writeback: make wakeup_flusher_threads() handle multiple bdi_writeback's
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /*
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
65 */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67
68 static inline struct inode *wb_inode(struct list_head *head)
69 {
70 return list_entry(head, struct inode, i_wb_list);
71 }
72
73 /*
74 * Include the creation of the trace points after defining the
75 * wb_writeback_work structure and inline functions so that the definition
76 * remains local to this file.
77 */
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/writeback.h>
80
81 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
82
83 static bool wb_io_lists_populated(struct bdi_writeback *wb)
84 {
85 if (wb_has_dirty_io(wb)) {
86 return false;
87 } else {
88 set_bit(WB_has_dirty_io, &wb->state);
89 WARN_ON_ONCE(!wb->avg_write_bandwidth);
90 atomic_long_add(wb->avg_write_bandwidth,
91 &wb->bdi->tot_write_bandwidth);
92 return true;
93 }
94 }
95
96 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
97 {
98 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
99 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
100 clear_bit(WB_has_dirty_io, &wb->state);
101 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
102 &wb->bdi->tot_write_bandwidth) < 0);
103 }
104 }
105
106 /**
107 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
108 * @inode: inode to be moved
109 * @wb: target bdi_writeback
110 * @head: one of @wb->b_{dirty|io|more_io}
111 *
112 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
113 * Returns %true if @inode is the first occupant of the !dirty_time IO
114 * lists; otherwise, %false.
115 */
116 static bool inode_wb_list_move_locked(struct inode *inode,
117 struct bdi_writeback *wb,
118 struct list_head *head)
119 {
120 assert_spin_locked(&wb->list_lock);
121
122 list_move(&inode->i_wb_list, head);
123
124 /* dirty_time doesn't count as dirty_io until expiration */
125 if (head != &wb->b_dirty_time)
126 return wb_io_lists_populated(wb);
127
128 wb_io_lists_depopulated(wb);
129 return false;
130 }
131
132 /**
133 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
134 * @inode: inode to be removed
135 * @wb: bdi_writeback @inode is being removed from
136 *
137 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
138 * clear %WB_has_dirty_io if all are empty afterwards.
139 */
140 static void inode_wb_list_del_locked(struct inode *inode,
141 struct bdi_writeback *wb)
142 {
143 assert_spin_locked(&wb->list_lock);
144
145 list_del_init(&inode->i_wb_list);
146 wb_io_lists_depopulated(wb);
147 }
148
149 static void wb_wakeup(struct bdi_writeback *wb)
150 {
151 spin_lock_bh(&wb->work_lock);
152 if (test_bit(WB_registered, &wb->state))
153 mod_delayed_work(bdi_wq, &wb->dwork, 0);
154 spin_unlock_bh(&wb->work_lock);
155 }
156
157 static void wb_queue_work(struct bdi_writeback *wb,
158 struct wb_writeback_work *work)
159 {
160 trace_writeback_queue(wb->bdi, work);
161
162 spin_lock_bh(&wb->work_lock);
163 if (!test_bit(WB_registered, &wb->state)) {
164 if (work->done)
165 complete(work->done);
166 goto out_unlock;
167 }
168 list_add_tail(&work->list, &wb->work_list);
169 mod_delayed_work(bdi_wq, &wb->dwork, 0);
170 out_unlock:
171 spin_unlock_bh(&wb->work_lock);
172 }
173
174 #ifdef CONFIG_CGROUP_WRITEBACK
175
176 /**
177 * inode_congested - test whether an inode is congested
178 * @inode: inode to test for congestion
179 * @cong_bits: mask of WB_[a]sync_congested bits to test
180 *
181 * Tests whether @inode is congested. @cong_bits is the mask of congestion
182 * bits to test and the return value is the mask of set bits.
183 *
184 * If cgroup writeback is enabled for @inode, the congestion state is
185 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
186 * associated with @inode is congested; otherwise, the root wb's congestion
187 * state is used.
188 */
189 int inode_congested(struct inode *inode, int cong_bits)
190 {
191 if (inode) {
192 struct bdi_writeback *wb = inode_to_wb(inode);
193 if (wb)
194 return wb_congested(wb, cong_bits);
195 }
196
197 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
198 }
199 EXPORT_SYMBOL_GPL(inode_congested);
200
201 /**
202 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
203 * @wb: target bdi_writeback to split @nr_pages to
204 * @nr_pages: number of pages to write for the whole bdi
205 *
206 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
207 * relation to the total write bandwidth of all wb's w/ dirty inodes on
208 * @wb->bdi.
209 */
210 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
211 {
212 unsigned long this_bw = wb->avg_write_bandwidth;
213 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
214
215 if (nr_pages == LONG_MAX)
216 return LONG_MAX;
217
218 /*
219 * This may be called on clean wb's and proportional distribution
220 * may not make sense, just use the original @nr_pages in those
221 * cases. In general, we wanna err on the side of writing more.
222 */
223 if (!tot_bw || this_bw >= tot_bw)
224 return nr_pages;
225 else
226 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
227 }
228
229 #else /* CONFIG_CGROUP_WRITEBACK */
230
231 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
232 {
233 return nr_pages;
234 }
235
236 #endif /* CONFIG_CGROUP_WRITEBACK */
237
238 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
239 bool range_cyclic, enum wb_reason reason)
240 {
241 struct wb_writeback_work *work;
242
243 if (!wb_has_dirty_io(wb))
244 return;
245
246 /*
247 * This is WB_SYNC_NONE writeback, so if allocation fails just
248 * wakeup the thread for old dirty data writeback
249 */
250 work = kzalloc(sizeof(*work), GFP_ATOMIC);
251 if (!work) {
252 trace_writeback_nowork(wb->bdi);
253 wb_wakeup(wb);
254 return;
255 }
256
257 work->sync_mode = WB_SYNC_NONE;
258 work->nr_pages = nr_pages;
259 work->range_cyclic = range_cyclic;
260 work->reason = reason;
261
262 wb_queue_work(wb, work);
263 }
264
265 /**
266 * wb_start_background_writeback - start background writeback
267 * @wb: bdi_writback to write from
268 *
269 * Description:
270 * This makes sure WB_SYNC_NONE background writeback happens. When
271 * this function returns, it is only guaranteed that for given wb
272 * some IO is happening if we are over background dirty threshold.
273 * Caller need not hold sb s_umount semaphore.
