GFS2: Clean up reservation removal
[deliverable/linux.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 static const char valid_change[16] = {
61 /* current */
62 /* n */ 0, 1, 1, 1,
63 /* e */ 1, 0, 0, 0,
64 /* w */ 0, 0, 0, 1,
65 1, 0, 0, 0
66 };
67
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69 const struct gfs2_inode *ip, bool nowrap);
70
71
72 /**
73 * gfs2_setbit - Set a bit in the bitmaps
74 * @rbm: The position of the bit to set
75 * @do_clone: Also set the clone bitmap, if it exists
76 * @new_state: the new state of the block
77 *
78 */
79
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 unsigned char new_state)
82 {
83 unsigned char *byte1, *byte2, *end, cur_state;
84 struct gfs2_bitmap *bi = rbm_bi(rbm);
85 unsigned int buflen = bi->bi_len;
86 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
87
88 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
89 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
90
91 BUG_ON(byte1 >= end);
92
93 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
94
95 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
96 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
97 "new_state=%d\n", rbm->offset, cur_state, new_state);
98 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
99 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 bi->bi_offset, bi->bi_len);
102 dump_stack();
103 gfs2_consist_rgrpd(rbm->rgd);
104 return;
105 }
106 *byte1 ^= (cur_state ^ new_state) << bit;
107
108 if (do_clone && bi->bi_clone) {
109 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 *byte2 ^= (cur_state ^ new_state) << bit;
112 }
113 }
114
115 /**
116 * gfs2_testbit - test a bit in the bitmaps
117 * @rbm: The bit to test
118 *
119 * Returns: The two bit block state of the requested bit
120 */
121
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 struct gfs2_bitmap *bi = rbm_bi(rbm);
125 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
126 const u8 *byte;
127 unsigned int bit;
128
129 byte = buffer + (rbm->offset / GFS2_NBBY);
130 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
131
132 return (*byte >> bit) & GFS2_BIT_MASK;
133 }
134
135 /**
136 * gfs2_bit_search
137 * @ptr: Pointer to bitmap data
138 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
139 * @state: The state we are searching for
140 *
141 * We xor the bitmap data with a patter which is the bitwise opposite
142 * of what we are looking for, this gives rise to a pattern of ones
143 * wherever there is a match. Since we have two bits per entry, we
144 * take this pattern, shift it down by one place and then and it with
145 * the original. All the even bit positions (0,2,4, etc) then represent
146 * successful matches, so we mask with 0x55555..... to remove the unwanted
147 * odd bit positions.
148 *
149 * This allows searching of a whole u64 at once (32 blocks) with a
150 * single test (on 64 bit arches).
151 */
152
153 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
154 {
155 u64 tmp;
156 static const u64 search[] = {
157 [0] = 0xffffffffffffffffULL,
158 [1] = 0xaaaaaaaaaaaaaaaaULL,
159 [2] = 0x5555555555555555ULL,
160 [3] = 0x0000000000000000ULL,
161 };
162 tmp = le64_to_cpu(*ptr) ^ search[state];
163 tmp &= (tmp >> 1);
164 tmp &= mask;
165 return tmp;
166 }
167
168 /**
169 * rs_cmp - multi-block reservation range compare
170 * @blk: absolute file system block number of the new reservation
171 * @len: number of blocks in the new reservation
172 * @rs: existing reservation to compare against
173 *
174 * returns: 1 if the block range is beyond the reach of the reservation
175 * -1 if the block range is before the start of the reservation
176 * 0 if the block range overlaps with the reservation
177 */
178 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
179 {
180 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
181
182 if (blk >= startblk + rs->rs_free)
183 return 1;
184 if (blk + len - 1 < startblk)
185 return -1;
186 return 0;
187 }
188
189 /**
190 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
191 * a block in a given allocation state.
192 * @buf: the buffer that holds the bitmaps
193 * @len: the length (in bytes) of the buffer
194 * @goal: start search at this block's bit-pair (within @buffer)
195 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
196 *
197 * Scope of @goal and returned block number is only within this bitmap buffer,
198 * not entire rgrp or filesystem. @buffer will be offset from the actual
199 * beginning of a bitmap block buffer, skipping any header structures, but
200 * headers are always a multiple of 64 bits long so that the buffer is
201 * always aligned to a 64 bit boundary.
202 *
203 * The size of the buffer is in bytes, but is it assumed that it is
204 * always ok to read a complete multiple of 64 bits at the end
205 * of the block in case the end is no aligned to a natural boundary.
206 *
207 * Return: the block number (bitmap buffer scope) that was found
208 */
209
210 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
211 u32 goal, u8 state)
212 {
213 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
214 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
215 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
216 u64 tmp;
217 u64 mask = 0x5555555555555555ULL;
218 u32 bit;
219
220 /* Mask off bits we don't care about at the start of the search */
221 mask <<= spoint;
222 tmp = gfs2_bit_search(ptr, mask, state);
223 ptr++;
224 while(tmp == 0 && ptr < end) {
225 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
226 ptr++;
227 }
228 /* Mask off any bits which are more than len bytes from the start */
229 if (ptr == end && (len & (sizeof(u64) - 1)))
230 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
231 /* Didn't find anything, so return */
232 if (tmp == 0)
233 return BFITNOENT;
234 ptr--;
235 bit = __ffs64(tmp);
236 bit /= 2; /* two bits per entry in the bitmap */
237 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
238 }
239
240 /**
241 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
242 * @rbm: The rbm with rgd already set correctly
243 * @block: The block number (filesystem relative)
244 *
245 * This sets the bi and offset members of an rbm based on a
246 * resource group and a filesystem relative block number. The
247 * resource group must be set in the rbm on entry, the bi and
248 * offset members will be set by this function.
249 *
250 * Returns: 0 on success, or an error code
251 */
252
253 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
254 {
255 u64 rblock = block - rbm->rgd->rd_data0;
256
257 if (WARN_ON_ONCE(rblock > UINT_MAX))
258 return -EINVAL;
259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 return -E2BIG;
261
262 rbm->bii = 0;
263 rbm->offset = (u32)(rblock);
264 /* Check if the block is within the first block */
265 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
266 return 0;
267
268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 rbm->offset += (sizeof(struct gfs2_rgrp) -
270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 return 0;
274 }
275
276 /**
277 * gfs2_rbm_incr - increment an rbm structure
278 * @rbm: The rbm with rgd already set correctly
279 *
280 * This function takes an existing rbm structure and increments it to the next
281 * viable block offset.
282 *
283 * Returns: If incrementing the offset would cause the rbm to go past the
284 * end of the rgrp, true is returned, otherwise false.
