fs: protect inode->i_state with inode->i_lock
[deliverable/linux.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 #include <linux/cred.h>
29
30 /*
31 * inode locking rules.
32 *
33 * inode->i_lock protects:
34 * inode->i_state, inode->i_hash, __iget()
35 *
36 * Lock ordering:
37 * inode_lock
38 * inode->i_lock
39 */
40
41 /*
42 * This is needed for the following functions:
43 * - inode_has_buffers
44 * - invalidate_bdev
45 *
46 * FIXME: remove all knowledge of the buffer layer from this file
47 */
48 #include <linux/buffer_head.h>
49
50 /*
51 * New inode.c implementation.
52 *
53 * This implementation has the basic premise of trying
54 * to be extremely low-overhead and SMP-safe, yet be
55 * simple enough to be "obviously correct".
56 *
57 * Famous last words.
58 */
59
60 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
61
62 /* #define INODE_PARANOIA 1 */
63 /* #define INODE_DEBUG 1 */
64
65 /*
66 * Inode lookup is no longer as critical as it used to be:
67 * most of the lookups are going to be through the dcache.
68 */
69 #define I_HASHBITS i_hash_shift
70 #define I_HASHMASK i_hash_mask
71
72 static unsigned int i_hash_mask __read_mostly;
73 static unsigned int i_hash_shift __read_mostly;
74
75 /*
76 * Each inode can be on two separate lists. One is
77 * the hash list of the inode, used for lookups. The
78 * other linked list is the "type" list:
79 * "in_use" - valid inode, i_count > 0, i_nlink > 0
80 * "dirty" - as "in_use" but also dirty
81 * "unused" - valid inode, i_count = 0
82 *
83 * A "dirty" list is maintained for each super block,
84 * allowing for low-overhead inode sync() operations.
85 */
86
87 static LIST_HEAD(inode_lru);
88 static struct hlist_head *inode_hashtable __read_mostly;
89
90 /*
91 * A simple spinlock to protect the list manipulations.
92 *
93 * NOTE! You also have to own the lock if you change
94 * the i_state of an inode while it is in use..
95 */
96 DEFINE_SPINLOCK(inode_lock);
97
98 /*
99 * iprune_sem provides exclusion between the icache shrinking and the
100 * umount path.
101 *
102 * We don't actually need it to protect anything in the umount path,
103 * but only need to cycle through it to make sure any inode that
104 * prune_icache took off the LRU list has been fully torn down by the
105 * time we are past evict_inodes.
106 */
107 static DECLARE_RWSEM(iprune_sem);
108
109 /*
110 * Statistics gathering..
111 */
112 struct inodes_stat_t inodes_stat;
113
114 static DEFINE_PER_CPU(unsigned int, nr_inodes);
115
116 static struct kmem_cache *inode_cachep __read_mostly;
117
118 static int get_nr_inodes(void)
119 {
120 int i;
121 int sum = 0;
122 for_each_possible_cpu(i)
123 sum += per_cpu(nr_inodes, i);
124 return sum < 0 ? 0 : sum;
125 }
126
127 static inline int get_nr_inodes_unused(void)
128 {
129 return inodes_stat.nr_unused;
130 }
131
132 int get_nr_dirty_inodes(void)
133 {
134 /* not actually dirty inodes, but a wild approximation */
135 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
136 return nr_dirty > 0 ? nr_dirty : 0;
137 }
138
139 /*
140 * Handle nr_inode sysctl
141 */
142 #ifdef CONFIG_SYSCTL
143 int proc_nr_inodes(ctl_table *table, int write,
144 void __user *buffer, size_t *lenp, loff_t *ppos)
145 {
146 inodes_stat.nr_inodes = get_nr_inodes();
147 return proc_dointvec(table, write, buffer, lenp, ppos);
148 }
149 #endif
150
151 /**
152 * inode_init_always - perform inode structure intialisation
153 * @sb: superblock inode belongs to
154 * @inode: inode to initialise
155 *
156 * These are initializations that need to be done on every inode
157 * allocation as the fields are not initialised by slab allocation.
158 */
159 int inode_init_always(struct super_block *sb, struct inode *inode)
160 {
161 static const struct address_space_operations empty_aops;
162 static const struct inode_operations empty_iops;
163 static const struct file_operations empty_fops;
164 struct address_space *const mapping = &inode->i_data;
165
166 inode->i_sb = sb;
167 inode->i_blkbits = sb->s_blocksize_bits;
168 inode->i_flags = 0;
169 atomic_set(&inode->i_count, 1);
170 inode->i_op = &empty_iops;
171 inode->i_fop = &empty_fops;
172 inode->i_nlink = 1;
173 inode->i_uid = 0;
174 inode->i_gid = 0;
175 atomic_set(&inode->i_writecount, 0);
176 inode->i_size = 0;
177 inode->i_blocks = 0;
178 inode->i_bytes = 0;
179 inode->i_generation = 0;
180 #ifdef CONFIG_QUOTA
181 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
182 #endif
183 inode->i_pipe = NULL;
184 inode->i_bdev = NULL;
185 inode->i_cdev = NULL;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 if (security_inode_alloc(inode))
190 goto out;
191 spin_lock_init(&inode->i_lock);
192 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
193
194 mutex_init(&inode->i_mutex);
195 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
196
197 init_rwsem(&inode->i_alloc_sem);
198 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
199
200 mapping->a_ops = &empty_aops;
201 mapping->host = inode;
202 mapping->flags = 0;
203 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
204 mapping->assoc_mapping = NULL;
205 mapping->backing_dev_info = &default_backing_dev_info;
206 mapping->writeback_index = 0;
207
208 /*
209 * If the block_device provides a backing_dev_info for client
210 * inodes then use that. Otherwise the inode share the bdev's
211 * backing_dev_info.
