Make ->drop_inode() just return whether inode needs to be dropped
[deliverable/linux.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 #include <linux/posix_acl.h>
28
29 /*
30 * This is needed for the following functions:
31 * - inode_has_buffers
32 * - invalidate_inode_buffers
33 * - invalidate_bdev
34 *
35 * FIXME: remove all knowledge of the buffer layer from this file
36 */
37 #include <linux/buffer_head.h>
38
39 /*
40 * New inode.c implementation.
41 *
42 * This implementation has the basic premise of trying
43 * to be extremely low-overhead and SMP-safe, yet be
44 * simple enough to be "obviously correct".
45 *
46 * Famous last words.
47 */
48
49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50
51 /* #define INODE_PARANOIA 1 */
52 /* #define INODE_DEBUG 1 */
53
54 /*
55 * Inode lookup is no longer as critical as it used to be:
56 * most of the lookups are going to be through the dcache.
57 */
58 #define I_HASHBITS i_hash_shift
59 #define I_HASHMASK i_hash_mask
60
61 static unsigned int i_hash_mask __read_mostly;
62 static unsigned int i_hash_shift __read_mostly;
63
64 /*
65 * Each inode can be on two separate lists. One is
66 * the hash list of the inode, used for lookups. The
67 * other linked list is the "type" list:
68 * "in_use" - valid inode, i_count > 0, i_nlink > 0
69 * "dirty" - as "in_use" but also dirty
70 * "unused" - valid inode, i_count = 0
71 *
72 * A "dirty" list is maintained for each super block,
73 * allowing for low-overhead inode sync() operations.
74 */
75
76 LIST_HEAD(inode_in_use);
77 LIST_HEAD(inode_unused);
78 static struct hlist_head *inode_hashtable __read_mostly;
79
80 /*
81 * A simple spinlock to protect the list manipulations.
82 *
83 * NOTE! You also have to own the lock if you change
84 * the i_state of an inode while it is in use..
85 */
86 DEFINE_SPINLOCK(inode_lock);
87
88 /*
89 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
90 * icache shrinking path, and the umount path. Without this exclusion,
91 * by the time prune_icache calls iput for the inode whose pages it has
92 * been invalidating, or by the time it calls clear_inode & destroy_inode
93 * from its final dispose_list, the struct super_block they refer to
94 * (for inode->i_sb->s_op) may already have been freed and reused.
95 *
96 * We make this an rwsem because the fastpath is icache shrinking. In
97 * some cases a filesystem may be doing a significant amount of work in
98 * its inode reclaim code, so this should improve parallelism.
99 */
100 static DECLARE_RWSEM(iprune_sem);
101
102 /*
103 * Statistics gathering..
104 */
105 struct inodes_stat_t inodes_stat;
106
107 static struct kmem_cache *inode_cachep __read_mostly;
108
109 static void wake_up_inode(struct inode *inode)
110 {
111 /*
112 * Prevent speculative execution through spin_unlock(&inode_lock);
113 */
114 smp_mb();
115 wake_up_bit(&inode->i_state, __I_NEW);
116 }
117
118 /**
119 * inode_init_always - perform inode structure intialisation
120 * @sb: superblock inode belongs to
121 * @inode: inode to initialise
122 *
123 * These are initializations that need to be done on every inode
124 * allocation as the fields are not initialised by slab allocation.
125 */
126 int inode_init_always(struct super_block *sb, struct inode *inode)
127 {
128 static const struct address_space_operations empty_aops;
129 static const struct inode_operations empty_iops;
130 static const struct file_operations empty_fops;
131 struct address_space *const mapping = &inode->i_data;
132
133 inode->i_sb = sb;
134 inode->i_blkbits = sb->s_blocksize_bits;
135 inode->i_flags = 0;
136 atomic_set(&inode->i_count, 1);
137 inode->i_op = &empty_iops;
138 inode->i_fop = &empty_fops;
139 inode->i_nlink = 1;
140 inode->i_uid = 0;
141 inode->i_gid = 0;
142 atomic_set(&inode->i_writecount, 0);
143 inode->i_size = 0;
144 inode->i_blocks = 0;
145 inode->i_bytes = 0;
146 inode->i_generation = 0;
147 #ifdef CONFIG_QUOTA
148 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
149 #endif
150 inode->i_pipe = NULL;
151 inode->i_bdev = NULL;
152 inode->i_cdev = NULL;
153 inode->i_rdev = 0;
154 inode->dirtied_when = 0;
155
156 if (security_inode_alloc(inode))
157 goto out;
158 spin_lock_init(&inode->i_lock);
159 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
160
161 mutex_init(&inode->i_mutex);
162 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
163
164 init_rwsem(&inode->i_alloc_sem);
165 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
166
167 mapping->a_ops = &empty_aops;
168 mapping->host = inode;
169 mapping->flags = 0;
170 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
171 mapping->assoc_mapping = NULL;
172 mapping->backing_dev_info = &default_backing_dev_info;
173 mapping->writeback_index = 0;
174
175 /*
176 * If the block_device provides a backing_dev_info for client
177 * inodes then use that. Otherwise the inode share the bdev's
178 * backing_dev_info.
179 */
180 if (sb->s_bdev) {
181 struct backing_dev_info *bdi;
182
183 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
184 mapping->backing_dev_info = bdi;
185 }
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 #ifdef CONFIG_FS_POSIX_ACL
189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191
192 #ifdef CONFIG_FSNOTIFY
193 inode->i_fsnotify_mask = 0;
194 #endif
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
225 void __destroy_inode(struct inode *inode)
226 {
227 BUG_ON(inode_has_buffers(inode));
228 security_inode_free(inode);
229 fsnotify_inode_delete(inode);
230 #ifdef CONFIG_FS_POSIX_ACL
231 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
232 posix_acl_release(inode->i_acl);
233 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
234 posix_acl_release(inode->i_default_acl);
235 #endif
236 }
237 EXPORT_SYMBOL(__destroy_inode);
238
239 void destroy_inode(struct inode *inode)
240 {
241 __destroy_inode(inode);
242 if (inode->i_sb->s_op->destroy_inode)
243 inode->i_sb->s_op->destroy_inode(inode);
244 else
245 kmem_cache_free(inode_cachep, (inode));
246 }
247
248 /*
249 * These are initializations that only need to be done
250 * once, because the fields are idempotent across use
251 * of the inode, so let the slab aware of that.
