GFS2: global conversion to pr_foo()
[deliverable/linux.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 struct gfs2_extent {
61 struct gfs2_rbm rbm;
62 u32 len;
63 };
64
65 static const char valid_change[16] = {
66 /* current */
67 /* n */ 0, 1, 1, 1,
68 /* e */ 1, 0, 0, 0,
69 /* w */ 0, 0, 0, 1,
70 1, 0, 0, 0
71 };
72
73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
74 const struct gfs2_inode *ip, bool nowrap,
75 const struct gfs2_alloc_parms *ap);
76
77
78 /**
79 * gfs2_setbit - Set a bit in the bitmaps
80 * @rbm: The position of the bit to set
81 * @do_clone: Also set the clone bitmap, if it exists
82 * @new_state: the new state of the block
83 *
84 */
85
86 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
87 unsigned char new_state)
88 {
89 unsigned char *byte1, *byte2, *end, cur_state;
90 struct gfs2_bitmap *bi = rbm_bi(rbm);
91 unsigned int buflen = bi->bi_len;
92 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
93
94 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
95 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
96
97 BUG_ON(byte1 >= end);
98
99 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
100
101 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
102 pr_warn("GFS2: buf_blk = 0x%x old_state=%d, "
103 "new_state=%d\n", rbm->offset, cur_state, new_state);
104 pr_warn("GFS2: rgrp=0x%llx bi_start=0x%x\n",
105 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
106 pr_warn("GFS2: bi_offset=0x%x bi_len=0x%x\n",
107 bi->bi_offset, bi->bi_len);
108 dump_stack();
109 gfs2_consist_rgrpd(rbm->rgd);
110 return;
111 }
112 *byte1 ^= (cur_state ^ new_state) << bit;
113
114 if (do_clone && bi->bi_clone) {
115 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
116 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
117 *byte2 ^= (cur_state ^ new_state) << bit;
118 }
119 }
120
121 /**
122 * gfs2_testbit - test a bit in the bitmaps
123 * @rbm: The bit to test
124 *
125 * Returns: The two bit block state of the requested bit
126 */
127
128 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
129 {
130 struct gfs2_bitmap *bi = rbm_bi(rbm);
131 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
132 const u8 *byte;
133 unsigned int bit;
134
135 byte = buffer + (rbm->offset / GFS2_NBBY);
136 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
137
138 return (*byte >> bit) & GFS2_BIT_MASK;
139 }
140
141 /**
142 * gfs2_bit_search
143 * @ptr: Pointer to bitmap data
144 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
145 * @state: The state we are searching for
146 *
147 * We xor the bitmap data with a patter which is the bitwise opposite
148 * of what we are looking for, this gives rise to a pattern of ones
149 * wherever there is a match. Since we have two bits per entry, we
150 * take this pattern, shift it down by one place and then and it with
151 * the original. All the even bit positions (0,2,4, etc) then represent
152 * successful matches, so we mask with 0x55555..... to remove the unwanted
153 * odd bit positions.
154 *
155 * This allows searching of a whole u64 at once (32 blocks) with a
156 * single test (on 64 bit arches).
157 */
158
159 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
160 {
161 u64 tmp;
162 static const u64 search[] = {
163 [0] = 0xffffffffffffffffULL,
164 [1] = 0xaaaaaaaaaaaaaaaaULL,
165 [2] = 0x5555555555555555ULL,
166 [3] = 0x0000000000000000ULL,
167 };
168 tmp = le64_to_cpu(*ptr) ^ search[state];
169 tmp &= (tmp >> 1);
170 tmp &= mask;
171 return tmp;
172 }
173
174 /**
175 * rs_cmp - multi-block reservation range compare
176 * @blk: absolute file system block number of the new reservation
177 * @len: number of blocks in the new reservation
178 * @rs: existing reservation to compare against
179 *
180 * returns: 1 if the block range is beyond the reach of the reservation
181 * -1 if the block range is before the start of the reservation
182 * 0 if the block range overlaps with the reservation
183 */
184 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
185 {
186 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
187
188 if (blk >= startblk + rs->rs_free)
189 return 1;
190 if (blk + len - 1 < startblk)
191 return -1;
192 return 0;
193 }
194
195 /**
196 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
197 * a block in a given allocation state.
198 * @buf: the buffer that holds the bitmaps
199 * @len: the length (in bytes) of the buffer
200 * @goal: start search at this block's bit-pair (within @buffer)
201 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
202 *
203 * Scope of @goal and returned block number is only within this bitmap buffer,
204 * not entire rgrp or filesystem. @buffer will be offset from the actual
205 * beginning of a bitmap block buffer, skipping any header structures, but
206 * headers are always a multiple of 64 bits long so that the buffer is
207 * always aligned to a 64 bit boundary.
208 *
209 * The size of the buffer is in bytes, but is it assumed that it is
210 * always ok to read a complete multiple of 64 bits at the end
211 * of the block in case the end is no aligned to a natural boundary.
212 *
213 * Return: the block number (bitmap buffer scope) that was found
214 */
215
216 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
217 u32 goal, u8 state)
218 {
219 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
220 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
221 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
222 u64 tmp;
223 u64 mask = 0x5555555555555555ULL;
224 u32 bit;
225
226 /* Mask off bits we don't care about at the start of the search */
227 mask <<= spoint;
228 tmp = gfs2_bit_search(ptr, mask, state);
229 ptr++;
230 while(tmp == 0 && ptr < end) {
231 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
232 ptr++;
233 }
234 /* Mask off any bits which are more than len bytes from the start */
235 if (ptr == end && (len & (sizeof(u64) - 1)))
236 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
237 /* Didn't find anything, so return */
238 if (tmp == 0)
239 return BFITNOENT;
240 ptr--;
241 bit = __ffs64(tmp);
242 bit /= 2; /* two bits per entry in the bitmap */
243 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
244 }
245
246 /**
247 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
248 * @rbm: The rbm with rgd already set correctly
249 * @block: The block number (filesystem relative)
250 *
251 * This sets the bi and offset members of an rbm based on a
252 * resource group and a filesystem relative block number. The
253 * resource group must be set in the rbm on entry, the bi and
254 * offset members will be set by this function.
255 *
256 * Returns: 0 on success, or an error code
257 */
258
259 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
260 {
261 u64 rblock = block - rbm->rgd->rd_data0;
262
263 if (WARN_ON_ONCE(rblock > UINT_MAX))
264 return -EINVAL;
265 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
266 return -E2BIG;
267
268 rbm->bii = 0;
269 rbm->offset = (u32)(rblock);
270 /* Check if the block is within the first block */
271 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
272 return 0;
273
274 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
275 rbm->offset += (sizeof(struct gfs2_rgrp) -
276 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
277 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
278 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
279 return 0;
280 }
281
282 /**
283 * gfs2_rbm_incr - increment an rbm structure
284 * @rbm: The rbm with rgd already set correctly
285 *
286 * This function takes an existing rbm structure and increments it to the next
287 * viable block offset.
288 *
289 * Returns: If incrementing the offset would cause the rbm to go past the
290 * end of the rgrp, true is returned, otherwise false.