212 */
213 if (sb->s_bdev) {
214 struct backing_dev_info *bdi;
215
216 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
217 mapping->backing_dev_info = bdi;
218 }
219 inode->i_private = NULL;
220 inode->i_mapping = mapping;
221 #ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223 #endif
224
225 #ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227 #endif
228
229 this_cpu_inc(nr_inodes);
230
231 return 0;
232 out:
233 return -ENOMEM;
234 }
235 EXPORT_SYMBOL(inode_init_always);
236
237 static struct inode *alloc_inode(struct super_block *sb)
238 {
239 struct inode *inode;
240
241 if (sb->s_op->alloc_inode)
242 inode = sb->s_op->alloc_inode(sb);
243 else
244 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
245
246 if (!inode)
247 return NULL;
248
249 if (unlikely(inode_init_always(sb, inode))) {
250 if (inode->i_sb->s_op->destroy_inode)
251 inode->i_sb->s_op->destroy_inode(inode);
252 else
253 kmem_cache_free(inode_cachep, inode);
254 return NULL;
255 }
256
257 return inode;
258 }
259
260 void free_inode_nonrcu(struct inode *inode)
261 {
262 kmem_cache_free(inode_cachep, inode);
263 }
264 EXPORT_SYMBOL(free_inode_nonrcu);
265
266 void __destroy_inode(struct inode *inode)
267 {
268 BUG_ON(inode_has_buffers(inode));
269 security_inode_free(inode);
270 fsnotify_inode_delete(inode);
271 #ifdef CONFIG_FS_POSIX_ACL
272 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
273 posix_acl_release(inode->i_acl);
274 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
275 posix_acl_release(inode->i_default_acl);
276 #endif
277 this_cpu_dec(nr_inodes);
278 }
279 EXPORT_SYMBOL(__destroy_inode);
280
281 static void i_callback(struct rcu_head *head)
282 {
283 struct inode *inode = container_of(head, struct inode, i_rcu);
284 INIT_LIST_HEAD(&inode->i_dentry);
285 kmem_cache_free(inode_cachep, inode);
286 }
287
288 static void destroy_inode(struct inode *inode)
289 {
290 BUG_ON(!list_empty(&inode->i_lru));
291 __destroy_inode(inode);
292 if (inode->i_sb->s_op->destroy_inode)
293 inode->i_sb->s_op->destroy_inode(inode);
294 else
295 call_rcu(&inode->i_rcu, i_callback);
296 }
297
298 void address_space_init_once(struct address_space *mapping)
299 {
300 memset(mapping, 0, sizeof(*mapping));
301 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
302 spin_lock_init(&mapping->tree_lock);
303 spin_lock_init(&mapping->i_mmap_lock);
304 INIT_LIST_HEAD(&mapping->private_list);
305 spin_lock_init(&mapping->private_lock);
306 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
307 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
308 mutex_init(&mapping->unmap_mutex);
309 }
310 EXPORT_SYMBOL(address_space_init_once);
311
312 /*
313 * These are initializations that only need to be done
314 * once, because the fields are idempotent across use
315 * of the inode, so let the slab aware of that.
316 */
317 void inode_init_once(struct inode *inode)
318 {
319 memset(inode, 0, sizeof(*inode));
320 INIT_HLIST_NODE(&inode->i_hash);
321 INIT_LIST_HEAD(&inode->i_dentry);
322 INIT_LIST_HEAD(&inode->i_devices);
323 INIT_LIST_HEAD(&inode->i_wb_list);
324 INIT_LIST_HEAD(&inode->i_lru);
325 address_space_init_once(&inode->i_data);
326 i_size_ordered_init(inode);
327 #ifdef CONFIG_FSNOTIFY
328 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
329 #endif
330 }
331 EXPORT_SYMBOL(inode_init_once);
332
333 static void init_once(void *foo)
334 {
335 struct inode *inode = (struct inode *) foo;
336
337 inode_init_once(inode);
338 }
339
340 /*
341 * inode->i_lock must be held
342 */
343 void __iget(struct inode *inode)
344 {
345 atomic_inc(&inode->i_count);
346 }
347
348 /*
349 * get additional reference to inode; caller must already hold one.
350 */
351 void ihold(struct inode *inode)
352 {
353 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
354 }
355 EXPORT_SYMBOL(ihold);
356
357 static void inode_lru_list_add(struct inode *inode)
358 {
359 if (list_empty(&inode->i_lru)) {
360 list_add(&inode->i_lru, &inode_lru);
361 inodes_stat.nr_unused++;
362 }
363 }
364
365 static void inode_lru_list_del(struct inode *inode)
366 {
367 if (!list_empty(&inode->i_lru)) {
368 list_del_init(&inode->i_lru);
369 inodes_stat.nr_unused--;
370 }
371 }
372
373 static inline void __inode_sb_list_add(struct inode *inode)
374 {
375 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
376 }
377
378 /**
379 * inode_sb_list_add - add inode to the superblock list of inodes
380 * @inode: inode to add
381 */
382 void inode_sb_list_add(struct inode *inode)
383 {
384 spin_lock(&inode_lock);
385 __inode_sb_list_add(inode);
386 spin_unlock(&inode_lock);
387 }
388 EXPORT_SYMBOL_GPL(inode_sb_list_add);
389
390 static inline void __inode_sb_list_del(struct inode *inode)
391 {
392 list_del_init(&inode->i_sb_list);
393 }
394
395 static unsigned long hash(struct super_block *sb, unsigned long hashval)
396 {
397 unsigned long tmp;
398
399 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
400 L1_CACHE_BYTES;
401 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
402 return tmp & I_HASHMASK;
403 }
404
405 /**
406 * __insert_inode_hash - hash an inode
407 * @inode: unhashed inode
408 * @hashval: unsigned long value used to locate this object in the
409 * inode_hashtable.
410 *
411 * Add an inode to the inode hash for this superblock.
412 */
413 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
414 {
415 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
416
417 spin_lock(&inode_lock);
418 spin_lock(&inode->i_lock);
419 hlist_add_head(&inode->i_hash, b);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&inode_lock);
422 }
423 EXPORT_SYMBOL(__insert_inode_hash);
424
425 /**
426 * __remove_inode_hash - remove an inode from the hash
427 * @inode: inode to unhash
428 *
429 * Remove an inode from the superblock.
430 */
431 static void __remove_inode_hash(struct inode *inode)
432 {
433 hlist_del_init(&inode->i_hash);
434 }
435
436 /**
437 * remove_inode_hash - remove an inode from the hash
438 * @inode: inode to unhash
439 *
440 * Remove an inode from the superblock.
441 */
442 void remove_inode_hash(struct inode *inode)
443 {
444 spin_lock(&inode_lock);
445 spin_lock(&inode->i_lock);
446 hlist_del_init(&inode->i_hash);
447 spin_unlock(&inode->i_lock);
448 spin_unlock(&inode_lock);
449 }
450 EXPORT_SYMBOL(remove_inode_hash);
451
452 void end_writeback(struct inode *inode)
453 {
454 might_sleep();
455 BUG_ON(inode->i_data.nrpages);
456 BUG_ON(!list_empty(&inode->i_data.private_list));
457 BUG_ON(!(inode->i_state & I_FREEING));
458 BUG_ON(inode->i_state & I_CLEAR);
459 inode_sync_wait(inode);
460 /* don't need i_lock here, no concurrent mods to i_state */
461 inode->i_state = I_FREEING | I_CLEAR;
462 }
463 EXPORT_SYMBOL(end_writeback);
464
465 static void evict(struct inode *inode)
466 {
467 const struct super_operations *op = inode->i_sb->s_op;
468
469 if (op->evict_inode) {
470 op->evict_inode(inode);
471 } else {
472 if (inode->i_data.nrpages)
473 truncate_inode_pages(&inode->i_data, 0);
474 end_writeback(inode);
475 }
476 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
477 bd_forget(inode);
478 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
479 cd_forget(inode);
480 }
481
482 /*
483 * dispose_list - dispose of the contents of a local list
484 * @head: the head of the list to free
485 *
486 * Dispose-list gets a local list with local inodes in it, so it doesn't
487 * need to worry about list corruption and SMP locks.
