode and its dirty pages. Do not update the writeback list
564 * linkage. That is left to the caller. The caller is also responsible for
565 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
566 */
567 static int
568 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
569 {
570 struct address_space *mapping = inode->i_mapping;
571 long nr_to_write = wbc->nr_to_write;
572 unsigned dirty;
573 int ret;
574
575 WARN_ON(!(inode->i_state & I_SYNC));
576
577 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
578
579 ret = do_writepages(mapping, wbc);
580
581 /*
582 * Make sure to wait on the data before writing out the metadata.
583 * This is important for filesystems that modify metadata on data
584 * I/O completion. We don't do it for sync(2) writeback because it has a
585 * separate, external IO completion path and ->sync_fs for guaranteeing
586 * inode metadata is written back correctly.
587 */
588 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
589 int err = filemap_fdatawait(mapping);
590 if (ret == 0)
591 ret = err;
592 }
593
594 /*
595 * Some filesystems may redirty the inode during the writeback
596 * due to delalloc, clear dirty metadata flags right before
597 * write_inode()
598 */
599 spin_lock(&inode->i_lock);
600
601 dirty = inode->i_state & I_DIRTY;
602 if (inode->i_state & I_DIRTY_TIME) {
603 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
604 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
605 unlikely(time_after(jiffies,
606 (inode->dirtied_time_when +
607 dirtytime_expire_interval * HZ)))) {
608 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
609 trace_writeback_lazytime(inode);
610 }
611 } else
612 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
613 inode->i_state &= ~dirty;
614
615 /*
616 * Paired with smp_mb() in __mark_inode_dirty(). This allows
617 * __mark_inode_dirty() to test i_state without grabbing i_lock -
618 * either they see the I_DIRTY bits cleared or we see the dirtied
619 * inode.
620 *
621 * I_DIRTY_PAGES is always cleared together above even if @mapping
622 * still has dirty pages. The flag is reinstated after smp_mb() if
623 * necessary. This guarantees that either __mark_inode_dirty()
624 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
625 */
626 smp_mb();
627
628 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
629 inode->i_state |= I_DIRTY_PAGES;
630
631 spin_unlock(&inode->i_lock);
632
633 if (dirty & I_DIRTY_TIME)
634 mark_inode_dirty_sync(inode);
635 /* Don't write the inode if only I_DIRTY_PAGES was set */
636 if (dirty & ~I_DIRTY_PAGES) {
637 int err = write_inode(inode, wbc);
638 if (ret == 0)
639 ret = err;
640 }
641 trace_writeback_single_inode(inode, wbc, nr_to_write);
642 return ret;
643 }
644
645 /*
646 * Write out an inode's dirty pages. Either the caller has an active reference
647 * on the inode or the inode has I_WILL_FREE set.
648 *
649 * This function is designed to be called for writing back one inode which
650 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
651 * and does more profound writeback list handling in writeback_sb_inodes().
652 */
653 static int
654 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
655 struct writeback_control *wbc)
656 {
657 int ret = 0;
658
659 spin_lock(&inode->i_lock);
660 if (!atomic_read(&inode->i_count))
661 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
662 else
663 WARN_ON(inode->i_state & I_WILL_FREE);
664
665 if (inode->i_state & I_SYNC) {
666 if (wbc->sync_mode != WB_SYNC_ALL)
667 goto out;
668 /*
669 * It's a data-integrity sync. We must wait. Since callers hold
670 * inode reference or inode has I_WILL_FREE set, it cannot go
671 * away under us.
672 */
673 __inode_wait_for_writeback(inode);
674 }
675 WARN_ON(inode->i_state & I_SYNC);
676 /*
677 * Skip inode if it is clean and we have no outstanding writeback in
678 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
679 * function since flusher thread may be doing for example sync in
680 * parallel and if we move the inode, it could get skipped. So here we
681 * make sure inode is on some writeback list and leave it there unless
682 * we have completely cleaned the inode.
683 */
684 if (!(inode->i_state & I_DIRTY_ALL) &&
685 (wbc->sync_mode != WB_SYNC_ALL ||
686 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
687 goto out;
688 inode->i_state |= I_SYNC;
689 spin_unlock(&inode->i_lock);
690
691 ret = __writeback_single_inode(inode, wbc);
692
693 spin_lock(&wb->list_lock);
694 spin_lock(&inode->i_lock);
695 /*
696 * If inode is clean, remove it from writeback lists. Otherwise don't
697 * touch it. See comment above for explanation.
