GFS2: global conversion to pr_foo()
[deliverable/linux.git] / fs / gfs2 / lock_dlm.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22
23 extern struct workqueue_struct *gfs2_control_wq;
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47 {
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52 }
53
54 /**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72 {
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87 }
88
89 /**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
98 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99 {
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113 }
114
115 static void gdlm_ast(void *arg)
116 {
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
120 gfs2_update_reply_times(gl);
121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
123 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
124 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
128 gfs2_glock_free(gl);
129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
134 case -EDEADLK: /* Deadlock detected */
135 goto out;
136 case -ETIMEDOUT: /* Canceled due to timeout */
137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
145 ret = gl->gl_req;
146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
147 if (gl->gl_req == LM_ST_SHARED)
148 ret = LM_ST_DEFERRED;
149 else if (gl->gl_req == LM_ST_DEFERRED)
150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158 out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162 }
163
164 static void gdlm_bast(void *arg, int mode)
165 {
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 pr_err("unknown bast mode %d", mode);
180 BUG();
181 }
182 }
183
184 /* convert gfs lock-state to dlm lock-mode */
185
186 static int make_mode(const unsigned int lmstate)
187 {
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 pr_err("unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201 }
202
203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
204 const int req)
205 {
206 u32 lkf = 0;
207
208 if (gl->gl_lksb.sb_lvbptr)
209 lkf |= DLM_LKF_VALBLK;
210
211 if (gfs_flags & LM_FLAG_TRY)
212 lkf |= DLM_LKF_NOQUEUE;
213
214 if (gfs_flags & LM_FLAG_TRY_1CB) {
215 lkf |= DLM_LKF_NOQUEUE;
216 lkf |= DLM_LKF_NOQUEUEBAST;
217 }
218
219 if (gfs_flags & LM_FLAG_PRIORITY) {
220 lkf |= DLM_LKF_NOORDER;
221 lkf |= DLM_LKF_HEADQUE;
222 }
223
224 if (gfs_flags & LM_FLAG_ANY) {
225 if (req == DLM_LOCK_PR)
226 lkf |= DLM_LKF_ALTCW;
227 else if (req == DLM_LOCK_CW)
228 lkf |= DLM_LKF_ALTPR;
229 else
230 BUG();
231 }
232
233 if (gl->gl_lksb.sb_lkid != 0) {
234 lkf |= DLM_LKF_CONVERT;
235 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
236 lkf |= DLM_LKF_QUECVT;
237 }
238
239 return lkf;
240 }
241
242 static void gfs2_reverse_hex(char *c, u64 value)
243 {
244 *c = '0';
245 while (value) {
246 *c-- = hex_asc[value & 0x0f];
247 value >>= 4;
248 }
249 }
250
251 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
252 unsigned int flags)
253 {
254 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
255 int req;
256 u32 lkf;
257 char strname[GDLM_STRNAME_BYTES] = "";
258
259 req = make_mode(req_state);
260 lkf = make_flags(gl, flags, req);
261 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
262 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
263 if (gl->gl_lksb.sb_lkid) {
264 gfs2_update_request_times(gl);
265 } else {
266 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
267 strname[GDLM_STRNAME_BYTES - 1] = '\0';
268 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
269 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
270 gl->gl_dstamp = ktime_get_real();
271 }
272 /*
273 * Submit the actual lock request.