291 *
292 */
293
294 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
295 {
296 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
297 rbm->offset++;
298 return false;
299 }
300 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
301 return true;
302
303 rbm->offset = 0;
304 rbm->bii++;
305 return false;
306 }
307
308 /**
309 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
310 * @rbm: Position to search (value/result)
311 * @n_unaligned: Number of unaligned blocks to check
312 * @len: Decremented for each block found (terminate on zero)
313 *
314 * Returns: true if a non-free block is encountered
315 */
316
317 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
318 {
319 u32 n;
320 u8 res;
321
322 for (n = 0; n < n_unaligned; n++) {
323 res = gfs2_testbit(rbm);
324 if (res != GFS2_BLKST_FREE)
325 return true;
326 (*len)--;
327 if (*len == 0)
328 return true;
329 if (gfs2_rbm_incr(rbm))
330 return true;
331 }
332
333 return false;
334 }
335
336 /**
337 * gfs2_free_extlen - Return extent length of free blocks
338 * @rbm: Starting position
339 * @len: Max length to check
340 *
341 * Starting at the block specified by the rbm, see how many free blocks
342 * there are, not reading more than len blocks ahead. This can be done
343 * using memchr_inv when the blocks are byte aligned, but has to be done
344 * on a block by block basis in case of unaligned blocks. Also this
345 * function can cope with bitmap boundaries (although it must stop on
346 * a resource group boundary)
347 *
348 * Returns: Number of free blocks in the extent
349 */
350
351 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
352 {
353 struct gfs2_rbm rbm = *rrbm;
354 u32 n_unaligned = rbm.offset & 3;
355 u32 size = len;
356 u32 bytes;
357 u32 chunk_size;
358 u8 *ptr, *start, *end;
359 u64 block;
360 struct gfs2_bitmap *bi;
361
362 if (n_unaligned &&
363 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
364 goto out;
365
366 n_unaligned = len & 3;
367 /* Start is now byte aligned */
368 while (len > 3) {
369 bi = rbm_bi(&rbm);
370 start = bi->bi_bh->b_data;
371 if (bi->bi_clone)
372 start = bi->bi_clone;
373 end = start + bi->bi_bh->b_size;
374 start += bi->bi_offset;
375 BUG_ON(rbm.offset & 3);
376 start += (rbm.offset / GFS2_NBBY);
377 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
378 ptr = memchr_inv(start, 0, bytes);
379 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
380 chunk_size *= GFS2_NBBY;
381 BUG_ON(len < chunk_size);
382 len -= chunk_size;
383 block = gfs2_rbm_to_block(&rbm);
384 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
385 n_unaligned = 0;
386 break;
387 }
388 if (ptr) {
389 n_unaligned = 3;
390 break;
391 }
392 n_unaligned = len & 3;
393 }
394
395 /* Deal with any bits left over at the end */
396 if (n_unaligned)
397 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
398 out:
399 return size - len;
400 }
401
402 /**
403 * gfs2_bitcount - count the number of bits in a certain state
404 * @rgd: the resource group descriptor
405 * @buffer: the buffer that holds the bitmaps
406 * @buflen: the length (in bytes) of the buffer
407 * @state: the state of the block we're looking for
408 *
409 * Returns: The number of bits
410 */
411
412 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
413 unsigned int buflen, u8 state)
414 {
415 const u8 *byte = buffer;
416 const u8 *end = buffer + buflen;
417 const u8 state1 = state << 2;
418 const u8 state2 = state << 4;
419 const u8 state3 = state << 6;
420 u32 count = 0;
421
422 for (; byte < end; byte++) {
423 if (((*byte) & 0x03) == state)
424 count++;
425 if (((*byte) & 0x0C) == state1)
426 count++;
427 if (((*byte) & 0x30) == state2)
428 count++;
429 if (((*byte) & 0xC0) == state3)
430 count++;
431 }
432
433 return count;
434 }
435
436 /**
437 * gfs2_rgrp_verify - Verify that a resource group is consistent
438 * @rgd: the rgrp
439 *
440 */
441
442 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
443 {
444 struct gfs2_sbd *sdp = rgd->rd_sbd;
445 struct gfs2_bitmap *bi = NULL;
446 u32 length = rgd->rd_length;
447 u32 count[4], tmp;
448 int buf, x;
449
450 memset(count, 0, 4 * sizeof(u32));
451
452 /* Count # blocks in each of 4 possible allocation states */
453 for (buf = 0; buf < length; buf++) {
454 bi = rgd->rd_bits + buf;
455 for (x = 0; x < 4; x++)
456 count[x] += gfs2_bitcount(rgd,
457 bi->bi_bh->b_data +
458 bi->bi_offset,
459 bi->bi_len, x);
460 }
461
462 if (count[0] != rgd->rd_free) {
463 if (gfs2_consist_rgrpd(rgd))
464 fs_err(sdp, "free data mismatch: %u != %u\n",
465 count[0], rgd->rd_free);
466 return;
467 }
468
469 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
470 if (count[1] != tmp) {
471 if (gfs2_consist_rgrpd(rgd))
472 fs_err(sdp, "used data mismatch: %u != %u\n",
473 count[1], tmp);
474 return;
475 }
476
477 if (count[2] + count[3] != rgd->rd_dinodes) {
478 if (gfs2_consist_rgrpd(rgd))
479 fs_err(sdp, "used metadata mismatch: %u != %u\n",
480 count[2] + count[3], rgd->rd_dinodes);
481 return;
482 }
483 }
484
485 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
486 {
487 u64 first = rgd->rd_data0;
488 u64 last = first + rgd->rd_data;
489 return first <= block && block < last;
490 }
491
492 /**
493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
494 * @sdp: The GFS2 superblock
495 * @blk: The data block number
496 * @exact: True if this needs to be an exact match
497 *
498 * Returns: The resource group, or NULL if not found
499 */
500
501 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
502 {
503 struct rb_node *n, *next;
504 struct gfs2_rgrpd *cur;
505
506 spin_lock(&sdp->sd_rindex_spin);
507 n = sdp->sd_rindex_tree.rb_node;
508 while (n) {
509 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
510 next = NULL;
511 if (blk < cur->rd_addr)
512 next = n->rb_left;
513 else if (blk >= cur->rd_data0 + cur->rd_data)
514 next = n->rb_right;
515 if (next == NULL) {
516 spin_unlock(&sdp->sd_rindex_spin);
517 if (exact) {
518 if (blk < cur->rd_addr)
519 return NULL;
520 if (blk >= cur->rd_data0 + cur->rd_data)
521 return NULL;
522 }
523 return cur;
524 }
525 n = next;
526 }
527 spin_unlock(&sdp->sd_rindex_spin);
528
529 return NULL;
530 }
531
532 /**
533 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
534 * @sdp: The GFS2 superblock
535 *
536 * Returns: The first rgrp in the filesystem
537 */
538
539 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
540 {
541 const struct rb_node *n;
542 struct gfs2_rgrpd *rgd;
543
544 spin_lock(&sdp->sd_rindex_spin);
545 n = rb_first(&sdp->sd_rindex_tree);
546 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
547 spin_unlock(&sdp->sd_rindex_spin);
548
549 return rgd;
550 }
551
552 /**
553 * gfs2_rgrpd_get_next - get the next RG
554 * @rgd: the resource group descriptor
555 *
556 * Returns: The next rgrp
557 */
558
559 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
560 {
561 struct gfs2_sbd *sdp = rgd->rd_sbd;
562 const struct rb_node *n;
563
564 spin_lock(&sdp->sd_rindex_spin);
565 n = rb_next(&rgd->rd_node);
566 if (n == NULL)
567 n = rb_first(&sdp->sd_rindex_tree);
568
569 if (unlikely(&rgd->rd_node == n)) {
570 spin_unlock(&sdp->sd_rindex_spin);
571 return NULL;
572 }
573 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
574 spin_unlock(&sdp->sd_rindex_spin);
575 return rgd;
576 }
577
578 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
579 {
580 int x;
581
582 for (x = 0; x < rgd->rd_length; x++) {
583 struct gfs2_bitmap *bi = rgd->rd_bits + x;
584 kfree(bi->bi_clone);
585 bi->bi_clone = NULL;
586 }
587 }
588
589 /**
590 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
591 * @ip: the inode for this reservation
592 */
593 int gfs2_rs_alloc(struct gfs2_inode *ip)
594 {
595 int error = 0;
596
597 down_write(&ip->i_rw_mutex);
598 if (ip->i_res)
599 goto out;
600
601 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
602 if (!ip->i_res) {
603 error = -ENOMEM;
604 goto out;
605 }
606
607 RB_CLEAR_NODE(&ip->i_res->rs_node);
608 out:
609 up_write(&ip->i_rw_mutex);
610 return error;
611 }
612
613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
614 {
615 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
616 (unsigned long long)rs->rs_inum,
617 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
618 rs->rs_rbm.offset, rs->rs_free);
619 }
620
621 /**
622 * __rs_deltree - remove a multi-block reservation from the rgd tree
623 * @rs: The reservation to remove
624 *
625 */
626 static void __rs_deltree(struct gfs2_blkreserv *rs)
627 {
628 struct gfs2_rgrpd *rgd;
629
630 if (!gfs2_rs_active(rs))
631 return;
632
633 rgd = rs->rs_rbm.rgd;
634 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
635 rb_erase(&rs->rs_node, &rgd->rd_rstree);
636 RB_CLEAR_NODE(&rs->rs_node);
637
638 if (rs->rs_free) {
639 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
640
641 /* return reserved blocks to the rgrp */
642 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
643 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
644 /* The rgrp extent failure point is likely not to increase;
645 it will only do so if the freed blocks are somehow
646 contiguous with a span of free blocks that follows. Still,
647 it will force the number to be recalculated later. */
648 rgd->rd_extfail_pt += rs->rs_free;
649 rs->rs_free = 0;
650 clear_bit(GBF_FULL, &bi->bi_flags);
651 }
652 }
653
654 /**
655 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
656 * @rs: The reservation to remove
657 *
658 */
659 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
660 {
661 struct gfs2_rgrpd *rgd;
662
663 rgd = rs->rs_rbm.rgd;
664 if (rgd) {
665 spin_lock(&rgd->rd_rsspin);
666 __rs_deltree(rs);
667 spin_unlock(&rgd->rd_rsspin);
668 }
669 }
670
671 /**
672 * gfs2_rs_delete - delete a multi-block reservation
673 * @ip: The inode for this reservation
674 * @wcount: The inode's write count, or NULL
675 *
676 */
677 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
678 {
679 down_write(&ip->i_rw_mutex);
680 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
681 gfs2_rs_deltree(ip->i_res);
682 BUG_ON(ip->i_res->rs_free);
683 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
684 ip->i_res = NULL;
685 }
686 up_write(&ip->i_rw_mutex);
687 }
688
689 /**
690 * return_all_reservations - return all reserved blocks back to the rgrp.
