Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34
35 #define BFITNOENT ((u32)~0)
36 #define NO_BLOCK ((u64)~0)
37
38 #define RSRV_CONTENTION_FACTOR 4
39 #define RGRP_RSRV_MAX_CONTENDERS 2
40
41 #if BITS_PER_LONG == 32
42 #define LBITMASK (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50
51 /*
52 * These routines are used by the resource group routines (rgrp.c)
53 * to keep track of block allocation. Each block is represented by two
54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55 *
56 * 0 = Free
57 * 1 = Used (not metadata)
58 * 2 = Unlinked (still in use) inode
59 * 3 = Used (metadata)
60 */
61
62 static const char valid_change[16] = {
63 /* current */
64 /* n */ 0, 1, 1, 1,
65 /* e */ 1, 0, 0, 0,
66 /* w */ 0, 0, 0, 1,
67 1, 0, 0, 0
68 };
69
70 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
71 unsigned char old_state,
72 struct gfs2_bitmap **rbi);
73
74 /**
75 * gfs2_setbit - Set a bit in the bitmaps
76 * @rgd: the resource group descriptor
77 * @buf2: the clone buffer that holds the bitmaps
78 * @bi: the bitmap structure
79 * @block: the block to set
80 * @new_state: the new state of the block
81 *
82 */
83
84 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf2,
85 struct gfs2_bitmap *bi, u32 block,
86 unsigned char new_state)
87 {
88 unsigned char *byte1, *byte2, *end, cur_state;
89 unsigned int buflen = bi->bi_len;
90 const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
91
92 byte1 = bi->bi_bh->b_data + bi->bi_offset + (block / GFS2_NBBY);
93 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
94
95 BUG_ON(byte1 >= end);
96
97 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
98
99 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
100 printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
101 "new_state=%d\n",
102 (unsigned long long)block, cur_state, new_state);
103 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
104 (unsigned long long)rgd->rd_addr,
105 (unsigned long)bi->bi_start);
106 printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
107 (unsigned long)bi->bi_offset,
108 (unsigned long)bi->bi_len);
109 dump_stack();
110 gfs2_consist_rgrpd(rgd);
111 return;
112 }
113 *byte1 ^= (cur_state ^ new_state) << bit;
114
115 if (buf2) {
116 byte2 = buf2 + bi->bi_offset + (block / GFS2_NBBY);
117 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
118 *byte2 ^= (cur_state ^ new_state) << bit;
119 }
120 }
121
122 /**
123 * gfs2_testbit - test a bit in the bitmaps
124 * @rgd: the resource group descriptor
125 * @buffer: the buffer that holds the bitmaps
126 * @buflen: the length (in bytes) of the buffer
127 * @block: the block to read
128 *
129 */
130
131 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
132 const unsigned char *buffer,
133 unsigned int buflen, u32 block)
134 {
135 const unsigned char *byte, *end;
136 unsigned char cur_state;
137 unsigned int bit;
138
139 byte = buffer + (block / GFS2_NBBY);
140 bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
141 end = buffer + buflen;
142
143 gfs2_assert(rgd->rd_sbd, byte < end);
144
145 cur_state = (*byte >> bit) & GFS2_BIT_MASK;
146
147 return cur_state;
148 }
149
150 /**
151 * gfs2_bit_search
152 * @ptr: Pointer to bitmap data
153 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
154 * @state: The state we are searching for
155 *
156 * We xor the bitmap data with a patter which is the bitwise opposite
157 * of what we are looking for, this gives rise to a pattern of ones
158 * wherever there is a match. Since we have two bits per entry, we
159 * take this pattern, shift it down by one place and then and it with
160 * the original. All the even bit positions (0,2,4, etc) then represent
161 * successful matches, so we mask with 0x55555..... to remove the unwanted
162 * odd bit positions.
163 *
164 * This allows searching of a whole u64 at once (32 blocks) with a
165 * single test (on 64 bit arches).
166 */
167
168 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
169 {
170 u64 tmp;
171 static const u64 search[] = {
172 [0] = 0xffffffffffffffffULL,
173 [1] = 0xaaaaaaaaaaaaaaaaULL,
174 [2] = 0x5555555555555555ULL,
175 [3] = 0x0000000000000000ULL,
176 };
177 tmp = le64_to_cpu(*ptr) ^ search[state];
178 tmp &= (tmp >> 1);
179 tmp &= mask;
180 return tmp;
181 }
182
183 /**
184 * rs_cmp - multi-block reservation range compare
185 * @blk: absolute file system block number of the new reservation
186 * @len: number of blocks in the new reservation
187 * @rs: existing reservation to compare against
188 *
189 * returns: 1 if the block range is beyond the reach of the reservation
190 * -1 if the block range is before the start of the reservation
191 * 0 if the block range overlaps with the reservation
192 */
193 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
194 {
195 u64 startblk = gfs2_rs_startblk(rs);
196
197 if (blk >= startblk + rs->rs_free)
198 return 1;
199 if (blk + len - 1 < startblk)
200 return -1;
201 return 0;
202 }
203
204 /**
205 * rs_find - Find a rgrp multi-block reservation that contains a given block
206 * @rgd: The rgrp
207 * @rgblk: The block we're looking for, relative to the rgrp
208 */
209 static struct gfs2_blkreserv *rs_find(struct gfs2_rgrpd *rgd, u32 rgblk)
210 {
211 struct rb_node **newn;
212 int rc;
213 u64 fsblk = rgblk + rgd->rd_data0;
214
215 spin_lock(&rgd->rd_rsspin);
216 newn = &rgd->rd_rstree.rb_node;
217 while (*newn) {
218 struct gfs2_blkreserv *cur =
219 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
220 rc = rs_cmp(fsblk, 1, cur);
221 if (rc < 0)
222 newn = &((*newn)->rb_left);
223 else if (rc > 0)
224 newn = &((*newn)->rb_right);
225 else {
226 spin_unlock(&rgd->rd_rsspin);
227 return cur;
228 }
229 }
230 spin_unlock(&rgd->rd_rsspin);
231 return NULL;
232 }
233
234 /**
235 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
236 * a block in a given allocation state.
237 * @buf: the buffer that holds the bitmaps
238 * @len: the length (in bytes) of the buffer
239 * @goal: start search at this block's bit-pair (within @buffer)
240 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
241 *
242 * Scope of @goal and returned block number is only within this bitmap buffer,
243 * not entire rgrp or filesystem. @buffer will be offset from the actual
244 * beginning of a bitmap block buffer, skipping any header structures, but
245 * headers are always a multiple of 64 bits long so that the buffer is
246 * always aligned to a 64 bit boundary.
247 *
248 * The size of the buffer is in bytes, but is it assumed that it is
249 * always ok to read a complete multiple of 64 bits at the end
250 * of the block in case the end is no aligned to a natural boundary.