698 */
699 if (!(inode->i_state & I_DIRTY_ALL))
700 inode_wb_list_del_locked(inode, wb);
701 spin_unlock(&wb->list_lock);
702 inode_sync_complete(inode);
703 out:
704 spin_unlock(&inode->i_lock);
705 return ret;
706 }
707
708 static long writeback_chunk_size(struct bdi_writeback *wb,
709 struct wb_writeback_work *work)
710 {
711 long pages;
712
713 /*
714 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
715 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
716 * here avoids calling into writeback_inodes_wb() more than once.
717 *
718 * The intended call sequence for WB_SYNC_ALL writeback is:
719 *
720 * wb_writeback()
721 * writeback_sb_inodes() <== called only once
722 * write_cache_pages() <== called once for each inode
723 * (quickly) tag currently dirty pages
724 * (maybe slowly) sync all tagged pages
725 */
726 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
727 pages = LONG_MAX;
728 else {
729 pages = min(wb->avg_write_bandwidth / 2,
730 global_dirty_limit / DIRTY_SCOPE);
731 pages = min(pages, work->nr_pages);
732 pages = round_down(pages + MIN_WRITEBACK_PAGES,
733 MIN_WRITEBACK_PAGES);
734 }
735
736 return pages;
737 }
738
739 /*
740 * Write a portion of b_io inodes which belong to @sb.
741 *
742 * Return the number of pages and/or inodes written.
743 */
744 static long writeback_sb_inodes(struct super_block *sb,
745 struct bdi_writeback *wb,
746 struct wb_writeback_work *work)
747 {
748 struct writeback_control wbc = {
749 .sync_mode = work->sync_mode,
750 .tagged_writepages = work->tagged_writepages,
751 .for_kupdate = work->for_kupdate,
752 .for_background = work->for_background,
753 .for_sync = work->for_sync,
754 .range_cyclic = work->range_cyclic,
755 .range_start = 0,
756 .range_end = LLONG_MAX,
757 };
758 unsigned long start_time = jiffies;
759 long write_chunk;
760 long wrote = 0; /* count both pages and inodes */
761
762 while (!list_empty(&wb->b_io)) {
763 struct inode *inode = wb_inode(wb->b_io.prev);
764
765 if (inode->i_sb != sb) {
766 if (work->sb) {
767 /*
768 * We only want to write back data for this
769 * superblock, move all inodes not belonging
770 * to it back onto the dirty list.
771 */
772 redirty_tail(inode, wb);
773 continue;
774 }
775
776 /*
777 * The inode belongs to a different superblock.
778 * Bounce back to the caller to unpin this and
779 * pin the next superblock.
780 */
781 break;
782 }
783
784 /*
785 * Don't bother with new inodes or inodes being freed, first
786 * kind does not need periodic writeout yet, and for the latter
787 * kind writeout is handled by the freer.
788 */
789 spin_lock(&inode->i_lock);
790 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
791 spin_unlock(&inode->i_lock);
792 redirty_tail(inode, wb);
793 continue;
794 }
795 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
796 /*
797 * If this inode is locked for writeback and we are not
798 * doing writeback-for-data-integrity, move it to
799 * b_more_io so that writeback can proceed with the
800 * other inodes on s_io.
801 *
802 * We'll have another go at writing back this inode
803 * when we completed a full scan of b_io.
804 */
805 spin_unlock(&inode->i_lock);
806 requeue_io(inode, wb);
807 trace_writeback_sb_inodes_requeue(inode);
808 continue;
809 }
810 spin_unlock(&wb->list_lock);
811
812 /*
813 * We already requeued the inode if it had I_SYNC set and we
814 * are doing WB_SYNC_NONE writeback. So this catches only the
815 * WB_SYNC_ALL case.
816 */
817 if (inode->i_state & I_SYNC) {
818 /* Wait for I_SYNC. This function drops i_lock... */
819 inode_sleep_on_writeback(inode);
820 /* Inode may be gone, start again */
821 spin_lock(&wb->list_lock);
822 continue;
823 }
824 inode->i_state |= I_SYNC;
825 spin_unlock(&inode->i_lock);
826
827 write_chunk = writeback_chunk_size(wb, work);
828 wbc.nr_to_write = write_chunk;
829 wbc.pages_skipped = 0;
830
831 /*
832 * We use I_SYNC to pin the inode in memory. While it is set
833 * evict_inode() will wait so the inode cannot be freed.