274 */
275
276 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
277 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
278 }
279
280 static void gdlm_put_lock(struct gfs2_glock *gl)
281 {
282 struct gfs2_sbd *sdp = gl->gl_sbd;
283 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
284 int lvb_needs_unlock = 0;
285 int error;
286
287 if (gl->gl_lksb.sb_lkid == 0) {
288 gfs2_glock_free(gl);
289 return;
290 }
291
292 clear_bit(GLF_BLOCKING, &gl->gl_flags);
293 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
294 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_update_request_times(gl);
296
297 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
298
299 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
300 lvb_needs_unlock = 1;
301
302 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
303 !lvb_needs_unlock) {
304 gfs2_glock_free(gl);
305 return;
306 }
307
308 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
309 NULL, gl);
310 if (error) {
311 pr_err("gdlm_unlock %x,%llx err=%d\n", gl->gl_name.ln_type,
312 (unsigned long long)gl->gl_name.ln_number, error);
313 return;
314 }
315 }
316
317 static void gdlm_cancel(struct gfs2_glock *gl)
318 {
319 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
320 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
321 }
322
323 /*
324 * dlm/gfs2 recovery coordination using dlm_recover callbacks
325 *
326 * 1. dlm_controld sees lockspace members change
327 * 2. dlm_controld blocks dlm-kernel locking activity
328 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
329 * 4. dlm_controld starts and finishes its own user level recovery
330 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
331 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
332 * 7. dlm_recoverd does its own lock recovery
333 * 8. dlm_recoverd unblocks dlm-kernel locking activity
334 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
335 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
336 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
337 * 12. gfs2_recover dequeues and recovers journals of failed nodes
338 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
339 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
340 * 15. gfs2_control unblocks normal locking when all journals are recovered
341 *
342 * - failures during recovery
343 *
344 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
345 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
346 * recovering for a prior failure. gfs2_control needs a way to detect
347 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
348 * the recover_block and recover_start values.
349 *
350 * recover_done() provides a new lockspace generation number each time it
351 * is called (step 9). This generation number is saved as recover_start.
352 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
353 * recover_block = recover_start. So, while recover_block is equal to
354 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
355 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
356 *
357 * - more specific gfs2 steps in sequence above
358 *
359 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
360 * 6. recover_slot records any failed jids (maybe none)
361 * 9. recover_done sets recover_start = new generation number
362 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
363 * 12. gfs2_recover does journal recoveries for failed jids identified above
364 * 14. gfs2_control clears control_lock lvb bits for recovered jids
365 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
366 * again) then do nothing, otherwise if recover_start > recover_block
367 * then clear BLOCK_LOCKS.
368 *
369 * - parallel recovery steps across all nodes
370 *
371 * All nodes attempt to update the control_lock lvb with the new generation
372 * number and jid bits, but only the first to get the control_lock EX will
373 * do so; others will see that it's already done (lvb already contains new
374 * generation number.)
375 *
376 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
377 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
378 * . One node gets control_lock first and writes the lvb, others see it's done
379 * . All nodes attempt to recover jids for which they see control_lock bits set
380 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
381 * . All nodes will eventually see all lvb bits clear and unblock locks
382 *
383 * - is there a problem with clearing an lvb bit that should be set
384 * and missing a journal recovery?
385 *
386 * 1. jid fails
387 * 2. lvb bit set for step 1
388 * 3. jid recovered for step 1
389 * 4. jid taken again (new mount)
390 * 5. jid fails (for step 4)
391 * 6. lvb bit set for step 5 (will already be set)
392 * 7. lvb bit cleared for step 3
393 *
394 * This is not a problem because the failure in step 5 does not
395 * require recovery, because the mount in step 4 could not have
396 * progressed far enough to unblock locks and access the fs. The
397 * control_mount() function waits for all recoveries to be complete
398 * for the latest lockspace generation before ever unblocking locks
399 * and returning. The mount in step 4 waits until the recovery in
400 * step 1 is done.
401 *
402 * - special case of first mounter: first node to mount the fs
403 *
404 * The first node to mount a gfs2 fs needs to check all the journals
405 * and recover any that need recovery before other nodes are allowed
406 * to mount the fs. (Others may begin mounting, but they must wait
407 * for the first mounter to be done before taking locks on the fs
408 * or accessing the fs.) This has two parts:
409 *
410 * 1. The mounted_lock tells a node it's the first to mount the fs.
411 * Each node holds the mounted_lock in PR while it's mounted.
412 * Each node tries to acquire the mounted_lock in EX when it mounts.
413 * If a node is granted the mounted_lock EX it means there are no
414 * other mounted nodes (no PR locks exist), and it is the first mounter.
415 * The mounted_lock is demoted to PR when first recovery is done, so
416 * others will fail to get an EX lock, but will get a PR lock.
417 *
418 * 2. The control_lock blocks others in control_mount() while the first
419 * mounter is doing first mount recovery of all journals.
420 * A mounting node needs to acquire control_lock in EX mode before
421 * it can proceed. The first mounter holds control_lock in EX while doing
422 * the first mount recovery, blocking mounts from other nodes, then demotes
423 * control_lock to NL when it's done (others_may_mount/first_done),
424 * allowing other nodes to continue mounting.