251 *
252 * Return: the block number (bitmap buffer scope) that was found
253 */
254
255 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
256 u32 goal, u8 state)
257 {
258 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
259 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
260 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
261 u64 tmp;
262 u64 mask = 0x5555555555555555ULL;
263 u32 bit;
264
265 BUG_ON(state > 3);
266
267 /* Mask off bits we don't care about at the start of the search */
268 mask <<= spoint;
269 tmp = gfs2_bit_search(ptr, mask, state);
270 ptr++;
271 while(tmp == 0 && ptr < end) {
272 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
273 ptr++;
274 }
275 /* Mask off any bits which are more than len bytes from the start */
276 if (ptr == end && (len & (sizeof(u64) - 1)))
277 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
278 /* Didn't find anything, so return */
279 if (tmp == 0)
280 return BFITNOENT;
281 ptr--;
282 bit = __ffs64(tmp);
283 bit /= 2; /* two bits per entry in the bitmap */
284 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
285 }
286
287 /**
288 * gfs2_bitcount - count the number of bits in a certain state
289 * @rgd: the resource group descriptor
290 * @buffer: the buffer that holds the bitmaps
291 * @buflen: the length (in bytes) of the buffer
292 * @state: the state of the block we're looking for
293 *
294 * Returns: The number of bits
295 */
296
297 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
298 unsigned int buflen, u8 state)
299 {
300 const u8 *byte = buffer;
301 const u8 *end = buffer + buflen;
302 const u8 state1 = state << 2;
303 const u8 state2 = state << 4;
304 const u8 state3 = state << 6;
305 u32 count = 0;
306
307 for (; byte < end; byte++) {
308 if (((*byte) & 0x03) == state)
309 count++;
310 if (((*byte) & 0x0C) == state1)
311 count++;
312 if (((*byte) & 0x30) == state2)
313 count++;
314 if (((*byte) & 0xC0) == state3)
315 count++;
316 }
317
318 return count;
319 }
320
321 /**
322 * gfs2_rgrp_verify - Verify that a resource group is consistent
323 * @rgd: the rgrp
324 *
325 */
326
327 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
328 {
329 struct gfs2_sbd *sdp = rgd->rd_sbd;
330 struct gfs2_bitmap *bi = NULL;
331 u32 length = rgd->rd_length;
332 u32 count[4], tmp;
333 int buf, x;
334
335 memset(count, 0, 4 * sizeof(u32));
336
337 /* Count # blocks in each of 4 possible allocation states */
338 for (buf = 0; buf < length; buf++) {
339 bi = rgd->rd_bits + buf;
340 for (x = 0; x < 4; x++)
341 count[x] += gfs2_bitcount(rgd,
342 bi->bi_bh->b_data +
343 bi->bi_offset,
344 bi->bi_len, x);
345 }
346
347 if (count[0] != rgd->rd_free) {
348 if (gfs2_consist_rgrpd(rgd))
349 fs_err(sdp, "free data mismatch: %u != %u\n",
350 count[0], rgd->rd_free);
351 return;
352 }
353
354 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
355 if (count[1] != tmp) {
356 if (gfs2_consist_rgrpd(rgd))
357 fs_err(sdp, "used data mismatch: %u != %u\n",
358 count[1], tmp);
359 return;
360 }
361
362 if (count[2] + count[3] != rgd->rd_dinodes) {
363 if (gfs2_consist_rgrpd(rgd))
364 fs_err(sdp, "used metadata mismatch: %u != %u\n",
365 count[2] + count[3], rgd->rd_dinodes);
366 return;
367 }
368 }
369
370 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
371 {
372 u64 first = rgd->rd_data0;
373 u64 last = first + rgd->rd_data;
374 return first <= block && block < last;
375 }
376
377 /**
378 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
379 * @sdp: The GFS2 superblock
380 * @blk: The data block number
381 * @exact: True if this needs to be an exact match
382 *
383 * Returns: The resource group, or NULL if not found
384 */
385
386 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
387 {
388 struct rb_node *n, *next;
389 struct gfs2_rgrpd *cur;
390
391 spin_lock(&sdp->sd_rindex_spin);
392 n = sdp->sd_rindex_tree.rb_node;
393 while (n) {
394 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
395 next = NULL;
396 if (blk < cur->rd_addr)
397 next = n->rb_left;
398 else if (blk >= cur->rd_data0 + cur->rd_data)
399 next = n->rb_right;
400 if (next == NULL) {
401 spin_unlock(&sdp->sd_rindex_spin);
402 if (exact) {
403 if (blk < cur->rd_addr)
404 return NULL;
405 if (blk >= cur->rd_data0 + cur->rd_data)
406 return NULL;
407 }
408 return cur;
409 }
410 n = next;
411 }
412 spin_unlock(&sdp->sd_rindex_spin);
413
414 return NULL;
415 }
416
417 /**
418 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
419 * @sdp: The GFS2 superblock
420 *
421 * Returns: The first rgrp in the filesystem
422 */
423
424 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
425 {
426 const struct rb_node *n;
427 struct gfs2_rgrpd *rgd;
428
429 spin_lock(&sdp->sd_rindex_spin);
430 n = rb_first(&sdp->sd_rindex_tree);
431 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
432 spin_unlock(&sdp->sd_rindex_spin);
433
434 return rgd;
435 }
436
437 /**
438 * gfs2_rgrpd_get_next - get the next RG
439 * @rgd: the resource group descriptor
440 *
441 * Returns: The next rgrp
442 */
443
444 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
445 {
446 struct gfs2_sbd *sdp = rgd->rd_sbd;
447 const struct rb_node *n;
448
449 spin_lock(&sdp->sd_rindex_spin);
450 n = rb_next(&rgd->rd_node);
451 if (n == NULL)
452 n = rb_first(&sdp->sd_rindex_tree);
453
454 if (unlikely(&rgd->rd_node == n)) {
455 spin_unlock(&sdp->sd_rindex_spin);
456 return NULL;
457 }
458 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
459 spin_unlock(&sdp->sd_rindex_spin);
460 return rgd;
461 }
462
463 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
464 {
465 int x;
466
467 for (x = 0; x < rgd->rd_length; x++) {
468 struct gfs2_bitmap *bi = rgd->rd_bits + x;
469 kfree(bi->bi_clone);
470 bi->bi_clone = NULL;
471 }
472 }
473
474 /**
475 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
476 * @ip: the inode for this reservation
477 */
478 int gfs2_rs_alloc(struct gfs2_inode *ip)
479 {
480 int error = 0;
481 struct gfs2_blkreserv *res;
482
483 if (ip->i_res)
484 return 0;
485
486 res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
487 if (!res)
488 error = -ENOMEM;
489
490 down_write(&ip->i_rw_mutex);
491 if (ip->i_res)
492 kmem_cache_free(gfs2_rsrv_cachep, res);
493 else
494 ip->i_res = res;
495 up_write(&ip->i_rw_mutex);
496 return error;
497 }
498
499 static void dump_rs(struct seq_file *seq, struct gfs2_blkreserv *rs)
500 {
501 gfs2_print_dbg(seq, " r: %llu s:%llu b:%u f:%u\n",
502 rs->rs_rgd->rd_addr, gfs2_rs_startblk(rs), rs->rs_biblk,
503 rs->rs_free);
504 }
505
506 /**
507 * __rs_deltree - remove a multi-block reservation from the rgd tree
508 * @rs: The reservation to remove
509 *
510 */
511 static void __rs_deltree(struct gfs2_blkreserv *rs)
512 {
513 struct gfs2_rgrpd *rgd;
514
515 if (!gfs2_rs_active(rs))
516 return;
517
518 rgd = rs->rs_rgd;
519 /* We can't do this: The reason is that when the rgrp is invalidated,
520 it's in the "middle" of acquiring the glock, but the HOLDER bit
521 isn't set yet:
522 BUG_ON(!gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl));*/
523 trace_gfs2_rs(NULL, rs, TRACE_RS_TREEDEL);
524
525 if (!RB_EMPTY_ROOT(&rgd->rd_rstree))
526 rb_erase(&rs->rs_node, &rgd->rd_rstree);
527 BUG_ON(!rgd->rd_rs_cnt);
528 rgd->rd_rs_cnt--;
529
530 if (rs->rs_free) {
531 /* return reserved blocks to the rgrp and the ip */
532 BUG_ON(rs->rs_rgd->rd_reserved < rs->rs_free);
533 rs->rs_rgd->rd_reserved -= rs->rs_free;
534 rs->rs_free = 0;
535 clear_bit(GBF_FULL, &rs->rs_bi->bi_flags);
536 smp_mb__after_clear_bit();
537 }
538 /* We can't change any of the step 1 or step 2 components of the rs.
539 E.g. We can't set rs_rgd to NULL because the rgd glock is held and
540 dequeued through this pointer.
541 Can't: atomic_set(&rs->rs_sizehint, 0);
542 Can't: rs->rs_requested = 0;
543 Can't: rs->rs_rgd = NULL;*/
544 rs->rs_bi = NULL;
545 rs->rs_biblk = 0;
546 }
547
548 /**
549 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
550 * @rs: The reservation to remove
551 *
552 */
553 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
554 {
555 struct gfs2_rgrpd *rgd;
556
557 if (!gfs2_rs_active(rs))
558 return;
559
560 rgd = rs->rs_rgd;
561 spin_lock(&rgd->rd_rsspin);
562 __rs_deltree(rs);
563 spin_unlock(&rgd->rd_rsspin);
564 }
565
566 /**
567 * gfs2_rs_delete - delete a multi-block reservation
568 * @ip: The inode for this reservation
569 *
570 */
571 void gfs2_rs_delete(struct gfs2_inode *ip)
572 {
573 down_write(&ip->i_rw_mutex);
574 if (ip->i_res) {
575 gfs2_rs_deltree(ip->i_res);
576 trace_gfs2_rs(ip, ip->i_res, TRACE_RS_DELETE);
577 BUG_ON(ip->i_res->rs_free);
578 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
579 ip->i_res = NULL;
580 }
581 up_write(&ip->i_rw_mutex);
582 }
583
584 /**
585 * return_all_reservations - return all reserved blocks back to the rgrp.
586 * @rgd: the rgrp that needs its space back
587 *
588 * We previously reserved a bunch of blocks for allocation. Now we need to
589 * give them back. This leave the reservation structures in tact, but removes
590 * all of their corresponding "no-fly zones".