691 * @rgd: the rgrp that needs its space back
692 *
693 * We previously reserved a bunch of blocks for allocation. Now we need to
694 * give them back. This leave the reservation structures in tact, but removes
695 * all of their corresponding "no-fly zones".
696 */
697 static void return_all_reservations(struct gfs2_rgrpd *rgd)
698 {
699 struct rb_node *n;
700 struct gfs2_blkreserv *rs;
701
702 spin_lock(&rgd->rd_rsspin);
703 while ((n = rb_first(&rgd->rd_rstree))) {
704 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
705 __rs_deltree(rs);
706 }
707 spin_unlock(&rgd->rd_rsspin);
708 }
709
710 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
711 {
712 struct rb_node *n;
713 struct gfs2_rgrpd *rgd;
714 struct gfs2_glock *gl;
715
716 while ((n = rb_first(&sdp->sd_rindex_tree))) {
717 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
718 gl = rgd->rd_gl;
719
720 rb_erase(n, &sdp->sd_rindex_tree);
721
722 if (gl) {
723 spin_lock(&gl->gl_spin);
724 gl->gl_object = NULL;
725 spin_unlock(&gl->gl_spin);
726 gfs2_glock_add_to_lru(gl);
727 gfs2_glock_put(gl);
728 }
729
730 gfs2_free_clones(rgd);
731 kfree(rgd->rd_bits);
732 return_all_reservations(rgd);
733 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
734 }
735 }
736
737 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
738 {
739 pr_info(" ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
740 pr_info(" ri_length = %u\n", rgd->rd_length);
741 pr_info(" ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
742 pr_info(" ri_data = %u\n", rgd->rd_data);
743 pr_info(" ri_bitbytes = %u\n", rgd->rd_bitbytes);
744 }
745
746 /**
747 * gfs2_compute_bitstructs - Compute the bitmap sizes
748 * @rgd: The resource group descriptor
749 *
750 * Calculates bitmap descriptors, one for each block that contains bitmap data
751 *
752 * Returns: errno
753 */
754
755 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
756 {
757 struct gfs2_sbd *sdp = rgd->rd_sbd;
758 struct gfs2_bitmap *bi;
759 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
760 u32 bytes_left, bytes;
761 int x;
762
763 if (!length)
764 return -EINVAL;
765
766 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
767 if (!rgd->rd_bits)
768 return -ENOMEM;
769
770 bytes_left = rgd->rd_bitbytes;
771
772 for (x = 0; x < length; x++) {
773 bi = rgd->rd_bits + x;
774
775 bi->bi_flags = 0;
776 /* small rgrp; bitmap stored completely in header block */
777 if (length == 1) {
778 bytes = bytes_left;
779 bi->bi_offset = sizeof(struct gfs2_rgrp);
780 bi->bi_start = 0;
781 bi->bi_len = bytes;
782 bi->bi_blocks = bytes * GFS2_NBBY;
783 /* header block */
784 } else if (x == 0) {
785 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
786 bi->bi_offset = sizeof(struct gfs2_rgrp);
787 bi->bi_start = 0;
788 bi->bi_len = bytes;
789 bi->bi_blocks = bytes * GFS2_NBBY;
790 /* last block */
791 } else if (x + 1 == length) {
792 bytes = bytes_left;
793 bi->bi_offset = sizeof(struct gfs2_meta_header);
794 bi->bi_start = rgd->rd_bitbytes - bytes_left;
795 bi->bi_len = bytes;
796 bi->bi_blocks = bytes * GFS2_NBBY;
797 /* other blocks */
798 } else {
799 bytes = sdp->sd_sb.sb_bsize -
800 sizeof(struct gfs2_meta_header);
801 bi->bi_offset = sizeof(struct gfs2_meta_header);
802 bi->bi_start = rgd->rd_bitbytes - bytes_left;
803 bi->bi_len = bytes;
804 bi->bi_blocks = bytes * GFS2_NBBY;
805 }
806
807 bytes_left -= bytes;
808 }
809
810 if (bytes_left) {
811 gfs2_consist_rgrpd(rgd);
812 return -EIO;
813 }
814 bi = rgd->rd_bits + (length - 1);
815 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
816 if (gfs2_consist_rgrpd(rgd)) {
817 gfs2_rindex_print(rgd);
818 fs_err(sdp, "start=%u len=%u offset=%u\n",
819 bi->bi_start, bi->bi_len, bi->bi_offset);
820 }
821 return -EIO;
822 }
823
824 return 0;
825 }
826
827 /**
828 * gfs2_ri_total - Total up the file system space, according to the rindex.
829 * @sdp: the filesystem
830 *
831 */
832 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
833 {
834 u64 total_data = 0;
835 struct inode *inode = sdp->sd_rindex;
836 struct gfs2_inode *ip = GFS2_I(inode);
837 char buf[sizeof(struct gfs2_rindex)];
838 int error, rgrps;
839
840 for (rgrps = 0;; rgrps++) {
841 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
842
843 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
844 break;
845 error = gfs2_internal_read(ip, buf, &pos,
846 sizeof(struct gfs2_rindex));
847 if (error != sizeof(struct gfs2_rindex))
848 break;
849 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
850 }
851 return total_data;
852 }
853
854 static int rgd_insert(struct gfs2_rgrpd *rgd)
855 {
856 struct gfs2_sbd *sdp = rgd->rd_sbd;
857 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
858
859 /* Figure out where to put new node */
860 while (*newn) {
861 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
862 rd_node);
863
864 parent = *newn;
865 if (rgd->rd_addr < cur->rd_addr)
866 newn = &((*newn)->rb_left);
867 else if (rgd->rd_addr > cur->rd_addr)
868 newn = &((*newn)->rb_right);
869 else
870 return -EEXIST;
871 }
872
873 rb_link_node(&rgd->rd_node, parent, newn);
874 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
875 sdp->sd_rgrps++;
876 return 0;
877 }
878
879 /**
880 * read_rindex_entry - Pull in a new resource index entry from the disk
881 * @ip: Pointer to the rindex inode
882 *
883 * Returns: 0 on success, > 0 on EOF, error code otherwise
884 */
885
886 static int read_rindex_entry(struct gfs2_inode *ip)
887 {
888 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
889 const unsigned bsize = sdp->sd_sb.sb_bsize;
890 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
891 struct gfs2_rindex buf;
892 int error;
893 struct gfs2_rgrpd *rgd;
894
895 if (pos >= i_size_read(&ip->i_inode))
896 return 1;
897
898 error = gfs2_internal_read(ip, (char *)&buf, &pos,
899 sizeof(struct gfs2_rindex));
900
901 if (error != sizeof(struct gfs2_rindex))
902 return (error == 0) ? 1 : error;
903
904 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
905 error = -ENOMEM;
906 if (!rgd)
907 return error;
908
909 rgd->rd_sbd = sdp;
910 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
911 rgd->rd_length = be32_to_cpu(buf.ri_length);
912 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
913 rgd->rd_data = be32_to_cpu(buf.ri_data);
914 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
915 spin_lock_init(&rgd->rd_rsspin);
916
917 error = compute_bitstructs(rgd);
918 if (error)
919 goto fail;
920
921 error = gfs2_glock_get(sdp, rgd->rd_addr,
922 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
923 if (error)
924 goto fail;
925
926 rgd->rd_gl->gl_object = rgd;
927 rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize;
928 rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1;
929 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
930 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
931 if (rgd->rd_data > sdp->sd_max_rg_data)
932 sdp->sd_max_rg_data = rgd->rd_data;
933 spin_lock(&sdp->sd_rindex_spin);
934 error = rgd_insert(rgd);
935 spin_unlock(&sdp->sd_rindex_spin);
936 if (!error)
937 return 0;
938
939 error = 0; /* someone else read in the rgrp; free it and ignore it */
940 gfs2_glock_put(rgd->rd_gl);
941
942 fail:
943 kfree(rgd->rd_bits);
944 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
945 return error;
946 }
947
948 /**
949 * gfs2_ri_update - Pull in a new resource index from the disk
950 * @ip: pointer to the rindex inode
951 *
952 * Returns: 0 on successful update, error code otherwise
953 */
954
955 static int gfs2_ri_update(struct gfs2_inode *ip)
956 {
957 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
958 int error;
959
960 do {
961 error = read_rindex_entry(ip);
962 } while (error == 0);
963
964 if (error < 0)
965 return error;
966
967 sdp->sd_rindex_uptodate = 1;
968 return 0;
969 }
970
971 /**
972 * gfs2_rindex_update - Update the rindex if required
973 * @sdp: The GFS2 superblock
974 *
975 * We grab a lock on the rindex inode to make sure that it doesn't
976 * change whilst we are performing an operation. We keep this lock
977 * for quite long periods of time compared to other locks. This
978 * doesn't matter, since it is shared and it is very, very rarely
979 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
980 *
981 * This makes sure that we're using the latest copy of the resource index
982 * special file, which might have been updated if someone expanded the
983 * filesystem (via gfs2_grow utility), which adds new resource groups.