425 *
426 * first mounter:
427 * control_lock EX/NOQUEUE success
428 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
429 * set first=1
430 * do first mounter recovery
431 * mounted_lock EX->PR
432 * control_lock EX->NL, write lvb generation
433 *
434 * other mounter:
435 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
436 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
437 * mounted_lock PR/NOQUEUE success
438 * read lvb generation
439 * control_lock EX->NL
440 * set first=0
441 *
442 * - mount during recovery
443 *
444 * If a node mounts while others are doing recovery (not first mounter),
445 * the mounting node will get its initial recover_done() callback without
446 * having seen any previous failures/callbacks.
447 *
448 * It must wait for all recoveries preceding its mount to be finished
449 * before it unblocks locks. It does this by repeating the "other mounter"
450 * steps above until the lvb generation number is >= its mount generation
451 * number (from initial recover_done) and all lvb bits are clear.
452 *
453 * - control_lock lvb format
454 *
455 * 4 bytes generation number: the latest dlm lockspace generation number
456 * from recover_done callback. Indicates the jid bitmap has been updated
457 * to reflect all slot failures through that generation.
458 * 4 bytes unused.
459 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
460 * that jid N needs recovery.
461 */
462
463 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
464
465 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
466 char *lvb_bits)
467 {
468 __le32 gen;
469 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
470 memcpy(&gen, lvb_bits, sizeof(__le32));
471 *lvb_gen = le32_to_cpu(gen);
472 }
473
474 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
475 char *lvb_bits)
476 {
477 __le32 gen;
478 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
479 gen = cpu_to_le32(lvb_gen);
480 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
481 }
482
483 static int all_jid_bits_clear(char *lvb)
484 {
485 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
486 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
487 }
488
489 static void sync_wait_cb(void *arg)
490 {
491 struct lm_lockstruct *ls = arg;
492 complete(&ls->ls_sync_wait);
493 }
494
495 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
496 {
497 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
498 int error;
499
500 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
501 if (error) {
502 fs_err(sdp, "%s lkid %x error %d\n",
503 name, lksb->sb_lkid, error);
504 return error;
505 }
506
507 wait_for_completion(&ls->ls_sync_wait);
508
509 if (lksb->sb_status != -DLM_EUNLOCK) {
510 fs_err(sdp, "%s lkid %x status %d\n",
511 name, lksb->sb_lkid, lksb->sb_status);
512 return -1;
513 }
514 return 0;
515 }
516
517 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
518 unsigned int num, struct dlm_lksb *lksb, char *name)
519 {
520 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
521 char strname[GDLM_STRNAME_BYTES];
522 int error, status;
523
524 memset(strname, 0, GDLM_STRNAME_BYTES);
525 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
526
527 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
528 strname, GDLM_STRNAME_BYTES - 1,
529 0, sync_wait_cb, ls, NULL);
530 if (error) {
531 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
532 name, lksb->sb_lkid, flags, mode, error);
533 return error;
534 }
535
536 wait_for_completion(&ls->ls_sync_wait);
537
538 status = lksb->sb_status;
539
540 if (status && status != -EAGAIN) {
541 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
542 name, lksb->sb_lkid, flags, mode, status);
543 }
544
545 return status;
546 }
547
548 static int mounted_unlock(struct gfs2_sbd *sdp)
549 {
550 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
551 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
552 }
553
554 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
555 {
556 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
557 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
558 &ls->ls_mounted_lksb, "mounted_lock");
559 }
560
561 static int control_unlock(struct gfs2_sbd *sdp)
562 {
563 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
564 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
565 }
566
567 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
568 {
569 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
571 &ls->ls_control_lksb, "control_lock");
572 }
573
574 static void gfs2_control_func(struct work_struct *work)
575 {
576 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
577 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
578 uint32_t block_gen, start_gen, lvb_gen, flags;
579 int recover_set = 0;
580 int write_lvb = 0;
581 int recover_size;
582 int i, error;
583
584 spin_lock(&ls->ls_recover_spin);
585 /*
586 * No MOUNT_DONE means we're still mounting; control_mount()
587 * will set this flag, after which this thread will take over
588 * all further clearing of BLOCK_LOCKS.
