writeback: move backing_dev_info->wb_lock and ->worklist into bdi_writeback
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 /**
69 * writeback_in_progress - determine whether there is writeback in progress
70 * @bdi: the device's backing_dev_info structure.
71 *
72 * Determine whether there is writeback waiting to be handled against a
73 * backing device.
74 */
75 int writeback_in_progress(struct backing_dev_info *bdi)
76 {
77 return test_bit(WB_writeback_running, &bdi->wb.state);
78 }
79 EXPORT_SYMBOL(writeback_in_progress);
80
81 struct backing_dev_info *inode_to_bdi(struct inode *inode)
82 {
83 struct super_block *sb;
84
85 if (!inode)
86 return &noop_backing_dev_info;
87
88 sb = inode->i_sb;
89 #ifdef CONFIG_BLOCK
90 if (sb_is_blkdev_sb(sb))
91 return blk_get_backing_dev_info(I_BDEV(inode));
92 #endif
93 return sb->s_bdi;
94 }
95 EXPORT_SYMBOL_GPL(inode_to_bdi);
96
97 static inline struct inode *wb_inode(struct list_head *head)
98 {
99 return list_entry(head, struct inode, i_wb_list);
100 }
101
102 /*
103 * Include the creation of the trace points after defining the
104 * wb_writeback_work structure and inline functions so that the definition
105 * remains local to this file.
106 */
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/writeback.h>
109
110 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
111
112 static void wb_wakeup(struct bdi_writeback *wb)
113 {
114 spin_lock_bh(&wb->work_lock);
115 if (test_bit(WB_registered, &wb->state))
116 mod_delayed_work(bdi_wq, &wb->dwork, 0);
117 spin_unlock_bh(&wb->work_lock);
118 }
119
120 static void wb_queue_work(struct bdi_writeback *wb,
121 struct wb_writeback_work *work)
122 {
123 trace_writeback_queue(wb->bdi, work);
124
125 spin_lock_bh(&wb->work_lock);
126 if (!test_bit(WB_registered, &wb->state)) {
127 if (work->done)
128 complete(work->done);
129 goto out_unlock;
130 }
131 list_add_tail(&work->list, &wb->work_list);
132 mod_delayed_work(bdi_wq, &wb->dwork, 0);
133 out_unlock:
134 spin_unlock_bh(&wb->work_lock);
135 }
136
137 static void __wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
138 bool range_cyclic, enum wb_reason reason)
139 {
140 struct wb_writeback_work *work;
141
142 /*
143 * This is WB_SYNC_NONE writeback, so if allocation fails just
144 * wakeup the thread for old dirty data writeback
145 */
146 work = kzalloc(sizeof(*work), GFP_ATOMIC);
147 if (!work) {
148 trace_writeback_nowork(wb->bdi);
149 wb_wakeup(wb);
150 return;
151 }
152
153 work->sync_mode = WB_SYNC_NONE;
154 work->nr_pages = nr_pages;
155 work->range_cyclic = range_cyclic;
156 work->reason = reason;
157
158 wb_queue_work(wb, work);
159 }
160
161 /**
162 * bdi_start_writeback - start writeback
163 * @bdi: the backing device to write from
164 * @nr_pages: the number of pages to write
165 * @reason: reason why some writeback work was initiated
166 *
167 * Description:
168 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
169 * started when this function returns, we make no guarantees on
170 * completion. Caller need not hold sb s_umount semaphore.
171 *
172 */
173 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
174 enum wb_reason reason)
175 {
176 __wb_start_writeback(&bdi->wb, nr_pages, true, reason);
177 }
178
179 /**
180 * bdi_start_background_writeback - start background writeback
181 * @bdi: the backing device to write from
182 *
183 * Description:
184 * This makes sure WB_SYNC_NONE background writeback happens. When
185 * this function returns, it is only guaranteed that for given BDI
186 * some IO is happening if we are over background dirty threshold.
187 * Caller need not hold sb s_umount semaphore.
188 */
189 void bdi_start_background_writeback(struct backing_dev_info *bdi)
190 {
191 /*
192 * We just wake up the flusher thread. It will perform background
193 * writeback as soon as there is no other work to do.
194 */
195 trace_writeback_wake_background(bdi);
196 wb_wakeup(&bdi->wb);
197 }
198
199 /*
200 * Remove the inode from the writeback list it is on.
201 */
202 void inode_wb_list_del(struct inode *inode)
203 {
204 struct backing_dev_info *bdi = inode_to_bdi(inode);
205
206 spin_lock(&bdi->wb.list_lock);
207 list_del_init(&inode->i_wb_list);
208 spin_unlock(&bdi->wb.list_lock);
209 }
210
211 /*
212 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
213 * furthest end of its superblock's dirty-inode list.
214 *
215 * Before stamping the inode's ->dirtied_when, we check to see whether it is
216 * already the most-recently-dirtied inode on the b_dirty list. If that is
217 * the case then the inode must have been redirtied while it was being written
218 * out and we don't reset its dirtied_when.
219 */
220 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
221 {
222 assert_spin_locked(&wb->list_lock);
223 if (!list_empty(&wb->b_dirty)) {
224 struct inode *tail;
225
226 tail = wb_inode(wb->b_dirty.next);
227 if (time_before(inode->dirtied_when, tail->dirtied_when))
228 inode->dirtied_when = jiffies;
229 }
230 list_move(&inode->i_wb_list, &wb->b_dirty);
231 }
232
233 /*
234 * requeue inode for re-scanning after bdi->b_io list is exhausted.
235 */
236 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
237 {
238 assert_spin_locked(&wb->list_lock);
239 list_move(&inode->i_wb_list, &wb->b_more_io);
240 }
241
242 static void inode_sync_complete(struct inode *inode)
243 {
244 inode->i_state &= ~I_SYNC;
245 /* If inode is clean an unused, put it into LRU now... */
246 inode_add_lru(inode);
247 /* Waiters must see I_SYNC cleared before being woken up */
248 smp_mb();
249 wake_up_bit(&inode->i_state, __I_SYNC);
250 }
251
252 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
253 {
254 bool ret = time_after(inode->dirtied_when, t);
255 #ifndef CONFIG_64BIT
256 /*
257 * For inodes being constantly redirtied, dirtied_when can get stuck.