834 */
835 __writeback_single_inode(inode, &wbc);
836
837 work->nr_pages -= write_chunk - wbc.nr_to_write;
838 wrote += write_chunk - wbc.nr_to_write;
839 spin_lock(&wb->list_lock);
840 spin_lock(&inode->i_lock);
841 if (!(inode->i_state & I_DIRTY_ALL))
842 wrote++;
843 requeue_inode(inode, wb, &wbc);
844 inode_sync_complete(inode);
845 spin_unlock(&inode->i_lock);
846 cond_resched_lock(&wb->list_lock);
847 /*
848 * bail out to wb_writeback() often enough to check
849 * background threshold and other termination conditions.
850 */
851 if (wrote) {
852 if (time_is_before_jiffies(start_time + HZ / 10UL))
853 break;
854 if (work->nr_pages <= 0)
855 break;
856 }
857 }
858 return wrote;
859 }
860
861 static long __writeback_inodes_wb(struct bdi_writeback *wb,
862 struct wb_writeback_work *work)
863 {
864 unsigned long start_time = jiffies;
865 long wrote = 0;
866
867 while (!list_empty(&wb->b_io)) {
868 struct inode *inode = wb_inode(wb->b_io.prev);
869 struct super_block *sb = inode->i_sb;
870
871 if (!trylock_super(sb)) {
872 /*
873 * trylock_super() may fail consistently due to
874 * s_umount being grabbed by someone else. Don't use
875 * requeue_io() to avoid busy retrying the inode/sb.
876 */
877 redirty_tail(inode, wb);
878 continue;
879 }
880 wrote += writeback_sb_inodes(sb, wb, work);
881 up_read(&sb->s_umount);
882
883 /* refer to the same tests at the end of writeback_sb_inodes */
884 if (wrote) {
885 if (time_is_before_jiffies(start_time + HZ / 10UL))
886 break;
887 if (work->nr_pages <= 0)
888 break;
889 }
890 }
891 /* Leave any unwritten inodes on b_io */
892 return wrote;
893 }
894
895 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
896 enum wb_reason reason)
897 {
898 struct wb_writeback_work work = {
899 .nr_pages = nr_pages,
900 .sync_mode = WB_SYNC_NONE,
901 .range_cyclic = 1,
902 .reason = reason,
903 };
904
905 spin_lock(&wb->list_lock);
906 if (list_empty(&wb->b_io))
907 queue_io(wb, &work);
908 __writeback_inodes_wb(wb, &work);
909 spin_unlock(&wb->list_lock);
910
911 return nr_pages - work.nr_pages;
912 }
913
914 static bool over_bground_thresh(struct bdi_writeback *wb)
915 {
916 unsigned long background_thresh, dirty_thresh;
917
918 global_dirty_limits(&background_thresh, &dirty_thresh);
919
920 if (global_page_state(NR_FILE_DIRTY) +
921 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
922 return true;
923
924 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
925 return true;
926
927 return false;
928 }
929
930 /*
931 * Called under wb->list_lock. If there are multiple wb per bdi,
932 * only the flusher working on the first wb should do it.
933 */
934 static void wb_update_bandwidth(struct bdi_writeback *wb,
935 unsigned long start_time)
936 {
937 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
938 }
939
940 /*
941 * Explicit flushing or periodic writeback of "old" data.
942 *
943 * Define "old": the first time one of an inode's pages is dirtied, we mark the
944 * dirtying-time in the inode's address_space. So this periodic writeback code
945 * just walks the superblock inode list, writing back any inodes which are
946 * older than a specific point in time.
947 *
948 * Try to run once per dirty_writeback_interval. But if a writeback event
949 * takes longer than a dirty_writeback_interval interval, then leave a
950 * one-second gap.
951 *
952 * older_than_this takes precedence over nr_to_write. So we'll only write back
953 * all dirty pages if they are all attached to "old" mappings.
954 */
955 static long wb_writeback(struct bdi_writeback *wb,
956 struct wb_writeback_work *work)
957 {
958 unsigned long wb_start = jiffies;
959 long nr_pages = work->nr_pages;
960 unsigned long oldest_jif;
961 struct inode *inode;
962 long progress;
963
964 oldest_jif = jiffies;
965 work->older_than_this = &oldest_jif;
966
967 spin_lock(&wb->list_lock);
968 for (;;) {
969 /*
970 * Stop writeback when nr_pages has been consumed
971 */
972 if (work->nr_pages <= 0)
973 break;
974
975 /*
976 * Background writeout and kupdate-style writeback may
977 * run forever. Stop them if there is other work to do
978 * so that e.g. sync can proceed. They'll be restarted
979 * after the other works are all done.