488 */
489 static void dispose_list(struct list_head *head)
490 {
491 while (!list_empty(head)) {
492 struct inode *inode;
493
494 inode = list_first_entry(head, struct inode, i_lru);
495 list_del_init(&inode->i_lru);
496
497 evict(inode);
498
499 spin_lock(&inode_lock);
500 __remove_inode_hash(inode);
501 __inode_sb_list_del(inode);
502 spin_unlock(&inode_lock);
503
504 spin_lock(&inode->i_lock);
505 wake_up_bit(&inode->i_state, __I_NEW);
506 spin_unlock(&inode->i_lock);
507 destroy_inode(inode);
508 }
509 }
510
511 /**
512 * evict_inodes - evict all evictable inodes for a superblock
513 * @sb: superblock to operate on
514 *
515 * Make sure that no inodes with zero refcount are retained. This is
516 * called by superblock shutdown after having MS_ACTIVE flag removed,
517 * so any inode reaching zero refcount during or after that call will
518 * be immediately evicted.
519 */
520 void evict_inodes(struct super_block *sb)
521 {
522 struct inode *inode, *next;
523 LIST_HEAD(dispose);
524
525 spin_lock(&inode_lock);
526 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
527 if (atomic_read(&inode->i_count))
528 continue;
529
530 spin_lock(&inode->i_lock);
531 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
532 spin_unlock(&inode->i_lock);
533 continue;
534 }
535
536 inode->i_state |= I_FREEING;
537 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
538 inodes_stat.nr_unused--;
539 spin_unlock(&inode->i_lock);
540
541 /*
542 * Move the inode off the IO lists and LRU once I_FREEING is
543 * set so that it won't get moved back on there if it is dirty.
544 */
545 list_move(&inode->i_lru, &dispose);
546 list_del_init(&inode->i_wb_list);
547 }
548 spin_unlock(&inode_lock);
549
550 dispose_list(&dispose);
551
552 /*
553 * Cycle through iprune_sem to make sure any inode that prune_icache
554 * moved off the list before we took the lock has been fully torn
555 * down.
556 */
557 down_write(&iprune_sem);
558 up_write(&iprune_sem);
559 }
560
561 /**
562 * invalidate_inodes - attempt to free all inodes on a superblock
563 * @sb: superblock to operate on
564 * @kill_dirty: flag to guide handling of dirty inodes
565 *
566 * Attempts to free all inodes for a given superblock. If there were any
567 * busy inodes return a non-zero value, else zero.
568 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
569 * them as busy.
570 */
571 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
572 {
573 int busy = 0;
574 struct inode *inode, *next;
575 LIST_HEAD(dispose);
576
577 spin_lock(&inode_lock);
578 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
579 spin_lock(&inode->i_lock);
580 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
581 spin_unlock(&inode->i_lock);
582 continue;
583 }
584 if (inode->i_state & I_DIRTY && !kill_dirty) {
585 spin_unlock(&inode->i_lock);
586 busy = 1;
587 continue;
588 }
589 if (atomic_read(&inode->i_count)) {
590 spin_unlock(&inode->i_lock);
591 busy = 1;
592 continue;
593 }
594
595 inode->i_state |= I_FREEING;
596 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
597 inodes_stat.nr_unused--;
598 spin_unlock(&inode->i_lock);
599
600 /*
601 * Move the inode off the IO lists and LRU once I_FREEING is
602 * set so that it won't get moved back on there if it is dirty.
603 */
604 list_move(&inode->i_lru, &dispose);
605 list_del_init(&inode->i_wb_list);
606 }
607 spin_unlock(&inode_lock);
608
609 dispose_list(&dispose);
610
611 return busy;
612 }
613
614 static int can_unuse(struct inode *inode)
615 {
616 if (inode->i_state & ~I_REFERENCED)
617 return 0;
618 if (inode_has_buffers(inode))
619 return 0;
620 if (atomic_read(&inode->i_count))
621 return 0;
622 if (inode->i_data.nrpages)
623 return 0;
624 return 1;
625 }
626
627 /*
628 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
629 * temporary list and then are freed outside inode_lock by dispose_list().
630 *
631 * Any inodes which are pinned purely because of attached pagecache have their
632 * pagecache removed. If the inode has metadata buffers attached to
633 * mapping->private_list then try to remove them.
634 *
635 * If the inode has the I_REFERENCED flag set, then it means that it has been
636 * used recently - the flag is set in iput_final(). When we encounter such an
637 * inode, clear the flag and move it to the back of the LRU so it gets another
638 * pass through the LRU before it gets reclaimed. This is necessary because of
639 * the fact we are doing lazy LRU updates to minimise lock contention so the
640 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
641 * with this flag set because they are the inodes that are out of order.
642 */
643 static void prune_icache(int nr_to_scan)
644 {
645 LIST_HEAD(freeable);
646 int nr_scanned;
647 unsigned long reap = 0;
648
649 down_read(&iprune_sem);
650 spin_lock(&inode_lock);
651 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
652 struct inode *inode;
653
654 if (list_empty(&inode_lru))
655 break;
656
657 inode = list_entry(inode_lru.prev, struct inode, i_lru);
658
659 /*
660 * Referenced or dirty inodes are still in use. Give them
661 * another pass through the LRU as we canot reclaim them now.
662 */
663 spin_lock(&inode->i_lock);
664 if (atomic_read(&inode->i_count) ||
665 (inode->i_state & ~I_REFERENCED)) {
666 spin_unlock(&inode->i_lock);
667 list_del_init(&inode->i_lru);
668 inodes_stat.nr_unused--;
669 continue;
670 }
671
672 /* recently referenced inodes get one more pass */
673 if (inode->i_state & I_REFERENCED) {
674 inode->i_state &= ~I_REFERENCED;
675 spin_unlock(&inode->i_lock);
676 list_move(&inode->i_lru, &inode_lru);
677 continue;
678 }
679 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
680 __iget(inode);
681 spin_unlock(&inode->i_lock);
682 spin_unlock(&inode_lock);
683 if (remove_inode_buffers(inode))
684 reap += invalidate_mapping_pages(&inode->i_data,
685 0, -1);
686 iput(inode);
687 spin_lock(&inode_lock);
688
689 if (inode != list_entry(inode_lru.next,
690 struct inode, i_lru))
691 continue; /* wrong inode or list_empty */
692 spin_lock(&inode->i_lock);
693 if (!can_unuse(inode)) {
694 spin_unlock(&inode->i_lock);
695 continue;
696 }
697 }
698 WARN_ON(inode->i_state & I_NEW);
699 inode->i_state |= I_FREEING;
700 spin_unlock(&inode->i_lock);
701
702 /*
703 * Move the inode off the IO lists and LRU once I_FREEING is
704 * set so that it won't get moved back on there if it is dirty.
