don't put symlink bodies in pagecache into highmem
[deliverable/linux.git] / fs / hugetlbfs / inode.c
1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <asm/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49 kuid_t uid;
50 kgid_t gid;
51 umode_t mode;
52 long max_hpages;
53 long nr_inodes;
54 struct hstate *hstate;
55 long min_hpages;
56 };
57
58 struct hugetlbfs_inode_info {
59 struct shared_policy policy;
60 struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71 Opt_size, Opt_nr_inodes,
72 Opt_mode, Opt_uid, Opt_gid,
73 Opt_pagesize, Opt_min_size,
74 Opt_err,
75 };
76
77 static const match_table_t tokens = {
78 {Opt_size, "size=%s"},
79 {Opt_nr_inodes, "nr_inodes=%s"},
80 {Opt_mode, "mode=%o"},
81 {Opt_uid, "uid=%u"},
82 {Opt_gid, "gid=%u"},
83 {Opt_pagesize, "pagesize=%s"},
84 {Opt_min_size, "min_size=%s"},
85 {Opt_err, NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 struct inode *inode = file_inode(file);
124 loff_t len, vma_len;
125 int ret;
126 struct hstate *h = hstate_file(file);
127
128 /*
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 * and ia64).
135 */
136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 vma->vm_ops = &hugetlb_vm_ops;
138
139 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
140 return -EINVAL;
141
142 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
143
144 mutex_lock(&inode->i_mutex);
145 file_accessed(file);
146
147 ret = -ENOMEM;
148 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
149
150 if (hugetlb_reserve_pages(inode,
151 vma->vm_pgoff >> huge_page_order(h),
152 len >> huge_page_shift(h), vma,
153 vma->vm_flags))
154 goto out;
155
156 ret = 0;
157 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
158 inode->i_size = len;
159 out:
160 mutex_unlock(&inode->i_mutex);
161
162 return ret;
163 }
164
165 /*
166 * Called under down_write(mmap_sem).
167 */
168
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
170 static unsigned long
171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
172 unsigned long len, unsigned long pgoff, unsigned long flags)
173 {
174 struct mm_struct *mm = current->mm;
175 struct vm_area_struct *vma;
176 struct hstate *h = hstate_file(file);
177 struct vm_unmapped_area_info info;
178
179 if (len & ~huge_page_mask(h))
180 return -EINVAL;
181 if (len > TASK_SIZE)
182 return -ENOMEM;
183
184 if (flags & MAP_FIXED) {
185 if (prepare_hugepage_range(file, addr, len))
186 return -EINVAL;
187 return addr;
188 }
189
190 if (addr) {
191 addr = ALIGN(addr, huge_page_size(h));
192 vma = find_vma(mm, addr);
193 if (TASK_SIZE - len >= addr &&
194 (!vma || addr + len <= vma->vm_start))
195 return addr;
196 }
197
198 info.flags = 0;
199 info.length = len;
200 info.low_limit = TASK_UNMAPPED_BASE;
201 info.high_limit = TASK_SIZE;
202 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
203 info.align_offset = 0;
204 return vm_unmapped_area(&info);
205 }
206 #endif
207
208 static size_t
209 hugetlbfs_read_actor(struct page *page, unsigned long offset,
210 struct iov_iter *to, unsigned long size)
211 {
212 size_t copied = 0;
213 int i, chunksize;
214
215 /* Find which 4k chunk and offset with in that chunk */
216 i = offset >> PAGE_CACHE_SHIFT;
217 offset = offset & ~PAGE_CACHE_MASK;
218
219 while (size) {
220 size_t n;
221 chunksize = PAGE_CACHE_SIZE;
222 if (offset)
223 chunksize -= offset;
224 if (chunksize > size)
225 chunksize = size;
226 n = copy_page_to_iter(&page[i], offset, chunksize, to);
227 copied += n;
228 if (n != chunksize)
229 return copied;
230 offset = 0;
231 size -= chunksize;
232 i++;
233 }
234 return copied;
235 }
236
237 /*
238 * Support for read() - Find the page attached to f_mapping and copy out the
239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240 * since it has PAGE_CACHE_SIZE assumptions.
241 */
242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
243 {
244 struct file *file = iocb->ki_filp;
245 struct hstate *h = hstate_file(file);
246 struct address_space *mapping = file->f_mapping;
247 struct inode *inode = mapping->host;
248 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
249 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
250 unsigned long end_index;
251 loff_t isize;
252 ssize_t retval = 0;
253
254 while (iov_iter_count(to)) {
255 struct page *page;
256 size_t nr, copied;
257
258 /* nr is the maximum number of bytes to copy from this page */
259 nr = huge_page_size(h);
260 isize = i_size_read(inode);
261 if (!isize)
262 break;
263 end_index = (isize - 1) >> huge_page_shift(h);
264 if (index > end_index)
265 break;
266 if (index == end_index) {
267 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
268 if (nr <= offset)
269 break;
270 }
271 nr = nr - offset;
272
273 /* Find the page */
274 page = find_lock_page(mapping, index);
275 if (unlikely(page == NULL)) {
276 /*
277 * We have a HOLE, zero out the user-buffer for the
278 * length of the hole or request.