980 */
981 if ((work->for_background || work->for_kupdate) &&
982 !list_empty(&wb->work_list))
983 break;
984
985 /*
986 * For background writeout, stop when we are below the
987 * background dirty threshold
988 */
989 if (work->for_background && !over_bground_thresh(wb))
990 break;
991
992 /*
993 * Kupdate and background works are special and we want to
994 * include all inodes that need writing. Livelock avoidance is
995 * handled by these works yielding to any other work so we are
996 * safe.
997 */
998 if (work->for_kupdate) {
999 oldest_jif = jiffies -
1000 msecs_to_jiffies(dirty_expire_interval * 10);
1001 } else if (work->for_background)
1002 oldest_jif = jiffies;
1003
1004 trace_writeback_start(wb->bdi, work);
1005 if (list_empty(&wb->b_io))
1006 queue_io(wb, work);
1007 if (work->sb)
1008 progress = writeback_sb_inodes(work->sb, wb, work);
1009 else
1010 progress = __writeback_inodes_wb(wb, work);
1011 trace_writeback_written(wb->bdi, work);
1012
1013 wb_update_bandwidth(wb, wb_start);
1014
1015 /*
1016 * Did we write something? Try for more
1017 *
1018 * Dirty inodes are moved to b_io for writeback in batches.
1019 * The completion of the current batch does not necessarily
1020 * mean the overall work is done. So we keep looping as long
1021 * as made some progress on cleaning pages or inodes.
1022 */
1023 if (progress)
1024 continue;
1025 /*
1026 * No more inodes for IO, bail
1027 */
1028 if (list_empty(&wb->b_more_io))
1029 break;
1030 /*
1031 * Nothing written. Wait for some inode to
1032 * become available for writeback. Otherwise
1033 * we'll just busyloop.
1034 */
1035 if (!list_empty(&wb->b_more_io)) {
1036 trace_writeback_wait(wb->bdi, work);
1037 inode = wb_inode(wb->b_more_io.prev);
1038 spin_lock(&inode->i_lock);
1039 spin_unlock(&wb->list_lock);
1040 /* This function drops i_lock... */
1041 inode_sleep_on_writeback(inode);
1042 spin_lock(&wb->list_lock);
1043 }
1044 }
1045 spin_unlock(&wb->list_lock);
1046
1047 return nr_pages - work->nr_pages;
1048 }
1049
1050 /*
1051 * Return the next wb_writeback_work struct that hasn't been processed yet.
1052 */
1053 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1054 {
1055 struct wb_writeback_work *work = NULL;
1056
1057 spin_lock_bh(&wb->work_lock);
1058 if (!list_empty(&wb->work_list)) {
1059 work = list_entry(wb->work_list.next,
1060 struct wb_writeback_work, list);
1061 list_del_init(&work->list);
1062 }
1063 spin_unlock_bh(&wb->work_lock);
1064 return work;
1065 }
1066
1067 /*
1068 * Add in the number of potentially dirty inodes, because each inode
1069 * write can dirty pagecache in the underlying blockdev.
1070 */
1071 static unsigned long get_nr_dirty_pages(void)
1072 {
1073 return global_page_state(NR_FILE_DIRTY) +
1074 global_page_state(NR_UNSTABLE_NFS) +
1075 get_nr_dirty_inodes();
1076 }
1077
1078 static long wb_check_background_flush(struct bdi_writeback *wb)
1079 {
1080 if (over_bground_thresh(wb)) {
1081
1082 struct wb_writeback_work work = {
1083 .nr_pages = LONG_MAX,
1084 .sync_mode = WB_SYNC_NONE,
1085 .for_background = 1,
1086 .range_cyclic = 1,
1087 .reason = WB_REASON_BACKGROUND,
1088 };
1089
1090 return wb_writeback(wb, &work);
1091 }
1092
1093 return 0;
1094 }
1095
1096 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1097 {
1098 unsigned long expired;
1099 long nr_pages;
1100
1101 /*
1102 * When set to zero, disable periodic writeback
1103 */
1104 if (!dirty_writeback_interval)
1105 return 0;
1106
1107 expired = wb->last_old_flush +
1108 msecs_to_jiffies(dirty_writeback_interval * 10);
1109 if (time_before(jiffies, expired))
1110 return 0;
1111
1112 wb->last_old_flush = jiffies;
1113 nr_pages = get_nr_dirty_pages();
1114
1115 if (nr_pages) {
1116 struct wb_writeback_work work = {
1117 .nr_pages = nr_pages,
1118 .sync_mode = WB_SYNC_NONE,
1119 .for_kupdate = 1,
1120 .range_cyclic = 1,
1121 .reason = WB_REASON_PERIODIC,
1122 };
1123
1124 return wb_writeback(wb, &work);
1125 }
1126
1127 return 0;
1128 }
1129
1130 /*
1131 * Retrieve work items and do the writeback they describe
1132 */
1133 static long wb_do_writeback(struct bdi_writeback *wb)
1134 {
1135 struct wb_writeback_work *work;
1136 long wrote = 0;
1137
1138 set_bit(WB_writeback_running, &wb->state);
1139 while ((work = get_next_work_item(wb)) != NULL) {
1140
1141 trace_writeback_exec(wb->bdi, work);
1142
1143 wrote += wb_writeback(wb, work);
1144
1145 /*
1146 * Notify the caller of completion if this is a synchronous
1147 * work item, otherwise just free it.