252 */
253 void inode_init_once(struct inode *inode)
254 {
255 memset(inode, 0, sizeof(*inode));
256 INIT_HLIST_NODE(&inode->i_hash);
257 INIT_LIST_HEAD(&inode->i_dentry);
258 INIT_LIST_HEAD(&inode->i_devices);
259 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
260 spin_lock_init(&inode->i_data.tree_lock);
261 spin_lock_init(&inode->i_data.i_mmap_lock);
262 INIT_LIST_HEAD(&inode->i_data.private_list);
263 spin_lock_init(&inode->i_data.private_lock);
264 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
265 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
266 i_size_ordered_init(inode);
267 #ifdef CONFIG_INOTIFY
268 INIT_LIST_HEAD(&inode->inotify_watches);
269 mutex_init(&inode->inotify_mutex);
270 #endif
271 #ifdef CONFIG_FSNOTIFY
272 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
273 #endif
274 }
275 EXPORT_SYMBOL(inode_init_once);
276
277 static void init_once(void *foo)
278 {
279 struct inode *inode = (struct inode *) foo;
280
281 inode_init_once(inode);
282 }
283
284 /*
285 * inode_lock must be held
286 */
287 void __iget(struct inode *inode)
288 {
289 if (atomic_inc_return(&inode->i_count) != 1)
290 return;
291
292 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
293 list_move(&inode->i_list, &inode_in_use);
294 inodes_stat.nr_unused--;
295 }
296
297 void end_writeback(struct inode *inode)
298 {
299 might_sleep();
300 BUG_ON(inode->i_data.nrpages);
301 BUG_ON(!list_empty(&inode->i_data.private_list));
302 BUG_ON(!(inode->i_state & I_FREEING));
303 BUG_ON(inode->i_state & I_CLEAR);
304 inode_sync_wait(inode);
305 inode->i_state = I_FREEING | I_CLEAR;
306 }
307 EXPORT_SYMBOL(end_writeback);
308
309 static void evict(struct inode *inode)
310 {
311 const struct super_operations *op = inode->i_sb->s_op;
312
313 if (op->evict_inode) {
314 op->evict_inode(inode);
315 } else {
316 if (inode->i_data.nrpages)
317 truncate_inode_pages(&inode->i_data, 0);
318 invalidate_inode_buffers(inode);
319 end_writeback(inode);
320 if (op->clear_inode)
321 op->clear_inode(inode);
322 }
323 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
324 bd_forget(inode);
325 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
326 cd_forget(inode);
327 }
328
329 /*
330 * dispose_list - dispose of the contents of a local list
331 * @head: the head of the list to free
332 *
333 * Dispose-list gets a local list with local inodes in it, so it doesn't
334 * need to worry about list corruption and SMP locks.
335 */
336 static void dispose_list(struct list_head *head)
337 {
338 int nr_disposed = 0;
339
340 while (!list_empty(head)) {
341 struct inode *inode;
342
343 inode = list_first_entry(head, struct inode, i_list);
344 list_del(&inode->i_list);
345
346 evict(inode);
347
348 spin_lock(&inode_lock);
349 hlist_del_init(&inode->i_hash);
350 list_del_init(&inode->i_sb_list);
351 spin_unlock(&inode_lock);
352
353 wake_up_inode(inode);
354 destroy_inode(inode);
355 nr_disposed++;
356 }
357 spin_lock(&inode_lock);
358 inodes_stat.nr_inodes -= nr_disposed;
359 spin_unlock(&inode_lock);
360 }
361
362 /*
363 * Invalidate all inodes for a device.
364 */
365 static int invalidate_list(struct list_head *head, struct list_head *dispose)
366 {
367 struct list_head *next;
368 int busy = 0, count = 0;
369
370 next = head->next;
371 for (;;) {
372 struct list_head *tmp = next;
373 struct inode *inode;
374
375 /*
376 * We can reschedule here without worrying about the list's
377 * consistency because the per-sb list of inodes must not
378 * change during umount anymore, and because iprune_sem keeps
379 * shrink_icache_memory() away.
380 */
381 cond_resched_lock(&inode_lock);
382
383 next = next->next;
384 if (tmp == head)
385 break;
386 inode = list_entry(tmp, struct inode, i_sb_list);
387 if (inode->i_state & I_NEW)
388 continue;
389 invalidate_inode_buffers(inode);
390 if (!atomic_read(&inode->i_count)) {
391 list_move(&inode->i_list, dispose);
392 WARN_ON(inode->i_state & I_NEW);
393 inode->i_state |= I_FREEING;
394 count++;
395 continue;
396 }
397 busy = 1;
398 }
399 /* only unused inodes may be cached with i_count zero */
400 inodes_stat.nr_unused -= count;
401 return busy;
402 }
403
404 /**
405 * invalidate_inodes - discard the inodes on a device
406 * @sb: superblock
407 *
408 * Discard all of the inodes for a given superblock. If the discard
409 * fails because there are busy inodes then a non zero value is returned.
410 * If the discard is successful all the inodes have been discarded.