279 */
280 copied = iov_iter_zero(nr, to);
281 } else {
282 unlock_page(page);
283
284 /*
285 * We have the page, copy it to user space buffer.
286 */
287 copied = hugetlbfs_read_actor(page, offset, to, nr);
288 page_cache_release(page);
289 }
290 offset += copied;
291 retval += copied;
292 if (copied != nr && iov_iter_count(to)) {
293 if (!retval)
294 retval = -EFAULT;
295 break;
296 }
297 index += offset >> huge_page_shift(h);
298 offset &= ~huge_page_mask(h);
299 }
300 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
301 return retval;
302 }
303
304 static int hugetlbfs_write_begin(struct file *file,
305 struct address_space *mapping,
306 loff_t pos, unsigned len, unsigned flags,
307 struct page **pagep, void **fsdata)
308 {
309 return -EINVAL;
310 }
311
312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
313 loff_t pos, unsigned len, unsigned copied,
314 struct page *page, void *fsdata)
315 {
316 BUG();
317 return -EINVAL;
318 }
319
320 static void remove_huge_page(struct page *page)
321 {
322 ClearPageDirty(page);
323 ClearPageUptodate(page);
324 delete_from_page_cache(page);
325 }
326
327
328 /*
329 * remove_inode_hugepages handles two distinct cases: truncation and hole
330 * punch. There are subtle differences in operation for each case.
331
332 * truncation is indicated by end of range being LLONG_MAX
333 * In this case, we first scan the range and release found pages.
334 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
335 * maps and global counts. Page faults can not race with truncation
336 * in this routine. hugetlb_no_page() prevents page faults in the
337 * truncated range. It checks i_size before allocation, and again after
338 * with the page table lock for the page held. The same lock must be
339 * acquired to unmap a page.
340 * hole punch is indicated if end is not LLONG_MAX
341 * In the hole punch case we scan the range and release found pages.
342 * Only when releasing a page is the associated region/reserv map
343 * deleted. The region/reserv map for ranges without associated
344 * pages are not modified. Page faults can race with hole punch.
345 * This is indicated if we find a mapped page.
346 * Note: If the passed end of range value is beyond the end of file, but
347 * not LLONG_MAX this routine still performs a hole punch operation.
348 */
349 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
350 loff_t lend)
351 {
352 struct hstate *h = hstate_inode(inode);
353 struct address_space *mapping = &inode->i_data;
354 const pgoff_t start = lstart >> huge_page_shift(h);
355 const pgoff_t end = lend >> huge_page_shift(h);
356 struct vm_area_struct pseudo_vma;
357 struct pagevec pvec;
358 pgoff_t next;
359 int i, freed = 0;
360 long lookup_nr = PAGEVEC_SIZE;
361 bool truncate_op = (lend == LLONG_MAX);
362
363 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
364 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
365 pagevec_init(&pvec, 0);
366 next = start;
367 while (next < end) {
368 /*
369 * Don't grab more pages than the number left in the range.
370 */
371 if (end - next < lookup_nr)
372 lookup_nr = end - next;
373
374 /*
375 * When no more pages are found, we are done.
376 */
377 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
378 break;
379
380 for (i = 0; i < pagevec_count(&pvec); ++i) {
381 struct page *page = pvec.pages[i];
382 u32 hash;
383
384 /*
385 * The page (index) could be beyond end. This is
386 * only possible in the punch hole case as end is
387 * max page offset in the truncate case.
388 */
389 next = page->index;
390 if (next >= end)
391 break;
392
393 hash = hugetlb_fault_mutex_hash(h, current->mm,
394 &pseudo_vma,
395 mapping, next, 0);
396 mutex_lock(&hugetlb_fault_mutex_table[hash]);
397
398 lock_page(page);
399 if (likely(!page_mapped(page))) {
400 bool rsv_on_error = !PagePrivate(page);
401 /*
402 * We must free the huge page and remove
403 * from page cache (remove_huge_page) BEFORE
404 * removing the region/reserve map
405 * (hugetlb_unreserve_pages). In rare out
406 * of memory conditions, removal of the
407 * region/reserve map could fail. Before
408 * free'ing the page, note PagePrivate which
409 * is used in case of error.