258 * It _appears_ to be in the future, but is actually in distant past.
259 * This test is necessary to prevent such wrapped-around relative times
260 * from permanently stopping the whole bdi writeback.
261 */
262 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
263 #endif
264 return ret;
265 }
266
267 #define EXPIRE_DIRTY_ATIME 0x0001
268
269 /*
270 * Move expired (dirtied before work->older_than_this) dirty inodes from
271 * @delaying_queue to @dispatch_queue.
272 */
273 static int move_expired_inodes(struct list_head *delaying_queue,
274 struct list_head *dispatch_queue,
275 int flags,
276 struct wb_writeback_work *work)
277 {
278 unsigned long *older_than_this = NULL;
279 unsigned long expire_time;
280 LIST_HEAD(tmp);
281 struct list_head *pos, *node;
282 struct super_block *sb = NULL;
283 struct inode *inode;
284 int do_sb_sort = 0;
285 int moved = 0;
286
287 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
288 older_than_this = work->older_than_this;
289 else if (!work->for_sync) {
290 expire_time = jiffies - (dirtytime_expire_interval * HZ);
291 older_than_this = &expire_time;
292 }
293 while (!list_empty(delaying_queue)) {
294 inode = wb_inode(delaying_queue->prev);
295 if (older_than_this &&
296 inode_dirtied_after(inode, *older_than_this))
297 break;
298 list_move(&inode->i_wb_list, &tmp);
299 moved++;
300 if (flags & EXPIRE_DIRTY_ATIME)
301 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
302 if (sb_is_blkdev_sb(inode->i_sb))
303 continue;
304 if (sb && sb != inode->i_sb)
305 do_sb_sort = 1;
306 sb = inode->i_sb;
307 }
308
309 /* just one sb in list, splice to dispatch_queue and we're done */
310 if (!do_sb_sort) {
311 list_splice(&tmp, dispatch_queue);
312 goto out;
313 }
314
315 /* Move inodes from one superblock together */
316 while (!list_empty(&tmp)) {
317 sb = wb_inode(tmp.prev)->i_sb;
318 list_for_each_prev_safe(pos, node, &tmp) {
319 inode = wb_inode(pos);
320 if (inode->i_sb == sb)
321 list_move(&inode->i_wb_list, dispatch_queue);
322 }
323 }
324 out:
325 return moved;
326 }
327
328 /*
329 * Queue all expired dirty inodes for io, eldest first.
330 * Before
331 * newly dirtied b_dirty b_io b_more_io
332 * =============> gf edc BA
333 * After
334 * newly dirtied b_dirty b_io b_more_io
335 * =============> g fBAedc
336 * |
337 * +--> dequeue for IO
338 */
339 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
340 {
341 int moved;
342
343 assert_spin_locked(&wb->list_lock);
344 list_splice_init(&wb->b_more_io, &wb->b_io);
345 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
346 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
347 EXPIRE_DIRTY_ATIME, work);
348 trace_writeback_queue_io(wb, work, moved);
349 }
350
351 static int write_inode(struct inode *inode, struct writeback_control *wbc)
352 {
353 int ret;
354
355 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
356 trace_writeback_write_inode_start(inode, wbc);
357 ret = inode->i_sb->s_op->write_inode(inode, wbc);
358 trace_writeback_write_inode(inode, wbc);
359 return ret;
360 }
361 return 0;
362 }
363
364 /*
365 * Wait for writeback on an inode to complete. Called with i_lock held.
366 * Caller must make sure inode cannot go away when we drop i_lock.
367 */
368 static void __inode_wait_for_writeback(struct inode *inode)
369 __releases(inode->i_lock)
370 __acquires(inode->i_lock)
371 {
372 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
373 wait_queue_head_t *wqh;
374
375 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
376 while (inode->i_state & I_SYNC) {
377 spin_unlock(&inode->i_lock);
378 __wait_on_bit(wqh, &wq, bit_wait,
379 TASK_UNINTERRUPTIBLE);
380 spin_lock(&inode->i_lock);
381 }
382 }
383
384 /*
385 * Wait for writeback on an inode to complete. Caller must have inode pinned.
386 */
387 void inode_wait_for_writeback(struct inode *inode)
388 {
389 spin_lock(&inode->i_lock);
390 __inode_wait_for_writeback(inode);
391 spin_unlock(&inode->i_lock);
392 }
393
394 /*
395 * Sleep until I_SYNC is cleared. This function must be called with i_lock
396 * held and drops it. It is aimed for callers not holding any inode reference
397 * so once i_lock is dropped, inode can go away.
398 */
399 static void inode_sleep_on_writeback(struct inode *inode)
400 __releases(inode->i_lock)
401 {
402 DEFINE_WAIT(wait);
403 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
404 int sleep;
405
406 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
407 sleep = inode->i_state & I_SYNC;
408 spin_unlock(&inode->i_lock);
409 if (sleep)
410 schedule();
411 finish_wait(wqh, &wait);
412 }
413
414 /*
415 * Find proper writeback list for the inode depending on its current state and
416 * possibly also change of its state while we were doing writeback. Here we
417 * handle things such as livelock prevention or fairness of writeback among
418 * inodes. This function can be called only by flusher thread - noone else
419 * processes all inodes in writeback lists and requeueing inodes behind flusher
420 * thread's back can have unexpected consequences.
421 */
422 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
423 struct writeback_control *wbc)
424 {
425 if (inode->i_state & I_FREEING)
426 return;
427
428 /*
429 * Sync livelock prevention. Each inode is tagged and synced in one
430 * shot. If still dirty, it will be redirty_tail()'ed below. Update
431 * the dirty time to prevent enqueue and sync it again.
432 */
433 if ((inode->i_state & I_DIRTY) &&
434 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
435 inode->dirtied_when = jiffies;
436
437 if (wbc->pages_skipped) {
438 /*
439 * writeback is not making progress due to locked
440 * buffers. Skip this inode for now.