411 */
412 int invalidate_inodes(struct super_block *sb)
413 {
414 int busy;
415 LIST_HEAD(throw_away);
416
417 down_write(&iprune_sem);
418 spin_lock(&inode_lock);
419 inotify_unmount_inodes(&sb->s_inodes);
420 fsnotify_unmount_inodes(&sb->s_inodes);
421 busy = invalidate_list(&sb->s_inodes, &throw_away);
422 spin_unlock(&inode_lock);
423
424 dispose_list(&throw_away);
425 up_write(&iprune_sem);
426
427 return busy;
428 }
429 EXPORT_SYMBOL(invalidate_inodes);
430
431 static int can_unuse(struct inode *inode)
432 {
433 if (inode->i_state)
434 return 0;
435 if (inode_has_buffers(inode))
436 return 0;
437 if (atomic_read(&inode->i_count))
438 return 0;
439 if (inode->i_data.nrpages)
440 return 0;
441 return 1;
442 }
443
444 /*
445 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
446 * a temporary list and then are freed outside inode_lock by dispose_list().
447 *
448 * Any inodes which are pinned purely because of attached pagecache have their
449 * pagecache removed. We expect the final iput() on that inode to add it to
450 * the front of the inode_unused list. So look for it there and if the
451 * inode is still freeable, proceed. The right inode is found 99.9% of the
452 * time in testing on a 4-way.
453 *
454 * If the inode has metadata buffers attached to mapping->private_list then
455 * try to remove them.
456 */
457 static void prune_icache(int nr_to_scan)
458 {
459 LIST_HEAD(freeable);
460 int nr_pruned = 0;
461 int nr_scanned;
462 unsigned long reap = 0;
463
464 down_read(&iprune_sem);
465 spin_lock(&inode_lock);
466 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
467 struct inode *inode;
468
469 if (list_empty(&inode_unused))
470 break;
471
472 inode = list_entry(inode_unused.prev, struct inode, i_list);
473
474 if (inode->i_state || atomic_read(&inode->i_count)) {
475 list_move(&inode->i_list, &inode_unused);
476 continue;
477 }
478 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
479 __iget(inode);
480 spin_unlock(&inode_lock);
481 if (remove_inode_buffers(inode))
482 reap += invalidate_mapping_pages(&inode->i_data,
483 0, -1);
484 iput(inode);
485 spin_lock(&inode_lock);
486
487 if (inode != list_entry(inode_unused.next,
488 struct inode, i_list))
489 continue; /* wrong inode or list_empty */
490 if (!can_unuse(inode))
491 continue;
492 }
493 list_move(&inode->i_list, &freeable);
494 WARN_ON(inode->i_state & I_NEW);
495 inode->i_state |= I_FREEING;
496 nr_pruned++;
497 }
498 inodes_stat.nr_unused -= nr_pruned;
499 if (current_is_kswapd())
500 __count_vm_events(KSWAPD_INODESTEAL, reap);
501 else
502 __count_vm_events(PGINODESTEAL, reap);
503 spin_unlock(&inode_lock);
504
505 dispose_list(&freeable);
506 up_read(&iprune_sem);
507 }
508
509 /*
510 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
511 * "unused" means that no dentries are referring to the inodes: the files are
512 * not open and the dcache references to those inodes have already been
513 * reclaimed.
514 *
515 * This function is passed the number of inodes to scan, and it returns the
516 * total number of remaining possibly-reclaimable inodes.
517 */
518 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
519 {
520 if (nr) {
521 /*
522 * Nasty deadlock avoidance. We may hold various FS locks,
523 * and we don't want to recurse into the FS that called us
524 * in clear_inode() and friends..
525 */
526 if (!(gfp_mask & __GFP_FS))
527 return -1;
528 prune_icache(nr);
529 }
530 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
531 }
532
533 static struct shrinker icache_shrinker = {
534 .shrink = shrink_icache_memory,
535 .seeks = DEFAULT_SEEKS,
536 };
537
538 static void __wait_on_freeing_inode(struct inode *inode);
539 /*
540 * Called with the inode lock held.
541 * NOTE: we are not increasing the inode-refcount, you must call __iget()
542 * by hand after calling find_inode now! This simplifies iunique and won't
543 * add any additional branch in the common code.
544 */
545 static struct inode *find_inode(struct super_block *sb,
546 struct hlist_head *head,
547 int (*test)(struct inode *, void *),
548 void *data)
549 {
550 struct hlist_node *node;
551 struct inode *inode = NULL;
552
553 repeat:
554 hlist_for_each_entry(inode, node, head, i_hash) {
555 if (inode->i_sb != sb)
556 continue;
557 if (!test(inode, data))
558 continue;
559 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
560 __wait_on_freeing_inode(inode);
561 goto repeat;
562 }
563 break;
564 }
565 return node ? inode : NULL;
566 }
567
568 /*
569 * find_inode_fast is the fast path version of find_inode, see the comment at
570 * iget_locked for details.
571 */
572 static struct inode *find_inode_fast(struct super_block *sb,
573 struct hlist_head *head, unsigned long ino)
574 {
575 struct hlist_node *node;
576 struct inode *inode = NULL;
577
578 repeat:
579 hlist_for_each_entry(inode, node, head, i_hash) {
580 if (inode->i_ino != ino)
581 continue;
582 if (inode->i_sb != sb)
583 continue;
584 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
585 __wait_on_freeing_inode(inode);
586 goto repeat;
587 }
588 break;
589 }
590 return node ? inode : NULL;
591 }
592
593 static unsigned long hash(struct super_block *sb, unsigned long hashval)
594 {
595 unsigned long tmp;
596
597 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
598 L1_CACHE_BYTES;
599 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
600 return tmp & I_HASHMASK;
601 }
602
603 static inline void
604 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
605 struct inode *inode)
606 {
607 inodes_stat.nr_inodes++;
608 list_add(&inode->i_list, &inode_in_use);
609 list_add(&inode->i_sb_list, &sb->s_inodes);
610 if (head)
611 hlist_add_head(&inode->i_hash, head);
612 }
613
614 /**
615 * inode_add_to_lists - add a new inode to relevant lists
616 * @sb: superblock inode belongs to
617 * @inode: inode to mark in use
618 *
619 * When an inode is allocated it needs to be accounted for, added to the in use
620 * list, the owning superblock and the inode hash. This needs to be done under
621 * the inode_lock, so export a function to do this rather than the inode lock
622 * itself. We calculate the hash list to add to here so it is all internal
623 * which requires the caller to have already set up the inode number in the
624 * inode to add.