410 */
411 remove_huge_page(page);
412 freed++;
413 if (!truncate_op) {
414 if (unlikely(hugetlb_unreserve_pages(
415 inode, next,
416 next + 1, 1)))
417 hugetlb_fix_reserve_counts(
418 inode, rsv_on_error);
419 }
420 } else {
421 /*
422 * If page is mapped, it was faulted in after
423 * being unmapped. It indicates a race between
424 * hole punch and page fault. Do nothing in
425 * this case. Getting here in a truncate
426 * operation is a bug.
427 */
428 BUG_ON(truncate_op);
429 }
430
431 unlock_page(page);
432 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
433 }
434 ++next;
435 huge_pagevec_release(&pvec);
436 cond_resched();
437 }
438
439 if (truncate_op)
440 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
441 }
442
443 static void hugetlbfs_evict_inode(struct inode *inode)
444 {
445 struct resv_map *resv_map;
446
447 remove_inode_hugepages(inode, 0, LLONG_MAX);
448 resv_map = (struct resv_map *)inode->i_mapping->private_data;
449 /* root inode doesn't have the resv_map, so we should check it */
450 if (resv_map)
451 resv_map_release(&resv_map->refs);
452 clear_inode(inode);
453 }
454
455 static inline void
456 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
457 {
458 struct vm_area_struct *vma;
459
460 /*
461 * end == 0 indicates that the entire range after
462 * start should be unmapped.
463 */
464 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
465 unsigned long v_offset;
466
467 /*
468 * Can the expression below overflow on 32-bit arches?
469 * No, because the interval tree returns us only those vmas
470 * which overlap the truncated area starting at pgoff,
471 * and no vma on a 32-bit arch can span beyond the 4GB.
472 */
473 if (vma->vm_pgoff < start)
474 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
475 else
476 v_offset = 0;
477
478 if (end) {
479 end = ((end - start) << PAGE_SHIFT) +
480 vma->vm_start + v_offset;
481 if (end > vma->vm_end)
482 end = vma->vm_end;
483 } else
484 end = vma->vm_end;
485
486 unmap_hugepage_range(vma, vma->vm_start + v_offset, end, NULL);
487 }
488 }
489
490 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
491 {
492 pgoff_t pgoff;
493 struct address_space *mapping = inode->i_mapping;
494 struct hstate *h = hstate_inode(inode);
495
496 BUG_ON(offset & ~huge_page_mask(h));
497 pgoff = offset >> PAGE_SHIFT;
498
499 i_size_write(inode, offset);
500 i_mmap_lock_write(mapping);
501 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
502 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
503 i_mmap_unlock_write(mapping);
504 remove_inode_hugepages(inode, offset, LLONG_MAX);
505 return 0;
506 }
507
508 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
509 {
510 struct hstate *h = hstate_inode(inode);
511 loff_t hpage_size = huge_page_size(h);
512 loff_t hole_start, hole_end;
513
514 /*
515 * For hole punch round up the beginning offset of the hole and
516 * round down the end.
517 */
518 hole_start = round_up(offset, hpage_size);
519 hole_end = round_down(offset + len, hpage_size);
520
521 if (hole_end > hole_start) {
522 struct address_space *mapping = inode->i_mapping;
523
524 mutex_lock(&inode->i_mutex);
525 i_mmap_lock_write(mapping);
526 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
527 hugetlb_vmdelete_list(&mapping->i_mmap,
528 hole_start >> PAGE_SHIFT,
529 hole_end >> PAGE_SHIFT);
530 i_mmap_unlock_write(mapping);
531 remove_inode_hugepages(inode, hole_start, hole_end);
532 mutex_unlock(&inode->i_mutex);
533 }
534
535 return 0;
536 }
537
538 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
539 loff_t len)
540 {
541 struct inode *inode = file_inode(file);
542 struct address_space *mapping = inode->i_mapping;
543 struct hstate *h = hstate_inode(inode);
544 struct vm_area_struct pseudo_vma;
545 struct mm_struct *mm = current->mm;
546 loff_t hpage_size = huge_page_size(h);
547 unsigned long hpage_shift = huge_page_shift(h);
548 pgoff_t start, index, end;
549 int error;
550 u32 hash;
551
552 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
553 return -EOPNOTSUPP;
554
555 if (mode & FALLOC_FL_PUNCH_HOLE)
556 return hugetlbfs_punch_hole(inode, offset, len);
557
558 /*
559 * Default preallocate case.
560 * For this range, start is rounded down and end is rounded up
561 * as well as being converted to page offsets.
562 */
563 start = offset >> hpage_shift;
564 end = (offset + len + hpage_size - 1) >> hpage_shift;
565
566 mutex_lock(&inode->i_mutex);
567
568 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
569 error = inode_newsize_ok(inode, offset + len);
570 if (error)
571 goto out;
572
573 /*
574 * Initialize a pseudo vma as this is required by the huge page
575 * allocation routines. If NUMA is configured, use page index
576 * as input to create an allocation policy.