705 */
706 list_move(&inode->i_lru, &freeable);
707 list_del_init(&inode->i_wb_list);
708 inodes_stat.nr_unused--;
709 }
710 if (current_is_kswapd())
711 __count_vm_events(KSWAPD_INODESTEAL, reap);
712 else
713 __count_vm_events(PGINODESTEAL, reap);
714 spin_unlock(&inode_lock);
715
716 dispose_list(&freeable);
717 up_read(&iprune_sem);
718 }
719
720 /*
721 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
722 * "unused" means that no dentries are referring to the inodes: the files are
723 * not open and the dcache references to those inodes have already been
724 * reclaimed.
725 *
726 * This function is passed the number of inodes to scan, and it returns the
727 * total number of remaining possibly-reclaimable inodes.
728 */
729 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
730 {
731 if (nr) {
732 /*
733 * Nasty deadlock avoidance. We may hold various FS locks,
734 * and we don't want to recurse into the FS that called us
735 * in clear_inode() and friends..
736 */
737 if (!(gfp_mask & __GFP_FS))
738 return -1;
739 prune_icache(nr);
740 }
741 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
742 }
743
744 static struct shrinker icache_shrinker = {
745 .shrink = shrink_icache_memory,
746 .seeks = DEFAULT_SEEKS,
747 };
748
749 static void __wait_on_freeing_inode(struct inode *inode);
750 /*
751 * Called with the inode lock held.
752 */
753 static struct inode *find_inode(struct super_block *sb,
754 struct hlist_head *head,
755 int (*test)(struct inode *, void *),
756 void *data)
757 {
758 struct hlist_node *node;
759 struct inode *inode = NULL;
760
761 repeat:
762 hlist_for_each_entry(inode, node, head, i_hash) {
763 if (inode->i_sb != sb)
764 continue;
765 if (!test(inode, data))
766 continue;
767 spin_lock(&inode->i_lock);
768 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
769 __wait_on_freeing_inode(inode);
770 goto repeat;
771 }
772 __iget(inode);
773 spin_unlock(&inode->i_lock);
774 return inode;
775 }
776 return NULL;
777 }
778
779 /*
780 * find_inode_fast is the fast path version of find_inode, see the comment at
781 * iget_locked for details.
782 */
783 static struct inode *find_inode_fast(struct super_block *sb,
784 struct hlist_head *head, unsigned long ino)
785 {
786 struct hlist_node *node;
787 struct inode *inode = NULL;
788
789 repeat:
790 hlist_for_each_entry(inode, node, head, i_hash) {
791 if (inode->i_ino != ino)
792 continue;
793 if (inode->i_sb != sb)
794 continue;
795 spin_lock(&inode->i_lock);
796 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
797 __wait_on_freeing_inode(inode);
798 goto repeat;
799 }
800 __iget(inode);
801 spin_unlock(&inode->i_lock);
802 return inode;
803 }
804 return NULL;
805 }
806
807 /*
808 * Each cpu owns a range of LAST_INO_BATCH numbers.
809 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
810 * to renew the exhausted range.
811 *
812 * This does not significantly increase overflow rate because every CPU can
813 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
814 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
815 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
816 * overflow rate by 2x, which does not seem too significant.
817 *
818 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
819 * error if st_ino won't fit in target struct field. Use 32bit counter
820 * here to attempt to avoid that.
821 */
822 #define LAST_INO_BATCH 1024
823 static DEFINE_PER_CPU(unsigned int, last_ino);
824
825 unsigned int get_next_ino(void)
826 {
827 unsigned int *p = &get_cpu_var(last_ino);
828 unsigned int res = *p;
829
830 #ifdef CONFIG_SMP
831 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
832 static atomic_t shared_last_ino;
833 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
834
835 res = next - LAST_INO_BATCH;
836 }
837 #endif
838
839 *p = ++res;
840 put_cpu_var(last_ino);
841 return res;
842 }
843 EXPORT_SYMBOL(get_next_ino);
844
845 /**
846 * new_inode - obtain an inode
847 * @sb: superblock
848 *
849 * Allocates a new inode for given superblock. The default gfp_mask
850 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
851 * If HIGHMEM pages are unsuitable or it is known that pages allocated
852 * for the page cache are not reclaimable or migratable,
853 * mapping_set_gfp_mask() must be called with suitable flags on the
854 * newly created inode's mapping
855 *
856 */
857 struct inode *new_inode(struct super_block *sb)
858 {
859 struct inode *inode;
860
861 spin_lock_prefetch(&inode_lock);
862
863 inode = alloc_inode(sb);
864 if (inode) {
865 spin_lock(&inode_lock);
866 spin_lock(&inode->i_lock);
867 inode->i_state = 0;
868 spin_unlock(&inode->i_lock);
869 __inode_sb_list_add(inode);
870 spin_unlock(&inode_lock);
871 }
872 return inode;
873 }
874 EXPORT_SYMBOL(new_inode);
875
876 /**
877 * unlock_new_inode - clear the I_NEW state and wake up any waiters
878 * @inode: new inode to unlock
879 *
880 * Called when the inode is fully initialised to clear the new state of the
881 * inode and wake up anyone waiting for the inode to finish initialisation.
882 */
883 void unlock_new_inode(struct inode *inode)
884 {
885 #ifdef CONFIG_DEBUG_LOCK_ALLOC
886 if (S_ISDIR(inode->i_mode)) {
887 struct file_system_type *type = inode->i_sb->s_type;
888
889 /* Set new key only if filesystem hasn't already changed it */
890 if (!lockdep_match_class(&inode->i_mutex,
891 &type->i_mutex_key)) {
892 /*
893 * ensure nobody is actually holding i_mutex
894 */
895 mutex_destroy(&inode->i_mutex);
896 mutex_init(&inode->i_mutex);
897 lockdep_set_class(&inode->i_mutex,
898 &type->i_mutex_dir_key);
899 }
900 }
901 #endif
902 spin_lock(&inode->i_lock);
903 WARN_ON(!(inode->i_state & I_NEW));
904 inode->i_state &= ~I_NEW;
905 wake_up_bit(&inode->i_state, __I_NEW);
906 spin_unlock(&inode->i_lock);
907 }
908 EXPORT_SYMBOL(unlock_new_inode);
909
910 /*
911 * This is called without the inode lock held.. Be careful.