591 */
592 static void return_all_reservations(struct gfs2_rgrpd *rgd)
593 {
594 struct rb_node *n;
595 struct gfs2_blkreserv *rs;
596
597 spin_lock(&rgd->rd_rsspin);
598 while ((n = rb_first(&rgd->rd_rstree))) {
599 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
600 __rs_deltree(rs);
601 }
602 spin_unlock(&rgd->rd_rsspin);
603 }
604
605 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
606 {
607 struct rb_node *n;
608 struct gfs2_rgrpd *rgd;
609 struct gfs2_glock *gl;
610
611 while ((n = rb_first(&sdp->sd_rindex_tree))) {
612 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
613 gl = rgd->rd_gl;
614
615 rb_erase(n, &sdp->sd_rindex_tree);
616
617 if (gl) {
618 spin_lock(&gl->gl_spin);
619 gl->gl_object = NULL;
620 spin_unlock(&gl->gl_spin);
621 gfs2_glock_add_to_lru(gl);
622 gfs2_glock_put(gl);
623 }
624
625 gfs2_free_clones(rgd);
626 kfree(rgd->rd_bits);
627 return_all_reservations(rgd);
628 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
629 }
630 }
631
632 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
633 {
634 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
635 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
636 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
637 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
638 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
639 }
640
641 /**
642 * gfs2_compute_bitstructs - Compute the bitmap sizes
643 * @rgd: The resource group descriptor
644 *
645 * Calculates bitmap descriptors, one for each block that contains bitmap data
646 *
647 * Returns: errno
648 */
649
650 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
651 {
652 struct gfs2_sbd *sdp = rgd->rd_sbd;
653 struct gfs2_bitmap *bi;
654 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
655 u32 bytes_left, bytes;
656 int x;
657
658 if (!length)
659 return -EINVAL;
660
661 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
662 if (!rgd->rd_bits)
663 return -ENOMEM;
664
665 bytes_left = rgd->rd_bitbytes;
666
667 for (x = 0; x < length; x++) {
668 bi = rgd->rd_bits + x;
669
670 bi->bi_flags = 0;
671 /* small rgrp; bitmap stored completely in header block */
672 if (length == 1) {
673 bytes = bytes_left;
674 bi->bi_offset = sizeof(struct gfs2_rgrp);
675 bi->bi_start = 0;
676 bi->bi_len = bytes;
677 /* header block */
678 } else if (x == 0) {
679 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
680 bi->bi_offset = sizeof(struct gfs2_rgrp);
681 bi->bi_start = 0;
682 bi->bi_len = bytes;
683 /* last block */
684 } else if (x + 1 == length) {
685 bytes = bytes_left;
686 bi->bi_offset = sizeof(struct gfs2_meta_header);
687 bi->bi_start = rgd->rd_bitbytes - bytes_left;
688 bi->bi_len = bytes;
689 /* other blocks */
690 } else {
691 bytes = sdp->sd_sb.sb_bsize -
692 sizeof(struct gfs2_meta_header);
693 bi->bi_offset = sizeof(struct gfs2_meta_header);
694 bi->bi_start = rgd->rd_bitbytes - bytes_left;
695 bi->bi_len = bytes;
696 }
697
698 bytes_left -= bytes;
699 }
700
701 if (bytes_left) {
702 gfs2_consist_rgrpd(rgd);
703 return -EIO;
704 }
705 bi = rgd->rd_bits + (length - 1);
706 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
707 if (gfs2_consist_rgrpd(rgd)) {
708 gfs2_rindex_print(rgd);
709 fs_err(sdp, "start=%u len=%u offset=%u\n",
710 bi->bi_start, bi->bi_len, bi->bi_offset);
711 }
712 return -EIO;
713 }
714
715 return 0;
716 }
717
718 /**
719 * gfs2_ri_total - Total up the file system space, according to the rindex.
720 * @sdp: the filesystem
721 *
722 */
723 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
724 {
725 u64 total_data = 0;
726 struct inode *inode = sdp->sd_rindex;
727 struct gfs2_inode *ip = GFS2_I(inode);
728 char buf[sizeof(struct gfs2_rindex)];
729 int error, rgrps;
730
731 for (rgrps = 0;; rgrps++) {
732 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
733
734 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
735 break;
736 error = gfs2_internal_read(ip, buf, &pos,
737 sizeof(struct gfs2_rindex));
738 if (error != sizeof(struct gfs2_rindex))
739 break;
740 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
741 }
742 return total_data;
743 }
744
745 static int rgd_insert(struct gfs2_rgrpd *rgd)
746 {
747 struct gfs2_sbd *sdp = rgd->rd_sbd;
748 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
749
750 /* Figure out where to put new node */
751 while (*newn) {
752 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
753 rd_node);
754
755 parent = *newn;
756 if (rgd->rd_addr < cur->rd_addr)
757 newn = &((*newn)->rb_left);
758 else if (rgd->rd_addr > cur->rd_addr)
759 newn = &((*newn)->rb_right);
760 else
761 return -EEXIST;
762 }
763
764 rb_link_node(&rgd->rd_node, parent, newn);
765 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
766 sdp->sd_rgrps++;
767 return 0;
768 }
769
770 /**
771 * read_rindex_entry - Pull in a new resource index entry from the disk
772 * @ip: Pointer to the rindex inode
773 *
774 * Returns: 0 on success, > 0 on EOF, error code otherwise
775 */
776
777 static int read_rindex_entry(struct gfs2_inode *ip)
778 {
779 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
780 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
781 struct gfs2_rindex buf;
782 int error;
783 struct gfs2_rgrpd *rgd;
784
785 if (pos >= i_size_read(&ip->i_inode))
786 return 1;
787
788 error = gfs2_internal_read(ip, (char *)&buf, &pos,
789 sizeof(struct gfs2_rindex));
790
791 if (error != sizeof(struct gfs2_rindex))
792 return (error == 0) ? 1 : error;
793
794 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
795 error = -ENOMEM;
796 if (!rgd)
797 return error;
798
799 rgd->rd_sbd = sdp;
800 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
801 rgd->rd_length = be32_to_cpu(buf.ri_length);
802 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
803 rgd->rd_data = be32_to_cpu(buf.ri_data);
804 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
805 spin_lock_init(&rgd->rd_rsspin);
806
807 error = compute_bitstructs(rgd);
808 if (error)
809 goto fail;
810
811 error = gfs2_glock_get(sdp, rgd->rd_addr,
812 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
813 if (error)
814 goto fail;
815
816 rgd->rd_gl->gl_object = rgd;
817 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lvb;
818 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
819 if (rgd->rd_data > sdp->sd_max_rg_data)
820 sdp->sd_max_rg_data = rgd->rd_data;
821 spin_lock(&sdp->sd_rindex_spin);
822 error = rgd_insert(rgd);
823 spin_unlock(&sdp->sd_rindex_spin);
824 if (!error)
825 return 0;
826
827 error = 0; /* someone else read in the rgrp; free it and ignore it */
828 gfs2_glock_put(rgd->rd_gl);
829
830 fail:
831 kfree(rgd->rd_bits);
832 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
833 return error;
834 }
835
836 /**
837 * gfs2_ri_update - Pull in a new resource index from the disk
838 * @ip: pointer to the rindex inode
839 *
840 * Returns: 0 on successful update, error code otherwise
841 */
842
843 static int gfs2_ri_update(struct gfs2_inode *ip)
844 {
845 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
846 int error;
847
848 do {
849 error = read_rindex_entry(ip);
850 } while (error == 0);
851
852 if (error < 0)
853 return error;
854
855 sdp->sd_rindex_uptodate = 1;
856 return 0;
857 }
858
859 /**
860 * gfs2_rindex_update - Update the rindex if required
861 * @sdp: The GFS2 superblock
862 *
863 * We grab a lock on the rindex inode to make sure that it doesn't
864 * change whilst we are performing an operation. We keep this lock
865 * for quite long periods of time compared to other locks. This
866 * doesn't matter, since it is shared and it is very, very rarely
867 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
868 *
869 * This makes sure that we're using the latest copy of the resource index
870 * special file, which might have been updated if someone expanded the
871 * filesystem (via gfs2_grow utility), which adds new resource groups.
872 *
873 * Returns: 0 on succeess, error code otherwise
874 */
875
876 int gfs2_rindex_update(struct gfs2_sbd *sdp)
877 {
878 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
879 struct gfs2_glock *gl = ip->i_gl;
880 struct gfs2_holder ri_gh;
881 int error = 0;
882 int unlock_required = 0;
883
884 /* Read new copy from disk if we don't have the latest */
885 if (!sdp->sd_rindex_uptodate) {
886 if (!gfs2_glock_is_locked_by_me(gl)) {
887 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
888 if (error)
889 return error;
890 unlock_required = 1;
891 }
892 if (!sdp->sd_rindex_uptodate)
893 error = gfs2_ri_update(ip);
894 if (unlock_required)
895 gfs2_glock_dq_uninit(&ri_gh);
896 }
897
898 return error;
899 }
900
901 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
902 {
903 const struct gfs2_rgrp *str = buf;
904 u32 rg_flags;
905
906 rg_flags = be32_to_cpu(str->rg_flags);
907 rg_flags &= ~GFS2_RDF_MASK;
908 rgd->rd_flags &= GFS2_RDF_MASK;
909 rgd->rd_flags |= rg_flags;
910 rgd->rd_free = be32_to_cpu(str->rg_free);
911 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
912 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
913 }
914
915 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
916 {
917 struct gfs2_rgrp *str = buf;
918
919 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
920 str->rg_free = cpu_to_be32(rgd->rd_free);
921 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
922 str->__pad = cpu_to_be32(0);
923 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
924 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
925 }
926
927 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
928 {
929 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
930 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
931
932 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
933 rgl->rl_dinodes != str->rg_dinodes ||
934 rgl->rl_igeneration != str->rg_igeneration)
935 return 0;
936 return 1;
937 }
938
939 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
940 {
941 const struct gfs2_rgrp *str = buf;
942
943 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
944 rgl->rl_flags = str->rg_flags;
945 rgl->rl_free = str->rg_free;
946 rgl->rl_dinodes = str->rg_dinodes;
947 rgl->rl_igeneration = str->rg_igeneration;
948 rgl->__pad = 0UL;
949 }
950
951 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
952 {
953 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
954 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
955 rgl->rl_unlinked = cpu_to_be32(unlinked);
956 }
957
958 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
959 {
960 struct gfs2_bitmap *bi;
961 const u32 length = rgd->rd_length;
962 const u8 *buffer = NULL;
963 u32 i, goal, count = 0;
964
965 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
966 goal = 0;
967 buffer = bi->bi_bh->b_data + bi->bi_offset;
968 WARN_ON(!buffer_uptodate(bi->bi_bh));
969 while (goal < bi->bi_len * GFS2_NBBY) {
970 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
971 GFS2_BLKST_UNLINKED);
972 if (goal == BFITNOENT)
973 break;
974 count++;
975 goal++;
976 }
977 }
978
979 return count;
980 }
981
982
983 /**
984 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
985 * @rgd: the struct gfs2_rgrpd describing the RG to read in
986 *
987 * Read in all of a Resource Group's header and bitmap blocks.