577 */
578 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
579 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
580 pseudo_vma.vm_file = file;
581
582 for (index = start; index < end; index++) {
583 /*
584 * This is supposed to be the vaddr where the page is being
585 * faulted in, but we have no vaddr here.
586 */
587 struct page *page;
588 unsigned long addr;
589 int avoid_reserve = 0;
590
591 cond_resched();
592
593 /*
594 * fallocate(2) manpage permits EINTR; we may have been
595 * interrupted because we are using up too much memory.
596 */
597 if (signal_pending(current)) {
598 error = -EINTR;
599 break;
600 }
601
602 /* Set numa allocation policy based on index */
603 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
604
605 /* addr is the offset within the file (zero based) */
606 addr = index * hpage_size;
607
608 /* mutex taken here, fault path and hole punch */
609 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
610 index, addr);
611 mutex_lock(&hugetlb_fault_mutex_table[hash]);
612
613 /* See if already present in mapping to avoid alloc/free */
614 page = find_get_page(mapping, index);
615 if (page) {
616 put_page(page);
617 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
618 hugetlb_drop_vma_policy(&pseudo_vma);
619 continue;
620 }
621
622 /* Allocate page and add to page cache */
623 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
624 hugetlb_drop_vma_policy(&pseudo_vma);
625 if (IS_ERR(page)) {
626 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
627 error = PTR_ERR(page);
628 goto out;
629 }
630 clear_huge_page(page, addr, pages_per_huge_page(h));
631 __SetPageUptodate(page);
632 error = huge_add_to_page_cache(page, mapping, index);
633 if (unlikely(error)) {
634 put_page(page);
635 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
636 goto out;
637 }
638
639 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
640
641 /*
642 * page_put due to reference from alloc_huge_page()
643 * unlock_page because locked by add_to_page_cache()
644 */
645 put_page(page);
646 unlock_page(page);
647 }
648
649 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
650 i_size_write(inode, offset + len);
651 inode->i_ctime = CURRENT_TIME;
652 out:
653 mutex_unlock(&inode->i_mutex);
654 return error;
655 }
656
657 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
658 {
659 struct inode *inode = d_inode(dentry);
660 struct hstate *h = hstate_inode(inode);
661 int error;
662 unsigned int ia_valid = attr->ia_valid;
663
664 BUG_ON(!inode);
665
666 error = inode_change_ok(inode, attr);
667 if (error)
668 return error;
669
670 if (ia_valid & ATTR_SIZE) {
671 error = -EINVAL;
672 if (attr->ia_size & ~huge_page_mask(h))
673 return -EINVAL;
674 error = hugetlb_vmtruncate(inode, attr->ia_size);
675 if (error)
676 return error;
677 }
678
679 setattr_copy(inode, attr);
680 mark_inode_dirty(inode);
681 return 0;
682 }
683
684 static struct inode *hugetlbfs_get_root(struct super_block *sb,
685 struct hugetlbfs_config *config)
686 {
687 struct inode *inode;
688
689 inode = new_inode(sb);
690 if (inode) {
691 struct hugetlbfs_inode_info *info;
692 inode->i_ino = get_next_ino();
693 inode->i_mode = S_IFDIR | config->mode;
694 inode->i_uid = config->uid;
695 inode->i_gid = config->gid;
696 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
697 info = HUGETLBFS_I(inode);
698 mpol_shared_policy_init(&info->policy, NULL);
699 inode->i_op = &hugetlbfs_dir_inode_operations;
700 inode->i_fop = &simple_dir_operations;
701 /* directory inodes start off with i_nlink == 2 (for "." entry) */
702 inc_nlink(inode);
703 lockdep_annotate_inode_mutex_key(inode);
704 }
705 return inode;
706 }
707
708 /*
709 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
710 * be taken from reclaim -- unlike regular filesystems. This needs an
711 * annotation because huge_pmd_share() does an allocation under
712 * i_mmap_rwsem.
713 */
714 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
715
716 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
717 struct inode *dir,
718 umode_t mode, dev_t dev)
719 {
720 struct inode *inode;
721 struct resv_map *resv_map;
722
723 resv_map = resv_map_alloc();
724 if (!resv_map)
725 return NULL;
726
727 inode = new_inode(sb);
728 if (inode) {
729 struct hugetlbfs_inode_info *info;
730 inode->i_ino = get_next_ino();
731 inode_init_owner(inode, dir, mode);
732 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
733 &hugetlbfs_i_mmap_rwsem_key);
734 inode->i_mapping->a_ops = &hugetlbfs_aops;
735 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
736 inode->i_mapping->private_data = resv_map;
737 info = HUGETLBFS_I(inode);
738 /*
739 * The policy is initialized here even if we are creating a
740 * private inode because initialization simply creates an
741 * an empty rb tree and calls spin_lock_init(), later when we
742 * call mpol_free_shared_policy() it will just return because
743 * the rb tree will still be empty.