441 */
442 redirty_tail(inode, wb);
443 return;
444 }
445
446 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
447 /*
448 * We didn't write back all the pages. nfs_writepages()
449 * sometimes bales out without doing anything.
450 */
451 if (wbc->nr_to_write <= 0) {
452 /* Slice used up. Queue for next turn. */
453 requeue_io(inode, wb);
454 } else {
455 /*
456 * Writeback blocked by something other than
457 * congestion. Delay the inode for some time to
458 * avoid spinning on the CPU (100% iowait)
459 * retrying writeback of the dirty page/inode
460 * that cannot be performed immediately.
461 */
462 redirty_tail(inode, wb);
463 }
464 } else if (inode->i_state & I_DIRTY) {
465 /*
466 * Filesystems can dirty the inode during writeback operations,
467 * such as delayed allocation during submission or metadata
468 * updates after data IO completion.
469 */
470 redirty_tail(inode, wb);
471 } else if (inode->i_state & I_DIRTY_TIME) {
472 inode->dirtied_when = jiffies;
473 list_move(&inode->i_wb_list, &wb->b_dirty_time);
474 } else {
475 /* The inode is clean. Remove from writeback lists. */
476 list_del_init(&inode->i_wb_list);
477 }
478 }
479
480 /*
481 * Write out an inode and its dirty pages. Do not update the writeback list
482 * linkage. That is left to the caller. The caller is also responsible for
483 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
484 */
485 static int
486 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
487 {
488 struct address_space *mapping = inode->i_mapping;
489 long nr_to_write = wbc->nr_to_write;
490 unsigned dirty;
491 int ret;
492
493 WARN_ON(!(inode->i_state & I_SYNC));
494
495 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
496
497 ret = do_writepages(mapping, wbc);
498
499 /*
500 * Make sure to wait on the data before writing out the metadata.
501 * This is important for filesystems that modify metadata on data
502 * I/O completion. We don't do it for sync(2) writeback because it has a
503 * separate, external IO completion path and ->sync_fs for guaranteeing
504 * inode metadata is written back correctly.
505 */
506 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
507 int err = filemap_fdatawait(mapping);
508 if (ret == 0)
509 ret = err;
510 }
511
512 /*
513 * Some filesystems may redirty the inode during the writeback
514 * due to delalloc, clear dirty metadata flags right before
515 * write_inode()
516 */
517 spin_lock(&inode->i_lock);
518
519 dirty = inode->i_state & I_DIRTY;
520 if (inode->i_state & I_DIRTY_TIME) {
521 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
522 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
523 unlikely(time_after(jiffies,
524 (inode->dirtied_time_when +
525 dirtytime_expire_interval * HZ)))) {
526 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
527 trace_writeback_lazytime(inode);
528 }
529 } else
530 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
531 inode->i_state &= ~dirty;
532
533 /*
534 * Paired with smp_mb() in __mark_inode_dirty(). This allows
535 * __mark_inode_dirty() to test i_state without grabbing i_lock -
536 * either they see the I_DIRTY bits cleared or we see the dirtied
537 * inode.
538 *
539 * I_DIRTY_PAGES is always cleared together above even if @mapping
540 * still has dirty pages. The flag is reinstated after smp_mb() if
541 * necessary. This guarantees that either __mark_inode_dirty()
542 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
543 */
544 smp_mb();
545
546 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
547 inode->i_state |= I_DIRTY_PAGES;
548
549 spin_unlock(&inode->i_lock);
550
551 if (dirty & I_DIRTY_TIME)
552 mark_inode_dirty_sync(inode);
553 /* Don't write the inode if only I_DIRTY_PAGES was set */
554 if (dirty & ~I_DIRTY_PAGES) {
555 int err = write_inode(inode, wbc);
556 if (ret == 0)
557 ret = err;
558 }
559 trace_writeback_single_inode(inode, wbc, nr_to_write);
560 return ret;
561 }
562
563 /*
564 * Write out an inode's dirty pages. Either the caller has an active reference
565 * on the inode or the inode has I_WILL_FREE set.
566 *
567 * This function is designed to be called for writing back one inode which
568 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
569 * and does more profound writeback list handling in writeback_sb_inodes().
570 */
571 static int
572 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
573 struct writeback_control *wbc)
574 {
575 int ret = 0;
576
577 spin_lock(&inode->i_lock);
578 if (!atomic_read(&inode->i_count))
579 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
580 else
581 WARN_ON(inode->i_state & I_WILL_FREE);
582
583 if (inode->i_state & I_SYNC) {
584 if (wbc->sync_mode != WB_SYNC_ALL)
585 goto out;
586 /*
587 * It's a data-integrity sync. We must wait. Since callers hold
588 * inode reference or inode has I_WILL_FREE set, it cannot go
589 * away under us.
590 */
591 __inode_wait_for_writeback(inode);
592 }
593 WARN_ON(inode->i_state & I_SYNC);
594 /*
595 * Skip inode if it is clean and we have no outstanding writeback in
596 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
597 * function since flusher thread may be doing for example sync in
598 * parallel and if we move the inode, it could get skipped. So here we
599 * make sure inode is on some writeback list and leave it there unless
600 * we have completely cleaned the inode.
601 */
602 if (!(inode->i_state & I_DIRTY_ALL) &&
603 (wbc->sync_mode != WB_SYNC_ALL ||
604 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
605 goto out;
606 inode->i_state |= I_SYNC;
607 spin_unlock(&inode->i_lock);
608
609 ret = __writeback_single_inode(inode, wbc);
610
611 spin_lock(&wb->list_lock);
612 spin_lock(&inode->i_lock);
613 /*
614 * If inode is clean, remove it from writeback lists. Otherwise don't
615 * touch it. See comment above for explanation.
616 */
617 if (!(inode->i_state & I_DIRTY_ALL))
618 list_del_init(&inode->i_wb_list);
619 spin_unlock(&wb->list_lock);
620 inode_sync_complete(inode);
621 out:
622 spin_unlock(&inode->i_lock);
623 return ret;
624 }
625
626 static long writeback_chunk_size(struct bdi_writeback *wb,
627 struct wb_writeback_work *work)
628 {
629 long pages;
630
631 /*
632 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
633 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
634 * here avoids calling into writeback_inodes_wb() more than once.