988 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
989 *
990 * Returns: errno
991 */
992
993 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
994 {
995 struct gfs2_sbd *sdp = rgd->rd_sbd;
996 struct gfs2_glock *gl = rgd->rd_gl;
997 unsigned int length = rgd->rd_length;
998 struct gfs2_bitmap *bi;
999 unsigned int x, y;
1000 int error;
1001
1002 if (rgd->rd_bits[0].bi_bh != NULL)
1003 return 0;
1004
1005 for (x = 0; x < length; x++) {
1006 bi = rgd->rd_bits + x;
1007 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1008 if (error)
1009 goto fail;
1010 }
1011
1012 for (y = length; y--;) {
1013 bi = rgd->rd_bits + y;
1014 error = gfs2_meta_wait(sdp, bi->bi_bh);
1015 if (error)
1016 goto fail;
1017 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1018 GFS2_METATYPE_RG)) {
1019 error = -EIO;
1020 goto fail;
1021 }
1022 }
1023
1024 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1025 for (x = 0; x < length; x++)
1026 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1027 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1028 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1029 rgd->rd_free_clone = rgd->rd_free;
1030 }
1031 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1032 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1033 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1034 rgd->rd_bits[0].bi_bh->b_data);
1035 }
1036 else if (sdp->sd_args.ar_rgrplvb) {
1037 if (!gfs2_rgrp_lvb_valid(rgd)){
1038 gfs2_consist_rgrpd(rgd);
1039 error = -EIO;
1040 goto fail;
1041 }
1042 if (rgd->rd_rgl->rl_unlinked == 0)
1043 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1044 }
1045 return 0;
1046
1047 fail:
1048 while (x--) {
1049 bi = rgd->rd_bits + x;
1050 brelse(bi->bi_bh);
1051 bi->bi_bh = NULL;
1052 gfs2_assert_warn(sdp, !bi->bi_clone);
1053 }
1054
1055 return error;
1056 }
1057
1058 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1059 {
1060 u32 rl_flags;
1061
1062 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1063 return 0;
1064
1065 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1066 return gfs2_rgrp_bh_get(rgd);
1067
1068 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1069 rl_flags &= ~GFS2_RDF_MASK;
1070 rgd->rd_flags &= GFS2_RDF_MASK;
1071 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1072 if (rgd->rd_rgl->rl_unlinked == 0)
1073 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1074 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1075 rgd->rd_free_clone = rgd->rd_free;
1076 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1077 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1078 return 0;
1079 }
1080
1081 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1082 {
1083 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1084 struct gfs2_sbd *sdp = rgd->rd_sbd;
1085
1086 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1087 return 0;
1088 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1089 }
1090
1091 /**
1092 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1093 * @gh: The glock holder for the resource group
1094 *
1095 */
1096
1097 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1098 {
1099 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1100 int x, length = rgd->rd_length;
1101
1102 for (x = 0; x < length; x++) {
1103 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1104 if (bi->bi_bh) {
1105 brelse(bi->bi_bh);
1106 bi->bi_bh = NULL;
1107 }
1108 }
1109
1110 }
1111
1112 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1113 struct buffer_head *bh,
1114 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1115 {
1116 struct super_block *sb = sdp->sd_vfs;
1117 struct block_device *bdev = sb->s_bdev;
1118 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
1119 bdev_logical_block_size(sb->s_bdev);
1120 u64 blk;
1121 sector_t start = 0;
1122 sector_t nr_sects = 0;
1123 int rv;
1124 unsigned int x;
1125 u32 trimmed = 0;
1126 u8 diff;
1127
1128 for (x = 0; x < bi->bi_len; x++) {
1129 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1130 clone += bi->bi_offset;
1131 clone += x;
1132 if (bh) {
1133 const u8 *orig = bh->b_data + bi->bi_offset + x;
1134 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1135 } else {
1136 diff = ~(*clone | (*clone >> 1));
1137 }
1138 diff &= 0x55;
1139 if (diff == 0)
1140 continue;
1141 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1142 blk *= sects_per_blk; /* convert to sectors */
1143 while(diff) {
1144 if (diff & 1) {
1145 if (nr_sects == 0)
1146 goto start_new_extent;
1147 if ((start + nr_sects) != blk) {
1148 if (nr_sects >= minlen) {
1149 rv = blkdev_issue_discard(bdev,
1150 start, nr_sects,
1151 GFP_NOFS, 0);
1152 if (rv)
1153 goto fail;
1154 trimmed += nr_sects;
1155 }
1156 nr_sects = 0;
1157 start_new_extent:
1158 start = blk;
1159 }
1160 nr_sects += sects_per_blk;
1161 }
1162 diff >>= 2;
1163 blk += sects_per_blk;
1164 }
1165 }
1166 if (nr_sects >= minlen) {
1167 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
1168 if (rv)
1169 goto fail;
1170 trimmed += nr_sects;
1171 }
1172 if (ptrimmed)
1173 *ptrimmed = trimmed;
1174 return 0;
1175
1176 fail:
1177 if (sdp->sd_args.ar_discard)
1178 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1179 sdp->sd_args.ar_discard = 0;
1180 return -EIO;
1181 }
1182
1183 /**
1184 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1185 * @filp: Any file on the filesystem
1186 * @argp: Pointer to the arguments (also used to pass result)
1187 *
1188 * Returns: 0 on success, otherwise error code
1189 */
1190
1191 int gfs2_fitrim(struct file *filp, void __user *argp)
1192 {
1193 struct inode *inode = filp->f_dentry->d_inode;
1194 struct gfs2_sbd *sdp = GFS2_SB(inode);
1195 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1196 struct buffer_head *bh;
1197 struct gfs2_rgrpd *rgd;
1198 struct gfs2_rgrpd *rgd_end;
1199 struct gfs2_holder gh;
1200 struct fstrim_range r;
1201 int ret = 0;
1202 u64 amt;
1203 u64 trimmed = 0;
1204 unsigned int x;
1205
1206 if (!capable(CAP_SYS_ADMIN))
1207 return -EPERM;
1208
1209 if (!blk_queue_discard(q))
1210 return -EOPNOTSUPP;
1211
1212 if (argp == NULL) {
1213 r.start = 0;
1214 r.len = ULLONG_MAX;
1215 r.minlen = 0;
1216 } else if (copy_from_user(&r, argp, sizeof(r)))
1217 return -EFAULT;
1218
1219 ret = gfs2_rindex_update(sdp);
1220 if (ret)
1221 return ret;
1222
1223 rgd = gfs2_blk2rgrpd(sdp, r.start, 0);
1224 rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0);
1225
1226 while (1) {
1227
1228 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1229 if (ret)
1230 goto out;
1231
1232 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1233 /* Trim each bitmap in the rgrp */
1234 for (x = 0; x < rgd->rd_length; x++) {
1235 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1236 ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt);
1237 if (ret) {
1238 gfs2_glock_dq_uninit(&gh);
1239 goto out;
1240 }
1241 trimmed += amt;
1242 }
1243
1244 /* Mark rgrp as having been trimmed */
1245 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1246 if (ret == 0) {
1247 bh = rgd->rd_bits[0].bi_bh;
1248 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1249 gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
1250 gfs2_rgrp_out(rgd, bh->b_data);
1251 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1252 gfs2_trans_end(sdp);