912 *
913 * We no longer cache the sb_flags in i_flags - see fs.h
914 * -- rmk@arm.uk.linux.org
915 */
916 static struct inode *get_new_inode(struct super_block *sb,
917 struct hlist_head *head,
918 int (*test)(struct inode *, void *),
919 int (*set)(struct inode *, void *),
920 void *data)
921 {
922 struct inode *inode;
923
924 inode = alloc_inode(sb);
925 if (inode) {
926 struct inode *old;
927
928 spin_lock(&inode_lock);
929 /* We released the lock, so.. */
930 old = find_inode(sb, head, test, data);
931 if (!old) {
932 if (set(inode, data))
933 goto set_failed;
934
935 spin_lock(&inode->i_lock);
936 inode->i_state = I_NEW;
937 hlist_add_head(&inode->i_hash, head);
938 spin_unlock(&inode->i_lock);
939 __inode_sb_list_add(inode);
940 spin_unlock(&inode_lock);
941
942 /* Return the locked inode with I_NEW set, the
943 * caller is responsible for filling in the contents
944 */
945 return inode;
946 }
947
948 /*
949 * Uhhuh, somebody else created the same inode under
950 * us. Use the old inode instead of the one we just
951 * allocated.
952 */
953 spin_unlock(&inode_lock);
954 destroy_inode(inode);
955 inode = old;
956 wait_on_inode(inode);
957 }
958 return inode;
959
960 set_failed:
961 spin_unlock(&inode_lock);
962 destroy_inode(inode);
963 return NULL;
964 }
965
966 /*
967 * get_new_inode_fast is the fast path version of get_new_inode, see the
968 * comment at iget_locked for details.
969 */
970 static struct inode *get_new_inode_fast(struct super_block *sb,
971 struct hlist_head *head, unsigned long ino)
972 {
973 struct inode *inode;
974
975 inode = alloc_inode(sb);
976 if (inode) {
977 struct inode *old;
978
979 spin_lock(&inode_lock);
980 /* We released the lock, so.. */
981 old = find_inode_fast(sb, head, ino);
982 if (!old) {
983 inode->i_ino = ino;
984 spin_lock(&inode->i_lock);
985 inode->i_state = I_NEW;
986 hlist_add_head(&inode->i_hash, head);
987 spin_unlock(&inode->i_lock);
988 __inode_sb_list_add(inode);
989 spin_unlock(&inode_lock);
990
991 /* Return the locked inode with I_NEW set, the
992 * caller is responsible for filling in the contents
993 */
994 return inode;
995 }
996
997 /*
998 * Uhhuh, somebody else created the same inode under
999 * us. Use the old inode instead of the one we just
1000 * allocated.
1001 */
1002 spin_unlock(&inode_lock);
1003 destroy_inode(inode);
1004 inode = old;
1005 wait_on_inode(inode);
1006 }
1007 return inode;
1008 }
1009
1010 /*
1011 * search the inode cache for a matching inode number.
1012 * If we find one, then the inode number we are trying to
1013 * allocate is not unique and so we should not use it.
1014 *
1015 * Returns 1 if the inode number is unique, 0 if it is not.
1016 */
1017 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1018 {
1019 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1020 struct hlist_node *node;
1021 struct inode *inode;
1022
1023 hlist_for_each_entry(inode, node, b, i_hash) {
1024 if (inode->i_ino == ino && inode->i_sb == sb)
1025 return 0;
1026 }
1027
1028 return 1;
1029 }
1030
1031 /**
1032 * iunique - get a unique inode number
1033 * @sb: superblock
1034 * @max_reserved: highest reserved inode number
1035 *
1036 * Obtain an inode number that is unique on the system for a given
1037 * superblock. This is used by file systems that have no natural
1038 * permanent inode numbering system. An inode number is returned that
1039 * is higher than the reserved limit but unique.
1040 *
1041 * BUGS:
1042 * With a large number of inodes live on the file system this function
1043 * currently becomes quite slow.
1044 */
1045 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1046 {
1047 /*
1048 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1049 * error if st_ino won't fit in target struct field. Use 32bit counter
1050 * here to attempt to avoid that.
1051 */
1052 static DEFINE_SPINLOCK(iunique_lock);
1053 static unsigned int counter;
1054 ino_t res;
1055
1056 spin_lock(&inode_lock);
1057 spin_lock(&iunique_lock);
1058 do {
1059 if (counter <= max_reserved)
1060 counter = max_reserved + 1;
1061 res = counter++;
1062 } while (!test_inode_iunique(sb, res));
1063 spin_unlock(&iunique_lock);
1064 spin_unlock(&inode_lock);
1065
1066 return res;
1067 }
1068 EXPORT_SYMBOL(iunique);
1069
1070 struct inode *igrab(struct inode *inode)
1071 {
1072 spin_lock(&inode_lock);
1073 spin_lock(&inode->i_lock);
1074 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1075 __iget(inode);
1076 spin_unlock(&inode->i_lock);
1077 } else {
1078 spin_unlock(&inode->i_lock);
1079 /*
1080 * Handle the case where s_op->clear_inode is not been
1081 * called yet, and somebody is calling igrab
1082 * while the inode is getting freed.
1083 */
1084 inode = NULL;
1085 }
1086 spin_unlock(&inode_lock);
1087 return inode;
1088 }
1089 EXPORT_SYMBOL(igrab);
1090
1091 /**
1092 * ifind - internal function, you want ilookup5() or iget5().
1093 * @sb: super block of file system to search
1094 * @head: the head of the list to search
1095 * @test: callback used for comparisons between inodes
1096 * @data: opaque data pointer to pass to @test
1097 * @wait: if true wait for the inode to be unlocked, if false do not
1098 *
1099 * ifind() searches for the inode specified by @data in the inode
1100 * cache. This is a generalized version of ifind_fast() for file systems where
1101 * the inode number is not sufficient for unique identification of an inode.
1102 *
1103 * If the inode is in the cache, the inode is returned with an incremented
1104 * reference count.
1105 *
1106 * Otherwise NULL is returned.
1107 *
1108 * Note, @test is called with the inode_lock held, so can't sleep.
1109 */
1110 static struct inode *ifind(struct super_block *sb,
1111 struct hlist_head *head, int (*test)(struct inode *, void *),
1112 void *data, const int wait)
1113 {
1114 struct inode *inode;
1115
1116 spin_lock(&inode_lock);
1117 inode = find_inode(sb, head, test, data);
1118 if (inode) {
1119 spin_unlock(&inode_lock);
1120 if (likely(wait))
1121 wait_on_inode(inode);
1122 return inode;
1123 }
1124 spin_unlock(&inode_lock);
1125 return NULL;
1126 }
1127
1128 /**
1129 * ifind_fast - internal function, you want ilookup() or iget().
1130 * @sb: super block of file system to search
1131 * @head: head of the list to search
1132 * @ino: inode number to search for
1133 *
1134 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1135 * file systems where the inode number is sufficient for unique identification
1136 * of an inode.
1137 *
1138 * If the inode is in the cache, the inode is returned with an incremented
1139 * reference count.
1140 *
1141 * Otherwise NULL is returned.