635 *
636 * The intended call sequence for WB_SYNC_ALL writeback is:
637 *
638 * wb_writeback()
639 * writeback_sb_inodes() <== called only once
640 * write_cache_pages() <== called once for each inode
641 * (quickly) tag currently dirty pages
642 * (maybe slowly) sync all tagged pages
643 */
644 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
645 pages = LONG_MAX;
646 else {
647 pages = min(wb->avg_write_bandwidth / 2,
648 global_dirty_limit / DIRTY_SCOPE);
649 pages = min(pages, work->nr_pages);
650 pages = round_down(pages + MIN_WRITEBACK_PAGES,
651 MIN_WRITEBACK_PAGES);
652 }
653
654 return pages;
655 }
656
657 /*
658 * Write a portion of b_io inodes which belong to @sb.
659 *
660 * Return the number of pages and/or inodes written.
661 */
662 static long writeback_sb_inodes(struct super_block *sb,
663 struct bdi_writeback *wb,
664 struct wb_writeback_work *work)
665 {
666 struct writeback_control wbc = {
667 .sync_mode = work->sync_mode,
668 .tagged_writepages = work->tagged_writepages,
669 .for_kupdate = work->for_kupdate,
670 .for_background = work->for_background,
671 .for_sync = work->for_sync,
672 .range_cyclic = work->range_cyclic,
673 .range_start = 0,
674 .range_end = LLONG_MAX,
675 };
676 unsigned long start_time = jiffies;
677 long write_chunk;
678 long wrote = 0; /* count both pages and inodes */
679
680 while (!list_empty(&wb->b_io)) {
681 struct inode *inode = wb_inode(wb->b_io.prev);
682
683 if (inode->i_sb != sb) {
684 if (work->sb) {
685 /*
686 * We only want to write back data for this
687 * superblock, move all inodes not belonging
688 * to it back onto the dirty list.
689 */
690 redirty_tail(inode, wb);
691 continue;
692 }
693
694 /*
695 * The inode belongs to a different superblock.
696 * Bounce back to the caller to unpin this and
697 * pin the next superblock.
698 */
699 break;
700 }
701
702 /*
703 * Don't bother with new inodes or inodes being freed, first
704 * kind does not need periodic writeout yet, and for the latter
705 * kind writeout is handled by the freer.
706 */
707 spin_lock(&inode->i_lock);
708 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
709 spin_unlock(&inode->i_lock);
710 redirty_tail(inode, wb);
711 continue;
712 }
713 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
714 /*
715 * If this inode is locked for writeback and we are not
716 * doing writeback-for-data-integrity, move it to
717 * b_more_io so that writeback can proceed with the
718 * other inodes on s_io.
719 *
720 * We'll have another go at writing back this inode
721 * when we completed a full scan of b_io.
722 */
723 spin_unlock(&inode->i_lock);
724 requeue_io(inode, wb);
725 trace_writeback_sb_inodes_requeue(inode);
726 continue;
727 }
728 spin_unlock(&wb->list_lock);
729
730 /*
731 * We already requeued the inode if it had I_SYNC set and we
732 * are doing WB_SYNC_NONE writeback. So this catches only the
733 * WB_SYNC_ALL case.
734 */
735 if (inode->i_state & I_SYNC) {
736 /* Wait for I_SYNC. This function drops i_lock... */
737 inode_sleep_on_writeback(inode);
738 /* Inode may be gone, start again */
739 spin_lock(&wb->list_lock);
740 continue;
741 }
742 inode->i_state |= I_SYNC;
743 spin_unlock(&inode->i_lock);
744
745 write_chunk = writeback_chunk_size(wb, work);
746 wbc.nr_to_write = write_chunk;
747 wbc.pages_skipped = 0;
748
749 /*
750 * We use I_SYNC to pin the inode in memory. While it is set
751 * evict_inode() will wait so the inode cannot be freed.
752 */
753 __writeback_single_inode(inode, &wbc);
754
755 work->nr_pages -= write_chunk - wbc.nr_to_write;
756 wrote += write_chunk - wbc.nr_to_write;
757 spin_lock(&wb->list_lock);
758 spin_lock(&inode->i_lock);
759 if (!(inode->i_state & I_DIRTY_ALL))
760 wrote++;
761 requeue_inode(inode, wb, &wbc);
762 inode_sync_complete(inode);
763 spin_unlock(&inode->i_lock);
764 cond_resched_lock(&wb->list_lock);
765 /*
766 * bail out to wb_writeback() often enough to check
767 * background threshold and other termination conditions.
768 */
769 if (wrote) {
770 if (time_is_before_jiffies(start_time + HZ / 10UL))
771 break;
772 if (work->nr_pages <= 0)
773 break;
774 }
775 }
776 return wrote;
777 }
778
779 static long __writeback_inodes_wb(struct bdi_writeback *wb,
780 struct wb_writeback_work *work)
781 {
782 unsigned long start_time = jiffies;
783 long wrote = 0;
784
785 while (!list_empty(&wb->b_io)) {
786 struct inode *inode = wb_inode(wb->b_io.prev);
787 struct super_block *sb = inode->i_sb;
788
789 if (!trylock_super(sb)) {
790 /*
791 * trylock_super() may fail consistently due to
792 * s_umount being grabbed by someone else. Don't use
793 * requeue_io() to avoid busy retrying the inode/sb.