1253 }
1254 }
1255 gfs2_glock_dq_uninit(&gh);
1256
1257 if (rgd == rgd_end)
1258 break;
1259
1260 rgd = gfs2_rgrpd_get_next(rgd);
1261 }
1262
1263 out:
1264 r.len = trimmed << 9;
1265 if (argp && copy_to_user(argp, &r, sizeof(r)))
1266 return -EFAULT;
1267
1268 return ret;
1269 }
1270
1271 /**
1272 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1273 * @bi: the bitmap with the blocks
1274 * @ip: the inode structure
1275 * @biblk: the 32-bit block number relative to the start of the bitmap
1276 * @amount: the number of blocks to reserve
1277 *
1278 * Returns: NULL - reservation was already taken, so not inserted
1279 * pointer to the inserted reservation
1280 */
1281 static struct gfs2_blkreserv *rs_insert(struct gfs2_bitmap *bi,
1282 struct gfs2_inode *ip, u32 biblk,
1283 int amount)
1284 {
1285 struct rb_node **newn, *parent = NULL;
1286 int rc;
1287 struct gfs2_blkreserv *rs = ip->i_res;
1288 struct gfs2_rgrpd *rgd = rs->rs_rgd;
1289 u64 fsblock = gfs2_bi2rgd_blk(bi, biblk) + rgd->rd_data0;
1290
1291 spin_lock(&rgd->rd_rsspin);
1292 newn = &rgd->rd_rstree.rb_node;
1293 BUG_ON(!ip->i_res);
1294 BUG_ON(gfs2_rs_active(rs));
1295 /* Figure out where to put new node */
1296 /*BUG_ON(!gfs2_glock_is_locked_by_me(rgd->rd_gl));*/
1297 while (*newn) {
1298 struct gfs2_blkreserv *cur =
1299 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1300
1301 parent = *newn;
1302 rc = rs_cmp(fsblock, amount, cur);
1303 if (rc > 0)
1304 newn = &((*newn)->rb_right);
1305 else if (rc < 0)
1306 newn = &((*newn)->rb_left);
1307 else {
1308 spin_unlock(&rgd->rd_rsspin);
1309 return NULL; /* reservation already in use */
1310 }
1311 }
1312
1313 /* Do our reservation work */
1314 rs = ip->i_res;
1315 rs->rs_free = amount;
1316 rs->rs_biblk = biblk;
1317 rs->rs_bi = bi;
1318 rb_link_node(&rs->rs_node, parent, newn);
1319 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1320
1321 /* Do our inode accounting for the reservation */
1322 /*BUG_ON(!gfs2_glock_is_locked_by_me(ip->i_gl));*/
1323
1324 /* Do our rgrp accounting for the reservation */
1325 rgd->rd_reserved += amount; /* blocks reserved */
1326 rgd->rd_rs_cnt++; /* number of in-tree reservations */
1327 spin_unlock(&rgd->rd_rsspin);
1328 trace_gfs2_rs(ip, rs, TRACE_RS_INSERT);
1329 return rs;
1330 }
1331
1332 /**
1333 * unclaimed_blocks - return number of blocks that aren't spoken for
1334 */
1335 static u32 unclaimed_blocks(struct gfs2_rgrpd *rgd)
1336 {
1337 return rgd->rd_free_clone - rgd->rd_reserved;
1338 }
1339
1340 /**
1341 * rg_mblk_search - find a group of multiple free blocks
1342 * @rgd: the resource group descriptor
1343 * @rs: the block reservation
1344 * @ip: pointer to the inode for which we're reserving blocks
1345 *
1346 * This is very similar to rgblk_search, except we're looking for whole
1347 * 64-bit words that represent a chunk of 32 free blocks. I'm only focusing
1348 * on aligned dwords for speed's sake.
1349 *
1350 * Returns: 0 if successful or BFITNOENT if there isn't enough free space
1351 */
1352
1353 static int rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1354 {
1355 struct gfs2_bitmap *bi = rgd->rd_bits;
1356 const u32 length = rgd->rd_length;
1357 u32 blk;
1358 unsigned int buf, x, search_bytes;
1359 u8 *buffer = NULL;
1360 u8 *ptr, *end, *nonzero;
1361 u32 goal, rsv_bytes;
1362 struct gfs2_blkreserv *rs;
1363 u32 best_rs_bytes, unclaimed;
1364 int best_rs_blocks;
1365
1366 /* Find bitmap block that contains bits for goal block */
1367 if (rgrp_contains_block(rgd, ip->i_goal))
1368 goal = ip->i_goal - rgd->rd_data0;
1369 else
1370 goal = rgd->rd_last_alloc;
1371 for (buf = 0; buf < length; buf++) {
1372 bi = rgd->rd_bits + buf;
1373 /* Convert scope of "goal" from rgrp-wide to within
1374 found bit block */
1375 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1376 goal -= bi->bi_start * GFS2_NBBY;
1377 goto do_search;
1378 }
1379 }
1380 buf = 0;
1381 goal = 0;
1382
1383 do_search:
1384 best_rs_blocks = max_t(int, atomic_read(&ip->i_res->rs_sizehint),
1385 (RGRP_RSRV_MINBLKS * rgd->rd_length));
1386 best_rs_bytes = (best_rs_blocks *
1387 (1 + (RSRV_CONTENTION_FACTOR * rgd->rd_rs_cnt))) /
1388 GFS2_NBBY; /* 1 + is for our not-yet-created reservation */
1389 best_rs_bytes = ALIGN(best_rs_bytes, sizeof(u64));
1390 unclaimed = unclaimed_blocks(rgd);
1391 if (best_rs_bytes * GFS2_NBBY > unclaimed)
1392 best_rs_bytes = unclaimed >> GFS2_BIT_SIZE;
1393
1394 for (x = 0; x <= length; x++) {
1395 bi = rgd->rd_bits + buf;
1396
1397 if (test_bit(GBF_FULL, &bi->bi_flags))
1398 goto skip;
1399
1400 WARN_ON(!buffer_uptodate(bi->bi_bh));
1401 if (bi->bi_clone)
1402 buffer = bi->bi_clone + bi->bi_offset;
1403 else
1404 buffer = bi->bi_bh->b_data + bi->bi_offset;
1405
1406 /* We have to keep the reservations aligned on u64 boundaries
1407 otherwise we could get situations where a byte can't be
1408 used because it's after a reservation, but a free bit still
1409 is within the reservation's area. */
1410 ptr = buffer + ALIGN(goal >> GFS2_BIT_SIZE, sizeof(u64));
1411 end = (buffer + bi->bi_len);
1412 while (ptr < end) {
1413 rsv_bytes = 0;
1414 if ((ptr + best_rs_bytes) <= end)
1415 search_bytes = best_rs_bytes;
1416 else
1417 search_bytes = end - ptr;
1418 BUG_ON(!search_bytes);
1419 nonzero = memchr_inv(ptr, 0, search_bytes);
1420 /* If the lot is all zeroes, reserve the whole size. If
1421 there's enough zeroes to satisfy the request, use
1422 what we can. If there's not enough, keep looking. */
1423 if (nonzero == NULL)
1424 rsv_bytes = search_bytes;
1425 else if ((nonzero - ptr) * GFS2_NBBY >=
1426 ip->i_res->rs_requested)
1427 rsv_bytes = (nonzero - ptr);
1428
1429 if (rsv_bytes) {
1430 blk = ((ptr - buffer) * GFS2_NBBY);
1431 BUG_ON(blk >= bi->bi_len * GFS2_NBBY);
1432 rs = rs_insert(bi, ip, blk,
1433 rsv_bytes * GFS2_NBBY);
1434 if (IS_ERR(rs))
1435 return PTR_ERR(rs);
1436 if (rs)
1437 return 0;
1438 }
1439 ptr += ALIGN(search_bytes, sizeof(u64));
1440 }
1441 skip:
1442 /* Try next bitmap block (wrap back to rgrp header
1443 if at end) */
1444 buf++;
1445 buf %= length;
1446 goal = 0;
1447 }
1448
1449 return BFITNOENT;
1450 }
1451
1452 /**
1453 * try_rgrp_fit - See if a given reservation will fit in a given RG
1454 * @rgd: the RG data
1455 * @ip: the inode
1456 *
1457 * If there's room for the requested blocks to be allocated from the RG:
1458 * This will try to get a multi-block reservation first, and if that doesn't
1459 * fit, it will take what it can.
1460 *
1461 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
1462 */
1463
1464 static int try_rgrp_fit(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1465 {
1466 struct gfs2_blkreserv *rs = ip->i_res;
1467
1468 if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1469 return 0;
1470 /* Look for a multi-block reservation. */
1471 if (unclaimed_blocks(rgd) >= RGRP_RSRV_MINBLKS &&
1472 rg_mblk_search(rgd, ip) != BFITNOENT)
1473 return 1;
1474 if (unclaimed_blocks(rgd) >= rs->rs_requested)
1475 return 1;
1476
1477 return 0;
1478 }
1479
1480 /**
1481 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1482 * @rgd: The rgrp
1483 * @last_unlinked: block address of the last dinode we unlinked
1484 * @skip: block address we should explicitly not unlink
1485 *
1486 * Returns: 0 if no error
1487 * The inode, if one has been found, in inode.