625 */
626 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
627 {
628 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
629
630 spin_lock(&inode_lock);
631 __inode_add_to_lists(sb, head, inode);
632 spin_unlock(&inode_lock);
633 }
634 EXPORT_SYMBOL_GPL(inode_add_to_lists);
635
636 /**
637 * new_inode - obtain an inode
638 * @sb: superblock
639 *
640 * Allocates a new inode for given superblock. The default gfp_mask
641 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
642 * If HIGHMEM pages are unsuitable or it is known that pages allocated
643 * for the page cache are not reclaimable or migratable,
644 * mapping_set_gfp_mask() must be called with suitable flags on the
645 * newly created inode's mapping
646 *
647 */
648 struct inode *new_inode(struct super_block *sb)
649 {
650 /*
651 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
652 * error if st_ino won't fit in target struct field. Use 32bit counter
653 * here to attempt to avoid that.
654 */
655 static unsigned int last_ino;
656 struct inode *inode;
657
658 spin_lock_prefetch(&inode_lock);
659
660 inode = alloc_inode(sb);
661 if (inode) {
662 spin_lock(&inode_lock);
663 __inode_add_to_lists(sb, NULL, inode);
664 inode->i_ino = ++last_ino;
665 inode->i_state = 0;
666 spin_unlock(&inode_lock);
667 }
668 return inode;
669 }
670 EXPORT_SYMBOL(new_inode);
671
672 void unlock_new_inode(struct inode *inode)
673 {
674 #ifdef CONFIG_DEBUG_LOCK_ALLOC
675 if (inode->i_mode & S_IFDIR) {
676 struct file_system_type *type = inode->i_sb->s_type;
677
678 /* Set new key only if filesystem hasn't already changed it */
679 if (!lockdep_match_class(&inode->i_mutex,
680 &type->i_mutex_key)) {
681 /*
682 * ensure nobody is actually holding i_mutex
683 */
684 mutex_destroy(&inode->i_mutex);
685 mutex_init(&inode->i_mutex);
686 lockdep_set_class(&inode->i_mutex,
687 &type->i_mutex_dir_key);
688 }
689 }
690 #endif
691 /*
692 * This is special! We do not need the spinlock when clearing I_NEW,
693 * because we're guaranteed that nobody else tries to do anything about
694 * the state of the inode when it is locked, as we just created it (so
695 * there can be no old holders that haven't tested I_NEW).
696 * However we must emit the memory barrier so that other CPUs reliably
697 * see the clearing of I_NEW after the other inode initialisation has
698 * completed.
699 */
700 smp_mb();
701 WARN_ON(!(inode->i_state & I_NEW));
702 inode->i_state &= ~I_NEW;
703 wake_up_inode(inode);
704 }
705 EXPORT_SYMBOL(unlock_new_inode);
706
707 /*
708 * This is called without the inode lock held.. Be careful.
709 *
710 * We no longer cache the sb_flags in i_flags - see fs.h
711 * -- rmk@arm.uk.linux.org
712 */
713 static struct inode *get_new_inode(struct super_block *sb,
714 struct hlist_head *head,
715 int (*test)(struct inode *, void *),
716 int (*set)(struct inode *, void *),
717 void *data)
718 {
719 struct inode *inode;
720
721 inode = alloc_inode(sb);
722 if (inode) {
723 struct inode *old;
724
725 spin_lock(&inode_lock);
726 /* We released the lock, so.. */
727 old = find_inode(sb, head, test, data);
728 if (!old) {
729 if (set(inode, data))
730 goto set_failed;
731
732 __inode_add_to_lists(sb, head, inode);
733 inode->i_state = I_NEW;
734 spin_unlock(&inode_lock);
735
736 /* Return the locked inode with I_NEW set, the
737 * caller is responsible for filling in the contents
738 */
739 return inode;
740 }
741
742 /*
743 * Uhhuh, somebody else created the same inode under
744 * us. Use the old inode instead of the one we just
745 * allocated.
746 */
747 __iget(old);
748 spin_unlock(&inode_lock);
749 destroy_inode(inode);
750 inode = old;
751 wait_on_inode(inode);
752 }
753 return inode;
754
755 set_failed:
756 spin_unlock(&inode_lock);
757 destroy_inode(inode);
758 return NULL;
759 }
760
761 /*
762 * get_new_inode_fast is the fast path version of get_new_inode, see the
763 * comment at iget_locked for details.
764 */
765 static struct inode *get_new_inode_fast(struct super_block *sb,
766 struct hlist_head *head, unsigned long ino)
767 {
768 struct inode *inode;
769
770 inode = alloc_inode(sb);
771 if (inode) {
772 struct inode *old;
773
774 spin_lock(&inode_lock);
775 /* We released the lock, so.. */
776 old = find_inode_fast(sb, head, ino);
777 if (!old) {
778 inode->i_ino = ino;
779 __inode_add_to_lists(sb, head, inode);
780 inode->i_state = I_NEW;
781 spin_unlock(&inode_lock);
782
783 /* Return the locked inode with I_NEW set, the
784 * caller is responsible for filling in the contents
785 */
786 return inode;
787 }
788
789 /*
790 * Uhhuh, somebody else created the same inode under
791 * us. Use the old inode instead of the one we just
792 * allocated.
793 */
794 __iget(old);
795 spin_unlock(&inode_lock);
796 destroy_inode(inode);
797 inode = old;
798 wait_on_inode(inode);
799 }
800 return inode;
801 }
802
803 /**
804 * iunique - get a unique inode number
805 * @sb: superblock
806 * @max_reserved: highest reserved inode number
807 *
808 * Obtain an inode number that is unique on the system for a given
809 * superblock. This is used by file systems that have no natural
810 * permanent inode numbering system. An inode number is returned that
811 * is higher than the reserved limit but unique.