744 */
745 mpol_shared_policy_init(&info->policy, NULL);
746 switch (mode & S_IFMT) {
747 default:
748 init_special_inode(inode, mode, dev);
749 break;
750 case S_IFREG:
751 inode->i_op = &hugetlbfs_inode_operations;
752 inode->i_fop = &hugetlbfs_file_operations;
753 break;
754 case S_IFDIR:
755 inode->i_op = &hugetlbfs_dir_inode_operations;
756 inode->i_fop = &simple_dir_operations;
757
758 /* directory inodes start off with i_nlink == 2 (for "." entry) */
759 inc_nlink(inode);
760 break;
761 case S_IFLNK:
762 inode->i_op = &page_symlink_inode_operations;
763 inode_nohighmem(inode);
764 break;
765 }
766 lockdep_annotate_inode_mutex_key(inode);
767 } else
768 kref_put(&resv_map->refs, resv_map_release);
769
770 return inode;
771 }
772
773 /*
774 * File creation. Allocate an inode, and we're done..
775 */
776 static int hugetlbfs_mknod(struct inode *dir,
777 struct dentry *dentry, umode_t mode, dev_t dev)
778 {
779 struct inode *inode;
780 int error = -ENOSPC;
781
782 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
783 if (inode) {
784 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
785 d_instantiate(dentry, inode);
786 dget(dentry); /* Extra count - pin the dentry in core */
787 error = 0;
788 }
789 return error;
790 }
791
792 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
793 {
794 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
795 if (!retval)
796 inc_nlink(dir);
797 return retval;
798 }
799
800 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
801 {
802 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
803 }
804
805 static int hugetlbfs_symlink(struct inode *dir,
806 struct dentry *dentry, const char *symname)
807 {
808 struct inode *inode;
809 int error = -ENOSPC;
810
811 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
812 if (inode) {
813 int l = strlen(symname)+1;
814 error = page_symlink(inode, symname, l);
815 if (!error) {
816 d_instantiate(dentry, inode);
817 dget(dentry);
818 } else
819 iput(inode);
820 }
821 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
822
823 return error;
824 }
825
826 /*
827 * mark the head page dirty
828 */
829 static int hugetlbfs_set_page_dirty(struct page *page)
830 {
831 struct page *head = compound_head(page);
832
833 SetPageDirty(head);
834 return 0;
835 }
836
837 static int hugetlbfs_migrate_page(struct address_space *mapping,
838 struct page *newpage, struct page *page,
839 enum migrate_mode mode)
840 {
841 int rc;
842
843 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
844 if (rc != MIGRATEPAGE_SUCCESS)
845 return rc;
846 migrate_page_copy(newpage, page);
847
848 return MIGRATEPAGE_SUCCESS;
849 }
850
851 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
852 {
853 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
854 struct hstate *h = hstate_inode(d_inode(dentry));
855
856 buf->f_type = HUGETLBFS_MAGIC;
857 buf->f_bsize = huge_page_size(h);
858 if (sbinfo) {
859 spin_lock(&sbinfo->stat_lock);
860 /* If no limits set, just report 0 for max/free/used
861 * blocks, like simple_statfs() */
862 if (sbinfo->spool) {
863 long free_pages;
864
865 spin_lock(&sbinfo->spool->lock);
866 buf->f_blocks = sbinfo->spool->max_hpages;
867 free_pages = sbinfo->spool->max_hpages
868 - sbinfo->spool->used_hpages;
869 buf->f_bavail = buf->f_bfree = free_pages;
870 spin_unlock(&sbinfo->spool->lock);
871 buf->f_files = sbinfo->max_inodes;
872 buf->f_ffree = sbinfo->free_inodes;
873 }
874 spin_unlock(&sbinfo->stat_lock);
875 }
876 buf->f_namelen = NAME_MAX;
877 return 0;
878 }
879
880 static void hugetlbfs_put_super(struct super_block *sb)
881 {
882 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
883
884 if (sbi) {
885 sb->s_fs_info = NULL;
886
887 if (sbi->spool)
888 hugepage_put_subpool(sbi->spool);
889
890 kfree(sbi);
891 }
892 }
893
894 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
895 {
896 if (sbinfo->free_inodes >= 0) {
897 spin_lock(&sbinfo->stat_lock);
898 if (unlikely(!sbinfo->free_inodes)) {
899 spin_unlock(&sbinfo->stat_lock);
900 return 0;
901 }
902 sbinfo->free_inodes--;
903 spin_unlock(&sbinfo->stat_lock);
904 }
905
906 return 1;
907 }
908
909 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
910 {
911 if (sbinfo->free_inodes >= 0) {
912 spin_lock(&sbinfo->stat_lock);
913 sbinfo->free_inodes++;
914 spin_unlock(&sbinfo->stat_lock);
915 }
916 }
917
918
919 static struct kmem_cache *hugetlbfs_inode_cachep;
920
921 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
922 {
923 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
924 struct hugetlbfs_inode_info *p;
925
926 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
927 return NULL;
928 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
929 if (unlikely(!p)) {
930 hugetlbfs_inc_free_inodes(sbinfo);
931 return NULL;
932 }
933 return &p->vfs_inode;
934 }
935
936 static void hugetlbfs_i_callback(struct rcu_head *head)
937 {