1488 */
1489
1490 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1491 {
1492 u32 goal = 0, block;
1493 u64 no_addr;
1494 struct gfs2_sbd *sdp = rgd->rd_sbd;
1495 struct gfs2_glock *gl;
1496 struct gfs2_inode *ip;
1497 int error;
1498 int found = 0;
1499 struct gfs2_bitmap *bi;
1500
1501 while (goal < rgd->rd_data) {
1502 down_write(&sdp->sd_log_flush_lock);
1503 block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
1504 up_write(&sdp->sd_log_flush_lock);
1505 if (block == BFITNOENT)
1506 break;
1507
1508 block = gfs2_bi2rgd_blk(bi, block);
1509 /* rgblk_search can return a block < goal, so we need to
1510 keep it marching forward. */
1511 no_addr = block + rgd->rd_data0;
1512 goal = max(block + 1, goal + 1);
1513 if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
1514 continue;
1515 if (no_addr == skip)
1516 continue;
1517 *last_unlinked = no_addr;
1518
1519 error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
1520 if (error)
1521 continue;
1522
1523 /* If the inode is already in cache, we can ignore it here
1524 * because the existing inode disposal code will deal with
1525 * it when all refs have gone away. Accessing gl_object like
1526 * this is not safe in general. Here it is ok because we do
1527 * not dereference the pointer, and we only need an approx
1528 * answer to whether it is NULL or not.
1529 */
1530 ip = gl->gl_object;
1531
1532 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1533 gfs2_glock_put(gl);
1534 else
1535 found++;
1536
1537 /* Limit reclaim to sensible number of tasks */
1538 if (found > NR_CPUS)
1539 return;
1540 }
1541
1542 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1543 return;
1544 }
1545
1546 /**
1547 * gfs2_inplace_reserve - Reserve space in the filesystem
1548 * @ip: the inode to reserve space for
1549 * @requested: the number of blocks to be reserved
1550 *
1551 * Returns: errno
1552 */
1553
1554 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1555 {
1556 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1557 struct gfs2_rgrpd *begin = NULL;
1558 struct gfs2_blkreserv *rs = ip->i_res;
1559 int error = 0, rg_locked, flags = LM_FLAG_TRY;
1560 u64 last_unlinked = NO_BLOCK;
1561 int loops = 0;
1562
1563 if (sdp->sd_args.ar_rgrplvb)
1564 flags |= GL_SKIP;
1565 rs->rs_requested = requested;
1566 if (gfs2_assert_warn(sdp, requested)) {
1567 error = -EINVAL;
1568 goto out;
1569 }
1570 if (gfs2_rs_active(rs)) {
1571 begin = rs->rs_rgd;
1572 flags = 0; /* Yoda: Do or do not. There is no try */
1573 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1574 rs->rs_rgd = begin = ip->i_rgd;
1575 } else {
1576 rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1577 }
1578 if (rs->rs_rgd == NULL)
1579 return -EBADSLT;
1580
1581 while (loops < 3) {
1582 rg_locked = 0;
1583
1584 if (gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl)) {
1585 rg_locked = 1;
1586 error = 0;
1587 } else if (!loops && !gfs2_rs_active(rs) &&
1588 rs->rs_rgd->rd_rs_cnt > RGRP_RSRV_MAX_CONTENDERS) {
1589 /* If the rgrp already is maxed out for contenders,
1590 we can eliminate it as a "first pass" without even
1591 requesting the rgrp glock. */
1592 error = GLR_TRYFAILED;
1593 } else {
1594 error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
1595 LM_ST_EXCLUSIVE, flags,
1596 &rs->rs_rgd_gh);
1597 if (!error && sdp->sd_args.ar_rgrplvb) {
1598 error = update_rgrp_lvb(rs->rs_rgd);
1599 if (error) {
1600 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1601 return error;
1602 }
1603 }
1604 }
1605 switch (error) {
1606 case 0:
1607 if (gfs2_rs_active(rs)) {
1608 if (unclaimed_blocks(rs->rs_rgd) +
1609 rs->rs_free >= rs->rs_requested) {
1610 ip->i_rgd = rs->rs_rgd;
1611 return 0;
1612 }
1613 /* We have a multi-block reservation, but the
1614 rgrp doesn't have enough free blocks to
1615 satisfy the request. Free the reservation
1616 and look for a suitable rgrp. */
1617 gfs2_rs_deltree(rs);
1618 }
1619 if (try_rgrp_fit(rs->rs_rgd, ip)) {
1620 if (sdp->sd_args.ar_rgrplvb)
1621 gfs2_rgrp_bh_get(rs->rs_rgd);
1622 ip->i_rgd = rs->rs_rgd;
1623 return 0;
1624 }
1625 if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK) {
1626 if (sdp->sd_args.ar_rgrplvb)
1627 gfs2_rgrp_bh_get(rs->rs_rgd);
1628 try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
1629 ip->i_no_addr);
1630 }
1631 if (!rg_locked)
1632 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1633 /* fall through */
1634 case GLR_TRYFAILED:
1635 rs->rs_rgd = gfs2_rgrpd_get_next(rs->rs_rgd);
1636 rs->rs_rgd = rs->rs_rgd ? : begin; /* if NULL, wrap */
1637 if (rs->rs_rgd != begin) /* If we didn't wrap */
1638 break;
1639
1640 flags &= ~LM_FLAG_TRY;
1641 loops++;
1642 /* Check that fs hasn't grown if writing to rindex */
1643 if (ip == GFS2_I(sdp->sd_rindex) &&
1644 !sdp->sd_rindex_uptodate) {
1645 error = gfs2_ri_update(ip);
1646 if (error)
1647 goto out;
1648 } else if (loops == 2)
1649 /* Flushing the log may release space */
1650 gfs2_log_flush(sdp, NULL);
1651 break;
1652 default:
1653 goto out;
1654 }
1655 }
1656 error = -ENOSPC;
1657
1658 out:
1659 if (error)
1660 rs->rs_requested = 0;
1661 return error;
1662 }
1663
1664 /**
1665 * gfs2_inplace_release - release an inplace reservation
1666 * @ip: the inode the reservation was taken out on
1667 *
1668 * Release a reservation made by gfs2_inplace_reserve().
1669 */
1670
1671 void gfs2_inplace_release(struct gfs2_inode *ip)
1672 {
1673 struct gfs2_blkreserv *rs = ip->i_res;
1674
1675 if (!rs)
1676 return;
1677
1678 if (!rs->rs_free)
1679 gfs2_rs_deltree(rs);
1680
1681 if (rs->rs_rgd_gh.gh_gl)
1682 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1683 rs->rs_requested = 0;
1684 }
1685
1686 /**
1687 * gfs2_get_block_type - Check a block in a RG is of given type
1688 * @rgd: the resource group holding the block
1689 * @block: the block number
1690 *
1691 * Returns: The block type (GFS2_BLKST_*)
1692 */
1693
1694 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1695 {
1696 struct gfs2_bitmap *bi = NULL;
1697 u32 length, rgrp_block, buf_block;
1698 unsigned int buf;
1699 unsigned char type;
1700
1701 length = rgd->rd_length;
1702 rgrp_block = block - rgd->rd_data0;
1703
1704 for (buf = 0; buf < length; buf++) {
1705 bi = rgd->rd_bits + buf;
1706 if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1707 break;
1708 }
1709
1710 gfs2_assert(rgd->rd_sbd, buf < length);
1711 buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1712
1713 type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1714 bi->bi_len, buf_block);
1715
1716 return type;
1717 }
1718
1719 /**
1720 * rgblk_search - find a block in @state
1721 * @rgd: the resource group descriptor
1722 * @goal: the goal block within the RG (start here to search for avail block)
1723 * @state: GFS2_BLKST_XXX the before-allocation state to find
1724 * @rbi: address of the pointer to the bitmap containing the block found
1725 *
1726 * Walk rgrp's bitmap to find bits that represent a block in @state.
1727 *
1728 * This function never fails, because we wouldn't call it unless we
1729 * know (from reservation results, etc.) that a block is available.
1730 *
1731 * Scope of @goal is just within rgrp, not the whole filesystem.
1732 * Scope of @returned block is just within bitmap, not the whole filesystem.
1733 *
1734 * Returns: the block number found relative to the bitmap rbi
1735 */
1736
1737 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char state,
1738 struct gfs2_bitmap **rbi)
1739 {
1740 struct gfs2_bitmap *bi = NULL;
1741 const u32 length = rgd->rd_length;
1742 u32 biblk = BFITNOENT;
1743 unsigned int buf, x;
1744 const u8 *buffer = NULL;
1745
1746 *rbi = NULL;
1747 /* Find bitmap block that contains bits for goal block */
1748 for (buf = 0; buf < length; buf++) {
1749 bi = rgd->rd_bits + buf;
1750 /* Convert scope of "goal" from rgrp-wide to within found bit block */
1751 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1752 goal -= bi->bi_start * GFS2_NBBY;
1753 goto do_search;
1754 }
1755 }
1756 buf = 0;
1757 goal = 0;
1758
1759 do_search:
1760 /* Search (up to entire) bitmap in this rgrp for allocatable block.