285 *
286 */
287
288 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
289 {
290 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
291 rbm->offset++;
292 return false;
293 }
294 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
295 return true;
296
297 rbm->offset = 0;
298 rbm->bii++;
299 return false;
300 }
301
302 /**
303 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
304 * @rbm: Position to search (value/result)
305 * @n_unaligned: Number of unaligned blocks to check
306 * @len: Decremented for each block found (terminate on zero)
307 *
308 * Returns: true if a non-free block is encountered
309 */
310
311 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
312 {
313 u32 n;
314 u8 res;
315
316 for (n = 0; n < n_unaligned; n++) {
317 res = gfs2_testbit(rbm);
318 if (res != GFS2_BLKST_FREE)
319 return true;
320 (*len)--;
321 if (*len == 0)
322 return true;
323 if (gfs2_rbm_incr(rbm))
324 return true;
325 }
326
327 return false;
328 }
329
330 /**
331 * gfs2_free_extlen - Return extent length of free blocks
332 * @rbm: Starting position
333 * @len: Max length to check
334 *
335 * Starting at the block specified by the rbm, see how many free blocks
336 * there are, not reading more than len blocks ahead. This can be done
337 * using memchr_inv when the blocks are byte aligned, but has to be done
338 * on a block by block basis in case of unaligned blocks. Also this
339 * function can cope with bitmap boundaries (although it must stop on
340 * a resource group boundary)
341 *
342 * Returns: Number of free blocks in the extent
343 */
344
345 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
346 {
347 struct gfs2_rbm rbm = *rrbm;
348 u32 n_unaligned = rbm.offset & 3;
349 u32 size = len;
350 u32 bytes;
351 u32 chunk_size;
352 u8 *ptr, *start, *end;
353 u64 block;
354 struct gfs2_bitmap *bi;
355
356 if (n_unaligned &&
357 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
358 goto out;
359
360 n_unaligned = len & 3;
361 /* Start is now byte aligned */
362 while (len > 3) {
363 bi = rbm_bi(&rbm);
364 start = bi->bi_bh->b_data;
365 if (bi->bi_clone)
366 start = bi->bi_clone;
367 end = start + bi->bi_bh->b_size;
368 start += bi->bi_offset;
369 BUG_ON(rbm.offset & 3);
370 start += (rbm.offset / GFS2_NBBY);
371 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
372 ptr = memchr_inv(start, 0, bytes);
373 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
374 chunk_size *= GFS2_NBBY;
375 BUG_ON(len < chunk_size);
376 len -= chunk_size;
377 block = gfs2_rbm_to_block(&rbm);
378 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
379 n_unaligned = 0;
380 break;
381 }
382 if (ptr) {
383 n_unaligned = 3;
384 break;
385 }
386 n_unaligned = len & 3;
387 }
388
389 /* Deal with any bits left over at the end */
390 if (n_unaligned)
391 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
392 out:
393 return size - len;
394 }
395
396 /**
397 * gfs2_bitcount - count the number of bits in a certain state
398 * @rgd: the resource group descriptor
399 * @buffer: the buffer that holds the bitmaps
400 * @buflen: the length (in bytes) of the buffer
401 * @state: the state of the block we're looking for
402 *
403 * Returns: The number of bits
404 */
405
406 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
407 unsigned int buflen, u8 state)
408 {
409 const u8 *byte = buffer;
410 const u8 *end = buffer + buflen;
411 const u8 state1 = state << 2;
412 const u8 state2 = state << 4;
413 const u8 state3 = state << 6;
414 u32 count = 0;
415
416 for (; byte < end; byte++) {
417 if (((*byte) & 0x03) == state)
418 count++;
419 if (((*byte) & 0x0C) == state1)
420 count++;
421 if (((*byte) & 0x30) == state2)
422 count++;
423 if (((*byte) & 0xC0) == state3)
424 count++;
425 }
426
427 return count;
428 }
429
430 /**
431 * gfs2_rgrp_verify - Verify that a resource group is consistent
432 * @rgd: the rgrp
433 *
434 */
435
436 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
437 {
438 struct gfs2_sbd *sdp = rgd->rd_sbd;
439 struct gfs2_bitmap *bi = NULL;
440 u32 length = rgd->rd_length;
441 u32 count[4], tmp;
442 int buf, x;
443
444 memset(count, 0, 4 * sizeof(u32));
445
446 /* Count # blocks in each of 4 possible allocation states */
447 for (buf = 0; buf < length; buf++) {
448 bi = rgd->rd_bits + buf;
449 for (x = 0; x < 4; x++)
450 count[x] += gfs2_bitcount(rgd,
451 bi->bi_bh->b_data +
452 bi->bi_offset,
453 bi->bi_len, x);
454 }
455
456 if (count[0] != rgd->rd_free) {
457 if (gfs2_consist_rgrpd(rgd))
458 fs_err(sdp, "free data mismatch: %u != %u\n",
459 count[0], rgd->rd_free);
460 return;
461 }
462
463 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
464 if (count[1] != tmp) {
465 if (gfs2_consist_rgrpd(rgd))
466 fs_err(sdp, "used data mismatch: %u != %u\n",
467 count[1], tmp);
468 return;
469 }
470
471 if (count[2] + count[3] != rgd->rd_dinodes) {
472 if (gfs2_consist_rgrpd(rgd))
473 fs_err(sdp, "used metadata mismatch: %u != %u\n",
474 count[2] + count[3], rgd->rd_dinodes);
475 return;
476 }
477 }
478
479 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
480 {
481 u64 first = rgd->rd_data0;
482 u64 last = first + rgd->rd_data;
483 return first <= block && block < last;
484 }
485
486 /**
487 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
488 * @sdp: The GFS2 superblock
489 * @blk: The data block number
490 * @exact: True if this needs to be an exact match
491 *
492 * Returns: The resource group, or NULL if not found
493 */
494
495 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
496 {
497 struct rb_node *n, *next;
498 struct gfs2_rgrpd *cur;
499
500 spin_lock(&sdp->sd_rindex_spin);
501 n = sdp->sd_rindex_tree.rb_node;
502 while (n) {
503 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
504 next = NULL;
505 if (blk < cur->rd_addr)
506 next = n->rb_left;
507 else if (blk >= cur->rd_data0 + cur->rd_data)
508 next = n->rb_right;
509 if (next == NULL) {
510 spin_unlock(&sdp->sd_rindex_spin);
511 if (exact) {
512 if (blk < cur->rd_addr)
513 return NULL;
514 if (blk >= cur->rd_data0 + cur->rd_data)
515 return NULL;
516 }
517 return cur;
518 }
519 n = next;
520 }
521 spin_unlock(&sdp->sd_rindex_spin);
522
523 return NULL;
524 }
525
526 /**
527 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
528 * @sdp: The GFS2 superblock
529 *
530 * Returns: The first rgrp in the filesystem
531 */
532
533 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
534 {
535 const struct rb_node *n;
536 struct gfs2_rgrpd *rgd;
537
538 spin_lock(&sdp->sd_rindex_spin);
539 n = rb_first(&sdp->sd_rindex_tree);
540 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
541 spin_unlock(&sdp->sd_rindex_spin);
542
543 return rgd;
544 }
545
546 /**
547 * gfs2_rgrpd_get_next - get the next RG
548 * @rgd: the resource group descriptor
549 *
550 * Returns: The next rgrp
551 */
552
553 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
554 {
555 struct gfs2_sbd *sdp = rgd->rd_sbd;
556 const struct rb_node *n;
557
558 spin_lock(&sdp->sd_rindex_spin);
559 n = rb_next(&rgd->rd_node);
560 if (n == NULL)
561 n = rb_first(&sdp->sd_rindex_tree);
562
563 if (unlikely(&rgd->rd_node == n)) {
564 spin_unlock(&sdp->sd_rindex_spin);
565 return NULL;
566 }
567 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
568 spin_unlock(&sdp->sd_rindex_spin);
569 return rgd;
570 }
571
572 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
573 {
574 int x;
575
576 for (x = 0; x < rgd->rd_length; x++) {
577 struct gfs2_bitmap *bi = rgd->rd_bits + x;
578 kfree(bi->bi_clone);
579 bi->bi_clone = NULL;
580 }
581 }
582
583 /**
584 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
585 * @ip: the inode for this reservation
586 */
587 int gfs2_rs_alloc(struct gfs2_inode *ip)
588 {
589 int error = 0;
590
591 down_write(&ip->i_rw_mutex);
592 if (ip->i_res)
593 goto out;
594
595 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
596 if (!ip->i_res) {
597 error = -ENOMEM;
598 goto out;
599 }
600
601 RB_CLEAR_NODE(&ip->i_res->rs_node);
602 out:
603 up_write(&ip->i_rw_mutex);
604 return error;
605 }
606
607 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
608 {
609 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
610 (unsigned long long)rs->rs_inum,
611 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
612 rs->rs_rbm.offset, rs->rs_free);
613 }
614
615 /**
616 * __rs_deltree - remove a multi-block reservation from the rgd tree
617 * @rs: The reservation to remove
618 *
619 */
620 static void __rs_deltree(struct gfs2_blkreserv *rs)
621 {
622 struct gfs2_rgrpd *rgd;
623
624 if (!gfs2_rs_active(rs))
625 return;
626
627 rgd = rs->rs_rbm.rgd;
628 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
629 rb_erase(&rs->rs_node, &rgd->rd_rstree);
630 RB_CLEAR_NODE(&rs->rs_node);
631
632 if (rs->rs_free) {
633 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
634
635 /* return reserved blocks to the rgrp */
636 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
637 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
638 rs->rs_free = 0;
639 clear_bit(GBF_FULL, &bi->bi_flags);
640 smp_mb__after_clear_bit();
641 }
642 }
643
644 /**
645 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
646 * @rs: The reservation to remove
647 *
648 */
649 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
650 {
651 struct gfs2_rgrpd *rgd;
652
653 rgd = rs->rs_rbm.rgd;
654 if (rgd) {
655 spin_lock(&rgd->rd_rsspin);
656 __rs_deltree(rs);
657 spin_unlock(&rgd->rd_rsspin);
658 }
659 }
660
661 /**
662 * gfs2_rs_delete - delete a multi-block reservation
663 * @ip: The inode for this reservation
664 * @wcount: The inode's write count, or NULL
665 *
666 */
667 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
668 {
669 down_write(&ip->i_rw_mutex);
670 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
671 gfs2_rs_deltree(ip->i_res);
672 BUG_ON(ip->i_res->rs_free);
673 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
674 ip->i_res = NULL;
675 }
676 up_write(&ip->i_rw_mutex);
677 }
678
679 /**
680 * return_all_reservations - return all reserved blocks back to the rgrp.