1148 */
1149 if (work->done)
1150 complete(work->done);
1151 else
1152 kfree(work);
1153 }
1154
1155 /*
1156 * Check for periodic writeback, kupdated() style
1157 */
1158 wrote += wb_check_old_data_flush(wb);
1159 wrote += wb_check_background_flush(wb);
1160 clear_bit(WB_writeback_running, &wb->state);
1161
1162 return wrote;
1163 }
1164
1165 /*
1166 * Handle writeback of dirty data for the device backed by this bdi. Also
1167 * reschedules periodically and does kupdated style flushing.
1168 */
1169 void wb_workfn(struct work_struct *work)
1170 {
1171 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1172 struct bdi_writeback, dwork);
1173 long pages_written;
1174
1175 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1176 current->flags |= PF_SWAPWRITE;
1177
1178 if (likely(!current_is_workqueue_rescuer() ||
1179 !test_bit(WB_registered, &wb->state))) {
1180 /*
1181 * The normal path. Keep writing back @wb until its
1182 * work_list is empty. Note that this path is also taken
1183 * if @wb is shutting down even when we're running off the
1184 * rescuer as work_list needs to be drained.
1185 */
1186 do {
1187 pages_written = wb_do_writeback(wb);
1188 trace_writeback_pages_written(pages_written);
1189 } while (!list_empty(&wb->work_list));
1190 } else {
1191 /*
1192 * bdi_wq can't get enough workers and we're running off
1193 * the emergency worker. Don't hog it. Hopefully, 1024 is
1194 * enough for efficient IO.
1195 */
1196 pages_written = writeback_inodes_wb(wb, 1024,
1197 WB_REASON_FORKER_THREAD);
1198 trace_writeback_pages_written(pages_written);
1199 }
1200
1201 if (!list_empty(&wb->work_list))
1202 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1203 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1204 wb_wakeup_delayed(wb);
1205
1206 current->flags &= ~PF_SWAPWRITE;
1207 }
1208
1209 /*
1210 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1211 * the whole world.
1212 */
1213 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1214 {
1215 struct backing_dev_info *bdi;
1216
1217 if (!nr_pages)
1218 nr_pages = get_nr_dirty_pages();
1219
1220 rcu_read_lock();
1221 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1222 __wb_start_writeback(&bdi->wb, nr_pages, false, reason);
1223 rcu_read_unlock();
1224 }
1225
1226 /*
1227 * Wake up bdi's periodically to make sure dirtytime inodes gets
1228 * written back periodically. We deliberately do *not* check the
1229 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1230 * kernel to be constantly waking up once there are any dirtytime
1231 * inodes on the system. So instead we define a separate delayed work
1232 * function which gets called much more rarely. (By default, only
1233 * once every 12 hours.)
1234 *
1235 * If there is any other write activity going on in the file system,
1236 * this function won't be necessary. But if the only thing that has
1237 * happened on the file system is a dirtytime inode caused by an atime
1238 * update, we need this infrastructure below to make sure that inode
1239 * eventually gets pushed out to disk.