1142 */
1143 static struct inode *ifind_fast(struct super_block *sb,
1144 struct hlist_head *head, unsigned long ino)
1145 {
1146 struct inode *inode;
1147
1148 spin_lock(&inode_lock);
1149 inode = find_inode_fast(sb, head, ino);
1150 if (inode) {
1151 spin_unlock(&inode_lock);
1152 wait_on_inode(inode);
1153 return inode;
1154 }
1155 spin_unlock(&inode_lock);
1156 return NULL;
1157 }
1158
1159 /**
1160 * ilookup5_nowait - search for an inode in the inode cache
1161 * @sb: super block of file system to search
1162 * @hashval: hash value (usually inode number) to search for
1163 * @test: callback used for comparisons between inodes
1164 * @data: opaque data pointer to pass to @test
1165 *
1166 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1167 * @data in the inode cache. This is a generalized version of ilookup() for
1168 * file systems where the inode number is not sufficient for unique
1169 * identification of an inode.
1170 *
1171 * If the inode is in the cache, the inode is returned with an incremented
1172 * reference count. Note, the inode lock is not waited upon so you have to be
1173 * very careful what you do with the returned inode. You probably should be
1174 * using ilookup5() instead.
1175 *
1176 * Otherwise NULL is returned.
1177 *
1178 * Note, @test is called with the inode_lock held, so can't sleep.
1179 */
1180 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1181 int (*test)(struct inode *, void *), void *data)
1182 {
1183 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1184
1185 return ifind(sb, head, test, data, 0);
1186 }
1187 EXPORT_SYMBOL(ilookup5_nowait);
1188
1189 /**
1190 * ilookup5 - search for an inode in the inode cache
1191 * @sb: super block of file system to search
1192 * @hashval: hash value (usually inode number) to search for
1193 * @test: callback used for comparisons between inodes
1194 * @data: opaque data pointer to pass to @test
1195 *
1196 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1197 * @data in the inode cache. This is a generalized version of ilookup() for
1198 * file systems where the inode number is not sufficient for unique
1199 * identification of an inode.
1200 *
1201 * If the inode is in the cache, the inode lock is waited upon and the inode is
1202 * returned with an incremented reference count.
1203 *
1204 * Otherwise NULL is returned.
1205 *
1206 * Note, @test is called with the inode_lock held, so can't sleep.
1207 */
1208 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1209 int (*test)(struct inode *, void *), void *data)
1210 {
1211 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1212
1213 return ifind(sb, head, test, data, 1);
1214 }
1215 EXPORT_SYMBOL(ilookup5);
1216
1217 /**
1218 * ilookup - search for an inode in the inode cache
1219 * @sb: super block of file system to search
1220 * @ino: inode number to search for
1221 *
1222 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1223 * This is for file systems where the inode number is sufficient for unique
1224 * identification of an inode.
1225 *
1226 * If the inode is in the cache, the inode is returned with an incremented
1227 * reference count.
1228 *
1229 * Otherwise NULL is returned.
1230 */
1231 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1232 {
1233 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1234
1235 return ifind_fast(sb, head, ino);
1236 }
1237 EXPORT_SYMBOL(ilookup);
1238
1239 /**
1240 * iget5_locked - obtain an inode from a mounted file system
1241 * @sb: super block of file system
1242 * @hashval: hash value (usually inode number) to get
1243 * @test: callback used for comparisons between inodes
1244 * @set: callback used to initialize a new struct inode
1245 * @data: opaque data pointer to pass to @test and @set
1246 *
1247 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1248 * and @data in the inode cache and if present it is returned with an increased
1249 * reference count. This is a generalized version of iget_locked() for file
1250 * systems where the inode number is not sufficient for unique identification
1251 * of an inode.
1252 *
1253 * If the inode is not in cache, get_new_inode() is called to allocate a new
1254 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1255 * file system gets to fill it in before unlocking it via unlock_new_inode().
1256 *
1257 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1258 */
1259 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1260 int (*test)(struct inode *, void *),
1261 int (*set)(struct inode *, void *), void *data)
1262 {
1263 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1264 struct inode *inode;
1265
1266 inode = ifind(sb, head, test, data, 1);
1267 if (inode)
1268 return inode;
1269 /*
1270 * get_new_inode() will do the right thing, re-trying the search
1271 * in case it had to block at any point.
1272 */
1273 return get_new_inode(sb, head, test, set, data);
1274 }
1275 EXPORT_SYMBOL(iget5_locked);
1276
1277 /**
1278 * iget_locked - obtain an inode from a mounted file system
1279 * @sb: super block of file system
1280 * @ino: inode number to get
1281 *
1282 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1283 * the inode cache and if present it is returned with an increased reference
1284 * count. This is for file systems where the inode number is sufficient for
1285 * unique identification of an inode.
1286 *
1287 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1288 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1289 * The file system gets to fill it in before unlocking it via
1290 * unlock_new_inode().
1291 */
1292 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1293 {
1294 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1295 struct inode *inode;
1296
1297 inode = ifind_fast(sb, head, ino);
1298 if (inode)
1299 return inode;
1300 /*
1301 * get_new_inode_fast() will do the right thing, re-trying the search
1302 * in case it had to block at any point.
1303 */
1304 return get_new_inode_fast(sb, head, ino);
1305 }
1306 EXPORT_SYMBOL(iget_locked);
1307
1308 int insert_inode_locked(struct inode *inode)
1309 {
1310 struct super_block *sb = inode->i_sb;
1311 ino_t ino = inode->i_ino;
1312 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1313
1314 while (1) {
1315 struct hlist_node *node;
1316 struct inode *old = NULL;
1317 spin_lock(&inode_lock);
1318 hlist_for_each_entry(old, node, head, i_hash) {
1319 if (old->i_ino != ino)
1320 continue;
1321 if (old->i_sb != sb)
1322 continue;
1323 spin_lock(&old->i_lock);
1324 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1325 spin_unlock(&old->i_lock);
1326 continue;
1327 }
1328 break;
1329 }
1330 if (likely(!node)) {
1331 spin_lock(&inode->i_lock);
1332 inode->i_state |= I_NEW;
1333 hlist_add_head(&inode->i_hash, head);
1334 spin_unlock(&inode->i_lock);
1335 spin_unlock(&inode_lock);
1336 return 0;
1337 }
1338 __iget(old);
1339 spin_unlock(&old->i_lock);
1340 spin_unlock(&inode_lock);
1341 wait_on_inode(old);
1342 if (unlikely(!inode_unhashed(old))) {
1343 iput(old);
1344 return -EBUSY;
1345 }
1346 iput(old);
1347 }
1348 }
1349 EXPORT_SYMBOL(insert_inode_locked);
1350
1351 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1352 int (*test)(struct inode *, void *), void *data)
1353 {
1354 struct super_block *sb = inode->i_sb;
1355 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1356
1357 while (1) {
1358 struct hlist_node *node;
1359 struct inode *old = NULL;
1360
1361 spin_lock(&inode_lock);
1362 hlist_for_each_entry(old, node, head, i_hash) {
1363 if (old->i_sb != sb)
1364 continue;
1365 if (!test(old, data))
1366 continue;
1367 spin_lock(&old->i_lock);
1368 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1369 spin_unlock(&old->i_lock);
1370 continue;
1371 }
1372 break;
1373 }
1374 if (likely(!node)) {
1375 spin_lock(&inode->i_lock);
1376 inode->i_state |= I_NEW;
1377 hlist_add_head(&inode->i_hash, head);
1378 spin_unlock(&inode->i_lock);
1379 spin_unlock(&inode_lock);
1380 return 0;
1381 }
1382 __iget(old);
1383 spin_unlock(&old->i_lock);
1384 spin_unlock(&inode_lock);
1385 wait_on_inode(old);
1386 if (unlikely(!inode_unhashed(old))) {
1387 iput(old);
1388 return -EBUSY;
1389 }
1390 iput(old);
1391 }
1392 }
1393 EXPORT_SYMBOL(insert_inode_locked4);
1394
1395
1396 int generic_delete_inode(struct inode *inode)
1397 {
1398 return 1;
1399 }
1400 EXPORT_SYMBOL(generic_delete_inode);
1401
1402 /*
1403 * Normal UNIX filesystem behaviour: delete the
1404 * inode when the usage count drops to zero, and
1405 * i_nlink is zero.