681 * @rgd: the rgrp that needs its space back
682 *
683 * We previously reserved a bunch of blocks for allocation. Now we need to
684 * give them back. This leave the reservation structures in tact, but removes
685 * all of their corresponding "no-fly zones".
686 */
687 static void return_all_reservations(struct gfs2_rgrpd *rgd)
688 {
689 struct rb_node *n;
690 struct gfs2_blkreserv *rs;
691
692 spin_lock(&rgd->rd_rsspin);
693 while ((n = rb_first(&rgd->rd_rstree))) {
694 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
695 __rs_deltree(rs);
696 }
697 spin_unlock(&rgd->rd_rsspin);
698 }
699
700 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
701 {
702 struct rb_node *n;
703 struct gfs2_rgrpd *rgd;
704 struct gfs2_glock *gl;
705
706 while ((n = rb_first(&sdp->sd_rindex_tree))) {
707 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
708 gl = rgd->rd_gl;
709
710 rb_erase(n, &sdp->sd_rindex_tree);
711
712 if (gl) {
713 spin_lock(&gl->gl_spin);
714 gl->gl_object = NULL;
715 spin_unlock(&gl->gl_spin);
716 gfs2_glock_add_to_lru(gl);
717 gfs2_glock_put(gl);
718 }
719
720 gfs2_free_clones(rgd);
721 kfree(rgd->rd_bits);
722 return_all_reservations(rgd);
723 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
724 }
725 }
726
727 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
728 {
729 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
730 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
731 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
732 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
733 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
734 }
735
736 /**
737 * gfs2_compute_bitstructs - Compute the bitmap sizes
738 * @rgd: The resource group descriptor
739 *
740 * Calculates bitmap descriptors, one for each block that contains bitmap data
741 *
742 * Returns: errno
743 */
744
745 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
746 {
747 struct gfs2_sbd *sdp = rgd->rd_sbd;
748 struct gfs2_bitmap *bi;
749 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
750 u32 bytes_left, bytes;
751 int x;
752
753 if (!length)
754 return -EINVAL;
755
756 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
757 if (!rgd->rd_bits)
758 return -ENOMEM;
759
760 bytes_left = rgd->rd_bitbytes;
761
762 for (x = 0; x < length; x++) {
763 bi = rgd->rd_bits + x;
764
765 bi->bi_flags = 0;
766 /* small rgrp; bitmap stored completely in header block */
767 if (length == 1) {
768 bytes = bytes_left;
769 bi->bi_offset = sizeof(struct gfs2_rgrp);
770 bi->bi_start = 0;
771 bi->bi_len = bytes;
772 bi->bi_blocks = bytes * GFS2_NBBY;
773 /* header block */
774 } else if (x == 0) {
775 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
776 bi->bi_offset = sizeof(struct gfs2_rgrp);
777 bi->bi_start = 0;
778 bi->bi_len = bytes;
779 bi->bi_blocks = bytes * GFS2_NBBY;
780 /* last block */
781 } else if (x + 1 == length) {
782 bytes = bytes_left;
783 bi->bi_offset = sizeof(struct gfs2_meta_header);
784 bi->bi_start = rgd->rd_bitbytes - bytes_left;
785 bi->bi_len = bytes;
786 bi->bi_blocks = bytes * GFS2_NBBY;
787 /* other blocks */
788 } else {
789 bytes = sdp->sd_sb.sb_bsize -
790 sizeof(struct gfs2_meta_header);
791 bi->bi_offset = sizeof(struct gfs2_meta_header);
792 bi->bi_start = rgd->rd_bitbytes - bytes_left;
793 bi->bi_len = bytes;
794 bi->bi_blocks = bytes * GFS2_NBBY;
795 }
796
797 bytes_left -= bytes;
798 }
799
800 if (bytes_left) {
801 gfs2_consist_rgrpd(rgd);
802 return -EIO;
803 }
804 bi = rgd->rd_bits + (length - 1);
805 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
806 if (gfs2_consist_rgrpd(rgd)) {
807 gfs2_rindex_print(rgd);
808 fs_err(sdp, "start=%u len=%u offset=%u\n",
809 bi->bi_start, bi->bi_len, bi->bi_offset);
810 }
811 return -EIO;
812 }
813
814 return 0;
815 }
816
817 /**
818 * gfs2_ri_total - Total up the file system space, according to the rindex.
819 * @sdp: the filesystem
820 *
821 */
822 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
823 {
824 u64 total_data = 0;
825 struct inode *inode = sdp->sd_rindex;
826 struct gfs2_inode *ip = GFS2_I(inode);
827 char buf[sizeof(struct gfs2_rindex)];
828 int error, rgrps;
829
830 for (rgrps = 0;; rgrps++) {
831 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
832
833 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
834 break;
835 error = gfs2_internal_read(ip, buf, &pos,
836 sizeof(struct gfs2_rindex));
837 if (error != sizeof(struct gfs2_rindex))
838 break;
839 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
840 }
841 return total_data;
842 }
843
844 static int rgd_insert(struct gfs2_rgrpd *rgd)
845 {
846 struct gfs2_sbd *sdp = rgd->rd_sbd;
847 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
848
849 /* Figure out where to put new node */
850 while (*newn) {
851 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
852 rd_node);
853
854 parent = *newn;
855 if (rgd->rd_addr < cur->rd_addr)
856 newn = &((*newn)->rb_left);
857 else if (rgd->rd_addr > cur->rd_addr)
858 newn = &((*newn)->rb_right);
859 else
860 return -EEXIST;
861 }
862
863 rb_link_node(&rgd->rd_node, parent, newn);
864 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
865 sdp->sd_rgrps++;
866 return 0;
867 }
868
869 /**
870 * read_rindex_entry - Pull in a new resource index entry from the disk
871 * @ip: Pointer to the rindex inode
872 *
873 * Returns: 0 on success, > 0 on EOF, error code otherwise
874 */
875
876 static int read_rindex_entry(struct gfs2_inode *ip)
877 {
878 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
879 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
880 struct gfs2_rindex buf;
881 int error;
882 struct gfs2_rgrpd *rgd;
883
884 if (pos >= i_size_read(&ip->i_inode))
885 return 1;
886
887 error = gfs2_internal_read(ip, (char *)&buf, &pos,
888 sizeof(struct gfs2_rindex));
889
890 if (error != sizeof(struct gfs2_rindex))
891 return (error == 0) ? 1 : error;
892
893 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
894 error = -ENOMEM;
895 if (!rgd)
896 return error;
897
898 rgd->rd_sbd = sdp;
899 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
900 rgd->rd_length = be32_to_cpu(buf.ri_length);
901 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
902 rgd->rd_data = be32_to_cpu(buf.ri_data);
903 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
904 spin_lock_init(&rgd->rd_rsspin);
905
906 error = compute_bitstructs(rgd);
907 if (error)
908 goto fail;
909
910 error = gfs2_glock_get(sdp, rgd->rd_addr,
911 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
912 if (error)
913 goto fail;
914
915 rgd->rd_gl->gl_object = rgd;
916 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
917 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
918 if (rgd->rd_data > sdp->sd_max_rg_data)
919 sdp->sd_max_rg_data = rgd->rd_data;
920 spin_lock(&sdp->sd_rindex_spin);
921 error = rgd_insert(rgd);
922 spin_unlock(&sdp->sd_rindex_spin);
923 if (!error)
924 return 0;
925
926 error = 0; /* someone else read in the rgrp; free it and ignore it */
927 gfs2_glock_put(rgd->rd_gl);
928
929 fail:
930 kfree(rgd->rd_bits);
931 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
932 return error;
933 }
934
935 /**
936 * gfs2_ri_update - Pull in a new resource index from the disk
937 * @ip: pointer to the rindex inode
938 *
939 * Returns: 0 on successful update, error code otherwise
940 */
941
942 static int gfs2_ri_update(struct gfs2_inode *ip)
943 {
944 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
945 int error;
946
947 do {
948 error = read_rindex_entry(ip);
949 } while (error == 0);
950
951 if (error < 0)
952 return error;
953
954 sdp->sd_rindex_uptodate = 1;
955 return 0;
956 }
957
958 /**
959 * gfs2_rindex_update - Update the rindex if required
960 * @sdp: The GFS2 superblock
961 *
962 * We grab a lock on the rindex inode to make sure that it doesn't
963 * change whilst we are performing an operation. We keep this lock
964 * for quite long periods of time compared to other locks. This
965 * doesn't matter, since it is shared and it is very, very rarely
966 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
967 *
968 * This makes sure that we're using the latest copy of the resource index
969 * special file, which might have been updated if someone expanded the
970 * filesystem (via gfs2_grow utility), which adds new resource groups.