984 *
985 * Returns: 0 on succeess, error code otherwise
986 */
987
988 int gfs2_rindex_update(struct gfs2_sbd *sdp)
989 {
990 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
991 struct gfs2_glock *gl = ip->i_gl;
992 struct gfs2_holder ri_gh;
993 int error = 0;
994 int unlock_required = 0;
995
996 /* Read new copy from disk if we don't have the latest */
997 if (!sdp->sd_rindex_uptodate) {
998 if (!gfs2_glock_is_locked_by_me(gl)) {
999 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1000 if (error)
1001 return error;
1002 unlock_required = 1;
1003 }
1004 if (!sdp->sd_rindex_uptodate)
1005 error = gfs2_ri_update(ip);
1006 if (unlock_required)
1007 gfs2_glock_dq_uninit(&ri_gh);
1008 }
1009
1010 return error;
1011 }
1012
1013 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1014 {
1015 const struct gfs2_rgrp *str = buf;
1016 u32 rg_flags;
1017
1018 rg_flags = be32_to_cpu(str->rg_flags);
1019 rg_flags &= ~GFS2_RDF_MASK;
1020 rgd->rd_flags &= GFS2_RDF_MASK;
1021 rgd->rd_flags |= rg_flags;
1022 rgd->rd_free = be32_to_cpu(str->rg_free);
1023 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1024 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1025 }
1026
1027 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1028 {
1029 struct gfs2_rgrp *str = buf;
1030
1031 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1032 str->rg_free = cpu_to_be32(rgd->rd_free);
1033 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1034 str->__pad = cpu_to_be32(0);
1035 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1036 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1037 }
1038
1039 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1040 {
1041 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1042 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1043
1044 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1045 rgl->rl_dinodes != str->rg_dinodes ||
1046 rgl->rl_igeneration != str->rg_igeneration)
1047 return 0;
1048 return 1;
1049 }
1050
1051 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1052 {
1053 const struct gfs2_rgrp *str = buf;
1054
1055 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1056 rgl->rl_flags = str->rg_flags;
1057 rgl->rl_free = str->rg_free;
1058 rgl->rl_dinodes = str->rg_dinodes;
1059 rgl->rl_igeneration = str->rg_igeneration;
1060 rgl->__pad = 0UL;
1061 }
1062
1063 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1064 {
1065 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1066 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1067 rgl->rl_unlinked = cpu_to_be32(unlinked);
1068 }
1069
1070 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1071 {
1072 struct gfs2_bitmap *bi;
1073 const u32 length = rgd->rd_length;
1074 const u8 *buffer = NULL;
1075 u32 i, goal, count = 0;
1076
1077 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1078 goal = 0;
1079 buffer = bi->bi_bh->b_data + bi->bi_offset;
1080 WARN_ON(!buffer_uptodate(bi->bi_bh));
1081 while (goal < bi->bi_len * GFS2_NBBY) {
1082 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1083 GFS2_BLKST_UNLINKED);
1084 if (goal == BFITNOENT)
1085 break;
1086 count++;
1087 goal++;
1088 }
1089 }
1090
1091 return count;
1092 }
1093
1094
1095 /**
1096 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1097 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1098 *
1099 * Read in all of a Resource Group's header and bitmap blocks.
1100 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1101 *
1102 * Returns: errno
1103 */
1104
1105 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1106 {
1107 struct gfs2_sbd *sdp = rgd->rd_sbd;
1108 struct gfs2_glock *gl = rgd->rd_gl;
1109 unsigned int length = rgd->rd_length;
1110 struct gfs2_bitmap *bi;
1111 unsigned int x, y;
1112 int error;
1113
1114 if (rgd->rd_bits[0].bi_bh != NULL)
1115 return 0;
1116
1117 for (x = 0; x < length; x++) {
1118 bi = rgd->rd_bits + x;
1119 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1120 if (error)
1121 goto fail;
1122 }
1123
1124 for (y = length; y--;) {
1125 bi = rgd->rd_bits + y;
1126 error = gfs2_meta_wait(sdp, bi->bi_bh);
1127 if (error)
1128 goto fail;
1129 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1130 GFS2_METATYPE_RG)) {
1131 error = -EIO;
1132 goto fail;
1133 }
1134 }
1135
1136 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1137 for (x = 0; x < length; x++)
1138 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1139 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1140 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1141 rgd->rd_free_clone = rgd->rd_free;
1142 /* max out the rgrp allocation failure point */
1143 rgd->rd_extfail_pt = rgd->rd_free;
1144 }
1145 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1146 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1147 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1148 rgd->rd_bits[0].bi_bh->b_data);
1149 }
1150 else if (sdp->sd_args.ar_rgrplvb) {
1151 if (!gfs2_rgrp_lvb_valid(rgd)){
1152 gfs2_consist_rgrpd(rgd);
1153 error = -EIO;
1154 goto fail;
1155 }
1156 if (rgd->rd_rgl->rl_unlinked == 0)
1157 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1158 }
1159 return 0;
1160
1161 fail:
1162 while (x--) {
1163 bi = rgd->rd_bits + x;
1164 brelse(bi->bi_bh);
1165 bi->bi_bh = NULL;
1166 gfs2_assert_warn(sdp, !bi->bi_clone);
1167 }
1168
1169 return error;
1170 }
1171
1172 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1173 {
1174 u32 rl_flags;
1175
1176 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1177 return 0;
1178
1179 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1180 return gfs2_rgrp_bh_get(rgd);
1181
1182 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1183 rl_flags &= ~GFS2_RDF_MASK;
1184 rgd->rd_flags &= GFS2_RDF_MASK;
1185 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1186 if (rgd->rd_rgl->rl_unlinked == 0)
1187 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1188 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1189 rgd->rd_free_clone = rgd->rd_free;
1190 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1191 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1192 return 0;
1193 }
1194
1195 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1196 {
1197 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1198 struct gfs2_sbd *sdp = rgd->rd_sbd;
1199
1200 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1201 return 0;
1202 return gfs2_rgrp_bh_get(rgd);
1203 }
1204
1205 /**
1206 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1207 * @gh: The glock holder for the resource group
1208 *
1209 */
1210
1211 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1212 {
1213 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1214 int x, length = rgd->rd_length;
1215
1216 for (x = 0; x < length; x++) {
1217 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1218 if (bi->bi_bh) {
1219 brelse(bi->bi_bh);
1220 bi->bi_bh = NULL;
1221 }
1222 }
1223
1224 }
1225
1226 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1227 struct buffer_head *bh,
1228 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1229 {
1230 struct super_block *sb = sdp->sd_vfs;
1231 u64 blk;
1232 sector_t start = 0;
1233 sector_t nr_blks = 0;
1234 int rv;
1235 unsigned int x;
1236 u32 trimmed = 0;
1237 u8 diff;
1238
1239 for (x = 0; x < bi->bi_len; x++) {
1240 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1241 clone += bi->bi_offset;
1242 clone += x;
1243 if (bh) {
1244 const u8 *orig = bh->b_data + bi->bi_offset + x;
1245 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1246 } else {
1247 diff = ~(*clone | (*clone >> 1));
1248 }
1249 diff &= 0x55;
1250 if (diff == 0)
1251 continue;
1252 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1253 while(diff) {
1254 if (diff & 1) {
1255 if (nr_blks == 0)
1256 goto start_new_extent;
1257 if ((start + nr_blks) != blk) {
1258 if (nr_blks >= minlen) {
1259 rv = sb_issue_discard(sb,
1260 start, nr_blks,
1261 GFP_NOFS, 0);
1262 if (rv)
1263 goto fail;
1264 trimmed += nr_blks;
1265 }
1266 nr_blks = 0;
1267 start_new_extent:
1268 start = blk;
1269 }
1270 nr_blks++;
1271 }
1272 diff >>= 2;
1273 blk++;
1274 }
1275 }
1276 if (nr_blks >= minlen) {
1277 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1278 if (rv)
1279 goto fail;
1280 trimmed += nr_blks;
1281 }
1282 if (ptrimmed)
1283 *ptrimmed = trimmed;
1284 return 0;
1285
1286 fail:
1287 if (sdp->sd_args.ar_discard)
1288 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1289 sdp->sd_args.ar_discard = 0;
1290 return -EIO;
1291 }
1292
1293 /**
1294 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1295 * @filp: Any file on the filesystem
1296 * @argp: Pointer to the arguments (also used to pass result)
1297 *
1298 * Returns: 0 on success, otherwise error code
1299 */
1300
1301 int gfs2_fitrim(struct file *filp, void __user *argp)
1302 {
1303 struct inode *inode = file_inode(filp);
1304 struct gfs2_sbd *sdp = GFS2_SB(inode);
1305 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1306 struct buffer_head *bh;
1307 struct gfs2_rgrpd *rgd;
1308 struct gfs2_rgrpd *rgd_end;
1309 struct gfs2_holder gh;
1310 struct fstrim_range r;
1311 int ret = 0;
1312 u64 amt;
1313 u64 trimmed = 0;
1314 u64 start, end, minlen;
1315 unsigned int x;