274 */
275 void wb_start_background_writeback(struct bdi_writeback *wb)
276 {
277 /*
278 * We just wake up the flusher thread. It will perform background
279 * writeback as soon as there is no other work to do.
280 */
281 trace_writeback_wake_background(wb->bdi);
282 wb_wakeup(wb);
283 }
284
285 /*
286 * Remove the inode from the writeback list it is on.
287 */
288 void inode_wb_list_del(struct inode *inode)
289 {
290 struct bdi_writeback *wb = inode_to_wb(inode);
291
292 spin_lock(&wb->list_lock);
293 inode_wb_list_del_locked(inode, wb);
294 spin_unlock(&wb->list_lock);
295 }
296
297 /*
298 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
299 * furthest end of its superblock's dirty-inode list.
300 *
301 * Before stamping the inode's ->dirtied_when, we check to see whether it is
302 * already the most-recently-dirtied inode on the b_dirty list. If that is
303 * the case then the inode must have been redirtied while it was being written
304 * out and we don't reset its dirtied_when.
305 */
306 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
307 {
308 if (!list_empty(&wb->b_dirty)) {
309 struct inode *tail;
310
311 tail = wb_inode(wb->b_dirty.next);
312 if (time_before(inode->dirtied_when, tail->dirtied_when))
313 inode->dirtied_when = jiffies;
314 }
315 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
316 }
317
318 /*
319 * requeue inode for re-scanning after bdi->b_io list is exhausted.
320 */
321 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
322 {
323 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
324 }
325
326 static void inode_sync_complete(struct inode *inode)
327 {
328 inode->i_state &= ~I_SYNC;
329 /* If inode is clean an unused, put it into LRU now... */
330 inode_add_lru(inode);
331 /* Waiters must see I_SYNC cleared before being woken up */
332 smp_mb();
333 wake_up_bit(&inode->i_state, __I_SYNC);
334 }
335
336 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
337 {
338 bool ret = time_after(inode->dirtied_when, t);
339 #ifndef CONFIG_64BIT
340 /*
341 * For inodes being constantly redirtied, dirtied_when can get stuck.
342 * It _appears_ to be in the future, but is actually in distant past.
343 * This test is necessary to prevent such wrapped-around relative times
344 * from permanently stopping the whole bdi writeback.
345 */
346 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
347 #endif
348 return ret;
349 }
350
351 #define EXPIRE_DIRTY_ATIME 0x0001
352
353 /*
354 * Move expired (dirtied before work->older_than_this) dirty inodes from
355 * @delaying_queue to @dispatch_queue.
356 */
357 static int move_expired_inodes(struct list_head *delaying_queue,
358 struct list_head *dispatch_queue,
359 int flags,
360 struct wb_writeback_work *work)
361 {
362 unsigned long *older_than_this = NULL;
363 unsigned long expire_time;
364 LIST_HEAD(tmp);
365 struct list_head *pos, *node;
366 struct super_block *sb = NULL;
367 struct inode *inode;
368 int do_sb_sort = 0;
369 int moved = 0;
370
371 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
372 older_than_this = work->older_than_this;
373 else if (!work->for_sync) {
374 expire_time = jiffies - (dirtytime_expire_interval * HZ);
375 older_than_this = &expire_time;
376 }
377 while (!list_empty(delaying_queue)) {
378 inode = wb_inode(delaying_queue->prev);
379 if (older_than_this &&
380 inode_dirtied_after(inode, *older_than_this))
381 break;
382 list_move(&inode->i_wb_list, &tmp);
383 moved++;
384 if (flags & EXPIRE_DIRTY_ATIME)
385 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
386 if (sb_is_blkdev_sb(inode->i_sb))
387 continue;
388 if (sb && sb != inode->i_sb)
389 do_sb_sort = 1;
390 sb = inode->i_sb;
391 }
392
393 /* just one sb in list, splice to dispatch_queue and we're done */
394 if (!do_sb_sort) {
395 list_splice(&tmp, dispatch_queue);
396 goto out;
397 }
398
399 /* Move inodes from one superblock together */
400 while (!list_empty(&tmp)) {
401 sb = wb_inode(tmp.prev)->i_sb;
402 list_for_each_prev_safe(pos, node, &tmp) {
403 inode = wb_inode(pos);
404 if (inode->i_sb == sb)
405 list_move(&inode->i_wb_list, dispatch_queue);
406 }
407 }
408 out:
409 return moved;
410 }
411
412 /*
413 * Queue all expired dirty inodes for io, eldest first.
414 * Before
415 * newly dirtied b_dirty b_io b_more_io
416 * =============> gf edc BA
417 * After
418 * newly dirtied b_dirty b_io b_more_io
419 * =============> g fBAedc
420 * |
421 * +--> dequeue for IO
422 */
423 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
424 {
425 int moved;
426
427 assert_spin_locked(&wb->list_lock);
428 list_splice_init(&wb->b_more_io, &wb->b_io);
429 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
430 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
431 EXPIRE_DIRTY_ATIME, work);
432 if (moved)
433 wb_io_lists_populated(wb);
434 trace_writeback_queue_io(wb, work, moved);
435 }
436
437 static int write_inode(struct inode *inode, struct writeback_control *wbc)
438 {
439 int ret;
440
441 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
442 trace_writeback_write_inode_start(inode, wbc);
443 ret = inode->i_sb->s_op->write_inode(inode, wbc);
444 trace_writeback_write_inode(inode, wbc);
445 return ret;
446 }
447 return 0;
448 }
449
450 /*
451 * Wait for writeback on an inode to complete. Called with i_lock held.
452 * Caller must make sure inode cannot go away when we drop i_lock.
453 */
454 static void __inode_wait_for_writeback(struct inode *inode)
455 __releases(inode->i_lock)
456 __acquires(inode->i_lock)
457 {
458 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
459 wait_queue_head_t *wqh;
460
461 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
462 while (inode->i_state & I_SYNC) {
463 spin_unlock(&inode->i_lock);
464 __wait_on_bit(wqh, &wq, bit_wait,
465 TASK_UNINTERRUPTIBLE);
466 spin_lock(&inode->i_lock);
467 }
468 }
469
470 /*
471 * Wait for writeback on an inode to complete. Caller must have inode pinned.
472 */
473 void inode_wait_for_writeback(struct inode *inode)
474 {
475 spin_lock(&inode->i_lock);
476 __inode_wait_for_writeback(inode);
477 spin_unlock(&inode->i_lock);
478 }
479
480 /*
481 * Sleep until I_SYNC is cleared. This function must be called with i_lock
482 * held and drops it. It is aimed for callers not holding any inode reference
483 * so once i_lock is dropped, inode can go away.