971 *
972 * Returns: 0 on succeess, error code otherwise
973 */
974
975 int gfs2_rindex_update(struct gfs2_sbd *sdp)
976 {
977 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
978 struct gfs2_glock *gl = ip->i_gl;
979 struct gfs2_holder ri_gh;
980 int error = 0;
981 int unlock_required = 0;
982
983 /* Read new copy from disk if we don't have the latest */
984 if (!sdp->sd_rindex_uptodate) {
985 if (!gfs2_glock_is_locked_by_me(gl)) {
986 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
987 if (error)
988 return error;
989 unlock_required = 1;
990 }
991 if (!sdp->sd_rindex_uptodate)
992 error = gfs2_ri_update(ip);
993 if (unlock_required)
994 gfs2_glock_dq_uninit(&ri_gh);
995 }
996
997 return error;
998 }
999
1000 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1001 {
1002 const struct gfs2_rgrp *str = buf;
1003 u32 rg_flags;
1004
1005 rg_flags = be32_to_cpu(str->rg_flags);
1006 rg_flags &= ~GFS2_RDF_MASK;
1007 rgd->rd_flags &= GFS2_RDF_MASK;
1008 rgd->rd_flags |= rg_flags;
1009 rgd->rd_free = be32_to_cpu(str->rg_free);
1010 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1011 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1012 }
1013
1014 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1015 {
1016 struct gfs2_rgrp *str = buf;
1017
1018 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1019 str->rg_free = cpu_to_be32(rgd->rd_free);
1020 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1021 str->__pad = cpu_to_be32(0);
1022 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1023 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1024 }
1025
1026 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1027 {
1028 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1029 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1030
1031 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1032 rgl->rl_dinodes != str->rg_dinodes ||
1033 rgl->rl_igeneration != str->rg_igeneration)
1034 return 0;
1035 return 1;
1036 }
1037
1038 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1039 {
1040 const struct gfs2_rgrp *str = buf;
1041
1042 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1043 rgl->rl_flags = str->rg_flags;
1044 rgl->rl_free = str->rg_free;
1045 rgl->rl_dinodes = str->rg_dinodes;
1046 rgl->rl_igeneration = str->rg_igeneration;
1047 rgl->__pad = 0UL;
1048 }
1049
1050 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1051 {
1052 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1053 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1054 rgl->rl_unlinked = cpu_to_be32(unlinked);
1055 }
1056
1057 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1058 {
1059 struct gfs2_bitmap *bi;
1060 const u32 length = rgd->rd_length;
1061 const u8 *buffer = NULL;
1062 u32 i, goal, count = 0;
1063
1064 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1065 goal = 0;
1066 buffer = bi->bi_bh->b_data + bi->bi_offset;
1067 WARN_ON(!buffer_uptodate(bi->bi_bh));
1068 while (goal < bi->bi_len * GFS2_NBBY) {
1069 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1070 GFS2_BLKST_UNLINKED);
1071 if (goal == BFITNOENT)
1072 break;
1073 count++;
1074 goal++;
1075 }
1076 }
1077
1078 return count;
1079 }
1080
1081
1082 /**
1083 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1084 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1085 *
1086 * Read in all of a Resource Group's header and bitmap blocks.
1087 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1088 *
1089 * Returns: errno
1090 */
1091
1092 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1093 {
1094 struct gfs2_sbd *sdp = rgd->rd_sbd;
1095 struct gfs2_glock *gl = rgd->rd_gl;
1096 unsigned int length = rgd->rd_length;
1097 struct gfs2_bitmap *bi;
1098 unsigned int x, y;
1099 int error;
1100
1101 if (rgd->rd_bits[0].bi_bh != NULL)
1102 return 0;
1103
1104 for (x = 0; x < length; x++) {
1105 bi = rgd->rd_bits + x;
1106 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1107 if (error)
1108 goto fail;
1109 }
1110
1111 for (y = length; y--;) {
1112 bi = rgd->rd_bits + y;
1113 error = gfs2_meta_wait(sdp, bi->bi_bh);
1114 if (error)
1115 goto fail;
1116 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1117 GFS2_METATYPE_RG)) {
1118 error = -EIO;
1119 goto fail;
1120 }
1121 }
1122
1123 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1124 for (x = 0; x < length; x++)
1125 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1126 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1127 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1128 rgd->rd_free_clone = rgd->rd_free;
1129 }
1130 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1131 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1132 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1133 rgd->rd_bits[0].bi_bh->b_data);
1134 }
1135 else if (sdp->sd_args.ar_rgrplvb) {
1136 if (!gfs2_rgrp_lvb_valid(rgd)){
1137 gfs2_consist_rgrpd(rgd);
1138 error = -EIO;
1139 goto fail;
1140 }
1141 if (rgd->rd_rgl->rl_unlinked == 0)
1142 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1143 }
1144 return 0;
1145
1146 fail:
1147 while (x--) {
1148 bi = rgd->rd_bits + x;
1149 brelse(bi->bi_bh);
1150 bi->bi_bh = NULL;
1151 gfs2_assert_warn(sdp, !bi->bi_clone);
1152 }
1153
1154 return error;
1155 }
1156
1157 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1158 {
1159 u32 rl_flags;
1160
1161 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1162 return 0;
1163
1164 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1165 return gfs2_rgrp_bh_get(rgd);
1166
1167 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1168 rl_flags &= ~GFS2_RDF_MASK;
1169 rgd->rd_flags &= GFS2_RDF_MASK;
1170 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1171 if (rgd->rd_rgl->rl_unlinked == 0)
1172 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1173 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1174 rgd->rd_free_clone = rgd->rd_free;
1175 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1176 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1177 return 0;
1178 }
1179
1180 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1181 {
1182 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1183 struct gfs2_sbd *sdp = rgd->rd_sbd;
1184
1185 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1186 return 0;
1187 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1188 }
1189
1190 /**
1191 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1192 * @gh: The glock holder for the resource group
1193 *
1194 */
1195
1196 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1197 {
1198 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1199 int x, length = rgd->rd_length;
1200
1201 for (x = 0; x < length; x++) {
1202 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1203 if (bi->bi_bh) {
1204 brelse(bi->bi_bh);
1205 bi->bi_bh = NULL;
1206 }
1207 }
1208
1209 }
1210
1211 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1212 struct buffer_head *bh,
1213 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1214 {
1215 struct super_block *sb = sdp->sd_vfs;
1216 u64 blk;
1217 sector_t start = 0;
1218 sector_t nr_blks = 0;
1219 int rv;
1220 unsigned int x;
1221 u32 trimmed = 0;
1222 u8 diff;
1223
1224 for (x = 0; x < bi->bi_len; x++) {
1225 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1226 clone += bi->bi_offset;
1227 clone += x;
1228 if (bh) {
1229 const u8 *orig = bh->b_data + bi->bi_offset + x;
1230 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1231 } else {
1232 diff = ~(*clone | (*clone >> 1));
1233 }
1234 diff &= 0x55;
1235 if (diff == 0)
1236 continue;
1237 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1238 while(diff) {
1239 if (diff & 1) {
1240 if (nr_blks == 0)
1241 goto start_new_extent;
1242 if ((start + nr_blks) != blk) {
1243 if (nr_blks >= minlen) {
1244 rv = sb_issue_discard(sb,
1245 start, nr_blks,
1246 GFP_NOFS, 0);
1247 if (rv)
1248 goto fail;
1249 trimmed += nr_blks;
1250 }
1251 nr_blks = 0;
1252 start_new_extent:
1253 start = blk;
1254 }
1255 nr_blks++;
1256 }
1257 diff >>= 2;
1258 blk++;
1259 }
1260 }
1261 if (nr_blks >= minlen) {
1262 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1263 if (rv)
1264 goto fail;
1265 trimmed += nr_blks;
1266 }
1267 if (ptrimmed)
1268 *ptrimmed = trimmed;
1269 return 0;
1270
1271 fail:
1272 if (sdp->sd_args.ar_discard)
1273 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1274 sdp->sd_args.ar_discard = 0;
1275 return -EIO;
1276 }
1277
1278 /**
1279 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1280 * @filp: Any file on the filesystem