1316 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1317
1318 if (!capable(CAP_SYS_ADMIN))
1319 return -EPERM;
1320
1321 if (!blk_queue_discard(q))
1322 return -EOPNOTSUPP;
1323
1324 if (copy_from_user(&r, argp, sizeof(r)))
1325 return -EFAULT;
1326
1327 ret = gfs2_rindex_update(sdp);
1328 if (ret)
1329 return ret;
1330
1331 start = r.start >> bs_shift;
1332 end = start + (r.len >> bs_shift);
1333 minlen = max_t(u64, r.minlen,
1334 q->limits.discard_granularity) >> bs_shift;
1335
1336 if (end <= start || minlen > sdp->sd_max_rg_data)
1337 return -EINVAL;
1338
1339 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1340 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1341
1342 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1343 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1344 return -EINVAL; /* start is beyond the end of the fs */
1345
1346 while (1) {
1347
1348 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1349 if (ret)
1350 goto out;
1351
1352 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1353 /* Trim each bitmap in the rgrp */
1354 for (x = 0; x < rgd->rd_length; x++) {
1355 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1356 ret = gfs2_rgrp_send_discards(sdp,
1357 rgd->rd_data0, NULL, bi, minlen,
1358 &amt);
1359 if (ret) {
1360 gfs2_glock_dq_uninit(&gh);
1361 goto out;
1362 }
1363 trimmed += amt;
1364 }
1365
1366 /* Mark rgrp as having been trimmed */
1367 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1368 if (ret == 0) {
1369 bh = rgd->rd_bits[0].bi_bh;
1370 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1371 gfs2_trans_add_meta(rgd->rd_gl, bh);
1372 gfs2_rgrp_out(rgd, bh->b_data);
1373 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1374 gfs2_trans_end(sdp);
1375 }
1376 }
1377 gfs2_glock_dq_uninit(&gh);
1378
1379 if (rgd == rgd_end)
1380 break;
1381
1382 rgd = gfs2_rgrpd_get_next(rgd);
1383 }
1384
1385 out:
1386 r.len = trimmed << bs_shift;
1387 if (copy_to_user(argp, &r, sizeof(r)))
1388 return -EFAULT;
1389
1390 return ret;
1391 }
1392
1393 /**
1394 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1395 * @ip: the inode structure
1396 *
1397 */
1398 static void rs_insert(struct gfs2_inode *ip)
1399 {
1400 struct rb_node **newn, *parent = NULL;
1401 int rc;
1402 struct gfs2_blkreserv *rs = ip->i_res;
1403 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1404 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1405
1406 BUG_ON(gfs2_rs_active(rs));
1407
1408 spin_lock(&rgd->rd_rsspin);
1409 newn = &rgd->rd_rstree.rb_node;
1410 while (*newn) {
1411 struct gfs2_blkreserv *cur =
1412 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1413
1414 parent = *newn;
1415 rc = rs_cmp(fsblock, rs->rs_free, cur);
1416 if (rc > 0)
1417 newn = &((*newn)->rb_right);
1418 else if (rc < 0)
1419 newn = &((*newn)->rb_left);
1420 else {
1421 spin_unlock(&rgd->rd_rsspin);
1422 WARN_ON(1);
1423 return;
1424 }
1425 }
1426
1427 rb_link_node(&rs->rs_node, parent, newn);
1428 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1429
1430 /* Do our rgrp accounting for the reservation */
1431 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1432 spin_unlock(&rgd->rd_rsspin);
1433 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1434 }
1435
1436 /**
1437 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1438 * @rgd: the resource group descriptor
1439 * @ip: pointer to the inode for which we're reserving blocks
1440 * @ap: the allocation parameters
1441 *
1442 */
1443
1444 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1445 const struct gfs2_alloc_parms *ap)
1446 {
1447 struct gfs2_rbm rbm = { .rgd = rgd, };
1448 u64 goal;
1449 struct gfs2_blkreserv *rs = ip->i_res;
1450 u32 extlen;
1451 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1452 int ret;
1453 struct inode *inode = &ip->i_inode;
1454
1455 if (S_ISDIR(inode->i_mode))
1456 extlen = 1;
1457 else {
1458 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1459 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1460 }
1461 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1462 return;
1463
1464 /* Find bitmap block that contains bits for goal block */
1465 if (rgrp_contains_block(rgd, ip->i_goal))
1466 goal = ip->i_goal;
1467 else
1468 goal = rgd->rd_last_alloc + rgd->rd_data0;
1469
1470 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1471 return;
1472
1473 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1474 if (ret == 0) {
1475 rs->rs_rbm = rbm;
1476 rs->rs_free = extlen;
1477 rs->rs_inum = ip->i_no_addr;
1478 rs_insert(ip);
1479 } else {
1480 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1481 rgd->rd_last_alloc = 0;
1482 }
1483 }
1484
1485 /**
1486 * gfs2_next_unreserved_block - Return next block that is not reserved
1487 * @rgd: The resource group
1488 * @block: The starting block
1489 * @length: The required length
1490 * @ip: Ignore any reservations for this inode
1491 *
1492 * If the block does not appear in any reservation, then return the
1493 * block number unchanged. If it does appear in the reservation, then
1494 * keep looking through the tree of reservations in order to find the
1495 * first block number which is not reserved.
1496 */
1497
1498 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1499 u32 length,
1500 const struct gfs2_inode *ip)
1501 {
1502 struct gfs2_blkreserv *rs;
1503 struct rb_node *n;
1504 int rc;
1505
1506 spin_lock(&rgd->rd_rsspin);
1507 n = rgd->rd_rstree.rb_node;
1508 while (n) {
1509 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1510 rc = rs_cmp(block, length, rs);
1511 if (rc < 0)
1512 n = n->rb_left;
1513 else if (rc > 0)
1514 n = n->rb_right;
1515 else
1516 break;
1517 }
1518
1519 if (n) {
1520 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1521 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1522 n = n->rb_right;
1523 if (n == NULL)
1524 break;
1525 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1526 }
1527 }
1528
1529 spin_unlock(&rgd->rd_rsspin);
1530 return block;
1531 }
1532
1533 /**
1534 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1535 * @rbm: The current position in the resource group
1536 * @ip: The inode for which we are searching for blocks
1537 * @minext: The minimum extent length
1538 * @maxext: A pointer to the maximum extent structure
1539 *
1540 * This checks the current position in the rgrp to see whether there is
1541 * a reservation covering this block. If not then this function is a
1542 * no-op. If there is, then the position is moved to the end of the
1543 * contiguous reservation(s) so that we are pointing at the first
1544 * non-reserved block.
1545 *
1546 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1547 */
1548
1549 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1550 const struct gfs2_inode *ip,
1551 u32 minext,
1552 struct gfs2_extent *maxext)
1553 {
1554 u64 block = gfs2_rbm_to_block(rbm);
1555 u32 extlen = 1;
1556 u64 nblock;
1557 int ret;
1558
1559 /*
1560 * If we have a minimum extent length, then skip over any extent
1561 * which is less than the min extent length in size.
1562 */
1563 if (minext) {
1564 extlen = gfs2_free_extlen(rbm, minext);
1565 if (extlen <= maxext->len)
1566 goto fail;
1567 }
1568
1569 /*
1570 * Check the extent which has been found against the reservations
1571 * and skip if parts of it are already reserved
1572 */
1573 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1574 if (nblock == block) {
1575 if (!minext || extlen >= minext)
1576 return 0;
1577
1578 if (extlen > maxext->len) {
1579 maxext->len = extlen;
1580 maxext->rbm = *rbm;
1581 }
1582 fail:
1583 nblock = block + extlen;
1584 }
1585 ret = gfs2_rbm_from_block(rbm, nblock);
1586 if (ret < 0)
1587 return ret;
1588 return 1;
1589 }
1590
1591 /**
1592 * gfs2_rbm_find - Look for blocks of a particular state
1593 * @rbm: Value/result starting position and final position
1594 * @state: The state which we want to find
1595 * @minext: Pointer to the requested extent length (NULL for a single block)
1596 * This is updated to be the actual reservation size.
1597 * @ip: If set, check for reservations
1598 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1599 * around until we've reached the starting point.
1600 * @ap: the allocation parameters
1601 *
1602 * Side effects:
1603 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1604 * has no free blocks in it.
1605 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1606 * has come up short on a free block search.
1607 *
1608 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1609 */
1610
1611 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1612 const struct gfs2_inode *ip, bool nowrap,
1613 const struct gfs2_alloc_parms *ap)
1614 {
1615 struct buffer_head *bh;
1616 int initial_bii;
1617 u32 initial_offset;
1618 int first_bii = rbm->bii;
1619 u32 first_offset = rbm->offset;
1620 u32 offset;
1621 u8 *buffer;
1622 int n = 0;
1623 int iters = rbm->rgd->rd_length;
1624 int ret;
1625 struct gfs2_bitmap *bi;
1626 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1627
1628 /* If we are not starting at the beginning of a bitmap, then we
1629 * need to add one to the bitmap count to ensure that we search
1630 * the starting bitmap twice.