589 *
590 * FIRST_MOUNT means this node is doing first mounter recovery,
591 * for which recovery control is handled by
592 * control_mount()/control_first_done(), not this thread.
593 */
594 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
595 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
596 spin_unlock(&ls->ls_recover_spin);
597 return;
598 }
599 block_gen = ls->ls_recover_block;
600 start_gen = ls->ls_recover_start;
601 spin_unlock(&ls->ls_recover_spin);
602
603 /*
604 * Equal block_gen and start_gen implies we are between
605 * recover_prep and recover_done callbacks, which means
606 * dlm recovery is in progress and dlm locking is blocked.
607 * There's no point trying to do any work until recover_done.
608 */
609
610 if (block_gen == start_gen)
611 return;
612
613 /*
614 * Propagate recover_submit[] and recover_result[] to lvb:
615 * dlm_recoverd adds to recover_submit[] jids needing recovery
616 * gfs2_recover adds to recover_result[] journal recovery results
617 *
618 * set lvb bit for jids in recover_submit[] if the lvb has not
619 * yet been updated for the generation of the failure
620 *
621 * clear lvb bit for jids in recover_result[] if the result of
622 * the journal recovery is SUCCESS
623 */
624
625 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
626 if (error) {
627 fs_err(sdp, "control lock EX error %d\n", error);
628 return;
629 }
630
631 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
632
633 spin_lock(&ls->ls_recover_spin);
634 if (block_gen != ls->ls_recover_block ||
635 start_gen != ls->ls_recover_start) {
636 fs_info(sdp, "recover generation %u block1 %u %u\n",
637 start_gen, block_gen, ls->ls_recover_block);
638 spin_unlock(&ls->ls_recover_spin);
639 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
640 return;
641 }
642
643 recover_size = ls->ls_recover_size;
644
645 if (lvb_gen <= start_gen) {
646 /*
647 * Clear lvb bits for jids we've successfully recovered.
648 * Because all nodes attempt to recover failed journals,
649 * a journal can be recovered multiple times successfully
650 * in succession. Only the first will really do recovery,
651 * the others find it clean, but still report a successful
652 * recovery. So, another node may have already recovered
653 * the jid and cleared the lvb bit for it.
654 */
655 for (i = 0; i < recover_size; i++) {
656 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
657 continue;
658
659 ls->ls_recover_result[i] = 0;
660
661 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
662 continue;
663
664 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
665 write_lvb = 1;
666 }
667 }
668
669 if (lvb_gen == start_gen) {
670 /*
671 * Failed slots before start_gen are already set in lvb.
672 */
673 for (i = 0; i < recover_size; i++) {
674 if (!ls->ls_recover_submit[i])
675 continue;
676 if (ls->ls_recover_submit[i] < lvb_gen)
677 ls->ls_recover_submit[i] = 0;
678 }
679 } else if (lvb_gen < start_gen) {
680 /*
681 * Failed slots before start_gen are not yet set in lvb.
682 */
683 for (i = 0; i < recover_size; i++) {
684 if (!ls->ls_recover_submit[i])
685 continue;
686 if (ls->ls_recover_submit[i] < start_gen) {
687 ls->ls_recover_submit[i] = 0;
688 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
689 }
690 }
691 /* even if there are no bits to set, we need to write the
692 latest generation to the lvb */
693 write_lvb = 1;
694 } else {
695 /*
696 * we should be getting a recover_done() for lvb_gen soon
697 */
698 }
699 spin_unlock(&ls->ls_recover_spin);
700
701 if (write_lvb) {
702 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
703 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
704 } else {
705 flags = DLM_LKF_CONVERT;
706 }
707
708 error = control_lock(sdp, DLM_LOCK_NL, flags);
709 if (error) {
710 fs_err(sdp, "control lock NL error %d\n", error);
711 return;
712 }
713
714 /*
715 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
716 * and clear a jid bit in the lvb if the recovery is a success.