794 */
795 redirty_tail(inode, wb);
796 continue;
797 }
798 wrote += writeback_sb_inodes(sb, wb, work);
799 up_read(&sb->s_umount);
800
801 /* refer to the same tests at the end of writeback_sb_inodes */
802 if (wrote) {
803 if (time_is_before_jiffies(start_time + HZ / 10UL))
804 break;
805 if (work->nr_pages <= 0)
806 break;
807 }
808 }
809 /* Leave any unwritten inodes on b_io */
810 return wrote;
811 }
812
813 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
814 enum wb_reason reason)
815 {
816 struct wb_writeback_work work = {
817 .nr_pages = nr_pages,
818 .sync_mode = WB_SYNC_NONE,
819 .range_cyclic = 1,
820 .reason = reason,
821 };
822
823 spin_lock(&wb->list_lock);
824 if (list_empty(&wb->b_io))
825 queue_io(wb, &work);
826 __writeback_inodes_wb(wb, &work);
827 spin_unlock(&wb->list_lock);
828
829 return nr_pages - work.nr_pages;
830 }
831
832 static bool over_bground_thresh(struct bdi_writeback *wb)
833 {
834 unsigned long background_thresh, dirty_thresh;
835
836 global_dirty_limits(&background_thresh, &dirty_thresh);
837
838 if (global_page_state(NR_FILE_DIRTY) +
839 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
840 return true;
841
842 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
843 return true;
844
845 return false;
846 }
847
848 /*
849 * Called under wb->list_lock. If there are multiple wb per bdi,
850 * only the flusher working on the first wb should do it.
851 */
852 static void wb_update_bandwidth(struct bdi_writeback *wb,
853 unsigned long start_time)
854 {
855 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
856 }
857
858 /*
859 * Explicit flushing or periodic writeback of "old" data.
860 *
861 * Define "old": the first time one of an inode's pages is dirtied, we mark the
862 * dirtying-time in the inode's address_space. So this periodic writeback code
863 * just walks the superblock inode list, writing back any inodes which are
864 * older than a specific point in time.
865 *
866 * Try to run once per dirty_writeback_interval. But if a writeback event
867 * takes longer than a dirty_writeback_interval interval, then leave a
868 * one-second gap.
869 *
870 * older_than_this takes precedence over nr_to_write. So we'll only write back
871 * all dirty pages if they are all attached to "old" mappings.
872 */
873 static long wb_writeback(struct bdi_writeback *wb,
874 struct wb_writeback_work *work)
875 {
876 unsigned long wb_start = jiffies;
877 long nr_pages = work->nr_pages;
878 unsigned long oldest_jif;
879 struct inode *inode;
880 long progress;
881
882 oldest_jif = jiffies;
883 work->older_than_this = &oldest_jif;
884
885 spin_lock(&wb->list_lock);
886 for (;;) {
887 /*
888 * Stop writeback when nr_pages has been consumed
889 */
890 if (work->nr_pages <= 0)
891 break;
892
893 /*
894 * Background writeout and kupdate-style writeback may
895 * run forever. Stop them if there is other work to do
896 * so that e.g. sync can proceed. They'll be restarted
897 * after the other works are all done.
898 */
899 if ((work->for_background || work->for_kupdate) &&
900 !list_empty(&wb->work_list))
901 break;
902
903 /*
904 * For background writeout, stop when we are below the
905 * background dirty threshold
906 */
907 if (work->for_background && !over_bground_thresh(wb))
908 break;
909
910 /*
911 * Kupdate and background works are special and we want to
912 * include all inodes that need writing. Livelock avoidance is
913 * handled by these works yielding to any other work so we are
914 * safe.
915 */
916 if (work->for_kupdate) {
917 oldest_jif = jiffies -
918 msecs_to_jiffies(dirty_expire_interval * 10);
919 } else if (work->for_background)
920 oldest_jif = jiffies;
921
922 trace_writeback_start(wb->bdi, work);
923 if (list_empty(&wb->b_io))
924 queue_io(wb, work);
925 if (work->sb)
926 progress = writeback_sb_inodes(work->sb, wb, work);
927 else
928 progress = __writeback_inodes_wb(wb, work);
929 trace_writeback_written(wb->bdi, work);
930
931 wb_update_bandwidth(wb, wb_start);
932
933 /*
934 * Did we write something? Try for more
935 *
936 * Dirty inodes are moved to b_io for writeback in batches.
937 * The completion of the current batch does not necessarily
938 * mean the overall work is done. So we keep looping as long
939 * as made some progress on cleaning pages or inodes.
940 */
941 if (progress)
942 continue;
943 /*
944 * No more inodes for IO, bail
945 */
946 if (list_empty(&wb->b_more_io))
947 break;
948 /*
949 * Nothing written. Wait for some inode to
950 * become available for writeback. Otherwise
951 * we'll just busyloop.
952 */
953 if (!list_empty(&wb->b_more_io)) {
954 trace_writeback_wait(wb->bdi, work);
955 inode = wb_inode(wb->b_more_io.prev);
956 spin_lock(&inode->i_lock);
957 spin_unlock(&wb->list_lock);
958 /* This function drops i_lock... */
959 inode_sleep_on_writeback(inode);
960 spin_lock(&wb->list_lock);
961 }
962 }
963 spin_unlock(&wb->list_lock);
964
965 return nr_pages - work->nr_pages;
966 }
967
968 /*
969 * Return the next wb_writeback_work struct that hasn't been processed yet.
970 */
971 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
972 {
973 struct wb_writeback_work *work = NULL;
974
975 spin_lock_bh(&wb->work_lock);
976 if (!list_empty(&wb->work_list)) {
977 work = list_entry(wb->work_list.next,
978 struct wb_writeback_work, list);
979 list_del_init(&work->list);
980 }
981 spin_unlock_bh(&wb->work_lock);
982 return work;
983 }
984
985 /*
986 * Add in the number of potentially dirty inodes, because each inode
987 * write can dirty pagecache in the underlying blockdev.