1281 * @argp: Pointer to the arguments (also used to pass result)
1282 *
1283 * Returns: 0 on success, otherwise error code
1284 */
1285
1286 int gfs2_fitrim(struct file *filp, void __user *argp)
1287 {
1288 struct inode *inode = file_inode(filp);
1289 struct gfs2_sbd *sdp = GFS2_SB(inode);
1290 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1291 struct buffer_head *bh;
1292 struct gfs2_rgrpd *rgd;
1293 struct gfs2_rgrpd *rgd_end;
1294 struct gfs2_holder gh;
1295 struct fstrim_range r;
1296 int ret = 0;
1297 u64 amt;
1298 u64 trimmed = 0;
1299 u64 start, end, minlen;
1300 unsigned int x;
1301 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1302
1303 if (!capable(CAP_SYS_ADMIN))
1304 return -EPERM;
1305
1306 if (!blk_queue_discard(q))
1307 return -EOPNOTSUPP;
1308
1309 if (copy_from_user(&r, argp, sizeof(r)))
1310 return -EFAULT;
1311
1312 ret = gfs2_rindex_update(sdp);
1313 if (ret)
1314 return ret;
1315
1316 start = r.start >> bs_shift;
1317 end = start + (r.len >> bs_shift);
1318 minlen = max_t(u64, r.minlen,
1319 q->limits.discard_granularity) >> bs_shift;
1320
1321 if (end <= start || minlen > sdp->sd_max_rg_data)
1322 return -EINVAL;
1323
1324 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1325 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1326
1327 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1328 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1329 return -EINVAL; /* start is beyond the end of the fs */
1330
1331 while (1) {
1332
1333 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1334 if (ret)
1335 goto out;
1336
1337 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1338 /* Trim each bitmap in the rgrp */
1339 for (x = 0; x < rgd->rd_length; x++) {
1340 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1341 ret = gfs2_rgrp_send_discards(sdp,
1342 rgd->rd_data0, NULL, bi, minlen,
1343 &amt);
1344 if (ret) {
1345 gfs2_glock_dq_uninit(&gh);
1346 goto out;
1347 }
1348 trimmed += amt;
1349 }
1350
1351 /* Mark rgrp as having been trimmed */
1352 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1353 if (ret == 0) {
1354 bh = rgd->rd_bits[0].bi_bh;
1355 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1356 gfs2_trans_add_meta(rgd->rd_gl, bh);
1357 gfs2_rgrp_out(rgd, bh->b_data);
1358 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1359 gfs2_trans_end(sdp);
1360 }
1361 }
1362 gfs2_glock_dq_uninit(&gh);
1363
1364 if (rgd == rgd_end)
1365 break;
1366
1367 rgd = gfs2_rgrpd_get_next(rgd);
1368 }
1369
1370 out:
1371 r.len = trimmed << bs_shift;
1372 if (copy_to_user(argp, &r, sizeof(r)))
1373 return -EFAULT;
1374
1375 return ret;
1376 }
1377
1378 /**
1379 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1380 * @ip: the inode structure
1381 *
1382 */
1383 static void rs_insert(struct gfs2_inode *ip)
1384 {
1385 struct rb_node **newn, *parent = NULL;
1386 int rc;
1387 struct gfs2_blkreserv *rs = ip->i_res;
1388 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1389 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1390
1391 BUG_ON(gfs2_rs_active(rs));
1392
1393 spin_lock(&rgd->rd_rsspin);
1394 newn = &rgd->rd_rstree.rb_node;
1395 while (*newn) {
1396 struct gfs2_blkreserv *cur =
1397 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1398
1399 parent = *newn;
1400 rc = rs_cmp(fsblock, rs->rs_free, cur);
1401 if (rc > 0)
1402 newn = &((*newn)->rb_right);
1403 else if (rc < 0)
1404 newn = &((*newn)->rb_left);
1405 else {
1406 spin_unlock(&rgd->rd_rsspin);
1407 WARN_ON(1);
1408 return;
1409 }
1410 }
1411
1412 rb_link_node(&rs->rs_node, parent, newn);
1413 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1414
1415 /* Do our rgrp accounting for the reservation */
1416 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1417 spin_unlock(&rgd->rd_rsspin);
1418 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1419 }
1420
1421 /**
1422 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1423 * @rgd: the resource group descriptor
1424 * @ip: pointer to the inode for which we're reserving blocks
1425 * @requested: number of blocks required for this allocation
1426 *
1427 */
1428
1429 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1430 unsigned requested)
1431 {
1432 struct gfs2_rbm rbm = { .rgd = rgd, };
1433 u64 goal;
1434 struct gfs2_blkreserv *rs = ip->i_res;
1435 u32 extlen;
1436 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1437 int ret;
1438 struct inode *inode = &ip->i_inode;
1439
1440 if (S_ISDIR(inode->i_mode))
1441 extlen = 1;
1442 else {
1443 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1444 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1445 }
1446 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1447 return;
1448
1449 /* Find bitmap block that contains bits for goal block */
1450 if (rgrp_contains_block(rgd, ip->i_goal))
1451 goal = ip->i_goal;
1452 else
1453 goal = rgd->rd_last_alloc + rgd->rd_data0;
1454
1455 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1456 return;
1457
1458 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1459 if (ret == 0) {
1460 rs->rs_rbm = rbm;
1461 rs->rs_free = extlen;
1462 rs->rs_inum = ip->i_no_addr;
1463 rs_insert(ip);
1464 } else {
1465 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1466 rgd->rd_last_alloc = 0;
1467 }
1468 }
1469
1470 /**
1471 * gfs2_next_unreserved_block - Return next block that is not reserved
1472 * @rgd: The resource group
1473 * @block: The starting block
1474 * @length: The required length
1475 * @ip: Ignore any reservations for this inode
1476 *
1477 * If the block does not appear in any reservation, then return the
1478 * block number unchanged. If it does appear in the reservation, then
1479 * keep looking through the tree of reservations in order to find the
1480 * first block number which is not reserved.
1481 */
1482
1483 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1484 u32 length,
1485 const struct gfs2_inode *ip)
1486 {
1487 struct gfs2_blkreserv *rs;
1488 struct rb_node *n;
1489 int rc;
1490
1491 spin_lock(&rgd->rd_rsspin);
1492 n = rgd->rd_rstree.rb_node;
1493 while (n) {
1494 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1495 rc = rs_cmp(block, length, rs);
1496 if (rc < 0)
1497 n = n->rb_left;
1498 else if (rc > 0)
1499 n = n->rb_right;
1500 else
1501 break;
1502 }
1503
1504 if (n) {
1505 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1506 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1507 n = n->rb_right;
1508 if (n == NULL)
1509 break;
1510 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1511 }
1512 }
1513
1514 spin_unlock(&rgd->rd_rsspin);
1515 return block;
1516 }
1517
1518 /**
1519 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1520 * @rbm: The current position in the resource group
1521 * @ip: The inode for which we are searching for blocks
1522 * @minext: The minimum extent length
1523 *
1524 * This checks the current position in the rgrp to see whether there is
1525 * a reservation covering this block. If not then this function is a
1526 * no-op. If there is, then the position is moved to the end of the
1527 * contiguous reservation(s) so that we are pointing at the first
1528 * non-reserved block.
1529 *
1530 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1531 */
1532
1533 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1534 const struct gfs2_inode *ip,
1535 u32 minext)
1536 {
1537 u64 block = gfs2_rbm_to_block(rbm);
1538 u32 extlen = 1;
1539 u64 nblock;
1540 int ret;
1541
1542 /*
1543 * If we have a minimum extent length, then skip over any extent
1544 * which is less than the min extent length in size.
1545 */
1546 if (minext) {
1547 extlen = gfs2_free_extlen(rbm, minext);
1548 nblock = block + extlen;
1549 if (extlen < minext)
1550 goto fail;
1551 }
1552
1553 /*
1554 * Check the extent which has been found against the reservations
1555 * and skip if parts of it are already reserved
1556 */
1557 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1558 if (nblock == block)
1559 return 0;
1560 fail:
1561 ret = gfs2_rbm_from_block(rbm, nblock);
1562 if (ret < 0)
1563 return ret;
1564 return 1;
1565 }
1566
1567 /**
1568 * gfs2_rbm_find - Look for blocks of a particular state
1569 * @rbm: Value/result starting position and final position
1570 * @state: The state which we want to find
1571 * @minext: The requested extent length (0 for a single block)
1572 * @ip: If set, check for reservations
1573 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1574 * around until we've reached the starting point.