1761 "x <= length", instead of "x < length", because we typically start
1762 the search in the middle of a bit block, but if we can't find an
1763 allocatable block anywhere else, we want to be able wrap around and
1764 search in the first part of our first-searched bit block. */
1765 for (x = 0; x <= length; x++) {
1766 bi = rgd->rd_bits + buf;
1767
1768 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1769 (state == GFS2_BLKST_FREE))
1770 goto skip;
1771
1772 /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1773 bitmaps, so we must search the originals for that. */
1774 buffer = bi->bi_bh->b_data + bi->bi_offset;
1775 WARN_ON(!buffer_uptodate(bi->bi_bh));
1776 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1777 buffer = bi->bi_clone + bi->bi_offset;
1778
1779 while (1) {
1780 struct gfs2_blkreserv *rs;
1781 u32 rgblk;
1782
1783 biblk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1784 if (biblk == BFITNOENT)
1785 break;
1786 /* Check if this block is reserved() */
1787 rgblk = gfs2_bi2rgd_blk(bi, biblk);
1788 rs = rs_find(rgd, rgblk);
1789 if (rs == NULL)
1790 break;
1791
1792 BUG_ON(rs->rs_bi != bi);
1793 biblk = BFITNOENT;
1794 /* This should jump to the first block after the
1795 reservation. */
1796 goal = rs->rs_biblk + rs->rs_free;
1797 if (goal >= bi->bi_len * GFS2_NBBY)
1798 break;
1799 }
1800 if (biblk != BFITNOENT)
1801 break;
1802
1803 if ((goal == 0) && (state == GFS2_BLKST_FREE))
1804 set_bit(GBF_FULL, &bi->bi_flags);
1805
1806 /* Try next bitmap block (wrap back to rgrp header if at end) */
1807 skip:
1808 buf++;
1809 buf %= length;
1810 goal = 0;
1811 }
1812
1813 if (biblk != BFITNOENT)
1814 *rbi = bi;
1815
1816 return biblk;
1817 }
1818
1819 /**
1820 * gfs2_alloc_extent - allocate an extent from a given bitmap
1821 * @rgd: the resource group descriptor
1822 * @bi: the bitmap within the rgrp
1823 * @blk: the block within the bitmap
1824 * @dinode: TRUE if the first block we allocate is for a dinode
1825 * @n: The extent length
1826 *
1827 * Add the found bitmap buffer to the transaction.
1828 * Set the found bits to @new_state to change block's allocation state.
1829 * Returns: starting block number of the extent (fs scope)
1830 */
1831 static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1832 u32 blk, bool dinode, unsigned int *n)
1833 {
1834 const unsigned int elen = *n;
1835 u32 goal, rgblk;
1836 const u8 *buffer = NULL;
1837 struct gfs2_blkreserv *rs;
1838
1839 *n = 0;
1840 buffer = bi->bi_bh->b_data + bi->bi_offset;
1841 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1842 gfs2_setbit(rgd, bi->bi_clone, bi, blk,
1843 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1844 (*n)++;
1845 goal = blk;
1846 while (*n < elen) {
1847 goal++;
1848 if (goal >= (bi->bi_len * GFS2_NBBY))
1849 break;
1850 rgblk = gfs2_bi2rgd_blk(bi, goal);
1851 rs = rs_find(rgd, rgblk);
1852 if (rs) /* Oops, we bumped into someone's reservation */
1853 break;
1854 if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1855 GFS2_BLKST_FREE)
1856 break;
1857 gfs2_setbit(rgd, bi->bi_clone, bi, goal, GFS2_BLKST_USED);
1858 (*n)++;
1859 }
1860 blk = gfs2_bi2rgd_blk(bi, blk);
1861 rgd->rd_last_alloc = blk + *n - 1;
1862 return rgd->rd_data0 + blk;
1863 }
1864
1865 /**
1866 * rgblk_free - Change alloc state of given block(s)
1867 * @sdp: the filesystem
1868 * @bstart: the start of a run of blocks to free
1869 * @blen: the length of the block run (all must lie within ONE RG!)
1870 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1871 *
1872 * Returns: Resource group containing the block(s)
1873 */
1874
1875 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1876 u32 blen, unsigned char new_state)
1877 {
1878 struct gfs2_rgrpd *rgd;
1879 struct gfs2_bitmap *bi = NULL;
1880 u32 length, rgrp_blk, buf_blk;
1881 unsigned int buf;
1882
1883 rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1884 if (!rgd) {
1885 if (gfs2_consist(sdp))
1886 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1887 return NULL;
1888 }
1889
1890 length = rgd->rd_length;
1891
1892 rgrp_blk = bstart - rgd->rd_data0;
1893
1894 while (blen--) {
1895 for (buf = 0; buf < length; buf++) {
1896 bi = rgd->rd_bits + buf;
1897 if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1898 break;
1899 }
1900
1901 gfs2_assert(rgd->rd_sbd, buf < length);
1902
1903 buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1904 rgrp_blk++;
1905
1906 if (!bi->bi_clone) {
1907 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1908 GFP_NOFS | __GFP_NOFAIL);
1909 memcpy(bi->bi_clone + bi->bi_offset,
1910 bi->bi_bh->b_data + bi->bi_offset,
1911 bi->bi_len);
1912 }
1913 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1914 gfs2_setbit(rgd, NULL, bi, buf_blk, new_state);
1915 }
1916
1917 return rgd;
1918 }
1919
1920 /**
1921 * gfs2_rgrp_dump - print out an rgrp
1922 * @seq: The iterator
1923 * @gl: The glock in question
1924 *
1925 */
1926
1927 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1928 {
1929 struct gfs2_rgrpd *rgd = gl->gl_object;
1930 struct gfs2_blkreserv *trs;
1931 const struct rb_node *n;
1932
1933 if (rgd == NULL)
1934 return 0;
1935 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
1936 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1937 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
1938 rgd->rd_reserved);
1939 spin_lock(&rgd->rd_rsspin);
1940 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
1941 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1942 dump_rs(seq, trs);
1943 }
1944 spin_unlock(&rgd->rd_rsspin);
1945 return 0;
1946 }
1947
1948 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1949 {
1950 struct gfs2_sbd *sdp = rgd->rd_sbd;
1951 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1952 (unsigned long long)rgd->rd_addr);
1953 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1954 gfs2_rgrp_dump(NULL, rgd->rd_gl);
1955 rgd->rd_flags |= GFS2_RDF_ERROR;
1956 }
1957
1958 /**
1959 * claim_reserved_blks - Claim previously reserved blocks
1960 * @ip: the inode that's claiming the reservation
1961 * @dinode: 1 if this block is a dinode block, otherwise data block
1962 * @nblocks: desired extent length
1963 *
1964 * Lay claim to previously reserved blocks.
1965 * Returns: Starting block number of the blocks claimed.
1966 * Sets *nblocks to the actual extent length allocated.
1967 */
1968 static u64 claim_reserved_blks(struct gfs2_inode *ip, bool dinode,
1969 unsigned int *nblocks)
1970 {
1971 struct gfs2_blkreserv *rs = ip->i_res;
1972 struct gfs2_rgrpd *rgd = rs->rs_rgd;
1973 struct gfs2_bitmap *bi;
1974 u64 start_block = gfs2_rs_startblk(rs);
1975 const unsigned int elen = *nblocks;
1976
1977 bi = rs->rs_bi;
1978 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1979
1980 for (*nblocks = 0; *nblocks < elen && rs->rs_free; (*nblocks)++) {
1981 if (gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1982 bi->bi_len, rs->rs_biblk) != GFS2_BLKST_FREE)
1983 break;
1984 gfs2_setbit(rgd, bi->bi_clone, bi, rs->rs_biblk,
1985 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1986 rs->rs_biblk++;
1987 rs->rs_free--;
1988
1989 BUG_ON(!rgd->rd_reserved);
1990 rgd->rd_reserved--;
1991 dinode = false;
1992 }
1993
1994 trace_gfs2_rs(ip, rs, TRACE_RS_CLAIM);
1995 if (!rs->rs_free || *nblocks != elen)
1996 gfs2_rs_deltree(rs);
1997
1998 return start_block;
1999 }
2000
2001 /**
2002 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2003 * @ip: the inode to allocate the block for
2004 * @bn: Used to return the starting block number
2005 * @nblocks: requested number of blocks/extent length (value/result)
2006 * @dinode: 1 if we're allocating a dinode block, else 0
2007 * @generation: the generation number of the inode
2008 *
2009 * Returns: 0 or error
2010 */
2011
2012 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2013 bool dinode, u64 *generation)
2014 {
2015 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2016 struct buffer_head *dibh;
2017 struct gfs2_rgrpd *rgd;
2018 unsigned int ndata;
2019 u32 goal, blk; /* block, within the rgrp scope */
2020 u64 block; /* block, within the file system scope */
2021 int error;
2022 struct gfs2_bitmap *bi;
2023
2024 /* Only happens if there is a bug in gfs2, return something distinctive
2025 * to ensure that it is noticed.