717 * Eventually all journals will be recovered, all jid bits will
718 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
719 */
720
721 for (i = 0; i < recover_size; i++) {
722 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
723 fs_info(sdp, "recover generation %u jid %d\n",
724 start_gen, i);
725 gfs2_recover_set(sdp, i);
726 recover_set++;
727 }
728 }
729 if (recover_set)
730 return;
731
732 /*
733 * No more jid bits set in lvb, all recovery is done, unblock locks
734 * (unless a new recover_prep callback has occured blocking locks
735 * again while working above)
736 */
737
738 spin_lock(&ls->ls_recover_spin);
739 if (ls->ls_recover_block == block_gen &&
740 ls->ls_recover_start == start_gen) {
741 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
742 spin_unlock(&ls->ls_recover_spin);
743 fs_info(sdp, "recover generation %u done\n", start_gen);
744 gfs2_glock_thaw(sdp);
745 } else {
746 fs_info(sdp, "recover generation %u block2 %u %u\n",
747 start_gen, block_gen, ls->ls_recover_block);
748 spin_unlock(&ls->ls_recover_spin);
749 }
750 }
751
752 static int control_mount(struct gfs2_sbd *sdp)
753 {
754 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
755 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
756 int mounted_mode;
757 int retries = 0;
758 int error;
759
760 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
761 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
762 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
763 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
764 init_completion(&ls->ls_sync_wait);
765
766 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
767
768 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
769 if (error) {
770 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
771 return error;
772 }
773
774 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
775 if (error) {
776 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
777 control_unlock(sdp);
778 return error;
779 }
780 mounted_mode = DLM_LOCK_NL;
781
782 restart:
783 if (retries++ && signal_pending(current)) {
784 error = -EINTR;
785 goto fail;
786 }
787
788 /*
789 * We always start with both locks in NL. control_lock is
790 * demoted to NL below so we don't need to do it here.
791 */
792
793 if (mounted_mode != DLM_LOCK_NL) {
794 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
795 if (error)
796 goto fail;
797 mounted_mode = DLM_LOCK_NL;
798 }
799
800 /*
801 * Other nodes need to do some work in dlm recovery and gfs2_control
802 * before the recover_done and control_lock will be ready for us below.
803 * A delay here is not required but often avoids having to retry.
804 */
805
806 msleep_interruptible(500);
807
808 /*
809 * Acquire control_lock in EX and mounted_lock in either EX or PR.
810 * control_lock lvb keeps track of any pending journal recoveries.
811 * mounted_lock indicates if any other nodes have the fs mounted.
812 */
813
814 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
815 if (error == -EAGAIN) {
816 goto restart;
817 } else if (error) {
818 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
819 goto fail;
820 }
821
822 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
823 if (!error) {
824 mounted_mode = DLM_LOCK_EX;
825 goto locks_done;
826 } else if (error != -EAGAIN) {
827 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
828 goto fail;
829 }
830
831 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
832 if (!error) {
833 mounted_mode = DLM_LOCK_PR;
834 goto locks_done;
835 } else {
836 /* not even -EAGAIN should happen here */
837 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
838 goto fail;
839 }
840
841 locks_done:
842 /*
843 * If we got both locks above in EX, then we're the first mounter.
844 * If not, then we need to wait for the control_lock lvb to be
845 * updated by other mounted nodes to reflect our mount generation.
846 *
847 * In simple first mounter cases, first mounter will see zero lvb_gen,
848 * but in cases where all existing nodes leave/fail before mounting
849 * nodes finish control_mount, then all nodes will be mounting and
850 * lvb_gen will be non-zero.
851 */
852
853 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
854
855 if (lvb_gen == 0xFFFFFFFF) {
856 /* special value to force mount attempts to fail */
857 fs_err(sdp, "control_mount control_lock disabled\n");
858 error = -EINVAL;
859 goto fail;
860 }
861
862 if (mounted_mode == DLM_LOCK_EX) {
863 /* first mounter, keep both EX while doing first recovery */
864 spin_lock(&ls->ls_recover_spin);
865 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
866 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
867 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
868 spin_unlock(&ls->ls_recover_spin);
869 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
870 return 0;
871 }
872
873 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
874 if (error)
875 goto fail;
876
877 /*
878 * We are not first mounter, now we need to wait for the control_lock
879 * lvb generation to be >= the generation from our first recover_done
880 * and all lvb bits to be clear (no pending journal recoveries.)