1575 *
1576 * Side effects:
1577 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1578 * has no free blocks in it.
1579 *
1580 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1581 */
1582
1583 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1584 const struct gfs2_inode *ip, bool nowrap)
1585 {
1586 struct buffer_head *bh;
1587 int initial_bii;
1588 u32 initial_offset;
1589 u32 offset;
1590 u8 *buffer;
1591 int n = 0;
1592 int iters = rbm->rgd->rd_length;
1593 int ret;
1594 struct gfs2_bitmap *bi;
1595
1596 /* If we are not starting at the beginning of a bitmap, then we
1597 * need to add one to the bitmap count to ensure that we search
1598 * the starting bitmap twice.
1599 */
1600 if (rbm->offset != 0)
1601 iters++;
1602
1603 while(1) {
1604 bi = rbm_bi(rbm);
1605 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1606 (state == GFS2_BLKST_FREE))
1607 goto next_bitmap;
1608
1609 bh = bi->bi_bh;
1610 buffer = bh->b_data + bi->bi_offset;
1611 WARN_ON(!buffer_uptodate(bh));
1612 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1613 buffer = bi->bi_clone + bi->bi_offset;
1614 initial_offset = rbm->offset;
1615 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1616 if (offset == BFITNOENT)
1617 goto bitmap_full;
1618 rbm->offset = offset;
1619 if (ip == NULL)
1620 return 0;
1621
1622 initial_bii = rbm->bii;
1623 ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1624 if (ret == 0)
1625 return 0;
1626 if (ret > 0) {
1627 n += (rbm->bii - initial_bii);
1628 goto next_iter;
1629 }
1630 if (ret == -E2BIG) {
1631 rbm->bii = 0;
1632 rbm->offset = 0;
1633 n += (rbm->bii - initial_bii);
1634 goto res_covered_end_of_rgrp;
1635 }
1636 return ret;
1637
1638 bitmap_full: /* Mark bitmap as full and fall through */
1639 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) {
1640 struct gfs2_bitmap *bi = rbm_bi(rbm);
1641 set_bit(GBF_FULL, &bi->bi_flags);
1642 }
1643
1644 next_bitmap: /* Find next bitmap in the rgrp */
1645 rbm->offset = 0;
1646 rbm->bii++;
1647 if (rbm->bii == rbm->rgd->rd_length)
1648 rbm->bii = 0;
1649 res_covered_end_of_rgrp:
1650 if ((rbm->bii == 0) && nowrap)
1651 break;
1652 n++;
1653 next_iter:
1654 if (n >= iters)
1655 break;
1656 }
1657
1658 return -ENOSPC;
1659 }
1660
1661 /**
1662 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1663 * @rgd: The rgrp
1664 * @last_unlinked: block address of the last dinode we unlinked
1665 * @skip: block address we should explicitly not unlink
1666 *
1667 * Returns: 0 if no error
1668 * The inode, if one has been found, in inode.
1669 */
1670
1671 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1672 {
1673 u64 block;
1674 struct gfs2_sbd *sdp = rgd->rd_sbd;
1675 struct gfs2_glock *gl;
1676 struct gfs2_inode *ip;
1677 int error;
1678 int found = 0;
1679 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1680
1681 while (1) {
1682 down_write(&sdp->sd_log_flush_lock);
1683 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1684 up_write(&sdp->sd_log_flush_lock);
1685 if (error == -ENOSPC)
1686 break;
1687 if (WARN_ON_ONCE(error))
1688 break;
1689
1690 block = gfs2_rbm_to_block(&rbm);
1691 if (gfs2_rbm_from_block(&rbm, block + 1))
1692 break;
1693 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1694 continue;
1695 if (block == skip)
1696 continue;
1697 *last_unlinked = block;
1698
1699 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1700 if (error)
1701 continue;
1702
1703 /* If the inode is already in cache, we can ignore it here
1704 * because the existing inode disposal code will deal with
1705 * it when all refs have gone away. Accessing gl_object like
1706 * this is not safe in general. Here it is ok because we do
1707 * not dereference the pointer, and we only need an approx
1708 * answer to whether it is NULL or not.
1709 */
1710 ip = gl->gl_object;
1711
1712 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1713 gfs2_glock_put(gl);
1714 else
1715 found++;
1716
1717 /* Limit reclaim to sensible number of tasks */
1718 if (found > NR_CPUS)
1719 return;
1720 }
1721
1722 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1723 return;
1724 }
1725
1726 /**
1727 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1728 * @rgd: The rgrp in question
1729 * @loops: An indication of how picky we can be (0=very, 1=less so)
1730 *
1731 * This function uses the recently added glock statistics in order to
1732 * figure out whether a parciular resource group is suffering from
1733 * contention from multiple nodes. This is done purely on the basis
1734 * of timings, since this is the only data we have to work with and
1735 * our aim here is to reject a resource group which is highly contended
1736 * but (very important) not to do this too often in order to ensure that
1737 * we do not land up introducing fragmentation by changing resource
1738 * groups when not actually required.
1739 *
1740 * The calculation is fairly simple, we want to know whether the SRTTB
1741 * (i.e. smoothed round trip time for blocking operations) to acquire
1742 * the lock for this rgrp's glock is significantly greater than the
1743 * time taken for resource groups on average. We introduce a margin in
1744 * the form of the variable @var which is computed as the sum of the two
1745 * respective variences, and multiplied by a factor depending on @loops
1746 * and whether we have a lot of data to base the decision on. This is
1747 * then tested against the square difference of the means in order to
1748 * decide whether the result is statistically significant or not.
1749 *
1750 * Returns: A boolean verdict on the congestion status
1751 */
1752
1753 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1754 {
1755 const struct gfs2_glock *gl = rgd->rd_gl;
1756 const struct gfs2_sbd *sdp = gl->gl_sbd;
1757 struct gfs2_lkstats *st;
1758 s64 r_dcount, l_dcount;
1759 s64 r_srttb, l_srttb;
1760 s64 srttb_diff;
1761 s64 sqr_diff;
1762 s64 var;
1763
1764 preempt_disable();
1765 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1766 r_srttb = st->stats[GFS2_LKS_SRTTB];
1767 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1768 var = st->stats[GFS2_LKS_SRTTVARB] +
1769 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1770 preempt_enable();
1771
1772 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1773 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1774
1775 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1776 return false;
1777
1778 srttb_diff = r_srttb - l_srttb;
1779 sqr_diff = srttb_diff * srttb_diff;
1780
1781 var *= 2;
1782 if (l_dcount < 8 || r_dcount < 8)
1783 var *= 2;
1784 if (loops == 1)
1785 var *= 2;
1786
1787 return ((srttb_diff < 0) && (sqr_diff > var));
1788 }
1789
1790 /**
1791 * gfs2_rgrp_used_recently
1792 * @rs: The block reservation with the rgrp to test
1793 * @msecs: The time limit in milliseconds
1794 *
1795 * Returns: True if the rgrp glock has been used within the time limit
1796 */
1797 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1798 u64 msecs)
1799 {
1800 u64 tdiff;
1801
1802 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1803 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1804
1805 return tdiff > (msecs * 1000 * 1000);
1806 }
1807
1808 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1809 {
1810 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1811 u32 skip;
1812
1813 get_random_bytes(&skip, sizeof(skip));
1814 return skip % sdp->sd_rgrps;
1815 }
1816
1817 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1818 {
1819 struct gfs2_rgrpd *rgd = *pos;
1820 struct gfs2_sbd *sdp = rgd->rd_sbd;
1821
1822 rgd = gfs2_rgrpd_get_next(rgd);
1823 if (rgd == NULL)
1824 rgd = gfs2_rgrpd_get_first(sdp);
1825 *pos = rgd;
1826 if (rgd != begin) /* If we didn't wrap */
1827 return true;
1828 return false;
1829 }
1830
1831 /**
1832 * gfs2_inplace_reserve - Reserve space in the filesystem
1833 * @ip: the inode to reserve space for
1834 * @requested: the number of blocks to be reserved
1835 *
1836 * Returns: errno
1837 */
1838
1839 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1840 {