484 */
485 static void inode_sleep_on_writeback(struct inode *inode)
486 __releases(inode->i_lock)
487 {
488 DEFINE_WAIT(wait);
489 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
490 int sleep;
491
492 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
493 sleep = inode->i_state & I_SYNC;
494 spin_unlock(&inode->i_lock);
495 if (sleep)
496 schedule();
497 finish_wait(wqh, &wait);
498 }
499
500 /*
501 * Find proper writeback list for the inode depending on its current state and
502 * possibly also change of its state while we were doing writeback. Here we
503 * handle things such as livelock prevention or fairness of writeback among
504 * inodes. This function can be called only by flusher thread - noone else
505 * processes all inodes in writeback lists and requeueing inodes behind flusher
506 * thread's back can have unexpected consequences.
507 */
508 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
509 struct writeback_control *wbc)
510 {
511 if (inode->i_state & I_FREEING)
512 return;
513
514 /*
515 * Sync livelock prevention. Each inode is tagged and synced in one
516 * shot. If still dirty, it will be redirty_tail()'ed below. Update
517 * the dirty time to prevent enqueue and sync it again.
518 */
519 if ((inode->i_state & I_DIRTY) &&
520 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
521 inode->dirtied_when = jiffies;
522
523 if (wbc->pages_skipped) {
524 /*
525 * writeback is not making progress due to locked
526 * buffers. Skip this inode for now.
527 */
528 redirty_tail(inode, wb);
529 return;
530 }
531
532 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
533 /*
534 * We didn't write back all the pages. nfs_writepages()
535 * sometimes bales out without doing anything.
536 */
537 if (wbc->nr_to_write <= 0) {
538 /* Slice used up. Queue for next turn. */
539 requeue_io(inode, wb);
540 } else {
541 /*
542 * Writeback blocked by something other than
543 * congestion. Delay the inode for some time to
544 * avoid spinning on the CPU (100% iowait)
545 * retrying writeback of the dirty page/inode
546 * that cannot be performed immediately.
547 */
548 redirty_tail(inode, wb);
549 }
550 } else if (inode->i_state & I_DIRTY) {
551 /*
552 * Filesystems can dirty the inode during writeback operations,
553 * such as delayed allocation during submission or metadata
554 * updates after data IO completion.
555 */
556 redirty_tail(inode, wb);
557 } else if (inode->i_state & I_DIRTY_TIME) {
558 inode->dirtied_when = jiffies;
559 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
560 } else {
561 /* The inode is clean. Remove from writeback lists. */
562 inode_wb_list_del_locked(inode, wb);
563 }
564 }
565
566 /*
567 * Write out an inode and its dirty pages. Do not update the writeback list
568 * linkage. That is left to the caller. The caller is also responsible for
569 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
570 */
571 static int
572 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
573 {
574 struct address_space *mapping = inode->i_mapping;
575 long nr_to_write = wbc->nr_to_write;
576 unsigned dirty;
577 int ret;
578
579 WARN_ON(!(inode->i_state & I_SYNC));
580
581 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
582
583 ret = do_writepages(mapping, wbc);
584
585 /*
586 * Make sure to wait on the data before writing out the metadata.
587 * This is important for filesystems that modify metadata on data
588 * I/O completion. We don't do it for sync(2) writeback because it has a
589 * separate, external IO completion path and ->sync_fs for guaranteeing
590 * inode metadata is written back correctly.
591 */
592 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
593 int err = filemap_fdatawait(mapping);
594 if (ret == 0)
595 ret = err;
596 }
597
598 /*
599 * Some filesystems may redirty the inode during the writeback
600 * due to delalloc, clear dirty metadata flags right before
601 * write_inode()
602 */
603 spin_lock(&inode->i_lock);
604
605 dirty = inode->i_state & I_DIRTY;
606 if (inode->i_state & I_DIRTY_TIME) {
607 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
608 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
609 unlikely(time_after(jiffies,
610 (inode->dirtied_time_when +
611 dirtytime_expire_interval * HZ)))) {
612 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
613 trace_writeback_lazytime(inode);
614 }
615 } else
616 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
617 inode->i_state &= ~dirty;
618
619 /*
620 * Paired with smp_mb() in __mark_inode_dirty(). This allows
621 * __mark_inode_dirty() to test i_state without grabbing i_lock -
622 * either they see the I_DIRTY bits cleared or we see the dirtied
623 * inode.
624 *
625 * I_DIRTY_PAGES is always cleared together above even if @mapping
626 * still has dirty pages. The flag is reinstated after smp_mb() if
627 * necessary. This guarantees that either __mark_inode_dirty()
628 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
629 */
630 smp_mb();
631
632 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
633 inode->i_state |= I_DIRTY_PAGES;
634
635 spin_unlock(&inode->i_lock);
636
637 if (dirty & I_DIRTY_TIME)
638 mark_inode_dirty_sync(inode);
639 /* Don't write the inode if only I_DIRTY_PAGES was set */
640 if (dirty & ~I_DIRTY_PAGES) {
641 int err = write_inode(inode, wbc);
642 if (ret == 0)
643 ret = err;
644 }
645 trace_writeback_single_inode(inode, wbc, nr_to_write);
646 return ret;
647 }
648
649 /*
650 * Write out an inode's dirty pages. Either the caller has an active reference
651 * on the inode or the inode has I_WILL_FREE set.
652 *
653 * This function is designed to be called for writing back one inode which
654 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
655 * and does more profound writeback list handling in writeback_sb_inodes().
656 */
657 static int
658 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
659 struct writeback_control *wbc)
660 {
661 int ret = 0;
662
663 spin_lock(&inode->i_lock);
664 if (!atomic_read(&inode->i_count))
665 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
666 else
667 WARN_ON(inode->i_state & I_WILL_FREE);
668
669 if (inode->i_state & I_SYNC) {
670 if (wbc->sync_mode != WB_SYNC_ALL)
671 goto out;
672 /*
673 * It's a data-integrity sync. We must wait. Since callers hold
674 * inode reference or inode has I_WILL_FREE set, it cannot go
675 * away under us.