1631 */
1632 if (rbm->offset != 0)
1633 iters++;
1634
1635 while(1) {
1636 bi = rbm_bi(rbm);
1637 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1638 (state == GFS2_BLKST_FREE))
1639 goto next_bitmap;
1640
1641 bh = bi->bi_bh;
1642 buffer = bh->b_data + bi->bi_offset;
1643 WARN_ON(!buffer_uptodate(bh));
1644 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1645 buffer = bi->bi_clone + bi->bi_offset;
1646 initial_offset = rbm->offset;
1647 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1648 if (offset == BFITNOENT)
1649 goto bitmap_full;
1650 rbm->offset = offset;
1651 if (ip == NULL)
1652 return 0;
1653
1654 initial_bii = rbm->bii;
1655 ret = gfs2_reservation_check_and_update(rbm, ip,
1656 minext ? *minext : 0,
1657 &maxext);
1658 if (ret == 0)
1659 return 0;
1660 if (ret > 0) {
1661 n += (rbm->bii - initial_bii);
1662 goto next_iter;
1663 }
1664 if (ret == -E2BIG) {
1665 rbm->bii = 0;
1666 rbm->offset = 0;
1667 n += (rbm->bii - initial_bii);
1668 goto res_covered_end_of_rgrp;
1669 }
1670 return ret;
1671
1672 bitmap_full: /* Mark bitmap as full and fall through */
1673 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) {
1674 struct gfs2_bitmap *bi = rbm_bi(rbm);
1675 set_bit(GBF_FULL, &bi->bi_flags);
1676 }
1677
1678 next_bitmap: /* Find next bitmap in the rgrp */
1679 rbm->offset = 0;
1680 rbm->bii++;
1681 if (rbm->bii == rbm->rgd->rd_length)
1682 rbm->bii = 0;
1683 res_covered_end_of_rgrp:
1684 if ((rbm->bii == 0) && nowrap)
1685 break;
1686 n++;
1687 next_iter:
1688 if (n >= iters)
1689 break;
1690 }
1691
1692 if (minext == NULL || state != GFS2_BLKST_FREE)
1693 return -ENOSPC;
1694
1695 /* If the extent was too small, and it's smaller than the smallest
1696 to have failed before, remember for future reference that it's
1697 useless to search this rgrp again for this amount or more. */
1698 if ((first_offset == 0) && (first_bii == 0) &&
1699 (*minext < rbm->rgd->rd_extfail_pt))
1700 rbm->rgd->rd_extfail_pt = *minext;
1701
1702 /* If the maximum extent we found is big enough to fulfill the
1703 minimum requirements, use it anyway. */
1704 if (maxext.len) {
1705 *rbm = maxext.rbm;
1706 *minext = maxext.len;
1707 return 0;
1708 }
1709
1710 return -ENOSPC;
1711 }
1712
1713 /**
1714 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1715 * @rgd: The rgrp
1716 * @last_unlinked: block address of the last dinode we unlinked
1717 * @skip: block address we should explicitly not unlink
1718 *
1719 * Returns: 0 if no error
1720 * The inode, if one has been found, in inode.
1721 */
1722
1723 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1724 {
1725 u64 block;
1726 struct gfs2_sbd *sdp = rgd->rd_sbd;
1727 struct gfs2_glock *gl;
1728 struct gfs2_inode *ip;
1729 int error;
1730 int found = 0;
1731 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1732
1733 while (1) {
1734 down_write(&sdp->sd_log_flush_lock);
1735 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1736 true, NULL);
1737 up_write(&sdp->sd_log_flush_lock);
1738 if (error == -ENOSPC)
1739 break;
1740 if (WARN_ON_ONCE(error))
1741 break;
1742
1743 block = gfs2_rbm_to_block(&rbm);
1744 if (gfs2_rbm_from_block(&rbm, block + 1))
1745 break;
1746 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1747 continue;
1748 if (block == skip)
1749 continue;
1750 *last_unlinked = block;
1751
1752 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1753 if (error)
1754 continue;
1755
1756 /* If the inode is already in cache, we can ignore it here
1757 * because the existing inode disposal code will deal with
1758 * it when all refs have gone away. Accessing gl_object like
1759 * this is not safe in general. Here it is ok because we do
1760 * not dereference the pointer, and we only need an approx
1761 * answer to whether it is NULL or not.
1762 */
1763 ip = gl->gl_object;
1764
1765 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1766 gfs2_glock_put(gl);
1767 else
1768 found++;
1769
1770 /* Limit reclaim to sensible number of tasks */
1771 if (found > NR_CPUS)
1772 return;
1773 }
1774
1775 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1776 return;
1777 }
1778
1779 /**
1780 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1781 * @rgd: The rgrp in question
1782 * @loops: An indication of how picky we can be (0=very, 1=less so)
1783 *
1784 * This function uses the recently added glock statistics in order to
1785 * figure out whether a parciular resource group is suffering from
1786 * contention from multiple nodes. This is done purely on the basis
1787 * of timings, since this is the only data we have to work with and
1788 * our aim here is to reject a resource group which is highly contended
1789 * but (very important) not to do this too often in order to ensure that
1790 * we do not land up introducing fragmentation by changing resource
1791 * groups when not actually required.
1792 *
1793 * The calculation is fairly simple, we want to know whether the SRTTB
1794 * (i.e. smoothed round trip time for blocking operations) to acquire
1795 * the lock for this rgrp's glock is significantly greater than the
1796 * time taken for resource groups on average. We introduce a margin in
1797 * the form of the variable @var which is computed as the sum of the two
1798 * respective variences, and multiplied by a factor depending on @loops
1799 * and whether we have a lot of data to base the decision on. This is
1800 * then tested against the square difference of the means in order to
1801 * decide whether the result is statistically significant or not.
1802 *
1803 * Returns: A boolean verdict on the congestion status
1804 */
1805
1806 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1807 {
1808 const struct gfs2_glock *gl = rgd->rd_gl;
1809 const struct gfs2_sbd *sdp = gl->gl_sbd;
1810 struct gfs2_lkstats *st;
1811 s64 r_dcount, l_dcount;
1812 s64 r_srttb, l_srttb;
1813 s64 srttb_diff;
1814 s64 sqr_diff;
1815 s64 var;
1816
1817 preempt_disable();
1818 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1819 r_srttb = st->stats[GFS2_LKS_SRTTB];
1820 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1821 var = st->stats[GFS2_LKS_SRTTVARB] +
1822 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1823 preempt_enable();
1824
1825 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1826 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1827
1828 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1829 return false;
1830
1831 srttb_diff = r_srttb - l_srttb;
1832 sqr_diff = srttb_diff * srttb_diff;
1833
1834 var *= 2;
1835 if (l_dcount < 8 || r_dcount < 8)
1836 var *= 2;
1837 if (loops == 1)
1838 var *= 2;
1839
1840 return ((srttb_diff < 0) && (sqr_diff > var));
1841 }
1842
1843 /**
1844 * gfs2_rgrp_used_recently
1845 * @rs: The block reservation with the rgrp to test
1846 * @msecs: The time limit in milliseconds
1847 *
1848 * Returns: True if the rgrp glock has been used within the time limit
1849 */
1850 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1851 u64 msecs)
1852 {
1853 u64 tdiff;
1854
1855 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1856 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1857
1858 return tdiff > (msecs * 1000 * 1000);
1859 }
1860
1861 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1862 {
1863 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1864 u32 skip;
1865
1866 get_random_bytes(&skip, sizeof(skip));
1867 return skip % sdp->sd_rgrps;
1868 }
1869
1870 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1871 {
1872 struct gfs2_rgrpd *rgd = *pos;
1873 struct gfs2_sbd *sdp = rgd->rd_sbd;
1874
1875 rgd = gfs2_rgrpd_get_next(rgd);
1876 if (rgd == NULL)
1877 rgd = gfs2_rgrpd_get_first(sdp);
1878 *pos = rgd;
1879 if (rgd != begin) /* If we didn't wrap */
1880 return true;
1881 return false;
1882 }
1883
1884 /**
1885 * gfs2_inplace_reserve - Reserve space in the filesystem
1886 * @ip: the inode to reserve space for
1887 * @ap: the allocation parameters
1888 *
1889 * Returns: errno
1890 */
1891
1892 int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap)
1893 {
1894 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1895 struct gfs2_rgrpd *begin = NULL;
1896 struct gfs2_blkreserv *rs = ip->i_res;
1897 int error = 0, rg_locked, flags = 0;
1898 u64 last_unlinked = NO_BLOCK;
1899 int loops = 0;
1900 u32 skip = 0;
1901
1902 if (sdp->sd_args.ar_rgrplvb)
1903 flags |= GL_SKIP;
1904 if (gfs2_assert_warn(sdp, ap->target))
1905 return -EINVAL;
1906 if (gfs2_rs_active(rs)) {
1907 begin = rs->rs_rbm.rgd;
1908 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1909 rs->rs_rbm.rgd = begin = ip->i_rgd;
1910 } else {
1911 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1912 }
1913 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1914 skip = gfs2_orlov_skip(ip);