812 *
813 * BUGS:
814 * With a large number of inodes live on the file system this function
815 * currently becomes quite slow.
816 */
817 ino_t iunique(struct super_block *sb, ino_t max_reserved)
818 {
819 /*
820 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
821 * error if st_ino won't fit in target struct field. Use 32bit counter
822 * here to attempt to avoid that.
823 */
824 static unsigned int counter;
825 struct inode *inode;
826 struct hlist_head *head;
827 ino_t res;
828
829 spin_lock(&inode_lock);
830 do {
831 if (counter <= max_reserved)
832 counter = max_reserved + 1;
833 res = counter++;
834 head = inode_hashtable + hash(sb, res);
835 inode = find_inode_fast(sb, head, res);
836 } while (inode != NULL);
837 spin_unlock(&inode_lock);
838
839 return res;
840 }
841 EXPORT_SYMBOL(iunique);
842
843 struct inode *igrab(struct inode *inode)
844 {
845 spin_lock(&inode_lock);
846 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
847 __iget(inode);
848 else
849 /*
850 * Handle the case where s_op->clear_inode is not been
851 * called yet, and somebody is calling igrab
852 * while the inode is getting freed.
853 */
854 inode = NULL;
855 spin_unlock(&inode_lock);
856 return inode;
857 }
858 EXPORT_SYMBOL(igrab);
859
860 /**
861 * ifind - internal function, you want ilookup5() or iget5().
862 * @sb: super block of file system to search
863 * @head: the head of the list to search
864 * @test: callback used for comparisons between inodes
865 * @data: opaque data pointer to pass to @test
866 * @wait: if true wait for the inode to be unlocked, if false do not
867 *
868 * ifind() searches for the inode specified by @data in the inode
869 * cache. This is a generalized version of ifind_fast() for file systems where
870 * the inode number is not sufficient for unique identification of an inode.
871 *
872 * If the inode is in the cache, the inode is returned with an incremented
873 * reference count.
874 *
875 * Otherwise NULL is returned.
876 *
877 * Note, @test is called with the inode_lock held, so can't sleep.
878 */
879 static struct inode *ifind(struct super_block *sb,
880 struct hlist_head *head, int (*test)(struct inode *, void *),
881 void *data, const int wait)
882 {
883 struct inode *inode;
884
885 spin_lock(&inode_lock);
886 inode = find_inode(sb, head, test, data);
887 if (inode) {
888 __iget(inode);
889 spin_unlock(&inode_lock);
890 if (likely(wait))
891 wait_on_inode(inode);
892 return inode;
893 }
894 spin_unlock(&inode_lock);
895 return NULL;
896 }
897
898 /**
899 * ifind_fast - internal function, you want ilookup() or iget().
900 * @sb: super block of file system to search
901 * @head: head of the list to search
902 * @ino: inode number to search for
903 *
904 * ifind_fast() searches for the inode @ino in the inode cache. This is for
905 * file systems where the inode number is sufficient for unique identification
906 * of an inode.
907 *
908 * If the inode is in the cache, the inode is returned with an incremented
909 * reference count.
910 *
911 * Otherwise NULL is returned.
912 */
913 static struct inode *ifind_fast(struct super_block *sb,
914 struct hlist_head *head, unsigned long ino)
915 {
916 struct inode *inode;
917
918 spin_lock(&inode_lock);
919 inode = find_inode_fast(sb, head, ino);
920 if (inode) {
921 __iget(inode);
922 spin_unlock(&inode_lock);
923 wait_on_inode(inode);
924 return inode;
925 }
926 spin_unlock(&inode_lock);
927 return NULL;
928 }
929
930 /**
931 * ilookup5_nowait - search for an inode in the inode cache
932 * @sb: super block of file system to search
933 * @hashval: hash value (usually inode number) to search for
934 * @test: callback used for comparisons between inodes
935 * @data: opaque data pointer to pass to @test
936 *
937 * ilookup5() uses ifind() to search for the inode specified by @hashval and
938 * @data in the inode cache. This is a generalized version of ilookup() for
939 * file systems where the inode number is not sufficient for unique
940 * identification of an inode.
941 *
942 * If the inode is in the cache, the inode is returned with an incremented
943 * reference count. Note, the inode lock is not waited upon so you have to be
944 * very careful what you do with the returned inode. You probably should be
945 * using ilookup5() instead.
946 *
947 * Otherwise NULL is returned.
948 *
949 * Note, @test is called with the inode_lock held, so can't sleep.
950 */
951 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
952 int (*test)(struct inode *, void *), void *data)
953 {
954 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
955
956 return ifind(sb, head, test, data, 0);
957 }
958 EXPORT_SYMBOL(ilookup5_nowait);
959
960 /**
961 * ilookup5 - search for an inode in the inode cache
962 * @sb: super block of file system to search
963 * @hashval: hash value (usually inode number) to search for
964 * @test: callback used for comparisons between inodes
965 * @data: opaque data pointer to pass to @test
966 *
967 * ilookup5() uses ifind() to search for the inode specified by @hashval and
968 * @data in the inode cache. This is a generalized version of ilookup() for
969 * file systems where the inode number is not sufficient for unique
970 * identification of an inode.
971 *
972 * If the inode is in the cache, the inode lock is waited upon and the inode is
973 * returned with an incremented reference count.
974 *
975 * Otherwise NULL is returned.
976 *
977 * Note, @test is called with the inode_lock held, so can't sleep.
978 */
979 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
980 int (*test)(struct inode *, void *), void *data)
981 {
982 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
983
984 return ifind(sb, head, test, data, 1);
985 }
986 EXPORT_SYMBOL(ilookup5);
987
988 /**
989 * ilookup - search for an inode in the inode cache
990 * @sb: super block of file system to search
991 * @ino: inode number to search for
992 *
993 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
994 * This is for file systems where the inode number is sufficient for unique
995 * identification of an inode.
996 *
997 * If the inode is in the cache, the inode is returned with an incremented
998 * reference count.