676 */
677 __inode_wait_for_writeback(inode);
678 }
679 WARN_ON(inode->i_state & I_SYNC);
680 /*
681 * Skip inode if it is clean and we have no outstanding writeback in
682 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
683 * function since flusher thread may be doing for example sync in
684 * parallel and if we move the inode, it could get skipped. So here we
685 * make sure inode is on some writeback list and leave it there unless
686 * we have completely cleaned the inode.
687 */
688 if (!(inode->i_state & I_DIRTY_ALL) &&
689 (wbc->sync_mode != WB_SYNC_ALL ||
690 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
691 goto out;
692 inode->i_state |= I_SYNC;
693 spin_unlock(&inode->i_lock);
694
695 ret = __writeback_single_inode(inode, wbc);
696
697 spin_lock(&wb->list_lock);
698 spin_lock(&inode->i_lock);
699 /*
700 * If inode is clean, remove it from writeback lists. Otherwise don't
701 * touch it. See comment above for explanation.
702 */
703 if (!(inode->i_state & I_DIRTY_ALL))
704 inode_wb_list_del_locked(inode, wb);
705 spin_unlock(&wb->list_lock);
706 inode_sync_complete(inode);
707 out:
708 spin_unlock(&inode->i_lock);
709 return ret;
710 }
711
712 static long writeback_chunk_size(struct bdi_writeback *wb,
713 struct wb_writeback_work *work)
714 {
715 long pages;
716
717 /*
718 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
719 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
720 * here avoids calling into writeback_inodes_wb() more than once.
721 *
722 * The intended call sequence for WB_SYNC_ALL writeback is:
723 *
724 * wb_writeback()
725 * writeback_sb_inodes() <== called only once
726 * write_cache_pages() <== called once for each inode
727 * (quickly) tag currently dirty pages
728 * (maybe slowly) sync all tagged pages
729 */
730 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
731 pages = LONG_MAX;
732 else {
733 pages = min(wb->avg_write_bandwidth / 2,
734 global_dirty_limit / DIRTY_SCOPE);
735 pages = min(pages, work->nr_pages);
736 pages = round_down(pages + MIN_WRITEBACK_PAGES,
737 MIN_WRITEBACK_PAGES);
738 }
739
740 return pages;
741 }
742
743 /*
744 * Write a portion of b_io inodes which belong to @sb.
745 *
746 * Return the number of pages and/or inodes written.
747 */
748 static long writeback_sb_inodes(struct super_block *sb,
749 struct bdi_writeback *wb,
750 struct wb_writeback_work *work)
751 {
752 struct writeback_control wbc = {
753 .sync_mode = work->sync_mode,
754 .tagged_writepages = work->tagged_writepages,
755 .for_kupdate = work->for_kupdate,
756 .for_background = work->for_background,
757 .for_sync = work->for_sync,
758 .range_cyclic = work->range_cyclic,
759 .range_start = 0,
760 .range_end = LLONG_MAX,
761 };
762 unsigned long start_time = jiffies;
763 long write_chunk;
764 long wrote = 0; /* count both pages and inodes */
765
766 while (!list_empty(&wb->b_io)) {
767 struct inode *inode = wb_inode(wb->b_io.prev);
768
769 if (inode->i_sb != sb) {
770 if (work->sb) {
771 /*
772 * We only want to write back data for this
773 * superblock, move all inodes not belonging
774 * to it back onto the dirty list.
775 */
776 redirty_tail(inode, wb);
777 continue;
778 }
779
780 /*
781 * The inode belongs to a different superblock.
782 * Bounce back to the caller to unpin this and
783 * pin the next superblock.
784 */
785 break;
786 }
787
788 /*
789 * Don't bother with new inodes or inodes being freed, first
790 * kind does not need periodic writeout yet, and for the latter
791 * kind writeout is handled by the freer.
792 */
793 spin_lock(&inode->i_lock);
794 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
795 spin_unlock(&inode->i_lock);
796 redirty_tail(inode, wb);
797 continue;
798 }
799 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
800 /*
801 * If this inode is locked for writeback and we are not
802 * doing writeback-for-data-integrity, move it to
803 * b_more_io so that writeback can proceed with the
804 * other inodes on s_io.
805 *
806 * We'll have another go at writing back this inode
807 * when we completed a full scan of b_io.
808 */
809 spin_unlock(&inode->i_lock);
810 requeue_io(inode, wb);
811 trace_writeback_sb_inodes_requeue(inode);
812 continue;
813 }
814 spin_unlock(&wb->list_lock);
815
816 /*
817 * We already requeued the inode if it had I_SYNC set and we
818 * are doing WB_SYNC_NONE writeback. So this catches only the
819 * WB_SYNC_ALL case.
820 */
821 if (inode->i_state & I_SYNC) {
822 /* Wait for I_SYNC. This function drops i_lock... */
823 inode_sleep_on_writeback(inode);
824 /* Inode may be gone, start again */
825 spin_lock(&wb->list_lock);
826 continue;
827 }
828 inode->i_state |= I_SYNC;
829 spin_unlock(&inode->i_lock);
830
831 write_chunk = writeback_chunk_size(wb, work);
832 wbc.nr_to_write = write_chunk;
833 wbc.pages_skipped = 0;
834
835 /*
836 * We use I_SYNC to pin the inode in memory. While it is set
837 * evict_inode() will wait so the inode cannot be freed.
838 */
839 __writeback_single_inode(inode, &wbc);
840
841 work->nr_pages -= write_chunk - wbc.nr_to_write;
842 wrote += write_chunk - wbc.nr_to_write;
843 spin_lock(&wb->list_lock);
844 spin_lock(&inode->i_lock);
845 if (!(inode->i_state & I_DIRTY_ALL))
846 wrote++;
847 requeue_inode(inode, wb, &wbc);
848 inode_sync_complete(inode);
849 spin_unlock(&inode->i_lock);
850 cond_resched_lock(&wb->list_lock);
851 /*
852 * bail out to wb_writeback() often enough to check
853 * background threshold and other termination conditions.
854 */
855 if (wrote) {
856 if (time_is_before_jiffies(start_time + HZ / 10UL))
857 break;
858 if (work->nr_pages <= 0)
859 break;
860 }
861 }
862 return wrote;
863 }
864
865 static long __writeback_inodes_wb(struct bdi_writeback *wb,
866 struct wb_writeback_work *work)
867 {
868 unsigned long start_time = jiffies;
869 long wrote = 0;
870
871 while (!list_empty(&wb->b_io)) {
872 struct inode *inode = wb_inode(wb->b_io.prev);
873 struct super_block *sb = inode->i_sb;
874
875 if (!trylock_super(sb)) {
876 /*
877 * trylock_super() may fail consistently due to
878 * s_umount being grabbed by someone else. Don't use
879 * requeue_io() to avoid busy retrying the inode/sb.