1240 */
1241 static void wakeup_dirtytime_writeback(struct work_struct *w);
1242 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1243
1244 static void wakeup_dirtytime_writeback(struct work_struct *w)
1245 {
1246 struct backing_dev_info *bdi;
1247
1248 rcu_read_lock();
1249 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1250 if (list_empty(&bdi->wb.b_dirty_time))
1251 continue;
1252 wb_wakeup(&bdi->wb);
1253 }
1254 rcu_read_unlock();
1255 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1256 }
1257
1258 static int __init start_dirtytime_writeback(void)
1259 {
1260 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1261 return 0;
1262 }
1263 __initcall(start_dirtytime_writeback);
1264
1265 int dirtytime_interval_handler(struct ctl_table *table, int write,
1266 void __user *buffer, size_t *lenp, loff_t *ppos)
1267 {
1268 int ret;
1269
1270 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1271 if (ret == 0 && write)
1272 mod_delayed_work(system_wq, &dirtytime_work, 0);
1273 return ret;
1274 }
1275
1276 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1277 {
1278 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1279 struct dentry *dentry;
1280 const char *name = "?";
1281
1282 dentry = d_find_alias(inode);
1283 if (dentry) {
1284 spin_lock(&dentry->d_lock);
1285 name = (const char *) dentry->d_name.name;
1286 }
1287 printk(KERN_DEBUG
1288 "%s(%d): dirtied inode %lu (%s) on %s\n",
1289 current->comm, task_pid_nr(current), inode->i_ino,
1290 name, inode->i_sb->s_id);
1291 if (dentry) {
1292 spin_unlock(&dentry->d_lock);
1293 dput(dentry);
1294 }
1295 }
1296 }
1297
1298 /**
1299 * __mark_inode_dirty - internal function
1300 * @inode: inode to mark
1301 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1302 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1303 * mark_inode_dirty_sync.
1304 *
1305 * Put the inode on the super block's dirty list.
1306 *
1307 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1308 * dirty list only if it is hashed or if it refers to a blockdev.
1309 * If it was not hashed, it will never be added to the dirty list
1310 * even if it is later hashed, as it will have been marked dirty already.
1311 *
1312 * In short, make sure you hash any inodes _before_ you start marking
1313 * them dirty.
1314 *
1315 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1316 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1317 * the kernel-internal blockdev inode represents the dirtying time of the
1318 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1319 * page->mapping->host, so the page-dirtying time is recorded in the internal
1320 * blockdev inode.
1321 */
1322 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1323 void __mark_inode_dirty(struct inode *inode, int flags)
1324 {
1325 struct super_block *sb = inode->i_sb;
1326 struct backing_dev_info *bdi = NULL;
1327 int dirtytime;
1328
1329 trace_writeback_mark_inode_dirty(inode, flags);
1330
1331 /*
1332 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1333 * dirty the inode itself
1334 */
1335 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1336 trace_writeback_dirty_inode_start(inode, flags);
1337
1338 if (sb->s_op->dirty_inode)
1339 sb->s_op->dirty_inode(inode, flags);
1340
1341 trace_writeback_dirty_inode(inode, flags);
1342 }
1343 if (flags & I_DIRTY_INODE)
1344 flags &= ~I_DIRTY_TIME;
1345 dirtytime = flags & I_DIRTY_TIME;
1346
1347 /*
1348 * Paired with smp_mb() in __writeback_single_inode() for the
1349 * following lockless i_state test. See there for details.
1350 */
1351 smp_mb();
1352
1353 if (((inode->i_state & flags) == flags) ||
1354 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1355 return;
1356
1357 if (unlikely(block_dump))
1358 block_dump___mark_inode_dirty(inode);
1359
1360 spin_lock(&inode->i_lock);
1361 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1362 goto out_unlock_inode;
1363 if ((inode->i_state & flags) != flags) {
1364 const int was_dirty = inode->i_state & I_DIRTY;
1365
1366 inode_attach_wb(inode, NULL);
1367
1368 if (flags & I_DIRTY_INODE)
1369 inode->i_state &= ~I_DIRTY_TIME;
1370 inode->i_state |= flags;
1371
1372 /*
1373 * If the inode is being synced, just update its dirty state.
1374 * The unlocker will place the inode on the appropriate
1375 * superblock list, based upon its state.
1376 */
1377 if (inode->i_state & I_SYNC)
1378 goto out_unlock_inode;
1379
1380 /*
1381 * Only add valid (hashed) inodes to the superblock's
1382 * dirty list. Add blockdev inodes as well.
1383 */
1384 if (!S_ISBLK(inode->i_mode)) {
1385 if (inode_unhashed(inode))
1386 goto out_unlock_inode;
1387 }
1388 if (inode->i_state & I_FREEING)
1389 goto out_unlock_inode;
1390
1391 /*
1392 * If the inode was already on b_dirty/b_io/b_more_io, don't
1393 * reposition it (that would break b_dirty time-ordering).