1406 */
1407 int generic_drop_inode(struct inode *inode)
1408 {
1409 return !inode->i_nlink || inode_unhashed(inode);
1410 }
1411 EXPORT_SYMBOL_GPL(generic_drop_inode);
1412
1413 /*
1414 * Called when we're dropping the last reference
1415 * to an inode.
1416 *
1417 * Call the FS "drop_inode()" function, defaulting to
1418 * the legacy UNIX filesystem behaviour. If it tells
1419 * us to evict inode, do so. Otherwise, retain inode
1420 * in cache if fs is alive, sync and evict if fs is
1421 * shutting down.
1422 */
1423 static void iput_final(struct inode *inode)
1424 {
1425 struct super_block *sb = inode->i_sb;
1426 const struct super_operations *op = inode->i_sb->s_op;
1427 int drop;
1428
1429 spin_lock(&inode->i_lock);
1430 WARN_ON(inode->i_state & I_NEW);
1431
1432 if (op && op->drop_inode)
1433 drop = op->drop_inode(inode);
1434 else
1435 drop = generic_drop_inode(inode);
1436
1437 if (!drop) {
1438 if (sb->s_flags & MS_ACTIVE) {
1439 inode->i_state |= I_REFERENCED;
1440 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1441 inode_lru_list_add(inode);
1442 }
1443 spin_unlock(&inode->i_lock);
1444 spin_unlock(&inode_lock);
1445 return;
1446 }
1447 inode->i_state |= I_WILL_FREE;
1448 spin_unlock(&inode->i_lock);
1449 spin_unlock(&inode_lock);
1450 write_inode_now(inode, 1);
1451 spin_lock(&inode_lock);
1452 spin_lock(&inode->i_lock);
1453 WARN_ON(inode->i_state & I_NEW);
1454 inode->i_state &= ~I_WILL_FREE;
1455 __remove_inode_hash(inode);
1456 }
1457
1458 inode->i_state |= I_FREEING;
1459 spin_unlock(&inode->i_lock);
1460
1461 /*
1462 * Move the inode off the IO lists and LRU once I_FREEING is
1463 * set so that it won't get moved back on there if it is dirty.
1464 */
1465 inode_lru_list_del(inode);
1466 list_del_init(&inode->i_wb_list);
1467
1468 __inode_sb_list_del(inode);
1469 spin_unlock(&inode_lock);
1470 evict(inode);
1471 remove_inode_hash(inode);
1472 spin_lock(&inode->i_lock);
1473 wake_up_bit(&inode->i_state, __I_NEW);
1474 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1475 spin_unlock(&inode->i_lock);
1476 destroy_inode(inode);
1477 }
1478
1479 /**
1480 * iput - put an inode
1481 * @inode: inode to put
1482 *
1483 * Puts an inode, dropping its usage count. If the inode use count hits
1484 * zero, the inode is then freed and may also be destroyed.
1485 *
1486 * Consequently, iput() can sleep.
1487 */
1488 void iput(struct inode *inode)
1489 {
1490 if (inode) {
1491 BUG_ON(inode->i_state & I_CLEAR);
1492
1493 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1494 iput_final(inode);
1495 }
1496 }
1497 EXPORT_SYMBOL(iput);
1498
1499 /**
1500 * bmap - find a block number in a file
1501 * @inode: inode of file
1502 * @block: block to find
1503 *
1504 * Returns the block number on the device holding the inode that
1505 * is the disk block number for the block of the file requested.
1506 * That is, asked for block 4 of inode 1 the function will return the
1507 * disk block relative to the disk start that holds that block of the
1508 * file.
1509 */
1510 sector_t bmap(struct inode *inode, sector_t block)
1511 {
1512 sector_t res = 0;
1513 if (inode->i_mapping->a_ops->bmap)
1514 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1515 return res;
1516 }
1517 EXPORT_SYMBOL(bmap);
1518
1519 /*
1520 * With relative atime, only update atime if the previous atime is
1521 * earlier than either the ctime or mtime or if at least a day has
1522 * passed since the last atime update.
1523 */
1524 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1525 struct timespec now)
1526 {
1527
1528 if (!(mnt->mnt_flags & MNT_RELATIME))
1529 return 1;
1530 /*
1531 * Is mtime younger than atime? If yes, update atime:
1532 */
1533 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1534 return 1;
1535 /*
1536 * Is ctime younger than atime? If yes, update atime:
1537 */
1538 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1539 return 1;
1540
1541 /*
1542 * Is the previous atime value older than a day? If yes,
1543 * update atime:
1544 */
1545 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1546 return 1;
1547 /*
1548 * Good, we can skip the atime update:
1549 */
1550 return 0;
1551 }
1552
1553 /**
1554 * touch_atime - update the access time
1555 * @mnt: mount the inode is accessed on
1556 * @dentry: dentry accessed
1557 *
1558 * Update the accessed time on an inode and mark it for writeback.
1559 * This function automatically handles read only file systems and media,
1560 * as well as the "noatime" flag and inode specific "noatime" markers.
1561 */
1562 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1563 {
1564 struct inode *inode = dentry->d_inode;
1565 struct timespec now;
1566
1567 if (inode->i_flags & S_NOATIME)
1568 return;
1569 if (IS_NOATIME(inode))
1570 return;
1571 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1572 return;
1573
1574 if (mnt->mnt_flags & MNT_NOATIME)
1575 return;
1576 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1577 return;
1578
1579 now = current_fs_time(inode->i_sb);
1580
1581 if (!relatime_need_update(mnt, inode, now))
1582 return;
1583
1584 if (timespec_equal(&inode->i_atime, &now))
1585 return;
1586
1587 if (mnt_want_write(mnt))
1588 return;
1589
1590 inode->i_atime = now;
1591 mark_inode_dirty_sync(inode);
1592 mnt_drop_write(mnt);
1593 }
1594 EXPORT_SYMBOL(touch_atime);
1595
1596 /**
1597 * file_update_time - update mtime and ctime time
1598 * @file: file accessed
1599 *
1600 * Update the mtime and ctime members of an inode and mark the inode
1601 * for writeback. Note that this function is meant exclusively for
1602 * usage in the file write path of filesystems, and filesystems may
1603 * choose to explicitly ignore update via this function with the
1604 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1605 * timestamps are handled by the server.