880 */
881 redirty_tail(inode, wb);
882 continue;
883 }
884 wrote += writeback_sb_inodes(sb, wb, work);
885 up_read(&sb->s_umount);
886
887 /* refer to the same tests at the end of writeback_sb_inodes */
888 if (wrote) {
889 if (time_is_before_jiffies(start_time + HZ / 10UL))
890 break;
891 if (work->nr_pages <= 0)
892 break;
893 }
894 }
895 /* Leave any unwritten inodes on b_io */
896 return wrote;
897 }
898
899 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
900 enum wb_reason reason)
901 {
902 struct wb_writeback_work work = {
903 .nr_pages = nr_pages,
904 .sync_mode = WB_SYNC_NONE,
905 .range_cyclic = 1,
906 .reason = reason,
907 };
908
909 spin_lock(&wb->list_lock);
910 if (list_empty(&wb->b_io))
911 queue_io(wb, &work);
912 __writeback_inodes_wb(wb, &work);
913 spin_unlock(&wb->list_lock);
914
915 return nr_pages - work.nr_pages;
916 }
917
918 static bool over_bground_thresh(struct bdi_writeback *wb)
919 {
920 unsigned long background_thresh, dirty_thresh;
921
922 global_dirty_limits(&background_thresh, &dirty_thresh);
923
924 if (global_page_state(NR_FILE_DIRTY) +
925 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
926 return true;
927
928 if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
929 return true;
930
931 return false;
932 }
933
934 /*
935 * Called under wb->list_lock. If there are multiple wb per bdi,
936 * only the flusher working on the first wb should do it.
937 */
938 static void wb_update_bandwidth(struct bdi_writeback *wb,
939 unsigned long start_time)
940 {
941 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
942 }
943
944 /*
945 * Explicit flushing or periodic writeback of "old" data.
946 *
947 * Define "old": the first time one of an inode's pages is dirtied, we mark the
948 * dirtying-time in the inode's address_space. So this periodic writeback code
949 * just walks the superblock inode list, writing back any inodes which are
950 * older than a specific point in time.
951 *
952 * Try to run once per dirty_writeback_interval. But if a writeback event
953 * takes longer than a dirty_writeback_interval interval, then leave a
954 * one-second gap.
955 *
956 * older_than_this takes precedence over nr_to_write. So we'll only write back
957 * all dirty pages if they are all attached to "old" mappings.
958 */
959 static long wb_writeback(struct bdi_writeback *wb,
960 struct wb_writeback_work *work)
961 {
962 unsigned long wb_start = jiffies;
963 long nr_pages = work->nr_pages;
964 unsigned long oldest_jif;
965 struct inode *inode;
966 long progress;
967
968 oldest_jif = jiffies;
969 work->older_than_this = &oldest_jif;
970
971 spin_lock(&wb->list_lock);
972 for (;;) {
973 /*
974 * Stop writeback when nr_pages has been consumed
975 */
976 if (work->nr_pages <= 0)
977 break;
978
979 /*
980 * Background writeout and kupdate-style writeback may
981 * run forever. Stop them if there is other work to do
982 * so that e.g. sync can proceed. They'll be restarted
983 * after the other works are all done.
984 */
985 if ((work->for_background || work->for_kupdate) &&
986 !list_empty(&wb->work_list))
987 break;
988
989 /*
990 * For background writeout, stop when we are below the
991 * background dirty threshold
992 */
993 if (work->for_background && !over_bground_thresh(wb))
994 break;
995
996 /*
997 * Kupdate and background works are special and we want to
998 * include all inodes that need writing. Livelock avoidance is
999 * handled by these works yielding to any other work so we are
1000 * safe.
1001 */
1002 if (work->for_kupdate) {
1003 oldest_jif = jiffies -
1004 msecs_to_jiffies(dirty_expire_interval * 10);
1005 } else if (work->for_background)
1006 oldest_jif = jiffies;
1007
1008 trace_writeback_start(wb->bdi, work);
1009 if (list_empty(&wb->b_io))
1010 queue_io(wb, work);
1011 if (work->sb)
1012 progress = writeback_sb_inodes(work->sb, wb, work);
1013 else
1014 progress = __writeback_inodes_wb(wb, work);
1015 trace_writeback_written(wb->bdi, work);
1016
1017 wb_update_bandwidth(wb, wb_start);
1018
1019 /*
1020 * Did we write something? Try for more
1021 *
1022 * Dirty inodes are moved to b_io for writeback in batches.
1023 * The completion of the current batch does not necessarily
1024 * mean the overall work is done. So we keep looping as long
1025 * as made some progress on cleaning pages or inodes.
1026 */
1027 if (progress)
1028 continue;
1029 /*
1030 * No more inodes for IO, bail
1031 */
1032 if (list_empty(&wb->b_more_io))
1033 break;
1034 /*
1035 * Nothing written. Wait for some inode to
1036 * become available for writeback. Otherwise
1037 * we'll just busyloop.
1038 */
1039 if (!list_empty(&wb->b_more_io)) {
1040 trace_writeback_wait(wb->bdi, work);
1041 inode = wb_inode(wb->b_more_io.prev);
1042 spin_lock(&inode->i_lock);
1043 spin_unlock(&wb->list_lock);
1044 /* This function drops i_lock... */
1045 inode_sleep_on_writeback(inode);
1046 spin_lock(&wb->list_lock);
1047 }
1048 }
1049 spin_unlock(&wb->list_lock);
1050
1051 return nr_pages - work->nr_pages;
1052 }
1053
1054 /*
1055 * Return the next wb_writeback_work struct that hasn't been processed yet.
1056 */
1057 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1058 {
1059 struct wb_writeback_work *work = NULL;
1060
1061 spin_lock_bh(&wb->work_lock);
1062 if (!list_empty(&wb->work_list)) {
1063 work = list_entry(wb->work_list.next,
1064 struct wb_writeback_work, list);
1065 list_del_init(&work->list);
1066 }
1067 spin_unlock_bh(&wb->work_lock);
1068 return work;
1069 }
1070
1071 /*
1072 * Add in the number of potentially dirty inodes, because each inode
1073 * write can dirty pagecache in the underlying blockdev.