999 *
1000 * Otherwise NULL is returned.
1001 */
1002 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1003 {
1004 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1005
1006 return ifind_fast(sb, head, ino);
1007 }
1008 EXPORT_SYMBOL(ilookup);
1009
1010 /**
1011 * iget5_locked - obtain an inode from a mounted file system
1012 * @sb: super block of file system
1013 * @hashval: hash value (usually inode number) to get
1014 * @test: callback used for comparisons between inodes
1015 * @set: callback used to initialize a new struct inode
1016 * @data: opaque data pointer to pass to @test and @set
1017 *
1018 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1019 * and @data in the inode cache and if present it is returned with an increased
1020 * reference count. This is a generalized version of iget_locked() for file
1021 * systems where the inode number is not sufficient for unique identification
1022 * of an inode.
1023 *
1024 * If the inode is not in cache, get_new_inode() is called to allocate a new
1025 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1026 * file system gets to fill it in before unlocking it via unlock_new_inode().
1027 *
1028 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1029 */
1030 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1031 int (*test)(struct inode *, void *),
1032 int (*set)(struct inode *, void *), void *data)
1033 {
1034 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1035 struct inode *inode;
1036
1037 inode = ifind(sb, head, test, data, 1);
1038 if (inode)
1039 return inode;
1040 /*
1041 * get_new_inode() will do the right thing, re-trying the search
1042 * in case it had to block at any point.
1043 */
1044 return get_new_inode(sb, head, test, set, data);
1045 }
1046 EXPORT_SYMBOL(iget5_locked);
1047
1048 /**
1049 * iget_locked - obtain an inode from a mounted file system
1050 * @sb: super block of file system
1051 * @ino: inode number to get
1052 *
1053 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1054 * the inode cache and if present it is returned with an increased reference
1055 * count. This is for file systems where the inode number is sufficient for
1056 * unique identification of an inode.
1057 *
1058 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1059 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1060 * The file system gets to fill it in before unlocking it via
1061 * unlock_new_inode().
1062 */
1063 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064 {
1065 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066 struct inode *inode;
1067
1068 inode = ifind_fast(sb, head, ino);
1069 if (inode)
1070 return inode;
1071 /*
1072 * get_new_inode_fast() will do the right thing, re-trying the search
1073 * in case it had to block at any point.
1074 */
1075 return get_new_inode_fast(sb, head, ino);
1076 }
1077 EXPORT_SYMBOL(iget_locked);
1078
1079 int insert_inode_locked(struct inode *inode)
1080 {
1081 struct super_block *sb = inode->i_sb;
1082 ino_t ino = inode->i_ino;
1083 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1084
1085 inode->i_state |= I_NEW;
1086 while (1) {
1087 struct hlist_node *node;
1088 struct inode *old = NULL;
1089 spin_lock(&inode_lock);
1090 hlist_for_each_entry(old, node, head, i_hash) {
1091 if (old->i_ino != ino)
1092 continue;
1093 if (old->i_sb != sb)
1094 continue;
1095 if (old->i_state & (I_FREEING|I_WILL_FREE))
1096 continue;
1097 break;
1098 }
1099 if (likely(!node)) {
1100 hlist_add_head(&inode->i_hash, head);
1101 spin_unlock(&inode_lock);
1102 return 0;
1103 }
1104 __iget(old);
1105 spin_unlock(&inode_lock);
1106 wait_on_inode(old);
1107 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1108 iput(old);
1109 return -EBUSY;
1110 }
1111 iput(old);
1112 }
1113 }
1114 EXPORT_SYMBOL(insert_inode_locked);
1115
1116 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1117 int (*test)(struct inode *, void *), void *data)
1118 {
1119 struct super_block *sb = inode->i_sb;
1120 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1121
1122 inode->i_state |= I_NEW;
1123
1124 while (1) {
1125 struct hlist_node *node;
1126 struct inode *old = NULL;
1127
1128 spin_lock(&inode_lock);
1129 hlist_for_each_entry(old, node, head, i_hash) {
1130 if (old->i_sb != sb)
1131 continue;
1132 if (!test(old, data))
1133 continue;
1134 if (old->i_state & (I_FREEING|I_WILL_FREE))
1135 continue;
1136 break;
1137 }
1138 if (likely(!node)) {
1139 hlist_add_head(&inode->i_hash, head);
1140 spin_unlock(&inode_lock);
1141 return 0;
1142 }
1143 __iget(old);
1144 spin_unlock(&inode_lock);
1145 wait_on_inode(old);
1146 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1147 iput(old);
1148 return -EBUSY;
1149 }
1150 iput(old);
1151 }
1152 }
1153 EXPORT_SYMBOL(insert_inode_locked4);
1154
1155 /**
1156 * __insert_inode_hash - hash an inode
1157 * @inode: unhashed inode
1158 * @hashval: unsigned long value used to locate this object in the
1159 * inode_hashtable.
1160 *
1161 * Add an inode to the inode hash for this superblock.
1162 */
1163 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1164 {
1165 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166 spin_lock(&inode_lock);
1167 hlist_add_head(&inode->i_hash, head);
1168 spin_unlock(&inode_lock);
1169 }
1170 EXPORT_SYMBOL(__insert_inode_hash);
1171
1172 /**
1173 * remove_inode_hash - remove an inode from the hash
1174 * @inode: inode to unhash
1175 *
1176 * Remove an inode from the superblock.
1177 */
1178 void remove_inode_hash(struct inode *inode)
1179 {
1180 spin_lock(&inode_lock);
1181 hlist_del_init(&inode->i_hash);
1182 spin_unlock(&inode_lock);
1183 }
1184 EXPORT_SYMBOL(remove_inode_hash);
1185
1186 int generic_delete_inode(struct inode *inode)
1187 {
1188 return 1;
1189 }
1190 EXPORT_SYMBOL(generic_delete_inode);
1191
1192 /*
1193 * Normal UNIX filesystem behaviour: delete the
1194 * inode when the usage count drops to zero, and
1195 * i_nlink is zero.