881 */
882
883 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
884 /* journals need recovery, wait until all are clear */
885 fs_info(sdp, "control_mount wait for journal recovery\n");
886 goto restart;
887 }
888
889 spin_lock(&ls->ls_recover_spin);
890 block_gen = ls->ls_recover_block;
891 start_gen = ls->ls_recover_start;
892 mount_gen = ls->ls_recover_mount;
893
894 if (lvb_gen < mount_gen) {
895 /* wait for mounted nodes to update control_lock lvb to our
896 generation, which might include new recovery bits set */
897 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
898 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
899 lvb_gen, ls->ls_recover_flags);
900 spin_unlock(&ls->ls_recover_spin);
901 goto restart;
902 }
903
904 if (lvb_gen != start_gen) {
905 /* wait for mounted nodes to update control_lock lvb to the
906 latest recovery generation */
907 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
908 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
909 lvb_gen, ls->ls_recover_flags);
910 spin_unlock(&ls->ls_recover_spin);
911 goto restart;
912 }
913
914 if (block_gen == start_gen) {
915 /* dlm recovery in progress, wait for it to finish */
916 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
917 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
918 lvb_gen, ls->ls_recover_flags);
919 spin_unlock(&ls->ls_recover_spin);
920 goto restart;
921 }
922
923 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
924 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
925 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
926 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
927 spin_unlock(&ls->ls_recover_spin);
928 return 0;
929
930 fail:
931 mounted_unlock(sdp);
932 control_unlock(sdp);
933 return error;
934 }
935
936 static int dlm_recovery_wait(void *word)
937 {
938 schedule();
939 return 0;
940 }
941
942 static int control_first_done(struct gfs2_sbd *sdp)
943 {
944 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
945 uint32_t start_gen, block_gen;
946 int error;
947
948 restart:
949 spin_lock(&ls->ls_recover_spin);
950 start_gen = ls->ls_recover_start;
951 block_gen = ls->ls_recover_block;
952
953 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
954 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
955 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
956 /* sanity check, should not happen */
957 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
958 start_gen, block_gen, ls->ls_recover_flags);
959 spin_unlock(&ls->ls_recover_spin);
960 control_unlock(sdp);
961 return -1;
962 }
963
964 if (start_gen == block_gen) {
965 /*
966 * Wait for the end of a dlm recovery cycle to switch from
967 * first mounter recovery. We can ignore any recover_slot
968 * callbacks between the recover_prep and next recover_done
969 * because we are still the first mounter and any failed nodes
970 * have not fully mounted, so they don't need recovery.
971 */
972 spin_unlock(&ls->ls_recover_spin);
973 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
974
975 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
976 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
977 goto restart;
978 }
979
980 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
981 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
982 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
983 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
984 spin_unlock(&ls->ls_recover_spin);
985
986 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
987 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
988
989 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
990 if (error)
991 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
992
993 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
994 if (error)
995 fs_err(sdp, "control_first_done control NL error %d\n", error);
996
997 return error;
998 }
999
1000 /*
1001 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1002 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1003 * gfs2 jids start at 0, so jid = slot - 1)
1004 */
1005
1006 #define RECOVER_SIZE_INC 16
1007
1008 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1009 int num_slots)
1010 {
1011 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1012 uint32_t *submit = NULL;
1013 uint32_t *result = NULL;
1014 uint32_t old_size, new_size;
1015 int i, max_jid;
1016
1017 if (!ls->ls_lvb_bits) {
1018 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1019 if (!ls->ls_lvb_bits)
1020 return -ENOMEM;
1021 }
1022
1023 max_jid = 0;
1024 for (i = 0; i < num_slots; i++) {
1025 if (max_jid < slots[i].slot - 1)