2026 */
2027 if (ip->i_res->rs_requested == 0)
2028 return -ECANCELED;
2029
2030 /* If we have a reservation, claim blocks from it. */
2031 if (gfs2_rs_active(ip->i_res)) {
2032 BUG_ON(!ip->i_res->rs_free);
2033 rgd = ip->i_res->rs_rgd;
2034 block = claim_reserved_blks(ip, dinode, nblocks);
2035 if (*nblocks)
2036 goto found_blocks;
2037 }
2038
2039 rgd = ip->i_rgd;
2040
2041 if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
2042 goal = ip->i_goal - rgd->rd_data0;
2043 else
2044 goal = rgd->rd_last_alloc;
2045
2046 blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
2047
2048 /* Since all blocks are reserved in advance, this shouldn't happen */
2049 if (blk == BFITNOENT) {
2050 printk(KERN_WARNING "BFITNOENT, nblocks=%u\n", *nblocks);
2051 printk(KERN_WARNING "FULL=%d\n",
2052 test_bit(GBF_FULL, &rgd->rd_bits->bi_flags));
2053 goto rgrp_error;
2054 }
2055
2056 block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
2057 found_blocks:
2058 ndata = *nblocks;
2059 if (dinode)
2060 ndata--;
2061
2062 if (!dinode) {
2063 ip->i_goal = block + ndata - 1;
2064 error = gfs2_meta_inode_buffer(ip, &dibh);
2065 if (error == 0) {
2066 struct gfs2_dinode *di =
2067 (struct gfs2_dinode *)dibh->b_data;
2068 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
2069 di->di_goal_meta = di->di_goal_data =
2070 cpu_to_be64(ip->i_goal);
2071 brelse(dibh);
2072 }
2073 }
2074 if (rgd->rd_free < *nblocks) {
2075 printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2076 goto rgrp_error;
2077 }
2078
2079 rgd->rd_free -= *nblocks;
2080 if (dinode) {
2081 rgd->rd_dinodes++;
2082 *generation = rgd->rd_igeneration++;
2083 if (*generation == 0)
2084 *generation = rgd->rd_igeneration++;
2085 }
2086
2087 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2088 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2089 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2090
2091 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2092 if (dinode)
2093 gfs2_trans_add_unrevoke(sdp, block, 1);
2094
2095 /*
2096 * This needs reviewing to see why we cannot do the quota change
2097 * at this point in the dinode case.
2098 */
2099 if (ndata)
2100 gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
2101 ip->i_inode.i_gid);
2102
2103 rgd->rd_free_clone -= *nblocks;
2104 trace_gfs2_block_alloc(ip, rgd, block, *nblocks,
2105 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2106 *bn = block;
2107 return 0;
2108
2109 rgrp_error:
2110 gfs2_rgrp_error(rgd);
2111 return -EIO;
2112 }
2113
2114 /**
2115 * __gfs2_free_blocks - free a contiguous run of block(s)
2116 * @ip: the inode these blocks are being freed from
2117 * @bstart: first block of a run of contiguous blocks
2118 * @blen: the length of the block run
2119 * @meta: 1 if the blocks represent metadata
2120 *
2121 */
2122
2123 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2124 {
2125 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2126 struct gfs2_rgrpd *rgd;
2127
2128 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2129 if (!rgd)
2130 return;
2131 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2132 rgd->rd_free += blen;
2133 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2134 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2135 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2136 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2137
2138 /* Directories keep their data in the metadata address space */
2139 if (meta || ip->i_depth)
2140 gfs2_meta_wipe(ip, bstart, blen);
2141 }
2142
2143 /**
2144 * gfs2_free_meta - free a contiguous run of data block(s)
2145 * @ip: the inode these blocks are being freed from
2146 * @bstart: first block of a run of contiguous blocks
2147 * @blen: the length of the block run
2148 *
2149 */
2150
2151 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2152 {
2153 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2154
2155 __gfs2_free_blocks(ip, bstart, blen, 1);
2156 gfs2_statfs_change(sdp, 0, +blen, 0);
2157 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2158 }
2159
2160 void gfs2_unlink_di(struct inode *inode)
2161 {
2162 struct gfs2_inode *ip = GFS2_I(inode);
2163 struct gfs2_sbd *sdp = GFS2_SB(inode);
2164 struct gfs2_rgrpd *rgd;
2165 u64 blkno = ip->i_no_addr;
2166
2167 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2168 if (!rgd)
2169 return;
2170 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2171 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2172 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2173 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2174 update_rgrp_lvb_unlinked(rgd, 1);
2175 }
2176
2177 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2178 {
2179 struct gfs2_sbd *sdp = rgd->rd_sbd;
2180 struct gfs2_rgrpd *tmp_rgd;
2181
2182 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2183 if (!tmp_rgd)
2184 return;
2185 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2186
2187 if (!rgd->rd_dinodes)
2188 gfs2_consist_rgrpd(rgd);
2189 rgd->rd_dinodes--;
2190 rgd->rd_free++;
2191
2192 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2193 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2194 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2195 update_rgrp_lvb_unlinked(rgd, -1);
2196
2197 gfs2_statfs_change(sdp, 0, +1, -1);
2198 }
2199
2200
2201 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2202 {
2203 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2204 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2205 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2206 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2207 }
2208
2209 /**
2210 * gfs2_check_blk_type - Check the type of a block
2211 * @sdp: The superblock
2212 * @no_addr: The block number to check
2213 * @type: The block type we are looking for
2214 *
2215 * Returns: 0 if the block type matches the expected type
2216 * -ESTALE if it doesn't match
2217 * or -ve errno if something went wrong while checking
2218 */
2219
2220 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2221 {
2222 struct gfs2_rgrpd *rgd;
2223 struct gfs2_holder rgd_gh;
2224 int error = -EINVAL;
2225
2226 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2227 if (!rgd)
2228 goto fail;
2229
2230 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2231 if (error)
2232 goto fail;
2233
2234 if (gfs2_get_block_type(rgd, no_addr) != type)
2235 error = -ESTALE;
2236
2237 gfs2_glock_dq_uninit(&rgd_gh);
2238 fail:
2239 return error;
2240 }
2241
2242 /**
2243 * gfs2_rlist_add - add a RG to a list of RGs
2244 * @ip: the inode
2245 * @rlist: the list of resource groups
2246 * @block: the block
2247 *
2248 * Figure out what RG a block belongs to and add that RG to the list
2249 *
2250 * FIXME: Don't use NOFAIL
2251 *
2252 */
2253
2254 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2255 u64 block)
2256 {
2257 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2258 struct gfs2_rgrpd *rgd;
2259 struct gfs2_rgrpd **tmp;
2260 unsigned int new_space;
2261 unsigned int x;
2262
2263 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2264 return;
2265
2266 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2267 rgd = ip->i_rgd;
2268 else
2269 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2270 if (!rgd) {
2271 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2272 return;
2273 }
2274 ip->i_rgd = rgd;
2275
2276 for (x = 0; x < rlist->rl_rgrps; x++)
2277 if (rlist->rl_rgd[x] == rgd)
2278 return;
2279
2280 if (rlist->rl_rgrps == rlist->rl_space) {
2281 new_space = rlist->rl_space + 10;
2282
2283 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2284 GFP_NOFS | __GFP_NOFAIL);
2285
2286 if (rlist->rl_rgd) {
2287 memcpy(tmp, rlist->rl_rgd,
2288 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2289 kfree(rlist->rl_rgd);
2290 }
2291
2292 rlist->rl_space = new_space;
2293 rlist->rl_rgd = tmp;
2294 }
2295
2296 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2297 }
2298
2299 /**
2300 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2301 * and initialize an array of glock holders for them
2302 * @rlist: the list of resource groups
2303 * @state: the lock state to acquire the RG lock in
2304 *
2305 * FIXME: Don't use NOFAIL
2306 *
2307 */
2308
2309 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2310 {
2311 unsigned int x;
2312
2313 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2314 GFP_NOFS | __GFP_NOFAIL);
2315 for (x = 0; x < rlist->rl_rgrps; x++)
2316 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2317 state, 0,
2318 &rlist->rl_ghs[x]);
2319 }
2320
2321 /**
2322 * gfs2_rlist_free - free a resource group list
2323 * @list: the list of resource groups
2324 *
2325 */
2326
2327 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2328 {
2329 unsigned int x;
2330
2331 kfree(rlist->rl_rgd);
2332
2333 if (rlist->rl_ghs) {
2334 for (x = 0; x < rlist->rl_rgrps; x++)
2335 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2336 kfree(rlist->rl_ghs);
2337 rlist->rl_ghs = NULL;
2338 }
2339 }
2340
This page took 0.088596 seconds and 5 git commands to generate.