1196 */
1197 int generic_drop_inode(struct inode *inode)
1198 {
1199 return !inode->i_nlink || hlist_unhashed(&inode->i_hash);
1200 }
1201 EXPORT_SYMBOL_GPL(generic_drop_inode);
1202
1203 /*
1204 * Called when we're dropping the last reference
1205 * to an inode.
1206 *
1207 * Call the FS "drop_inode()" function, defaulting to
1208 * the legacy UNIX filesystem behaviour. If it tells
1209 * us to evict inode, do so. Otherwise, retain inode
1210 * in cache if fs is alive, sync and evict if fs is
1211 * shutting down.
1212 */
1213 static void iput_final(struct inode *inode)
1214 {
1215 struct super_block *sb = inode->i_sb;
1216 const struct super_operations *op = inode->i_sb->s_op;
1217 int drop;
1218
1219 if (op && op->drop_inode)
1220 drop = op->drop_inode(inode);
1221 else
1222 drop = generic_drop_inode(inode);
1223
1224 if (!drop) {
1225 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1226 list_move(&inode->i_list, &inode_unused);
1227 inodes_stat.nr_unused++;
1228 if (sb->s_flags & MS_ACTIVE) {
1229 spin_unlock(&inode_lock);
1230 return;
1231 }
1232 WARN_ON(inode->i_state & I_NEW);
1233 inode->i_state |= I_WILL_FREE;
1234 spin_unlock(&inode_lock);
1235 write_inode_now(inode, 1);
1236 spin_lock(&inode_lock);
1237 WARN_ON(inode->i_state & I_NEW);
1238 inode->i_state &= ~I_WILL_FREE;
1239 inodes_stat.nr_unused--;
1240 hlist_del_init(&inode->i_hash);
1241 }
1242 list_del_init(&inode->i_list);
1243 list_del_init(&inode->i_sb_list);
1244 WARN_ON(inode->i_state & I_NEW);
1245 inode->i_state |= I_FREEING;
1246 inodes_stat.nr_inodes--;
1247 spin_unlock(&inode_lock);
1248 evict(inode);
1249 spin_lock(&inode_lock);
1250 hlist_del_init(&inode->i_hash);
1251 spin_unlock(&inode_lock);
1252 wake_up_inode(inode);
1253 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1254 destroy_inode(inode);
1255 }
1256
1257 /**
1258 * iput - put an inode
1259 * @inode: inode to put
1260 *
1261 * Puts an inode, dropping its usage count. If the inode use count hits
1262 * zero, the inode is then freed and may also be destroyed.
1263 *
1264 * Consequently, iput() can sleep.
1265 */
1266 void iput(struct inode *inode)
1267 {
1268 if (inode) {
1269 BUG_ON(inode->i_state & I_CLEAR);
1270
1271 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1272 iput_final(inode);
1273 }
1274 }
1275 EXPORT_SYMBOL(iput);
1276
1277 /**
1278 * bmap - find a block number in a file
1279 * @inode: inode of file
1280 * @block: block to find
1281 *
1282 * Returns the block number on the device holding the inode that
1283 * is the disk block number for the block of the file requested.
1284 * That is, asked for block 4 of inode 1 the function will return the
1285 * disk block relative to the disk start that holds that block of the
1286 * file.
1287 */
1288 sector_t bmap(struct inode *inode, sector_t block)
1289 {
1290 sector_t res = 0;
1291 if (inode->i_mapping->a_ops->bmap)
1292 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1293 return res;
1294 }
1295 EXPORT_SYMBOL(bmap);
1296
1297 /*
1298 * With relative atime, only update atime if the previous atime is
1299 * earlier than either the ctime or mtime or if at least a day has
1300 * passed since the last atime update.
1301 */
1302 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1303 struct timespec now)
1304 {
1305
1306 if (!(mnt->mnt_flags & MNT_RELATIME))
1307 return 1;
1308 /*
1309 * Is mtime younger than atime? If yes, update atime:
1310 */
1311 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1312 return 1;
1313 /*
1314 * Is ctime younger than atime? If yes, update atime:
1315 */
1316 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1317 return 1;
1318
1319 /*
1320 * Is the previous atime value older than a day? If yes,
1321 * update atime:
1322 */
1323 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1324 return 1;
1325 /*
1326 * Good, we can skip the atime update:
1327 */
1328 return 0;
1329 }
1330
1331 /**
1332 * touch_atime - update the access time
1333 * @mnt: mount the inode is accessed on
1334 * @dentry: dentry accessed
1335 *
1336 * Update the accessed time on an inode and mark it for writeback.
1337 * This function automatically handles read only file systems and media,
1338 * as well as the "noatime" flag and inode specific "noatime" markers.
1339 */
1340 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1341 {
1342 struct inode *inode = dentry->d_inode;
1343 struct timespec now;
1344
1345 if (inode->i_flags & S_NOATIME)
1346 return;
1347 if (IS_NOATIME(inode))
1348 return;
1349 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1350 return;
1351
1352 if (mnt->mnt_flags & MNT_NOATIME)
1353 return;
1354 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1355 return;
1356
1357 now = current_fs_time(inode->i_sb);
1358
1359 if (!relatime_need_update(mnt, inode, now))
1360 return;
1361
1362 if (timespec_equal(&inode->i_atime, &now))
1363 return;
1364
1365 if (mnt_want_write(mnt))
1366 return;
1367
1368 inode->i_atime = now;
1369 mark_inode_dirty_sync(inode);
1370 mnt_drop_write(mnt);
1371 }
1372 EXPORT_SYMBOL(touch_atime);
1373
1374 /**
1375 * file_update_time - update mtime and ctime time
1376 * @file: file accessed
1377 *
1378 * Update the mtime and ctime members of an inode and mark the inode
1379 * for writeback. Note that this function is meant exclusively for
1380 * usage in the file write path of filesystems, and filesystems may
1381 * choose to explicitly ignore update via this function with the
1382 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1383 * timestamps are handled by the server.