1915 if (rs->rs_rbm.rgd == NULL)
1916 return -EBADSLT;
1917
1918 while (loops < 3) {
1919 rg_locked = 1;
1920
1921 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1922 rg_locked = 0;
1923 if (skip && skip--)
1924 goto next_rgrp;
1925 if (!gfs2_rs_active(rs) && (loops < 2) &&
1926 gfs2_rgrp_used_recently(rs, 1000) &&
1927 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1928 goto next_rgrp;
1929 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1930 LM_ST_EXCLUSIVE, flags,
1931 &rs->rs_rgd_gh);
1932 if (unlikely(error))
1933 return error;
1934 if (!gfs2_rs_active(rs) && (loops < 2) &&
1935 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1936 goto skip_rgrp;
1937 if (sdp->sd_args.ar_rgrplvb) {
1938 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1939 if (unlikely(error)) {
1940 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1941 return error;
1942 }
1943 }
1944 }
1945
1946 /* Skip unuseable resource groups */
1947 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
1948 GFS2_RDF_ERROR)) ||
1949 (ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
1950 goto skip_rgrp;
1951
1952 if (sdp->sd_args.ar_rgrplvb)
1953 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1954
1955 /* Get a reservation if we don't already have one */
1956 if (!gfs2_rs_active(rs))
1957 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
1958
1959 /* Skip rgrps when we can't get a reservation on first pass */
1960 if (!gfs2_rs_active(rs) && (loops < 1))
1961 goto check_rgrp;
1962
1963 /* If rgrp has enough free space, use it */
1964 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) {
1965 ip->i_rgd = rs->rs_rbm.rgd;
1966 return 0;
1967 }
1968
1969 check_rgrp:
1970 /* Check for unlinked inodes which can be reclaimed */
1971 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1972 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1973 ip->i_no_addr);
1974 skip_rgrp:
1975 /* Drop reservation, if we couldn't use reserved rgrp */
1976 if (gfs2_rs_active(rs))
1977 gfs2_rs_deltree(rs);
1978
1979 /* Unlock rgrp if required */
1980 if (!rg_locked)
1981 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1982 next_rgrp:
1983 /* Find the next rgrp, and continue looking */
1984 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1985 continue;
1986 if (skip)
1987 continue;
1988
1989 /* If we've scanned all the rgrps, but found no free blocks
1990 * then this checks for some less likely conditions before
1991 * trying again.
1992 */
1993 loops++;
1994 /* Check that fs hasn't grown if writing to rindex */
1995 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1996 error = gfs2_ri_update(ip);
1997 if (error)
1998 return error;
1999 }
2000 /* Flushing the log may release space */
2001 if (loops == 2)
2002 gfs2_log_flush(sdp, NULL);
2003 }
2004
2005 return -ENOSPC;
2006 }
2007
2008 /**
2009 * gfs2_inplace_release - release an inplace reservation
2010 * @ip: the inode the reservation was taken out on
2011 *
2012 * Release a reservation made by gfs2_inplace_reserve().
2013 */
2014
2015 void gfs2_inplace_release(struct gfs2_inode *ip)
2016 {
2017 struct gfs2_blkreserv *rs = ip->i_res;
2018
2019 if (rs->rs_rgd_gh.gh_gl)
2020 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2021 }
2022
2023 /**
2024 * gfs2_get_block_type - Check a block in a RG is of given type
2025 * @rgd: the resource group holding the block
2026 * @block: the block number
2027 *
2028 * Returns: The block type (GFS2_BLKST_*)
2029 */
2030
2031 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2032 {
2033 struct gfs2_rbm rbm = { .rgd = rgd, };
2034 int ret;
2035
2036 ret = gfs2_rbm_from_block(&rbm, block);
2037 WARN_ON_ONCE(ret != 0);
2038
2039 return gfs2_testbit(&rbm);
2040 }
2041
2042
2043 /**
2044 * gfs2_alloc_extent - allocate an extent from a given bitmap
2045 * @rbm: the resource group information
2046 * @dinode: TRUE if the first block we allocate is for a dinode
2047 * @n: The extent length (value/result)
2048 *
2049 * Add the bitmap buffer to the transaction.
2050 * Set the found bits to @new_state to change block's allocation state.
2051 */
2052 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2053 unsigned int *n)
2054 {
2055 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2056 const unsigned int elen = *n;
2057 u64 block;
2058 int ret;
2059
2060 *n = 1;
2061 block = gfs2_rbm_to_block(rbm);
2062 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2063 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2064 block++;
2065 while (*n < elen) {
2066 ret = gfs2_rbm_from_block(&pos, block);
2067 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2068 break;
2069 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2070 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2071 (*n)++;
2072 block++;
2073 }
2074 }
2075
2076 /**
2077 * rgblk_free - Change alloc state of given block(s)
2078 * @sdp: the filesystem
2079 * @bstart: the start of a run of blocks to free
2080 * @blen: the length of the block run (all must lie within ONE RG!)
2081 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2082 *
2083 * Returns: Resource group containing the block(s)
2084 */
2085
2086 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2087 u32 blen, unsigned char new_state)
2088 {
2089 struct gfs2_rbm rbm;
2090 struct gfs2_bitmap *bi;
2091
2092 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2093 if (!rbm.rgd) {
2094 if (gfs2_consist(sdp))
2095 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2096 return NULL;
2097 }
2098
2099 while (blen--) {
2100 gfs2_rbm_from_block(&rbm, bstart);
2101 bi = rbm_bi(&rbm);
2102 bstart++;
2103 if (!bi->bi_clone) {
2104 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2105 GFP_NOFS | __GFP_NOFAIL);
2106 memcpy(bi->bi_clone + bi->bi_offset,
2107 bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
2108 }
2109 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2110 gfs2_setbit(&rbm, false, new_state);
2111 }
2112
2113 return rbm.rgd;
2114 }
2115
2116 /**
2117 * gfs2_rgrp_dump - print out an rgrp
2118 * @seq: The iterator
2119 * @gl: The glock in question
2120 *
2121 */
2122
2123 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2124 {
2125 struct gfs2_rgrpd *rgd = gl->gl_object;
2126 struct gfs2_blkreserv *trs;
2127 const struct rb_node *n;
2128
2129 if (rgd == NULL)
2130 return;
2131 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2132 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2133 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2134 rgd->rd_reserved, rgd->rd_extfail_pt);
2135 spin_lock(&rgd->rd_rsspin);
2136 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2137 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2138 dump_rs(seq, trs);
2139 }
2140 spin_unlock(&rgd->rd_rsspin);
2141 }
2142
2143 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2144 {
2145 struct gfs2_sbd *sdp = rgd->rd_sbd;
2146 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2147 (unsigned long long)rgd->rd_addr);
2148 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2149 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2150 rgd->rd_flags |= GFS2_RDF_ERROR;
2151 }
2152
2153 /**
2154 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2155 * @ip: The inode we have just allocated blocks for
2156 * @rbm: The start of the allocated blocks
2157 * @len: The extent length
2158 *
2159 * Adjusts a reservation after an allocation has taken place. If the
2160 * reservation does not match the allocation, or if it is now empty
2161 * then it is removed.
2162 */
2163
2164 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2165 const struct gfs2_rbm *rbm, unsigned len)
2166 {
2167 struct gfs2_blkreserv *rs = ip->i_res;
2168 struct gfs2_rgrpd *rgd = rbm->rgd;
2169 unsigned rlen;
2170 u64 block;
2171 int ret;
2172
2173 spin_lock(&rgd->rd_rsspin);
2174 if (gfs2_rs_active(rs)) {
2175 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2176 block = gfs2_rbm_to_block(rbm);
2177 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2178 rlen = min(rs->rs_free, len);
2179 rs->rs_free -= rlen;
2180 rgd->rd_reserved -= rlen;
2181 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2182 if (rs->rs_free && !ret)
2183 goto out;
2184 }
2185 __rs_deltree(rs);
2186 }
2187 out:
2188 spin_unlock(&rgd->rd_rsspin);
2189 }
2190
2191 /**
2192 * gfs2_set_alloc_start - Set starting point for block allocation
2193 * @rbm: The rbm which will be set to the required location
2194 * @ip: The gfs2 inode
2195 * @dinode: Flag to say if allocation includes a new inode
2196 *
2197 * This sets the starting point from the reservation if one is active
2198 * otherwise it falls back to guessing a start point based on the
2199 * inode's goal block or the last allocation point in the rgrp.