1026 max_jid = slots[i].slot - 1;
1027 }
1028
1029 old_size = ls->ls_recover_size;
1030
1031 if (old_size >= max_jid + 1)
1032 return 0;
1033
1034 new_size = old_size + RECOVER_SIZE_INC;
1035
1036 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1037 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1038 if (!submit || !result) {
1039 kfree(submit);
1040 kfree(result);
1041 return -ENOMEM;
1042 }
1043
1044 spin_lock(&ls->ls_recover_spin);
1045 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1046 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1047 kfree(ls->ls_recover_submit);
1048 kfree(ls->ls_recover_result);
1049 ls->ls_recover_submit = submit;
1050 ls->ls_recover_result = result;
1051 ls->ls_recover_size = new_size;
1052 spin_unlock(&ls->ls_recover_spin);
1053 return 0;
1054 }
1055
1056 static void free_recover_size(struct lm_lockstruct *ls)
1057 {
1058 kfree(ls->ls_lvb_bits);
1059 kfree(ls->ls_recover_submit);
1060 kfree(ls->ls_recover_result);
1061 ls->ls_recover_submit = NULL;
1062 ls->ls_recover_result = NULL;
1063 ls->ls_recover_size = 0;
1064 }
1065
1066 /* dlm calls before it does lock recovery */
1067
1068 static void gdlm_recover_prep(void *arg)
1069 {
1070 struct gfs2_sbd *sdp = arg;
1071 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1072
1073 spin_lock(&ls->ls_recover_spin);
1074 ls->ls_recover_block = ls->ls_recover_start;
1075 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1076
1077 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1078 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1079 spin_unlock(&ls->ls_recover_spin);
1080 return;
1081 }
1082 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1083 spin_unlock(&ls->ls_recover_spin);
1084 }
1085
1086 /* dlm calls after recover_prep has been completed on all lockspace members;
1087 identifies slot/jid of failed member */
1088
1089 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1090 {
1091 struct gfs2_sbd *sdp = arg;
1092 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1093 int jid = slot->slot - 1;
1094
1095 spin_lock(&ls->ls_recover_spin);
1096 if (ls->ls_recover_size < jid + 1) {
1097 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1098 jid, ls->ls_recover_block, ls->ls_recover_size);
1099 spin_unlock(&ls->ls_recover_spin);
1100 return;
1101 }
1102
1103 if (ls->ls_recover_submit[jid]) {
1104 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1105 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1106 }
1107 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1108 spin_unlock(&ls->ls_recover_spin);
1109 }
1110
1111 /* dlm calls after recover_slot and after it completes lock recovery */
1112
1113 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1114 int our_slot, uint32_t generation)
1115 {
1116 struct gfs2_sbd *sdp = arg;
1117 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1118
1119 /* ensure the ls jid arrays are large enough */
1120 set_recover_size(sdp, slots, num_slots);
1121
1122 spin_lock(&ls->ls_recover_spin);
1123 ls->ls_recover_start = generation;
1124
1125 if (!ls->ls_recover_mount) {
1126 ls->ls_recover_mount = generation;
1127 ls->ls_jid = our_slot - 1;
1128 }
1129
1130 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1131 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1132
1133 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1134 smp_mb__after_clear_bit();
1135 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1136 spin_unlock(&ls->ls_recover_spin);
1137 }
1138
1139 /* gfs2_recover thread has a journal recovery result */
1140
1141 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1142 unsigned int result)
1143 {
1144 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1145
1146 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1147 return;
1148
1149 /* don't care about the recovery of own journal during mount */
1150 if (jid == ls->ls_jid)
1151 return;
1152
1153 spin_lock(&ls->ls_recover_spin);
1154 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1155 spin_unlock(&ls->ls_recover_spin);
1156 return;
1157 }
1158 if (ls->ls_recover_size < jid + 1) {
1159 fs_err(sdp, "recovery_result jid %d short size %d",
1160 jid, ls->ls_recover_size);
1161 spin_unlock(&ls->ls_recover_spin);
1162 return;
1163 }
1164
1165 fs_info(sdp, "recover jid %d result %s\n", jid,
1166 result == LM_RD_GAVEUP ? "busy" : "success");
1167
1168 ls->ls_recover_result[jid] = result;
1169
1170 /* GAVEUP means another node is recovering the journal; delay our
1171 next attempt to recover it, to give the other node a chance to
1172 finish before trying again */
1173