1606 */
1607
1608 void file_update_time(struct file *file)
1609 {
1610 struct inode *inode = file->f_path.dentry->d_inode;
1611 struct timespec now;
1612 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1613
1614 /* First try to exhaust all avenues to not sync */
1615 if (IS_NOCMTIME(inode))
1616 return;
1617
1618 now = current_fs_time(inode->i_sb);
1619 if (!timespec_equal(&inode->i_mtime, &now))
1620 sync_it = S_MTIME;
1621
1622 if (!timespec_equal(&inode->i_ctime, &now))
1623 sync_it |= S_CTIME;
1624
1625 if (IS_I_VERSION(inode))
1626 sync_it |= S_VERSION;
1627
1628 if (!sync_it)
1629 return;
1630
1631 /* Finally allowed to write? Takes lock. */
1632 if (mnt_want_write_file(file))
1633 return;
1634
1635 /* Only change inode inside the lock region */
1636 if (sync_it & S_VERSION)
1637 inode_inc_iversion(inode);
1638 if (sync_it & S_CTIME)
1639 inode->i_ctime = now;
1640 if (sync_it & S_MTIME)
1641 inode->i_mtime = now;
1642 mark_inode_dirty_sync(inode);
1643 mnt_drop_write(file->f_path.mnt);
1644 }
1645 EXPORT_SYMBOL(file_update_time);
1646
1647 int inode_needs_sync(struct inode *inode)
1648 {
1649 if (IS_SYNC(inode))
1650 return 1;
1651 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1652 return 1;
1653 return 0;
1654 }
1655 EXPORT_SYMBOL(inode_needs_sync);
1656
1657 int inode_wait(void *word)
1658 {
1659 schedule();
1660 return 0;
1661 }
1662 EXPORT_SYMBOL(inode_wait);
1663
1664 /*
1665 * If we try to find an inode in the inode hash while it is being
1666 * deleted, we have to wait until the filesystem completes its
1667 * deletion before reporting that it isn't found. This function waits
1668 * until the deletion _might_ have completed. Callers are responsible
1669 * to recheck inode state.
1670 *
1671 * It doesn't matter if I_NEW is not set initially, a call to
1672 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1673 * will DTRT.
1674 */
1675 static void __wait_on_freeing_inode(struct inode *inode)
1676 {
1677 wait_queue_head_t *wq;
1678 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1679 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1680 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1681 spin_unlock(&inode->i_lock);
1682 spin_unlock(&inode_lock);
1683 schedule();
1684 finish_wait(wq, &wait.wait);
1685 spin_lock(&inode_lock);
1686 }
1687
1688 static __initdata unsigned long ihash_entries;
1689 static int __init set_ihash_entries(char *str)
1690 {
1691 if (!str)
1692 return 0;
1693 ihash_entries = simple_strtoul(str, &str, 0);
1694 return 1;
1695 }
1696 __setup("ihash_entries=", set_ihash_entries);
1697
1698 /*
1699 * Initialize the waitqueues and inode hash table.
1700 */
1701 void __init inode_init_early(void)
1702 {
1703 int loop;
1704
1705 /* If hashes are distributed across NUMA nodes, defer
1706 * hash allocation until vmalloc space is available.
1707 */
1708 if (hashdist)
1709 return;
1710
1711 inode_hashtable =
1712 alloc_large_system_hash("Inode-cache",
1713 sizeof(struct hlist_head),
1714 ihash_entries,
1715 14,
1716 HASH_EARLY,
1717 &i_hash_shift,
1718 &i_hash_mask,
1719 0);
1720
1721 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1722 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1723 }
1724
1725 void __init inode_init(void)
1726 {
1727 int loop;
1728
1729 /* inode slab cache */
1730 inode_cachep = kmem_cache_create("inode_cache",
1731 sizeof(struct inode),
1732 0,
1733 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1734 SLAB_MEM_SPREAD),
1735 init_once);
1736 register_shrinker(&icache_shrinker);
1737
1738 /* Hash may have been set up in inode_init_early */
1739 if (!hashdist)
1740 return;
1741
1742 inode_hashtable =
1743 alloc_large_system_hash("Inode-cache",
1744 sizeof(struct hlist_head),
1745 ihash_entries,
1746 14,
1747 0,
1748 &i_hash_shift,
1749 &i_hash_mask,
1750 0);
1751
1752 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1753 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1754 }
1755
1756 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1757 {
1758 inode->i_mode = mode;
1759 if (S_ISCHR(mode)) {
1760 inode->i_fop = &def_chr_fops;
1761 inode->i_rdev = rdev;
1762 } else if (S_ISBLK(mode)) {
1763 inode->i_fop = &def_blk_fops;
1764 inode->i_rdev = rdev;
1765 } else if (S_ISFIFO(mode))
1766 inode->i_fop = &def_fifo_fops;
1767 else if (S_ISSOCK(mode))
1768 inode->i_fop = &bad_sock_fops;
1769 else
1770 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1771 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1772 inode->i_ino);
1773 }
1774 EXPORT_SYMBOL(init_special_inode);
1775
1776 /**
1777 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1778 * @inode: New inode
1779 * @dir: Directory inode
1780 * @mode: mode of the new inode
1781 */
1782 void inode_init_owner(struct inode *inode, const struct inode *dir,
1783 mode_t mode)
1784 {
1785 inode->i_uid = current_fsuid();
1786 if (dir && dir->i_mode & S_ISGID) {
1787 inode->i_gid = dir->i_gid;
1788 if (S_ISDIR(mode))
1789 mode |= S_ISGID;
1790 } else
1791 inode->i_gid = current_fsgid();
1792 inode->i_mode = mode;
1793 }
1794 EXPORT_SYMBOL(inode_init_owner);
1795
1796 /**
1797 * inode_owner_or_capable - check current task permissions to inode
1798 * @inode: inode being checked
1799 *
1800 * Return true if current either has CAP_FOWNER to the inode, or
1801 * owns the file.
1802 */
1803 bool inode_owner_or_capable(const struct inode *inode)
1804 {
1805 struct user_namespace *ns = inode_userns(inode);
1806
1807 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1808 return true;
1809 if (ns_capable(ns, CAP_FOWNER))
1810 return true;
1811 return false;
1812 }
1813 EXPORT_SYMBOL(inode_owner_or_capable);
This page took 0.067593 seconds and 5 git commands to generate.