2200 */
2201
2202 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2203 const struct gfs2_inode *ip, bool dinode)
2204 {
2205 u64 goal;
2206
2207 if (gfs2_rs_active(ip->i_res)) {
2208 *rbm = ip->i_res->rs_rbm;
2209 return;
2210 }
2211
2212 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2213 goal = ip->i_goal;
2214 else
2215 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2216
2217 gfs2_rbm_from_block(rbm, goal);
2218 }
2219
2220 /**
2221 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2222 * @ip: the inode to allocate the block for
2223 * @bn: Used to return the starting block number
2224 * @nblocks: requested number of blocks/extent length (value/result)
2225 * @dinode: 1 if we're allocating a dinode block, else 0
2226 * @generation: the generation number of the inode
2227 *
2228 * Returns: 0 or error
2229 */
2230
2231 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2232 bool dinode, u64 *generation)
2233 {
2234 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2235 struct buffer_head *dibh;
2236 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2237 unsigned int ndata;
2238 u64 block; /* block, within the file system scope */
2239 int error;
2240
2241 gfs2_set_alloc_start(&rbm, ip, dinode);
2242 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2243
2244 if (error == -ENOSPC) {
2245 gfs2_set_alloc_start(&rbm, ip, dinode);
2246 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2247 NULL);
2248 }
2249
2250 /* Since all blocks are reserved in advance, this shouldn't happen */
2251 if (error) {
2252 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2253 (unsigned long long)ip->i_no_addr, error, *nblocks,
2254 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2255 rbm.rgd->rd_extfail_pt);
2256 goto rgrp_error;
2257 }
2258
2259 gfs2_alloc_extent(&rbm, dinode, nblocks);
2260 block = gfs2_rbm_to_block(&rbm);
2261 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2262 if (gfs2_rs_active(ip->i_res))
2263 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2264 ndata = *nblocks;
2265 if (dinode)
2266 ndata--;
2267
2268 if (!dinode) {
2269 ip->i_goal = block + ndata - 1;
2270 error = gfs2_meta_inode_buffer(ip, &dibh);
2271 if (error == 0) {
2272 struct gfs2_dinode *di =
2273 (struct gfs2_dinode *)dibh->b_data;
2274 gfs2_trans_add_meta(ip->i_gl, dibh);
2275 di->di_goal_meta = di->di_goal_data =
2276 cpu_to_be64(ip->i_goal);
2277 brelse(dibh);
2278 }
2279 }
2280 if (rbm.rgd->rd_free < *nblocks) {
2281 pr_warn("nblocks=%u\n", *nblocks);
2282 goto rgrp_error;
2283 }
2284
2285 rbm.rgd->rd_free -= *nblocks;
2286 if (dinode) {
2287 rbm.rgd->rd_dinodes++;
2288 *generation = rbm.rgd->rd_igeneration++;
2289 if (*generation == 0)
2290 *generation = rbm.rgd->rd_igeneration++;
2291 }
2292
2293 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2294 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2295 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2296
2297 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2298 if (dinode)
2299 gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2300
2301 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2302
2303 rbm.rgd->rd_free_clone -= *nblocks;
2304 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2305 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2306 *bn = block;
2307 return 0;
2308
2309 rgrp_error:
2310 gfs2_rgrp_error(rbm.rgd);
2311 return -EIO;
2312 }
2313
2314 /**
2315 * __gfs2_free_blocks - free a contiguous run of block(s)
2316 * @ip: the inode these blocks are being freed from
2317 * @bstart: first block of a run of contiguous blocks
2318 * @blen: the length of the block run
2319 * @meta: 1 if the blocks represent metadata
2320 *
2321 */
2322
2323 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2324 {
2325 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2326 struct gfs2_rgrpd *rgd;
2327
2328 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2329 if (!rgd)
2330 return;
2331 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2332 rgd->rd_free += blen;
2333 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2334 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2335 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2336 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2337
2338 /* Directories keep their data in the metadata address space */
2339 if (meta || ip->i_depth)
2340 gfs2_meta_wipe(ip, bstart, blen);
2341 }
2342
2343 /**
2344 * gfs2_free_meta - free a contiguous run of data block(s)
2345 * @ip: the inode these blocks are being freed from
2346 * @bstart: first block of a run of contiguous blocks
2347 * @blen: the length of the block run
2348 *
2349 */
2350
2351 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2352 {
2353 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2354
2355 __gfs2_free_blocks(ip, bstart, blen, 1);
2356 gfs2_statfs_change(sdp, 0, +blen, 0);
2357 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2358 }
2359
2360 void gfs2_unlink_di(struct inode *inode)
2361 {
2362 struct gfs2_inode *ip = GFS2_I(inode);
2363 struct gfs2_sbd *sdp = GFS2_SB(inode);
2364 struct gfs2_rgrpd *rgd;
2365 u64 blkno = ip->i_no_addr;
2366
2367 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2368 if (!rgd)
2369 return;
2370 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2371 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2372 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2373 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2374 update_rgrp_lvb_unlinked(rgd, 1);
2375 }
2376
2377 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2378 {
2379 struct gfs2_sbd *sdp = rgd->rd_sbd;
2380 struct gfs2_rgrpd *tmp_rgd;
2381
2382 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2383 if (!tmp_rgd)
2384 return;
2385 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2386
2387 if (!rgd->rd_dinodes)
2388 gfs2_consist_rgrpd(rgd);
2389 rgd->rd_dinodes--;
2390 rgd->rd_free++;
2391
2392 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2393 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2394 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2395 update_rgrp_lvb_unlinked(rgd, -1);
2396
2397 gfs2_statfs_change(sdp, 0, +1, -1);
2398 }
2399
2400
2401 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2402 {
2403 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2404 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2405 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2406 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2407 }
2408
2409 /**
2410 * gfs2_check_blk_type - Check the type of a block
2411 * @sdp: The superblock
2412 * @no_addr: The block number to check
2413 * @type: The block type we are looking for
2414 *
2415 * Returns: 0 if the block type matches the expected type
2416 * -ESTALE if it doesn't match
2417 * or -ve errno if something went wrong while checking
2418 */
2419
2420 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2421 {
2422 struct gfs2_rgrpd *rgd;
2423 struct gfs2_holder rgd_gh;
2424 int error = -EINVAL;
2425
2426 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2427 if (!rgd)
2428 goto fail;
2429
2430 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2431 if (error)
2432 goto fail;
2433
2434 if (gfs2_get_block_type(rgd, no_addr) != type)
2435 error = -ESTALE;
2436
2437 gfs2_glock_dq_uninit(&rgd_gh);
2438 fail:
2439 return error;
2440 }
2441
2442 /**
2443 * gfs2_rlist_add - add a RG to a list of RGs
2444 * @ip: the inode
2445 * @rlist: the list of resource groups
2446 * @block: the block
2447 *
2448 * Figure out what RG a block belongs to and add that RG to the list
2449 *
2450 * FIXME: Don't use NOFAIL
2451 *
2452 */
2453
2454 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2455 u64 block)
2456 {
2457 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2458 struct gfs2_rgrpd *rgd;
2459 struct gfs2_rgrpd **tmp;
2460 unsigned int new_space;
2461 unsigned int x;
2462
2463 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2464 return;
2465
2466 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2467 rgd = ip->i_rgd;
2468 else
2469 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2470 if (!rgd) {
2471 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2472 return;
2473 }
2474 ip->i_rgd = rgd;
2475
2476 for (x = 0; x < rlist->rl_rgrps; x++)
2477 if (rlist->rl_rgd[x] == rgd)
2478 return;
2479
2480 if (rlist->rl_rgrps == rlist->rl_space) {
2481 new_space = rlist->rl_space + 10;
2482
2483 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2484 GFP_NOFS | __GFP_NOFAIL);
2485
2486 if (rlist->rl_rgd) {
2487 memcpy(tmp, rlist->rl_rgd,
2488 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2489 kfree(rlist->rl_rgd);
2490 }
2491
2492 rlist->rl_space = new_space;
2493 rlist->rl_rgd = tmp;
2494 }
2495
2496 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2497 }
2498
2499 /**
2500 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2501 * and initialize an array of glock holders for them
2502 * @rlist: the list of resource groups
2503 * @state: the lock state to acquire the RG lock in
2504 *
2505 * FIXME: Don't use NOFAIL
2506 *
2507 */
2508
2509 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2510 {
2511 unsigned int x;
2512
2513 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2514 GFP_NOFS | __GFP_NOFAIL);
2515 for (x = 0; x < rlist->rl_rgrps; x++)
2516 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2517 state, 0,
2518 &rlist->rl_ghs[x]);
2519 }
2520
2521 /**
2522 * gfs2_rlist_free - free a resource group list
2523 * @list: the list of resource groups
2524 *
2525 */
2526
2527 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2528 {
2529 unsigned int x;
2530
2531 kfree(rlist->rl_rgd);
2532
2533 if (rlist->rl_ghs) {
2534 for (x = 0; x < rlist->rl_rgrps; x++)
2535 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2536 kfree(rlist->rl_ghs);
2537 rlist->rl_ghs = NULL;
2538 }
2539 }
2540
This page took 0.083438 seconds and 5 git commands to generate.