938 struct inode *inode = container_of(head, struct inode, i_rcu);
939 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
940 }
941
942 static void hugetlbfs_destroy_inode(struct inode *inode)
943 {
944 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
945 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
946 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
947 }
948
949 static const struct address_space_operations hugetlbfs_aops = {
950 .write_begin = hugetlbfs_write_begin,
951 .write_end = hugetlbfs_write_end,
952 .set_page_dirty = hugetlbfs_set_page_dirty,
953 .migratepage = hugetlbfs_migrate_page,
954 };
955
956
957 static void init_once(void *foo)
958 {
959 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
960
961 inode_init_once(&ei->vfs_inode);
962 }
963
964 const struct file_operations hugetlbfs_file_operations = {
965 .read_iter = hugetlbfs_read_iter,
966 .mmap = hugetlbfs_file_mmap,
967 .fsync = noop_fsync,
968 .get_unmapped_area = hugetlb_get_unmapped_area,
969 .llseek = default_llseek,
970 .fallocate = hugetlbfs_fallocate,
971 };
972
973 static const struct inode_operations hugetlbfs_dir_inode_operations = {
974 .create = hugetlbfs_create,
975 .lookup = simple_lookup,
976 .link = simple_link,
977 .unlink = simple_unlink,
978 .symlink = hugetlbfs_symlink,
979 .mkdir = hugetlbfs_mkdir,
980 .rmdir = simple_rmdir,
981 .mknod = hugetlbfs_mknod,
982 .rename = simple_rename,
983 .setattr = hugetlbfs_setattr,
984 };
985
986 static const struct inode_operations hugetlbfs_inode_operations = {
987 .setattr = hugetlbfs_setattr,
988 };
989
990 static const struct super_operations hugetlbfs_ops = {
991 .alloc_inode = hugetlbfs_alloc_inode,
992 .destroy_inode = hugetlbfs_destroy_inode,
993 .evict_inode = hugetlbfs_evict_inode,
994 .statfs = hugetlbfs_statfs,
995 .put_super = hugetlbfs_put_super,
996 .show_options = generic_show_options,
997 };
998
999 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1000
1001 /*
1002 * Convert size option passed from command line to number of huge pages
1003 * in the pool specified by hstate. Size option could be in bytes
1004 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1005 */
1006 static long long
1007 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1008 int val_type)
1009 {
1010 if (val_type == NO_SIZE)
1011 return -1;
1012
1013 if (val_type == SIZE_PERCENT) {
1014 size_opt <<= huge_page_shift(h);
1015 size_opt *= h->max_huge_pages;
1016 do_div(size_opt, 100);
1017 }
1018
1019 size_opt >>= huge_page_shift(h);
1020 return size_opt;
1021 }
1022
1023 static int
1024 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1025 {
1026 char *p, *rest;
1027 substring_t args[MAX_OPT_ARGS];
1028 int option;
1029 unsigned long long max_size_opt = 0, min_size_opt = 0;
1030 int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1031
1032 if (!options)
1033 return 0;
1034
1035 while ((p = strsep(&options, ",")) != NULL) {
1036 int token;
1037 if (!*p)
1038 continue;
1039
1040 token = match_token(p, tokens, args);
1041 switch (token) {
1042 case Opt_uid:
1043 if (match_int(&args[0], &option))
1044 goto bad_val;
1045 pconfig->uid = make_kuid(current_user_ns(), option);
1046 if (!uid_valid(pconfig->uid))
1047 goto bad_val;
1048 break;
1049
1050 case Opt_gid:
1051 if (match_int(&args[0], &option))
1052 goto bad_val;
1053 pconfig->gid = make_kgid(current_user_ns(), option);
1054 if (!gid_valid(pconfig->gid))
1055 goto bad_val;
1056 break;
1057
1058 case Opt_mode:
1059 if (match_octal(&args[0], &option))
1060 goto bad_val;
1061 pconfig->mode = option & 01777U;
1062 break;
1063
1064 case Opt_size: {
1065 /* memparse() will accept a K/M/G without a digit */
1066 if (!isdigit(*args[0].from))
1067 goto bad_val;
1068 max_size_opt = memparse(args[0].from, &rest);
1069 max_val_type = SIZE_STD;
1070 if (*rest == '%')
1071 max_val_type = SIZE_PERCENT;
1072 break;
1073 }
1074
1075 case Opt_nr_inodes:
1076 /* memparse() will accept a K/M/G without a digit */
1077 if (!isdigit(*args[0].from))
1078 goto bad_val;
1079 pconfig->nr_inodes = memparse(args[0].from, &rest);
1080 break;
1081
1082 case Opt_pagesize: {
1083 unsigned long ps;
1084 ps = memparse(args[0].from, &rest);
1085 pconfig->hstate = size_to_hstate(ps);
1086 if (!pconfig->hstate) {
1087 pr_err("Unsupported page size %lu MB\n",
1088 ps >> 20);
1089 return -EINVAL;
1090 }
1091 break;
1092 }
1093
1094 case Opt_min_size: {
1095 /* memparse() will accept a K/M/G without a digit */
1096 if (!isdigit(*args[0].from))
1097 goto bad_val;
1098 min_size_opt = memparse(args[0].from, &rest);
1099 min_val_type = SIZE_STD;
1100 if (*rest == '%')
1101 min_val_type = SIZE_PERCENT;
1102 break;
1103 }
1104
1105 default:
1106 pr_err("Bad mount option: \"%s\"\n", p);
1107 return -EINVAL;
1108 break;
1109 }
1110 }
1111
1112 /*
1113 * Use huge page pool size (in hstate) to convert the size
1114 * options to number of huge pages. If NO_SIZE, -1 is returned.