1394 */
1395 if (!was_dirty) {
1396 struct list_head *dirty_list;
1397 bool wakeup_bdi = false;
1398 bdi = inode_to_bdi(inode);
1399
1400 spin_unlock(&inode->i_lock);
1401 spin_lock(&bdi->wb.list_lock);
1402
1403 WARN(bdi_cap_writeback_dirty(bdi) &&
1404 !test_bit(WB_registered, &bdi->wb.state),
1405 "bdi-%s not registered\n", bdi->name);
1406
1407 inode->dirtied_when = jiffies;
1408 if (dirtytime)
1409 inode->dirtied_time_when = jiffies;
1410
1411 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1412 dirty_list = &bdi->wb.b_dirty;
1413 else
1414 dirty_list = &bdi->wb.b_dirty_time;
1415
1416 wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1417 dirty_list);
1418
1419 spin_unlock(&bdi->wb.list_lock);
1420 trace_writeback_dirty_inode_enqueue(inode);
1421
1422 /*
1423 * If this is the first dirty inode for this bdi,
1424 * we have to wake-up the corresponding bdi thread
1425 * to make sure background write-back happens
1426 * later.
1427 */
1428 if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1429 wb_wakeup_delayed(&bdi->wb);
1430 return;
1431 }
1432 }
1433 out_unlock_inode:
1434 spin_unlock(&inode->i_lock);
1435
1436 }
1437 EXPORT_SYMBOL(__mark_inode_dirty);
1438
1439 static void wait_sb_inodes(struct super_block *sb)
1440 {
1441 struct inode *inode, *old_inode = NULL;
1442
1443 /*
1444 * We need to be protected against the filesystem going from
1445 * r/o to r/w or vice versa.
1446 */
1447 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1448
1449 spin_lock(&inode_sb_list_lock);
1450
1451 /*
1452 * Data integrity sync. Must wait for all pages under writeback,
1453 * because there may have been pages dirtied before our sync
1454 * call, but which had writeout started before we write it out.
1455 * In which case, the inode may not be on the dirty list, but
1456 * we still have to wait for that writeout.
1457 */
1458 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1459 struct address_space *mapping = inode->i_mapping;
1460
1461 spin_lock(&inode->i_lock);
1462 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1463 (mapping->nrpages == 0)) {
1464 spin_unlock(&inode->i_lock);
1465 continue;
1466 }
1467 __iget(inode);
1468 spin_unlock(&inode->i_lock);
1469 spin_unlock(&inode_sb_list_lock);
1470
1471 /*
1472 * We hold a reference to 'inode' so it couldn't have been
1473 * removed from s_inodes list while we dropped the
1474 * inode_sb_list_lock. We cannot iput the inode now as we can
1475 * be holding the last reference and we cannot iput it under
1476 * inode_sb_list_lock. So we keep the reference and iput it
1477 * later.
1478 */
1479 iput(old_inode);
1480 old_inode = inode;
1481
1482 filemap_fdatawait(mapping);
1483
1484 cond_resched();
1485
1486 spin_lock(&inode_sb_list_lock);
1487 }
1488 spin_unlock(&inode_sb_list_lock);
1489 iput(old_inode);
1490 }
1491
1492 /**
1493 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1494 * @sb: the superblock
1495 * @nr: the number of pages to write
1496 * @reason: reason why some writeback work initiated
1497 *
1498 * Start writeback on some inodes on this super_block. No guarantees are made
1499 * on how many (if any) will be written, and this function does not wait
1500 * for IO completion of submitted IO.
1501 */
1502 void writeback_inodes_sb_nr(struct super_block *sb,
1503 unsigned long nr,
1504 enum wb_reason reason)
1505 {
1506 DECLARE_COMPLETION_ONSTACK(done);
1507 struct wb_writeback_work work = {
1508 .sb = sb,
1509 .sync_mode = WB_SYNC_NONE,
1510 .tagged_writepages = 1,
1511 .done = &done,
1512 .nr_pages = nr,
1513 .reason = reason,
1514 };
1515 struct backing_dev_info *bdi = sb->s_bdi;
1516
1517 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1518 return;
1519 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1520 wb_queue_work(&bdi->wb, &work);
1521 wait_for_completion(&done);
1522 }
1523 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1524
1525 /**
1526 * writeback_inodes_sb - writeback dirty inodes from given super_block
1527 * @sb: the superblock
1528 * @reason: reason why some writeback work was initiated
1529 *
1530 * Start writeback on some inodes on this super_block. No guarantees are made
1531 * on how many (if any) will be written, and this function does not wait
1532 * for IO completion of submitted IO.