1074 */
1075 static unsigned long get_nr_dirty_pages(void)
1076 {
1077 return global_page_state(NR_FILE_DIRTY) +
1078 global_page_state(NR_UNSTABLE_NFS) +
1079 get_nr_dirty_inodes();
1080 }
1081
1082 static long wb_check_background_flush(struct bdi_writeback *wb)
1083 {
1084 if (over_bground_thresh(wb)) {
1085
1086 struct wb_writeback_work work = {
1087 .nr_pages = LONG_MAX,
1088 .sync_mode = WB_SYNC_NONE,
1089 .for_background = 1,
1090 .range_cyclic = 1,
1091 .reason = WB_REASON_BACKGROUND,
1092 };
1093
1094 return wb_writeback(wb, &work);
1095 }
1096
1097 return 0;
1098 }
1099
1100 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1101 {
1102 unsigned long expired;
1103 long nr_pages;
1104
1105 /*
1106 * When set to zero, disable periodic writeback
1107 */
1108 if (!dirty_writeback_interval)
1109 return 0;
1110
1111 expired = wb->last_old_flush +
1112 msecs_to_jiffies(dirty_writeback_interval * 10);
1113 if (time_before(jiffies, expired))
1114 return 0;
1115
1116 wb->last_old_flush = jiffies;
1117 nr_pages = get_nr_dirty_pages();
1118
1119 if (nr_pages) {
1120 struct wb_writeback_work work = {
1121 .nr_pages = nr_pages,
1122 .sync_mode = WB_SYNC_NONE,
1123 .for_kupdate = 1,
1124 .range_cyclic = 1,
1125 .reason = WB_REASON_PERIODIC,
1126 };
1127
1128 return wb_writeback(wb, &work);
1129 }
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * Retrieve work items and do the writeback they describe
1136 */
1137 static long wb_do_writeback(struct bdi_writeback *wb)
1138 {
1139 struct wb_writeback_work *work;
1140 long wrote = 0;
1141
1142 set_bit(WB_writeback_running, &wb->state);
1143 while ((work = get_next_work_item(wb)) != NULL) {
1144
1145 trace_writeback_exec(wb->bdi, work);
1146
1147 wrote += wb_writeback(wb, work);
1148
1149 /*
1150 * Notify the caller of completion if this is a synchronous
1151 * work item, otherwise just free it.
1152 */
1153 if (work->done)
1154 complete(work->done);
1155 else
1156 kfree(work);
1157 }
1158
1159 /*
1160 * Check for periodic writeback, kupdated() style
1161 */
1162 wrote += wb_check_old_data_flush(wb);
1163 wrote += wb_check_background_flush(wb);
1164 clear_bit(WB_writeback_running, &wb->state);
1165
1166 return wrote;
1167 }
1168
1169 /*
1170 * Handle writeback of dirty data for the device backed by this bdi. Also
1171 * reschedules periodically and does kupdated style flushing.
1172 */
1173 void wb_workfn(struct work_struct *work)
1174 {
1175 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1176 struct bdi_writeback, dwork);
1177 long pages_written;
1178
1179 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1180 current->flags |= PF_SWAPWRITE;
1181
1182 if (likely(!current_is_workqueue_rescuer() ||
1183 !test_bit(WB_registered, &wb->state))) {
1184 /*
1185 * The normal path. Keep writing back @wb until its
1186 * work_list is empty. Note that this path is also taken
1187 * if @wb is shutting down even when we're running off the
1188 * rescuer as work_list needs to be drained.
1189 */
1190 do {
1191 pages_written = wb_do_writeback(wb);
1192 trace_writeback_pages_written(pages_written);
1193 } while (!list_empty(&wb->work_list));
1194 } else {
1195 /*
1196 * bdi_wq can't get enough workers and we're running off
1197 * the emergency worker. Don't hog it. Hopefully, 1024 is
1198 * enough for efficient IO.
1199 */
1200 pages_written = writeback_inodes_wb(wb, 1024,
1201 WB_REASON_FORKER_THREAD);
1202 trace_writeback_pages_written(pages_written);
1203 }
1204
1205 if (!list_empty(&wb->work_list))
1206 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1207 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1208 wb_wakeup_delayed(wb);
1209
1210 current->flags &= ~PF_SWAPWRITE;
1211 }
1212
1213 /*
1214 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1215 * the whole world.
1216 */
1217 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1218 {
1219 struct backing_dev_info *bdi;
1220
1221 if (!nr_pages)
1222 nr_pages = get_nr_dirty_pages();
1223
1224 rcu_read_lock();
1225 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1226 struct bdi_writeback *wb;
1227 struct wb_iter iter;
1228
1229 if (!bdi_has_dirty_io(bdi))
1230 continue;
1231
1232 bdi_for_each_wb(wb, bdi, &iter, 0)
1233 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1234 false, reason);
1235 }
1236 rcu_read_unlock();
1237 }
1238
1239 /*
1240 * Wake up bdi's periodically to make sure dirtytime inodes gets
1241 * written back periodically. We deliberately do *not* check the
1242 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1243 * kernel to be constantly waking up once there are any dirtytime
1244 * inodes on the system. So instead we define a separate delayed work
1245 * function which gets called much more rarely. (By default, only
1246 * once every 12 hours.)
1247 *
1248 * If there is any other write activity going on in the file system,
1249 * this function won't be necessary. But if the only thing that has
1250 * happened on the file system is a dirtytime inode caused by an atime
1251 * update, we need this infrastructure below to make sure that inode
1252 * eventually gets pushed out to disk.