1115 */
1116 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1117 max_size_opt, max_val_type);
1118 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1119 min_size_opt, min_val_type);
1120
1121 /*
1122 * If max_size was specified, then min_size must be smaller
1123 */
1124 if (max_val_type > NO_SIZE &&
1125 pconfig->min_hpages > pconfig->max_hpages) {
1126 pr_err("minimum size can not be greater than maximum size\n");
1127 return -EINVAL;
1128 }
1129
1130 return 0;
1131
1132 bad_val:
1133 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1134 return -EINVAL;
1135 }
1136
1137 static int
1138 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1139 {
1140 int ret;
1141 struct hugetlbfs_config config;
1142 struct hugetlbfs_sb_info *sbinfo;
1143
1144 save_mount_options(sb, data);
1145
1146 config.max_hpages = -1; /* No limit on size by default */
1147 config.nr_inodes = -1; /* No limit on number of inodes by default */
1148 config.uid = current_fsuid();
1149 config.gid = current_fsgid();
1150 config.mode = 0755;
1151 config.hstate = &default_hstate;
1152 config.min_hpages = -1; /* No default minimum size */
1153 ret = hugetlbfs_parse_options(data, &config);
1154 if (ret)
1155 return ret;
1156
1157 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1158 if (!sbinfo)
1159 return -ENOMEM;
1160 sb->s_fs_info = sbinfo;
1161 sbinfo->hstate = config.hstate;
1162 spin_lock_init(&sbinfo->stat_lock);
1163 sbinfo->max_inodes = config.nr_inodes;
1164 sbinfo->free_inodes = config.nr_inodes;
1165 sbinfo->spool = NULL;
1166 /*
1167 * Allocate and initialize subpool if maximum or minimum size is
1168 * specified. Any needed reservations (for minimim size) are taken
1169 * taken when the subpool is created.
1170 */
1171 if (config.max_hpages != -1 || config.min_hpages != -1) {
1172 sbinfo->spool = hugepage_new_subpool(config.hstate,
1173 config.max_hpages,
1174 config.min_hpages);
1175 if (!sbinfo->spool)
1176 goto out_free;
1177 }
1178 sb->s_maxbytes = MAX_LFS_FILESIZE;
1179 sb->s_blocksize = huge_page_size(config.hstate);
1180 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1181 sb->s_magic = HUGETLBFS_MAGIC;
1182 sb->s_op = &hugetlbfs_ops;
1183 sb->s_time_gran = 1;
1184 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1185 if (!sb->s_root)
1186 goto out_free;
1187 return 0;
1188 out_free:
1189 kfree(sbinfo->spool);
1190 kfree(sbinfo);
1191 return -ENOMEM;
1192 }
1193
1194 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1195 int flags, const char *dev_name, void *data)
1196 {
1197 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1198 }
1199
1200 static struct file_system_type hugetlbfs_fs_type = {
1201 .name = "hugetlbfs",
1202 .mount = hugetlbfs_mount,
1203 .kill_sb = kill_litter_super,
1204 };
1205 MODULE_ALIAS_FS("hugetlbfs");
1206
1207 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1208
1209 static int can_do_hugetlb_shm(void)
1210 {
1211 kgid_t shm_group;
1212 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1213 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1214 }
1215
1216 static int get_hstate_idx(int page_size_log)
1217 {
1218 struct hstate *h = hstate_sizelog(page_size_log);
1219
1220 if (!h)
1221 return -1;
1222 return h - hstates;
1223 }
1224
1225 static const struct dentry_operations anon_ops = {
1226 .d_dname = simple_dname
1227 };
1228
1229 /*
1230 * Note that size should be aligned to proper hugepage size in caller side,
1231 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1232 */
1233 struct file *hugetlb_file_setup(const char *name, size_t size,
1234 vm_flags_t acctflag, struct user_struct **user,
1235 int creat_flags, int page_size_log)
1236 {
1237 struct file *file = ERR_PTR(-ENOMEM);
1238 struct inode *inode;
1239 struct path path;