1533 */
1534 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1535 {
1536 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1537 }
1538 EXPORT_SYMBOL(writeback_inodes_sb);
1539
1540 /**
1541 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1542 * @sb: the superblock
1543 * @nr: the number of pages to write
1544 * @reason: the reason of writeback
1545 *
1546 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1547 * Returns 1 if writeback was started, 0 if not.
1548 */
1549 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1550 unsigned long nr,
1551 enum wb_reason reason)
1552 {
1553 if (writeback_in_progress(sb->s_bdi))
1554 return 1;
1555
1556 if (!down_read_trylock(&sb->s_umount))
1557 return 0;
1558
1559 writeback_inodes_sb_nr(sb, nr, reason);
1560 up_read(&sb->s_umount);
1561 return 1;
1562 }
1563 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1564
1565 /**
1566 * try_to_writeback_inodes_sb - try to start writeback if none underway
1567 * @sb: the superblock
1568 * @reason: reason why some writeback work was initiated
1569 *
1570 * Implement by try_to_writeback_inodes_sb_nr()
1571 * Returns 1 if writeback was started, 0 if not.
1572 */
1573 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1574 {
1575 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1576 }
1577 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1578
1579 /**
1580 * sync_inodes_sb - sync sb inode pages
1581 * @sb: the superblock
1582 *
1583 * This function writes and waits on any dirty inode belonging to this
1584 * super_block.
1585 */
1586 void sync_inodes_sb(struct super_block *sb)
1587 {
1588 DECLARE_COMPLETION_ONSTACK(done);
1589 struct wb_writeback_work work = {
1590 .sb = sb,
1591 .sync_mode = WB_SYNC_ALL,
1592 .nr_pages = LONG_MAX,
1593 .range_cyclic = 0,
1594 .done = &done,
1595 .reason = WB_REASON_SYNC,
1596 .for_sync = 1,
1597 };
1598 struct backing_dev_info *bdi = sb->s_bdi;
1599
1600 /* Nothing to do? */
1601 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1602 return;
1603 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1604
1605 wb_queue_work(&bdi->wb, &work);
1606 wait_for_completion(&done);
1607
1608 wait_sb_inodes(sb);
1609 }
1610 EXPORT_SYMBOL(sync_inodes_sb);
1611
1612 /**
1613 * write_inode_now - write an inode to disk
1614 * @inode: inode to write to disk
1615 * @sync: whether the write should be synchronous or not
1616 *
1617 * This function commits an inode to disk immediately if it is dirty. This is
1618 * primarily needed by knfsd.
1619 *
1620 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1621 */
1622 int write_inode_now(struct inode *inode, int sync)
1623 {
1624 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1625 struct writeback_control wbc = {
1626 .nr_to_write = LONG_MAX,
1627 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1628 .range_start = 0,
1629 .range_end = LLONG_MAX,
1630 };
1631
1632 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1633 wbc.nr_to_write = 0;
1634
1635 might_sleep();
1636 return writeback_single_inode(inode, wb, &wbc);
1637 }
1638 EXPORT_SYMBOL(write_inode_now);
1639
1640 /**
1641 * sync_inode - write an inode and its pages to disk.
1642 * @inode: the inode to sync
1643 * @wbc: controls the writeback mode
1644 *
1645 * sync_inode() will write an inode and its pages to disk. It will also
1646 * correctly update the inode on its superblock's dirty inode lists and will
1647 * update inode->i_state.
1648 *
1649 * The caller must have a ref on the inode.
1650 */
1651 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1652 {
1653 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1654 }
1655 EXPORT_SYMBOL(sync_inode);
1656
1657 /**
1658 * sync_inode_metadata - write an inode to disk
1659 * @inode: the inode to sync
1660 * @wait: wait for I/O to complete.
1661 *
1662 * Write an inode to disk and adjust its dirty state after completion.
1663 *
1664 * Note: only writes the actual inode, no associated data or other metadata.
1665 */
1666 int sync_inode_metadata(struct inode *inode, int wait)
1667 {
1668 struct writeback_control wbc = {
1669 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1670 .nr_to_write = 0, /* metadata-only */
1671 };
1672
1673 return sync_inode(inode, &wbc);
1674 }
1675 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.078087 seconds and 6 git commands to generate.