1253 */
1254 static void wakeup_dirtytime_writeback(struct work_struct *w);
1255 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1256
1257 static void wakeup_dirtytime_writeback(struct work_struct *w)
1258 {
1259 struct backing_dev_info *bdi;
1260
1261 rcu_read_lock();
1262 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1263 if (list_empty(&bdi->wb.b_dirty_time))
1264 continue;
1265 wb_wakeup(&bdi->wb);
1266 }
1267 rcu_read_unlock();
1268 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1269 }
1270
1271 static int __init start_dirtytime_writeback(void)
1272 {
1273 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1274 return 0;
1275 }
1276 __initcall(start_dirtytime_writeback);
1277
1278 int dirtytime_interval_handler(struct ctl_table *table, int write,
1279 void __user *buffer, size_t *lenp, loff_t *ppos)
1280 {
1281 int ret;
1282
1283 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1284 if (ret == 0 && write)
1285 mod_delayed_work(system_wq, &dirtytime_work, 0);
1286 return ret;
1287 }
1288
1289 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1290 {
1291 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1292 struct dentry *dentry;
1293 const char *name = "?";
1294
1295 dentry = d_find_alias(inode);
1296 if (dentry) {
1297 spin_lock(&dentry->d_lock);
1298 name = (const char *) dentry->d_name.name;
1299 }
1300 printk(KERN_DEBUG
1301 "%s(%d): dirtied inode %lu (%s) on %s\n",
1302 current->comm, task_pid_nr(current), inode->i_ino,
1303 name, inode->i_sb->s_id);
1304 if (dentry) {
1305 spin_unlock(&dentry->d_lock);
1306 dput(dentry);
1307 }
1308 }
1309 }
1310
1311 /**
1312 * __mark_inode_dirty - internal function
1313 * @inode: inode to mark
1314 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1315 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1316 * mark_inode_dirty_sync.
1317 *
1318 * Put the inode on the super block's dirty list.
1319 *
1320 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1321 * dirty list only if it is hashed or if it refers to a blockdev.
1322 * If it was not hashed, it will never be added to the dirty list
1323 * even if it is later hashed, as it will have been marked dirty already.
1324 *
1325 * In short, make sure you hash any inodes _before_ you start marking
1326 * them dirty.
1327 *
1328 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1329 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1330 * the kernel-internal blockdev inode represents the dirtying time of the
1331 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1332 * page->mapping->host, so the page-dirtying time is recorded in the internal
1333 * blockdev inode.
1334 */
1335 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1336 void __mark_inode_dirty(struct inode *inode, int flags)
1337 {
1338 struct super_block *sb = inode->i_sb;
1339 struct backing_dev_info *bdi = NULL;
1340 int dirtytime;
1341
1342 trace_writeback_mark_inode_dirty(inode, flags);
1343
1344 /*
1345 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1346 * dirty the inode itself
1347 */
1348 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1349 trace_writeback_dirty_inode_start(inode, flags);
1350
1351 if (sb->s_op->dirty_inode)
1352 sb->s_op->dirty_inode(inode, flags);
1353
1354 trace_writeback_dirty_inode(inode, flags);
1355 }
1356 if (flags & I_DIRTY_INODE)
1357 flags &= ~I_DIRTY_TIME;
1358 dirtytime = flags & I_DIRTY_TIME;
1359
1360 /*
1361 * Paired with smp_mb() in __writeback_single_inode() for the
1362 * following lockless i_state test. See there for details.
1363 */
1364 smp_mb();
1365
1366 if (((inode->i_state & flags) == flags) ||
1367 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1368 return;
1369
1370 if (unlikely(block_dump))
1371 block_dump___mark_inode_dirty(inode);
1372
1373 spin_lock(&inode->i_lock);
1374 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1375 goto out_unlock_inode;
1376 if ((inode->i_state & flags) != flags) {
1377 const int was_dirty = inode->i_state & I_DIRTY;
1378
1379 inode_attach_wb(inode, NULL);
1380
1381 if (flags & I_DIRTY_INODE)
1382 inode->i_state &= ~I_DIRTY_TIME;
1383 inode->i_state |= flags;
1384
1385 /*
1386 * If the inode is being synced, just update its dirty state.
1387 * The unlocker will place the inode on the appropriate
1388 * superblock list, based upon its state.
1389 */
1390 if (inode->i_state & I_SYNC)
1391 goto out_unlock_inode;
1392
1393 /*
1394 * Only add valid (hashed) inodes to the superblock's
1395 * dirty list. Add blockdev inodes as well.
1396 */
1397 if (!S_ISBLK(inode->i_mode)) {
1398 if (inode_unhashed(inode))
1399 goto out_unlock_inode;
1400 }
1401 if (inode->i_state & I_FREEING)
1402 goto out_unlock_inode;
1403
1404 /*
1405 * If the inode was already on b_dirty/b_io/b_more_io, don't
1406 * reposition it (that would break b_dirty time-ordering).
1407 */
1408 if (!was_dirty) {
1409 struct list_head *dirty_list;
1410 bool wakeup_bdi = false;
1411 bdi = inode_to_bdi(inode);
1412
1413 spin_unlock(&inode->i_lock);
1414 spin_lock(&bdi->wb.list_lock);
1415
1416 WARN(bdi_cap_writeback_dirty(bdi) &&
1417 !test_bit(WB_registered, &bdi->wb.state),
1418 "bdi-%s not registered\n", bdi->name);
1419
1420 inode->dirtied_when = jiffies;
1421 if (dirtytime)
1422 inode->dirtied_time_when = jiffies;
1423
1424 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1425 dirty_list = &bdi->wb.b_dirty;
1426 else
1427 dirty_list = &bdi->wb.b_dirty_time;
1428
1429 wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1430 dirty_list);
1431
1432 spin_unlock(&bdi->wb.list_lock);
1433 trace_writeback_dirty_inode_enqueue(inode);
1434
1435 /*
1436 * If this is the first dirty inode for this bdi,
1437 * we have to wake-up the corresponding bdi thread
1438 * to make sure background write-back happens
1439 * later.
1440 */
1441 if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1442 wb_wakeup_delayed(&bdi->wb);
1443 return;
1444 }
1445 }
1446 out_unlock_inode:
1447 spin_unlock(&inode->i_lock);
1448
1449 }
1450 EXPORT_SYMBOL(__mark_inode_dirty);
1451
1452 static void wait_sb_inodes(struct super_block *sb)
1453 {
1454 struct inode *inode, *old_inode = NULL;
1455
1456 /*
1457 * We need to be protected against the filesystem going from
1458 * r/o to r/w or vice versa.
1459 */
1460 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1461
1462 spin_lock(&inode_sb_list_lock);
1463
1464 /*
1465 * Data integrity sync. Must wait for all pages under writeback,
1466 * because there may have been pages dirtied before our sync
1467 * call, but which had writeout started before we write it out.
1468 * In which case, the inode may not be on the dirty list, but
1469 * we still have to wait for that writeout.