1240 struct super_block *sb;
1241 struct qstr quick_string;
1242 int hstate_idx;
1243
1244 hstate_idx = get_hstate_idx(page_size_log);
1245 if (hstate_idx < 0)
1246 return ERR_PTR(-ENODEV);
1247
1248 *user = NULL;
1249 if (!hugetlbfs_vfsmount[hstate_idx])
1250 return ERR_PTR(-ENOENT);
1251
1252 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1253 *user = current_user();
1254 if (user_shm_lock(size, *user)) {
1255 task_lock(current);
1256 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1257 current->comm, current->pid);
1258 task_unlock(current);
1259 } else {
1260 *user = NULL;
1261 return ERR_PTR(-EPERM);
1262 }
1263 }
1264
1265 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1266 quick_string.name = name;
1267 quick_string.len = strlen(quick_string.name);
1268 quick_string.hash = 0;
1269 path.dentry = d_alloc_pseudo(sb, &quick_string);
1270 if (!path.dentry)
1271 goto out_shm_unlock;
1272
1273 d_set_d_op(path.dentry, &anon_ops);
1274 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1275 file = ERR_PTR(-ENOSPC);
1276 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1277 if (!inode)
1278 goto out_dentry;
1279 if (creat_flags == HUGETLB_SHMFS_INODE)
1280 inode->i_flags |= S_PRIVATE;
1281
1282 file = ERR_PTR(-ENOMEM);
1283 if (hugetlb_reserve_pages(inode, 0,
1284 size >> huge_page_shift(hstate_inode(inode)), NULL,
1285 acctflag))
1286 goto out_inode;
1287
1288 d_instantiate(path.dentry, inode);
1289 inode->i_size = size;
1290 clear_nlink(inode);
1291
1292 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1293 &hugetlbfs_file_operations);
1294 if (IS_ERR(file))
1295 goto out_dentry; /* inode is already attached */
1296
1297 return file;
1298
1299 out_inode:
1300 iput(inode);
1301 out_dentry:
1302 path_put(&path);
1303 out_shm_unlock:
1304 if (*user) {
1305 user_shm_unlock(size, *user);
1306 *user = NULL;
1307 }
1308 return file;
1309 }
1310
1311 static int __init init_hugetlbfs_fs(void)
1312 {
1313 struct hstate *h;
1314 int error;
1315 int i;
1316
1317 if (!hugepages_supported()) {
1318 pr_info("disabling because there are no supported hugepage sizes\n");
1319 return -ENOTSUPP;
1320 }
1321
1322 error = -ENOMEM;
1323 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1324 sizeof(struct hugetlbfs_inode_info),
1325 0, 0, init_once);
1326 if (hugetlbfs_inode_cachep == NULL)
1327 goto out2;
1328
1329 error = register_filesystem(&hugetlbfs_fs_type);
1330 if (error)
1331 goto out;
1332
1333 i = 0;
1334 for_each_hstate(h) {
1335 char buf[50];
1336 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1337
1338 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1339 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1340 buf);
1341
1342 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1343 pr_err("Cannot mount internal hugetlbfs for "
1344 "page size %uK", ps_kb);
1345 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1346 hugetlbfs_vfsmount[i] = NULL;
1347 }
1348 i++;
1349 }
1350 /* Non default hstates are optional */
1351 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1352 return 0;
1353
1354 out:
1355 kmem_cache_destroy(hugetlbfs_inode_cachep);
1356 out2:
1357 return error;
1358 }
1359
1360 static void __exit exit_hugetlbfs_fs(void)
1361 {
1362 struct hstate *h;
1363 int i;
1364
1365
1366 /*
1367 * Make sure all delayed rcu free inodes are flushed before we
1368 * destroy cache.
1369 */
1370 rcu_barrier();
1371 kmem_cache_destroy(hugetlbfs_inode_cachep);
1372 i = 0;
1373 for_each_hstate(h)
1374 kern_unmount(hugetlbfs_vfsmount[i++]);
1375 unregister_filesystem(&hugetlbfs_fs_type);
1376 }
1377
1378 module_init(init_hugetlbfs_fs)
1379 module_exit(exit_hugetlbfs_fs)
1380
1381 MODULE_LICENSE("GPL");
This page took 0.089741 seconds and 5 git commands to generate.