1841 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1842 struct gfs2_rgrpd *begin = NULL;
1843 struct gfs2_blkreserv *rs = ip->i_res;
1844 int error = 0, rg_locked, flags = 0;
1845 u64 last_unlinked = NO_BLOCK;
1846 int loops = 0;
1847 u32 skip = 0;
1848
1849 if (sdp->sd_args.ar_rgrplvb)
1850 flags |= GL_SKIP;
1851 if (gfs2_assert_warn(sdp, requested))
1852 return -EINVAL;
1853 if (gfs2_rs_active(rs)) {
1854 begin = rs->rs_rbm.rgd;
1855 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1856 rs->rs_rbm.rgd = begin = ip->i_rgd;
1857 } else {
1858 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1859 }
1860 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1861 skip = gfs2_orlov_skip(ip);
1862 if (rs->rs_rbm.rgd == NULL)
1863 return -EBADSLT;
1864
1865 while (loops < 3) {
1866 rg_locked = 1;
1867
1868 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1869 rg_locked = 0;
1870 if (skip && skip--)
1871 goto next_rgrp;
1872 if (!gfs2_rs_active(rs) && (loops < 2) &&
1873 gfs2_rgrp_used_recently(rs, 1000) &&
1874 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1875 goto next_rgrp;
1876 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1877 LM_ST_EXCLUSIVE, flags,
1878 &rs->rs_rgd_gh);
1879 if (unlikely(error))
1880 return error;
1881 if (!gfs2_rs_active(rs) && (loops < 2) &&
1882 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1883 goto skip_rgrp;
1884 if (sdp->sd_args.ar_rgrplvb) {
1885 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1886 if (unlikely(error)) {
1887 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1888 return error;
1889 }
1890 }
1891 }
1892
1893 /* Skip unuseable resource groups */
1894 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1895 goto skip_rgrp;
1896
1897 if (sdp->sd_args.ar_rgrplvb)
1898 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1899
1900 /* Get a reservation if we don't already have one */
1901 if (!gfs2_rs_active(rs))
1902 rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1903
1904 /* Skip rgrps when we can't get a reservation on first pass */
1905 if (!gfs2_rs_active(rs) && (loops < 1))
1906 goto check_rgrp;
1907
1908 /* If rgrp has enough free space, use it */
1909 if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1910 ip->i_rgd = rs->rs_rbm.rgd;
1911 return 0;
1912 }
1913
1914 /* Drop reservation, if we couldn't use reserved rgrp */
1915 if (gfs2_rs_active(rs))
1916 gfs2_rs_deltree(rs);
1917 check_rgrp:
1918 /* Check for unlinked inodes which can be reclaimed */
1919 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1920 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1921 ip->i_no_addr);
1922 skip_rgrp:
1923 /* Unlock rgrp if required */
1924 if (!rg_locked)
1925 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1926 next_rgrp:
1927 /* Find the next rgrp, and continue looking */
1928 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1929 continue;
1930 if (skip)
1931 continue;
1932
1933 /* If we've scanned all the rgrps, but found no free blocks
1934 * then this checks for some less likely conditions before
1935 * trying again.
1936 */
1937 loops++;
1938 /* Check that fs hasn't grown if writing to rindex */
1939 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1940 error = gfs2_ri_update(ip);
1941 if (error)
1942 return error;
1943 }
1944 /* Flushing the log may release space */
1945 if (loops == 2)
1946 gfs2_log_flush(sdp, NULL);
1947 }
1948
1949 return -ENOSPC;
1950 }
1951
1952 /**
1953 * gfs2_inplace_release - release an inplace reservation
1954 * @ip: the inode the reservation was taken out on
1955 *
1956 * Release a reservation made by gfs2_inplace_reserve().
1957 */
1958
1959 void gfs2_inplace_release(struct gfs2_inode *ip)
1960 {
1961 struct gfs2_blkreserv *rs = ip->i_res;
1962
1963 if (rs->rs_rgd_gh.gh_gl)
1964 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1965 }
1966
1967 /**
1968 * gfs2_get_block_type - Check a block in a RG is of given type
1969 * @rgd: the resource group holding the block
1970 * @block: the block number
1971 *
1972 * Returns: The block type (GFS2_BLKST_*)
1973 */
1974
1975 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1976 {
1977 struct gfs2_rbm rbm = { .rgd = rgd, };
1978 int ret;
1979
1980 ret = gfs2_rbm_from_block(&rbm, block);
1981 WARN_ON_ONCE(ret != 0);
1982
1983 return gfs2_testbit(&rbm);
1984 }
1985
1986
1987 /**
1988 * gfs2_alloc_extent - allocate an extent from a given bitmap
1989 * @rbm: the resource group information
1990 * @dinode: TRUE if the first block we allocate is for a dinode
1991 * @n: The extent length (value/result)
1992 *
1993 * Add the bitmap buffer to the transaction.
1994 * Set the found bits to @new_state to change block's allocation state.
1995 */
1996 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1997 unsigned int *n)
1998 {
1999 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2000 const unsigned int elen = *n;
2001 u64 block;
2002 int ret;
2003
2004 *n = 1;
2005 block = gfs2_rbm_to_block(rbm);
2006 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2007 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2008 block++;
2009 while (*n < elen) {
2010 ret = gfs2_rbm_from_block(&pos, block);
2011 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2012 break;
2013 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2014 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2015 (*n)++;
2016 block++;
2017 }
2018 }
2019
2020 /**
2021 * rgblk_free - Change alloc state of given block(s)
2022 * @sdp: the filesystem
2023 * @bstart: the start of a run of blocks to free
2024 * @blen: the length of the block run (all must lie within ONE RG!)
2025 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2026 *
2027 * Returns: Resource group containing the block(s)
2028 */
2029
2030 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2031 u32 blen, unsigned char new_state)
2032 {
2033 struct gfs2_rbm rbm;
2034 struct gfs2_bitmap *bi;
2035
2036 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2037 if (!rbm.rgd) {
2038 if (gfs2_consist(sdp))
2039 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2040 return NULL;
2041 }
2042
2043 while (blen--) {
2044 gfs2_rbm_from_block(&rbm, bstart);
2045 bi = rbm_bi(&rbm);
2046 bstart++;
2047 if (!bi->bi_clone) {
2048 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2049 GFP_NOFS | __GFP_NOFAIL);
2050 memcpy(bi->bi_clone + bi->bi_offset,
2051 bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
2052 }
2053 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2054 gfs2_setbit(&rbm, false, new_state);
2055 }
2056
2057 return rbm.rgd;
2058 }
2059
2060 /**
2061 * gfs2_rgrp_dump - print out an rgrp
2062 * @seq: The iterator
2063 * @gl: The glock in question
2064 *
2065 */
2066
2067 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2068 {
2069 struct gfs2_rgrpd *rgd = gl->gl_object;
2070 struct gfs2_blkreserv *trs;
2071 const struct rb_node *n;
2072
2073 if (rgd == NULL)
2074 return 0;
2075 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2076 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2077 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2078 rgd->rd_reserved);
2079 spin_lock(&rgd->rd_rsspin);
2080 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2081 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2082 dump_rs(seq, trs);
2083 }
2084 spin_unlock(&rgd->rd_rsspin);
2085 return 0;
2086 }
2087
2088 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2089 {
2090 struct gfs2_sbd *sdp = rgd->rd_sbd;
2091 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2092 (unsigned long long)rgd->rd_addr);
2093 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2094 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2095 rgd->rd_flags |= GFS2_RDF_ERROR;
2096 }
2097
2098 /**
2099 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2100 * @ip: The inode we have just allocated blocks for
2101 * @rbm: The start of the allocated blocks
2102 * @len: The extent length
2103 *
2104 * Adjusts a reservation after an allocation has taken place. If the
2105 * reservation does not match the allocation, or if it is now empty
2106 * then it is removed.