988 */
989 static unsigned long get_nr_dirty_pages(void)
990 {
991 return global_page_state(NR_FILE_DIRTY) +
992 global_page_state(NR_UNSTABLE_NFS) +
993 get_nr_dirty_inodes();
994 }
995
996 static long wb_check_background_flush(struct bdi_writeback *wb)
997 {
998 if (over_bground_thresh(wb)) {
999
1000 struct wb_writeback_work work = {
1001 .nr_pages = LONG_MAX,
1002 .sync_mode = WB_SYNC_NONE,
1003 .for_background = 1,
1004 .range_cyclic = 1,
1005 .reason = WB_REASON_BACKGROUND,
1006 };
1007
1008 return wb_writeback(wb, &work);
1009 }
1010
1011 return 0;
1012 }
1013
1014 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1015 {
1016 unsigned long expired;
1017 long nr_pages;
1018
1019 /*
1020 * When set to zero, disable periodic writeback
1021 */
1022 if (!dirty_writeback_interval)
1023 return 0;
1024
1025 expired = wb->last_old_flush +
1026 msecs_to_jiffies(dirty_writeback_interval * 10);
1027 if (time_before(jiffies, expired))
1028 return 0;
1029
1030 wb->last_old_flush = jiffies;
1031 nr_pages = get_nr_dirty_pages();
1032
1033 if (nr_pages) {
1034 struct wb_writeback_work work = {
1035 .nr_pages = nr_pages,
1036 .sync_mode = WB_SYNC_NONE,
1037 .for_kupdate = 1,
1038 .range_cyclic = 1,
1039 .reason = WB_REASON_PERIODIC,
1040 };
1041
1042 return wb_writeback(wb, &work);
1043 }
1044
1045 return 0;
1046 }
1047
1048 /*
1049 * Retrieve work items and do the writeback they describe
1050 */
1051 static long wb_do_writeback(struct bdi_writeback *wb)
1052 {
1053 struct wb_writeback_work *work;
1054 long wrote = 0;
1055
1056 set_bit(WB_writeback_running, &wb->state);
1057 while ((work = get_next_work_item(wb)) != NULL) {
1058
1059 trace_writeback_exec(wb->bdi, work);
1060
1061 wrote += wb_writeback(wb, work);
1062
1063 /*
1064 * Notify the caller of completion if this is a synchronous
1065 * work item, otherwise just free it.
1066 */
1067 if (work->done)
1068 complete(work->done);
1069 else
1070 kfree(work);
1071 }
1072
1073 /*
1074 * Check for periodic writeback, kupdated() style
1075 */
1076 wrote += wb_check_old_data_flush(wb);
1077 wrote += wb_check_background_flush(wb);
1078 clear_bit(WB_writeback_running, &wb->state);
1079
1080 return wrote;
1081 }
1082
1083 /*
1084 * Handle writeback of dirty data for the device backed by this bdi. Also
1085 * reschedules periodically and does kupdated style flushing.
1086 */
1087 void wb_workfn(struct work_struct *work)
1088 {
1089 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1090 struct bdi_writeback, dwork);
1091 long pages_written;
1092
1093 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1094 current->flags |= PF_SWAPWRITE;
1095
1096 if (likely(!current_is_workqueue_rescuer() ||
1097 !test_bit(WB_registered, &wb->state))) {
1098 /*
1099 * The normal path. Keep writing back @wb until its
1100 * work_list is empty. Note that this path is also taken
1101 * if @wb is shutting down even when we're running off the
1102 * rescuer as work_list needs to be drained.
1103 */
1104 do {
1105 pages_written = wb_do_writeback(wb);
1106 trace_writeback_pages_written(pages_written);
1107 } while (!list_empty(&wb->work_list));
1108 } else {
1109 /*
1110 * bdi_wq can't get enough workers and we're running off
1111 * the emergency worker. Don't hog it. Hopefully, 1024 is
1112 * enough for efficient IO.
1113 */
1114 pages_written = writeback_inodes_wb(wb, 1024,
1115 WB_REASON_FORKER_THREAD);
1116 trace_writeback_pages_written(pages_written);
1117 }
1118
1119 if (!list_empty(&wb->work_list))
1120 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1121 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1122 wb_wakeup_delayed(wb);
1123
1124 current->flags &= ~PF_SWAPWRITE;
1125 }
1126
1127 /*
1128 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1129 * the whole world.
1130 */
1131 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1132 {
1133 struct backing_dev_info *bdi;
1134
1135 if (!nr_pages)
1136 nr_pages = get_nr_dirty_pages();
1137
1138 rcu_read_lock();
1139 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1140 if (!bdi_has_dirty_io(bdi))
1141 continue;
1142 __wb_start_writeback(&bdi->wb, nr_pages, false, reason);
1143 }
1144 rcu_read_unlock();
1145 }
1146
1147 /*
1148 * Wake up bdi's periodically to make sure dirtytime inodes gets
1149 * written back periodically. We deliberately do *not* check the
1150 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1151 * kernel to be constantly waking up once there are any dirtytime
1152 * inodes on the system. So instead we define a separate delayed work
1153 * function which gets called much more rarely. (By default, only
1154 * once every 12 hours.)
1155 *
1156 * If there is any other write activity going on in the file system,
1157 * this function won't be necessary. But if the only thing that has
1158 * happened on the file system is a dirtytime inode caused by an atime
1159 * update, we need this infrastructure below to make sure that inode
1160 * eventually gets pushed out to disk.
1161 */
1162 static void wakeup_dirtytime_writeback(struct work_struct *w);
1163 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1164
1165 static void wakeup_dirtytime_writeback(struct work_struct *w)
1166 {
1167 struct backing_dev_info *bdi;
1168
1169 rcu_read_lock();
1170 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1171 if (list_empty(&bdi->wb.b_dirty_time))
1172 continue;
1173 wb_wakeup(&bdi->wb);
1174 }
1175 rcu_read_unlock();
1176 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1177 }
1178
1179 static int __init start_dirtytime_writeback(void)
1180 {
1181 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1182 return 0;
1183 }
1184 __initcall(start_dirtytime_writeback);
1185
1186 int dirtytime_interval_handler(struct ctl_table *table, int write,
1187 void __user *buffer, size_t *lenp, loff_t *ppos)
1188 {
1189 int ret;
1190
1191 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1192 if (ret == 0 && write)
1193 mod_delayed_work(system_wq, &dirtytime_work, 0);
1194 return ret;
1195 }
1196
1197 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1198 {
1199 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1200 struct dentry *dentry;
1201 const char *name = "?";
1202
1203 dentry = d_find_alias(inode);
1204 if (dentry) {
1205 spin_lock(&dentry->d_lock);
1206 name = (const char *) dentry->d_name.name;
1207 }
1208 printk(KERN_DEBUG
1209 "%s(%d): dirtied inode %lu (%s) on %s\n",
1210 current->comm, task_pid_nr(current), inode->i_ino,
1211 name, inode->i_sb->s_id);
1212 if (dentry) {
1213 spin_unlock(&dentry->d_lock);
1214 dput(dentry);
1215 }
1216 }
1217 }
1218
1219 /**
1220 * __mark_inode_dirty - internal function
1221 * @inode: inode to mark
1222 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1223 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1224 * mark_inode_dirty_sync.