1384 */
1385
1386 void file_update_time(struct file *file)
1387 {
1388 struct inode *inode = file->f_path.dentry->d_inode;
1389 struct timespec now;
1390 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1391
1392 /* First try to exhaust all avenues to not sync */
1393 if (IS_NOCMTIME(inode))
1394 return;
1395
1396 now = current_fs_time(inode->i_sb);
1397 if (!timespec_equal(&inode->i_mtime, &now))
1398 sync_it = S_MTIME;
1399
1400 if (!timespec_equal(&inode->i_ctime, &now))
1401 sync_it |= S_CTIME;
1402
1403 if (IS_I_VERSION(inode))
1404 sync_it |= S_VERSION;
1405
1406 if (!sync_it)
1407 return;
1408
1409 /* Finally allowed to write? Takes lock. */
1410 if (mnt_want_write_file(file))
1411 return;
1412
1413 /* Only change inode inside the lock region */
1414 if (sync_it & S_VERSION)
1415 inode_inc_iversion(inode);
1416 if (sync_it & S_CTIME)
1417 inode->i_ctime = now;
1418 if (sync_it & S_MTIME)
1419 inode->i_mtime = now;
1420 mark_inode_dirty_sync(inode);
1421 mnt_drop_write(file->f_path.mnt);
1422 }
1423 EXPORT_SYMBOL(file_update_time);
1424
1425 int inode_needs_sync(struct inode *inode)
1426 {
1427 if (IS_SYNC(inode))
1428 return 1;
1429 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1430 return 1;
1431 return 0;
1432 }
1433 EXPORT_SYMBOL(inode_needs_sync);
1434
1435 int inode_wait(void *word)
1436 {
1437 schedule();
1438 return 0;
1439 }
1440 EXPORT_SYMBOL(inode_wait);
1441
1442 /*
1443 * If we try to find an inode in the inode hash while it is being
1444 * deleted, we have to wait until the filesystem completes its
1445 * deletion before reporting that it isn't found. This function waits
1446 * until the deletion _might_ have completed. Callers are responsible
1447 * to recheck inode state.
1448 *
1449 * It doesn't matter if I_NEW is not set initially, a call to
1450 * wake_up_inode() after removing from the hash list will DTRT.
1451 *
1452 * This is called with inode_lock held.
1453 */
1454 static void __wait_on_freeing_inode(struct inode *inode)
1455 {
1456 wait_queue_head_t *wq;
1457 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1458 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1459 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1460 spin_unlock(&inode_lock);
1461 schedule();
1462 finish_wait(wq, &wait.wait);
1463 spin_lock(&inode_lock);
1464 }
1465
1466 static __initdata unsigned long ihash_entries;
1467 static int __init set_ihash_entries(char *str)
1468 {
1469 if (!str)
1470 return 0;
1471 ihash_entries = simple_strtoul(str, &str, 0);
1472 return 1;
1473 }
1474 __setup("ihash_entries=", set_ihash_entries);
1475
1476 /*
1477 * Initialize the waitqueues and inode hash table.
1478 */
1479 void __init inode_init_early(void)
1480 {
1481 int loop;
1482
1483 /* If hashes are distributed across NUMA nodes, defer
1484 * hash allocation until vmalloc space is available.
1485 */
1486 if (hashdist)
1487 return;
1488
1489 inode_hashtable =
1490 alloc_large_system_hash("Inode-cache",
1491 sizeof(struct hlist_head),
1492 ihash_entries,
1493 14,
1494 HASH_EARLY,
1495 &i_hash_shift,
1496 &i_hash_mask,
1497 0);
1498
1499 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1500 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1501 }
1502
1503 void __init inode_init(void)
1504 {
1505 int loop;
1506
1507 /* inode slab cache */
1508 inode_cachep = kmem_cache_create("inode_cache",
1509 sizeof(struct inode),
1510 0,
1511 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1512 SLAB_MEM_SPREAD),
1513 init_once);
1514 register_shrinker(&icache_shrinker);
1515
1516 /* Hash may have been set up in inode_init_early */
1517 if (!hashdist)
1518 return;
1519
1520 inode_hashtable =
1521 alloc_large_system_hash("Inode-cache",
1522 sizeof(struct hlist_head),
1523 ihash_entries,
1524 14,
1525 0,
1526 &i_hash_shift,
1527 &i_hash_mask,
1528 0);
1529
1530 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1531 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1532 }
1533
1534 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1535 {
1536 inode->i_mode = mode;
1537 if (S_ISCHR(mode)) {
1538 inode->i_fop = &def_chr_fops;
1539 inode->i_rdev = rdev;
1540 } else if (S_ISBLK(mode)) {
1541 inode->i_fop = &def_blk_fops;
1542 inode->i_rdev = rdev;
1543 } else if (S_ISFIFO(mode))
1544 inode->i_fop = &def_fifo_fops;
1545 else if (S_ISSOCK(mode))
1546 inode->i_fop = &bad_sock_fops;
1547 else
1548 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1549 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1550 inode->i_ino);
1551 }
1552 EXPORT_SYMBOL(init_special_inode);
1553
1554 /**
1555 * Init uid,gid,mode for new inode according to posix standards
1556 * @inode: New inode
1557 * @dir: Directory inode
1558 * @mode: mode of the new inode
1559 */
1560 void inode_init_owner(struct inode *inode, const struct inode *dir,
1561 mode_t mode)
1562 {
1563 inode->i_uid = current_fsuid();
1564 if (dir && dir->i_mode & S_ISGID) {
1565 inode->i_gid = dir->i_gid;
1566 if (S_ISDIR(mode))
1567 mode |= S_ISGID;
1568 } else
1569 inode->i_gid = current_fsgid();
1570 inode->i_mode = mode;
1571 }
1572 EXPORT_SYMBOL(inode_init_owner);
This page took 0.081293 seconds and 5 git commands to generate.