1470 */
1471 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1472 struct address_space *mapping = inode->i_mapping;
1473
1474 spin_lock(&inode->i_lock);
1475 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1476 (mapping->nrpages == 0)) {
1477 spin_unlock(&inode->i_lock);
1478 continue;
1479 }
1480 __iget(inode);
1481 spin_unlock(&inode->i_lock);
1482 spin_unlock(&inode_sb_list_lock);
1483
1484 /*
1485 * We hold a reference to 'inode' so it couldn't have been
1486 * removed from s_inodes list while we dropped the
1487 * inode_sb_list_lock. We cannot iput the inode now as we can
1488 * be holding the last reference and we cannot iput it under
1489 * inode_sb_list_lock. So we keep the reference and iput it
1490 * later.
1491 */
1492 iput(old_inode);
1493 old_inode = inode;
1494
1495 filemap_fdatawait(mapping);
1496
1497 cond_resched();
1498
1499 spin_lock(&inode_sb_list_lock);
1500 }
1501 spin_unlock(&inode_sb_list_lock);
1502 iput(old_inode);
1503 }
1504
1505 /**
1506 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1507 * @sb: the superblock
1508 * @nr: the number of pages to write
1509 * @reason: reason why some writeback work initiated
1510 *
1511 * Start writeback on some inodes on this super_block. No guarantees are made
1512 * on how many (if any) will be written, and this function does not wait
1513 * for IO completion of submitted IO.
1514 */
1515 void writeback_inodes_sb_nr(struct super_block *sb,
1516 unsigned long nr,
1517 enum wb_reason reason)
1518 {
1519 DECLARE_COMPLETION_ONSTACK(done);
1520 struct wb_writeback_work work = {
1521 .sb = sb,
1522 .sync_mode = WB_SYNC_NONE,
1523 .tagged_writepages = 1,
1524 .done = &done,
1525 .nr_pages = nr,
1526 .reason = reason,
1527 };
1528 struct backing_dev_info *bdi = sb->s_bdi;
1529
1530 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1531 return;
1532 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1533 wb_queue_work(&bdi->wb, &work);
1534 wait_for_completion(&done);
1535 }
1536 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1537
1538 /**
1539 * writeback_inodes_sb - writeback dirty inodes from given super_block
1540 * @sb: the superblock
1541 * @reason: reason why some writeback work was initiated
1542 *
1543 * Start writeback on some inodes on this super_block. No guarantees are made
1544 * on how many (if any) will be written, and this function does not wait
1545 * for IO completion of submitted IO.
1546 */
1547 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1548 {
1549 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1550 }
1551 EXPORT_SYMBOL(writeback_inodes_sb);
1552
1553 /**
1554 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1555 * @sb: the superblock
1556 * @nr: the number of pages to write
1557 * @reason: the reason of writeback
1558 *
1559 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1560 * Returns 1 if writeback was started, 0 if not.
1561 */
1562 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1563 unsigned long nr,
1564 enum wb_reason reason)
1565 {
1566 if (writeback_in_progress(&sb->s_bdi->wb))
1567 return 1;
1568
1569 if (!down_read_trylock(&sb->s_umount))
1570 return 0;
1571
1572 writeback_inodes_sb_nr(sb, nr, reason);
1573 up_read(&sb->s_umount);
1574 return 1;
1575 }
1576 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1577
1578 /**
1579 * try_to_writeback_inodes_sb - try to start writeback if none underway
1580 * @sb: the superblock
1581 * @reason: reason why some writeback work was initiated
1582 *
1583 * Implement by try_to_writeback_inodes_sb_nr()
1584 * Returns 1 if writeback was started, 0 if not.
1585 */
1586 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1587 {
1588 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1589 }
1590 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1591
1592 /**
1593 * sync_inodes_sb - sync sb inode pages
1594 * @sb: the superblock
1595 *
1596 * This function writes and waits on any dirty inode belonging to this
1597 * super_block.
1598 */
1599 void sync_inodes_sb(struct super_block *sb)
1600 {
1601 DECLARE_COMPLETION_ONSTACK(done);
1602 struct wb_writeback_work work = {
1603 .sb = sb,
1604 .sync_mode = WB_SYNC_ALL,
1605 .nr_pages = LONG_MAX,
1606 .range_cyclic = 0,
1607 .done = &done,
1608 .reason = WB_REASON_SYNC,
1609 .for_sync = 1,
1610 };
1611 struct backing_dev_info *bdi = sb->s_bdi;
1612
1613 /* Nothing to do? */
1614 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1615 return;
1616 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1617
1618 wb_queue_work(&bdi->wb, &work);
1619 wait_for_completion(&done);
1620
1621 wait_sb_inodes(sb);
1622 }
1623 EXPORT_SYMBOL(sync_inodes_sb);
1624
1625 /**
1626 * write_inode_now - write an inode to disk
1627 * @inode: inode to write to disk
1628 * @sync: whether the write should be synchronous or not
1629 *
1630 * This function commits an inode to disk immediately if it is dirty. This is
1631 * primarily needed by knfsd.
1632 *
1633 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1634 */
1635 int write_inode_now(struct inode *inode, int sync)
1636 {
1637 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1638 struct writeback_control wbc = {
1639 .nr_to_write = LONG_MAX,
1640 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1641 .range_start = 0,
1642 .range_end = LLONG_MAX,
1643 };
1644
1645 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1646 wbc.nr_to_write = 0;
1647
1648 might_sleep();
1649 return writeback_single_inode(inode, wb, &wbc);
1650 }
1651 EXPORT_SYMBOL(write_inode_now);
1652
1653 /**
1654 * sync_inode - write an inode and its pages to disk.
1655 * @inode: the inode to sync
1656 * @wbc: controls the writeback mode
1657 *
1658 * sync_inode() will write an inode and its pages to disk. It will also
1659 * correctly update the inode on its superblock's dirty inode lists and will
1660 * update inode->i_state.
1661 *
1662 * The caller must have a ref on the inode.
1663 */
1664 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1665 {
1666 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1667 }
1668 EXPORT_SYMBOL(sync_inode);
1669
1670 /**
1671 * sync_inode_metadata - write an inode to disk
1672 * @inode: the inode to sync
1673 * @wait: wait for I/O to complete.
1674 *
1675 * Write an inode to disk and adjust its dirty state after completion.
1676 *
1677 * Note: only writes the actual inode, no associated data or other metadata.
1678 */
1679 int sync_inode_metadata(struct inode *inode, int wait)
1680 {
1681 struct writeback_control wbc = {
1682 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1683 .nr_to_write = 0, /* metadata-only */
1684 };
1685
1686 return sync_inode(inode, &wbc);
1687 }
1688 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.065059 seconds and 6 git commands to generate.