1225 *
1226 * Put the inode on the super block's dirty list.
1227 *
1228 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1229 * dirty list only if it is hashed or if it refers to a blockdev.
1230 * If it was not hashed, it will never be added to the dirty list
1231 * even if it is later hashed, as it will have been marked dirty already.
1232 *
1233 * In short, make sure you hash any inodes _before_ you start marking
1234 * them dirty.
1235 *
1236 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1237 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1238 * the kernel-internal blockdev inode represents the dirtying time of the
1239 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1240 * page->mapping->host, so the page-dirtying time is recorded in the internal
1241 * blockdev inode.
1242 */
1243 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1244 void __mark_inode_dirty(struct inode *inode, int flags)
1245 {
1246 struct super_block *sb = inode->i_sb;
1247 struct backing_dev_info *bdi = NULL;
1248 int dirtytime;
1249
1250 trace_writeback_mark_inode_dirty(inode, flags);
1251
1252 /*
1253 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1254 * dirty the inode itself
1255 */
1256 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1257 trace_writeback_dirty_inode_start(inode, flags);
1258
1259 if (sb->s_op->dirty_inode)
1260 sb->s_op->dirty_inode(inode, flags);
1261
1262 trace_writeback_dirty_inode(inode, flags);
1263 }
1264 if (flags & I_DIRTY_INODE)
1265 flags &= ~I_DIRTY_TIME;
1266 dirtytime = flags & I_DIRTY_TIME;
1267
1268 /*
1269 * Paired with smp_mb() in __writeback_single_inode() for the
1270 * following lockless i_state test. See there for details.
1271 */
1272 smp_mb();
1273
1274 if (((inode->i_state & flags) == flags) ||
1275 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1276 return;
1277
1278 if (unlikely(block_dump))
1279 block_dump___mark_inode_dirty(inode);
1280
1281 spin_lock(&inode->i_lock);
1282 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1283 goto out_unlock_inode;
1284 if ((inode->i_state & flags) != flags) {
1285 const int was_dirty = inode->i_state & I_DIRTY;
1286
1287 if (flags & I_DIRTY_INODE)
1288 inode->i_state &= ~I_DIRTY_TIME;
1289 inode->i_state |= flags;
1290
1291 /*
1292 * If the inode is being synced, just update its dirty state.
1293 * The unlocker will place the inode on the appropriate
1294 * superblock list, based upon its state.
1295 */
1296 if (inode->i_state & I_SYNC)
1297 goto out_unlock_inode;
1298
1299 /*
1300 * Only add valid (hashed) inodes to the superblock's
1301 * dirty list. Add blockdev inodes as well.
1302 */
1303 if (!S_ISBLK(inode->i_mode)) {
1304 if (inode_unhashed(inode))
1305 goto out_unlock_inode;
1306 }
1307 if (inode->i_state & I_FREEING)
1308 goto out_unlock_inode;
1309
1310 /*
1311 * If the inode was already on b_dirty/b_io/b_more_io, don't
1312 * reposition it (that would break b_dirty time-ordering).
1313 */
1314 if (!was_dirty) {
1315 bool wakeup_bdi = false;
1316 bdi = inode_to_bdi(inode);
1317
1318 spin_unlock(&inode->i_lock);
1319 spin_lock(&bdi->wb.list_lock);
1320 if (bdi_cap_writeback_dirty(bdi)) {
1321 WARN(!test_bit(WB_registered, &bdi->wb.state),
1322 "bdi-%s not registered\n", bdi->name);
1323
1324 /*
1325 * If this is the first dirty inode for this
1326 * bdi, we have to wake-up the corresponding
1327 * bdi thread to make sure background
1328 * write-back happens later.
1329 */
1330 if (!wb_has_dirty_io(&bdi->wb))
1331 wakeup_bdi = true;
1332 }
1333
1334 inode->dirtied_when = jiffies;
1335 if (dirtytime)
1336 inode->dirtied_time_when = jiffies;
1337 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1338 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1339 else
1340 list_move(&inode->i_wb_list,
1341 &bdi->wb.b_dirty_time);
1342 spin_unlock(&bdi->wb.list_lock);
1343 trace_writeback_dirty_inode_enqueue(inode);
1344
1345 if (wakeup_bdi)
1346 wb_wakeup_delayed(&bdi->wb);
1347 return;
1348 }
1349 }
1350 out_unlock_inode:
1351 spin_unlock(&inode->i_lock);
1352
1353 }
1354 EXPORT_SYMBOL(__mark_inode_dirty);
1355
1356 static void wait_sb_inodes(struct super_block *sb)
1357 {
1358 struct inode *inode, *old_inode = NULL;
1359
1360 /*
1361 * We need to be protected against the filesystem going from
1362 * r/o to r/w or vice versa.
1363 */
1364 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1365
1366 spin_lock(&inode_sb_list_lock);
1367
1368 /*
1369 * Data integrity sync. Must wait for all pages under writeback,
1370 * because there may have been pages dirtied before our sync
1371 * call, but which had writeout started before we write it out.
1372 * In which case, the inode may not be on the dirty list, but
1373 * we still have to wait for that writeout.
1374 */
1375 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1376 struct address_space *mapping = inode->i_mapping;
1377
1378 spin_lock(&inode->i_lock);
1379 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1380 (mapping->nrpages == 0)) {
1381 spin_unlock(&inode->i_lock);
1382 continue;
1383 }
1384 __iget(inode);
1385 spin_unlock(&inode->i_lock);
1386 spin_unlock(&inode_sb_list_lock);
1387
1388 /*
1389 * We hold a reference to 'inode' so it couldn't have been
1390 * removed from s_inodes list while we dropped the
1391 * inode_sb_list_lock. We cannot iput the inode now as we can
1392 * be holding the last reference and we cannot iput it under
1393 * inode_sb_list_lock. So we keep the reference and iput it
1394 * later.