2107 */
2108
2109 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2110 const struct gfs2_rbm *rbm, unsigned len)
2111 {
2112 struct gfs2_blkreserv *rs = ip->i_res;
2113 struct gfs2_rgrpd *rgd = rbm->rgd;
2114 unsigned rlen;
2115 u64 block;
2116 int ret;
2117
2118 spin_lock(&rgd->rd_rsspin);
2119 if (gfs2_rs_active(rs)) {
2120 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2121 block = gfs2_rbm_to_block(rbm);
2122 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2123 rlen = min(rs->rs_free, len);
2124 rs->rs_free -= rlen;
2125 rgd->rd_reserved -= rlen;
2126 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2127 if (rs->rs_free && !ret)
2128 goto out;
2129 }
2130 __rs_deltree(rs);
2131 }
2132 out:
2133 spin_unlock(&rgd->rd_rsspin);
2134 }
2135
2136 /**
2137 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2138 * @ip: the inode to allocate the block for
2139 * @bn: Used to return the starting block number
2140 * @nblocks: requested number of blocks/extent length (value/result)
2141 * @dinode: 1 if we're allocating a dinode block, else 0
2142 * @generation: the generation number of the inode
2143 *
2144 * Returns: 0 or error
2145 */
2146
2147 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2148 bool dinode, u64 *generation)
2149 {
2150 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2151 struct buffer_head *dibh;
2152 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2153 unsigned int ndata;
2154 u64 goal;
2155 u64 block; /* block, within the file system scope */
2156 int error;
2157
2158 if (gfs2_rs_active(ip->i_res))
2159 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2160 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2161 goal = ip->i_goal;
2162 else
2163 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2164
2165 gfs2_rbm_from_block(&rbm, goal);
2166 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2167
2168 if (error == -ENOSPC) {
2169 gfs2_rbm_from_block(&rbm, goal);
2170 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2171 }
2172
2173 /* Since all blocks are reserved in advance, this shouldn't happen */
2174 if (error) {
2175 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2176 (unsigned long long)ip->i_no_addr, error, *nblocks,
2177 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2178 goto rgrp_error;
2179 }
2180
2181 gfs2_alloc_extent(&rbm, dinode, nblocks);
2182 block = gfs2_rbm_to_block(&rbm);
2183 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2184 if (gfs2_rs_active(ip->i_res))
2185 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2186 ndata = *nblocks;
2187 if (dinode)
2188 ndata--;
2189
2190 if (!dinode) {
2191 ip->i_goal = block + ndata - 1;
2192 error = gfs2_meta_inode_buffer(ip, &dibh);
2193 if (error == 0) {
2194 struct gfs2_dinode *di =
2195 (struct gfs2_dinode *)dibh->b_data;
2196 gfs2_trans_add_meta(ip->i_gl, dibh);
2197 di->di_goal_meta = di->di_goal_data =
2198 cpu_to_be64(ip->i_goal);
2199 brelse(dibh);
2200 }
2201 }
2202 if (rbm.rgd->rd_free < *nblocks) {
2203 printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2204 goto rgrp_error;
2205 }
2206
2207 rbm.rgd->rd_free -= *nblocks;
2208 if (dinode) {
2209 rbm.rgd->rd_dinodes++;
2210 *generation = rbm.rgd->rd_igeneration++;
2211 if (*generation == 0)
2212 *generation = rbm.rgd->rd_igeneration++;
2213 }
2214
2215 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2216 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2217 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2218
2219 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2220 if (dinode)
2221 gfs2_trans_add_unrevoke(sdp, block, 1);
2222
2223 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2224
2225 rbm.rgd->rd_free_clone -= *nblocks;
2226 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2227 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2228 *bn = block;
2229 return 0;
2230
2231 rgrp_error:
2232 gfs2_rgrp_error(rbm.rgd);
2233 return -EIO;
2234 }
2235
2236 /**
2237 * __gfs2_free_blocks - free a contiguous run of block(s)
2238 * @ip: the inode these blocks are being freed from
2239 * @bstart: first block of a run of contiguous blocks
2240 * @blen: the length of the block run
2241 * @meta: 1 if the blocks represent metadata
2242 *
2243 */
2244
2245 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2246 {
2247 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2248 struct gfs2_rgrpd *rgd;
2249
2250 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2251 if (!rgd)
2252 return;
2253 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2254 rgd->rd_free += blen;
2255 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2256 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2257 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2258 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2259
2260 /* Directories keep their data in the metadata address space */
2261 if (meta || ip->i_depth)
2262 gfs2_meta_wipe(ip, bstart, blen);
2263 }
2264
2265 /**
2266 * gfs2_free_meta - free a contiguous run of data block(s)
2267 * @ip: the inode these blocks are being freed from
2268 * @bstart: first block of a run of contiguous blocks
2269 * @blen: the length of the block run
2270 *
2271 */
2272
2273 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2274 {
2275 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2276
2277 __gfs2_free_blocks(ip, bstart, blen, 1);
2278 gfs2_statfs_change(sdp, 0, +blen, 0);
2279 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2280 }
2281
2282 void gfs2_unlink_di(struct inode *inode)
2283 {
2284 struct gfs2_inode *ip = GFS2_I(inode);
2285 struct gfs2_sbd *sdp = GFS2_SB(inode);
2286 struct gfs2_rgrpd *rgd;
2287 u64 blkno = ip->i_no_addr;
2288
2289 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2290 if (!rgd)
2291 return;
2292 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2293 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2294 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2295 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2296 update_rgrp_lvb_unlinked(rgd, 1);
2297 }
2298
2299 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2300 {
2301 struct gfs2_sbd *sdp = rgd->rd_sbd;
2302 struct gfs2_rgrpd *tmp_rgd;
2303
2304 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2305 if (!tmp_rgd)
2306 return;
2307 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2308
2309 if (!rgd->rd_dinodes)
2310 gfs2_consist_rgrpd(rgd);
2311 rgd->rd_dinodes--;
2312 rgd->rd_free++;
2313
2314 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2315 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2316 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2317 update_rgrp_lvb_unlinked(rgd, -1);
2318
2319 gfs2_statfs_change(sdp, 0, +1, -1);
2320 }
2321
2322
2323 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2324 {
2325 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2326 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2327 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2328 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2329 }
2330
2331 /**
2332 * gfs2_check_blk_type - Check the type of a block
2333 * @sdp: The superblock
2334 * @no_addr: The block number to check
2335 * @type: The block type we are looking for
2336 *
2337 * Returns: 0 if the block type matches the expected type
2338 * -ESTALE if it doesn't match
2339 * or -ve errno if something went wrong while checking
2340 */
2341
2342 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2343 {
2344 struct gfs2_rgrpd *rgd;
2345 struct gfs2_holder rgd_gh;
2346 int error = -EINVAL;
2347
2348 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2349 if (!rgd)
2350 goto fail;
2351
2352 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2353 if (error)
2354 goto fail;
2355
2356 if (gfs2_get_block_type(rgd, no_addr) != type)
2357 error = -ESTALE;
2358
2359 gfs2_glock_dq_uninit(&rgd_gh);
2360 fail:
2361 return error;
2362 }
2363
2364 /**
2365 * gfs2_rlist_add - add a RG to a list of RGs
2366 * @ip: the inode
2367 * @rlist: the list of resource groups
2368 * @block: the block
2369 *
2370 * Figure out what RG a block belongs to and add that RG to the list
2371 *
2372 * FIXME: Don't use NOFAIL
2373 *
2374 */
2375
2376 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2377 u64 block)
2378 {
2379 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2380 struct gfs2_rgrpd *rgd;
2381 struct gfs2_rgrpd **tmp;
2382 unsigned int new_space;
2383 unsigned int x;
2384
2385 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2386 return;
2387
2388 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2389 rgd = ip->i_rgd;
2390 else
2391 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2392 if (!rgd) {
2393 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2394 return;
2395 }
2396 ip->i_rgd = rgd;
2397
2398 for (x = 0; x < rlist->rl_rgrps; x++)
2399 if (rlist->rl_rgd[x] == rgd)
2400 return;
2401
2402 if (rlist->rl_rgrps == rlist->rl_space) {
2403 new_space = rlist->rl_space + 10;
2404
2405 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2406 GFP_NOFS | __GFP_NOFAIL);
2407
2408 if (rlist->rl_rgd) {
2409 memcpy(tmp, rlist->rl_rgd,
2410 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2411 kfree(rlist->rl_rgd);
2412 }
2413
2414 rlist->rl_space = new_space;
2415 rlist->rl_rgd = tmp;
2416 }
2417
2418 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2419 }
2420
2421 /**
2422 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2423 * and initialize an array of glock holders for them
2424 * @rlist: the list of resource groups
2425 * @state: the lock state to acquire the RG lock in
2426 *
2427 * FIXME: Don't use NOFAIL
2428 *
2429 */
2430
2431 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2432 {
2433 unsigned int x;
2434
2435 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2436 GFP_NOFS | __GFP_NOFAIL);
2437 for (x = 0; x < rlist->rl_rgrps; x++)
2438 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2439 state, 0,
2440 &rlist->rl_ghs[x]);
2441 }
2442
2443 /**
2444 * gfs2_rlist_free - free a resource group list
2445 * @list: the list of resource groups
2446 *
2447 */
2448
2449 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2450 {
2451 unsigned int x;
2452
2453 kfree(rlist->rl_rgd);
2454
2455 if (rlist->rl_ghs) {
2456 for (x = 0; x < rlist->rl_rgrps; x++)
2457 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2458 kfree(rlist->rl_ghs);
2459 rlist->rl_ghs = NULL;
2460 }
2461 }
2462
This page took 0.113498 seconds and 5 git commands to generate.