1174 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1175 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1176 result == LM_RD_GAVEUP ? HZ : 0);
1177 spin_unlock(&ls->ls_recover_spin);
1178 }
1179
1180 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1181 .recover_prep = gdlm_recover_prep,
1182 .recover_slot = gdlm_recover_slot,
1183 .recover_done = gdlm_recover_done,
1184 };
1185
1186 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1187 {
1188 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1189 char cluster[GFS2_LOCKNAME_LEN];
1190 const char *fsname;
1191 uint32_t flags;
1192 int error, ops_result;
1193
1194 /*
1195 * initialize everything
1196 */
1197
1198 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1199 spin_lock_init(&ls->ls_recover_spin);
1200 ls->ls_recover_flags = 0;
1201 ls->ls_recover_mount = 0;
1202 ls->ls_recover_start = 0;
1203 ls->ls_recover_block = 0;
1204 ls->ls_recover_size = 0;
1205 ls->ls_recover_submit = NULL;
1206 ls->ls_recover_result = NULL;
1207 ls->ls_lvb_bits = NULL;
1208
1209 error = set_recover_size(sdp, NULL, 0);
1210 if (error)
1211 goto fail;
1212
1213 /*
1214 * prepare dlm_new_lockspace args
1215 */
1216
1217 fsname = strchr(table, ':');
1218 if (!fsname) {
1219 fs_info(sdp, "no fsname found\n");
1220 error = -EINVAL;
1221 goto fail_free;
1222 }
1223 memset(cluster, 0, sizeof(cluster));
1224 memcpy(cluster, table, strlen(table) - strlen(fsname));
1225 fsname++;
1226
1227 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1228
1229 /*
1230 * create/join lockspace
1231 */
1232
1233 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1234 &gdlm_lockspace_ops, sdp, &ops_result,
1235 &ls->ls_dlm);
1236 if (error) {
1237 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1238 goto fail_free;
1239 }
1240
1241 if (ops_result < 0) {
1242 /*
1243 * dlm does not support ops callbacks,
1244 * old dlm_controld/gfs_controld are used, try without ops.
1245 */
1246 fs_info(sdp, "dlm lockspace ops not used\n");
1247 free_recover_size(ls);
1248 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1249 return 0;
1250 }
1251
1252 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1253 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1254 error = -EINVAL;
1255 goto fail_release;
1256 }
1257
1258 /*
1259 * control_mount() uses control_lock to determine first mounter,
1260 * and for later mounts, waits for any recoveries to be cleared.
1261 */
1262
1263 error = control_mount(sdp);
1264 if (error) {
1265 fs_err(sdp, "mount control error %d\n", error);
1266 goto fail_release;
1267 }
1268
1269 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1270 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1271 smp_mb__after_clear_bit();
1272 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1273 return 0;
1274
1275 fail_release:
1276 dlm_release_lockspace(ls->ls_dlm, 2);
1277 fail_free:
1278 free_recover_size(ls);
1279 fail:
1280 return error;
1281 }
1282
1283 static void gdlm_first_done(struct gfs2_sbd *sdp)
1284 {
1285 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1286 int error;
1287
1288 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1289 return;
1290
1291 error = control_first_done(sdp);
1292 if (error)
1293 fs_err(sdp, "mount first_done error %d\n", error);
1294 }
1295
1296 static void gdlm_unmount(struct gfs2_sbd *sdp)
1297 {
1298 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1299
1300 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1301 goto release;
1302
1303 /* wait for gfs2_control_wq to be done with this mount */
1304
1305 spin_lock(&ls->ls_recover_spin);
1306 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1307 spin_unlock(&ls->ls_recover_spin);
1308 flush_delayed_work(&sdp->sd_control_work);
1309
1310 /* mounted_lock and control_lock will be purged in dlm recovery */
1311 release:
1312 if (ls->ls_dlm) {
1313 dlm_release_lockspace(ls->ls_dlm, 2);
1314 ls->ls_dlm = NULL;
1315 }
1316
1317 free_recover_size(ls);
1318 }
1319
1320 static const match_table_t dlm_tokens = {
1321 { Opt_jid, "jid=%d"},
1322 { Opt_id, "id=%d"},
1323 { Opt_first, "first=%d"},
1324 { Opt_nodir, "nodir=%d"},
1325 { Opt_err, NULL },
1326 };
1327
1328 const struct lm_lockops gfs2_dlm_ops = {
1329 .lm_proto_name = "lock_dlm",
1330 .lm_mount = gdlm_mount,
1331 .lm_first_done = gdlm_first_done,
1332 .lm_recovery_result = gdlm_recovery_result,
1333 .lm_unmount = gdlm_unmount,
1334 .lm_put_lock = gdlm_put_lock,
1335 .lm_lock = gdlm_lock,
1336 .lm_cancel = gdlm_cancel,
1337 .lm_tokens = &dlm_tokens,
1338 };
1339
This page took 0.076912 seconds and 5 git commands to generate.