1395 */
1396 iput(old_inode);
1397 old_inode = inode;
1398
1399 filemap_fdatawait(mapping);
1400
1401 cond_resched();
1402
1403 spin_lock(&inode_sb_list_lock);
1404 }
1405 spin_unlock(&inode_sb_list_lock);
1406 iput(old_inode);
1407 }
1408
1409 /**
1410 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1411 * @sb: the superblock
1412 * @nr: the number of pages to write
1413 * @reason: reason why some writeback work initiated
1414 *
1415 * Start writeback on some inodes on this super_block. No guarantees are made
1416 * on how many (if any) will be written, and this function does not wait
1417 * for IO completion of submitted IO.
1418 */
1419 void writeback_inodes_sb_nr(struct super_block *sb,
1420 unsigned long nr,
1421 enum wb_reason reason)
1422 {
1423 DECLARE_COMPLETION_ONSTACK(done);
1424 struct wb_writeback_work work = {
1425 .sb = sb,
1426 .sync_mode = WB_SYNC_NONE,
1427 .tagged_writepages = 1,
1428 .done = &done,
1429 .nr_pages = nr,
1430 .reason = reason,
1431 };
1432
1433 if (sb->s_bdi == &noop_backing_dev_info)
1434 return;
1435 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1436 wb_queue_work(&sb->s_bdi->wb, &work);
1437 wait_for_completion(&done);
1438 }
1439 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1440
1441 /**
1442 * writeback_inodes_sb - writeback dirty inodes from given super_block
1443 * @sb: the superblock
1444 * @reason: reason why some writeback work was initiated
1445 *
1446 * Start writeback on some inodes on this super_block. No guarantees are made
1447 * on how many (if any) will be written, and this function does not wait
1448 * for IO completion of submitted IO.
1449 */
1450 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1451 {
1452 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1453 }
1454 EXPORT_SYMBOL(writeback_inodes_sb);
1455
1456 /**
1457 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1458 * @sb: the superblock
1459 * @nr: the number of pages to write
1460 * @reason: the reason of writeback
1461 *
1462 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1463 * Returns 1 if writeback was started, 0 if not.
1464 */
1465 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1466 unsigned long nr,
1467 enum wb_reason reason)
1468 {
1469 if (writeback_in_progress(sb->s_bdi))
1470 return 1;
1471
1472 if (!down_read_trylock(&sb->s_umount))
1473 return 0;
1474
1475 writeback_inodes_sb_nr(sb, nr, reason);
1476 up_read(&sb->s_umount);
1477 return 1;
1478 }
1479 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1480
1481 /**
1482 * try_to_writeback_inodes_sb - try to start writeback if none underway
1483 * @sb: the superblock
1484 * @reason: reason why some writeback work was initiated
1485 *
1486 * Implement by try_to_writeback_inodes_sb_nr()
1487 * Returns 1 if writeback was started, 0 if not.
1488 */
1489 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1490 {
1491 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1492 }
1493 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1494
1495 /**
1496 * sync_inodes_sb - sync sb inode pages
1497 * @sb: the superblock
1498 *
1499 * This function writes and waits on any dirty inode belonging to this
1500 * super_block.
1501 */
1502 void sync_inodes_sb(struct super_block *sb)
1503 {
1504 DECLARE_COMPLETION_ONSTACK(done);
1505 struct wb_writeback_work work = {
1506 .sb = sb,
1507 .sync_mode = WB_SYNC_ALL,
1508 .nr_pages = LONG_MAX,
1509 .range_cyclic = 0,
1510 .done = &done,
1511 .reason = WB_REASON_SYNC,
1512 .for_sync = 1,
1513 };
1514
1515 /* Nothing to do? */
1516 if (sb->s_bdi == &noop_backing_dev_info)
1517 return;
1518 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1519
1520 wb_queue_work(&sb->s_bdi->wb, &work);
1521 wait_for_completion(&done);
1522
1523 wait_sb_inodes(sb);
1524 }
1525 EXPORT_SYMBOL(sync_inodes_sb);
1526
1527 /**
1528 * write_inode_now - write an inode to disk
1529 * @inode: inode to write to disk
1530 * @sync: whether the write should be synchronous or not
1531 *
1532 * This function commits an inode to disk immediately if it is dirty. This is
1533 * primarily needed by knfsd.
1534 *
1535 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1536 */
1537 int write_inode_now(struct inode *inode, int sync)
1538 {
1539 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1540 struct writeback_control wbc = {
1541 .nr_to_write = LONG_MAX,
1542 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1543 .range_start = 0,
1544 .range_end = LLONG_MAX,
1545 };
1546
1547 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1548 wbc.nr_to_write = 0;
1549
1550 might_sleep();
1551 return writeback_single_inode(inode, wb, &wbc);
1552 }
1553 EXPORT_SYMBOL(write_inode_now);
1554
1555 /**
1556 * sync_inode - write an inode and its pages to disk.
1557 * @inode: the inode to sync
1558 * @wbc: controls the writeback mode
1559 *
1560 * sync_inode() will write an inode and its pages to disk. It will also
1561 * correctly update the inode on its superblock's dirty inode lists and will
1562 * update inode->i_state.
1563 *
1564 * The caller must have a ref on the inode.
1565 */
1566 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1567 {
1568 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1569 }
1570 EXPORT_SYMBOL(sync_inode);
1571
1572 /**
1573 * sync_inode_metadata - write an inode to disk
1574 * @inode: the inode to sync
1575 * @wait: wait for I/O to complete.
1576 *
1577 * Write an inode to disk and adjust its dirty state after completion.
1578 *
1579 * Note: only writes the actual inode, no associated data or other metadata.
1580 */
1581 int sync_inode_metadata(struct inode *inode, int wait)
1582 {
1583 struct writeback_control wbc = {
1584 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1585 .nr_to_write = 0, /* metadata-only */
1586 };
1587
1588 return sync_inode(inode, &wbc);
1589 }
1590 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.061374 seconds and 6 git commands to generate.