fs: use RCU in shrink_dentry_list to reduce lock nesting
[deliverable/linux.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28
29 /*
30 * This is needed for the following functions:
31 * - inode_has_buffers
32 * - invalidate_bdev
33 *
34 * FIXME: remove all knowledge of the buffer layer from this file
35 */
36 #include <linux/buffer_head.h>
37
38 /*
39 * New inode.c implementation.
40 *
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
44 *
45 * Famous last words.
46 */
47
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52
53 /*
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
56 */
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
59
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62
63 /*
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
70 *
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
73 */
74
75 static LIST_HEAD(inode_lru);
76 static struct hlist_head *inode_hashtable __read_mostly;
77
78 /*
79 * A simple spinlock to protect the list manipulations.
80 *
81 * NOTE! You also have to own the lock if you change
82 * the i_state of an inode while it is in use..
83 */
84 DEFINE_SPINLOCK(inode_lock);
85
86 /*
87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88 * icache shrinking path, and the umount path. Without this exclusion,
89 * by the time prune_icache calls iput for the inode whose pages it has
90 * been invalidating, or by the time it calls clear_inode & destroy_inode
91 * from its final dispose_list, the struct super_block they refer to
92 * (for inode->i_sb->s_op) may already have been freed and reused.
93 *
94 * We make this an rwsem because the fastpath is icache shrinking. In
95 * some cases a filesystem may be doing a significant amount of work in
96 * its inode reclaim code, so this should improve parallelism.
97 */
98 static DECLARE_RWSEM(iprune_sem);
99
100 /*
101 * Statistics gathering..
102 */
103 struct inodes_stat_t inodes_stat;
104
105 static DEFINE_PER_CPU(unsigned int, nr_inodes);
106
107 static struct kmem_cache *inode_cachep __read_mostly;
108
109 static int get_nr_inodes(void)
110 {
111 int i;
112 int sum = 0;
113 for_each_possible_cpu(i)
114 sum += per_cpu(nr_inodes, i);
115 return sum < 0 ? 0 : sum;
116 }
117
118 static inline int get_nr_inodes_unused(void)
119 {
120 return inodes_stat.nr_unused;
121 }
122
123 int get_nr_dirty_inodes(void)
124 {
125 /* not actually dirty inodes, but a wild approximation */
126 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
127 return nr_dirty > 0 ? nr_dirty : 0;
128 }
129
130 /*
131 * Handle nr_inode sysctl
132 */
133 #ifdef CONFIG_SYSCTL
134 int proc_nr_inodes(ctl_table *table, int write,
135 void __user *buffer, size_t *lenp, loff_t *ppos)
136 {
137 inodes_stat.nr_inodes = get_nr_inodes();
138 return proc_dointvec(table, write, buffer, lenp, ppos);
139 }
140 #endif
141
142 static void wake_up_inode(struct inode *inode)
143 {
144 /*
145 * Prevent speculative execution through spin_unlock(&inode_lock);
146 */
147 smp_mb();
148 wake_up_bit(&inode->i_state, __I_NEW);
149 }
150
151 /**
152 * inode_init_always - perform inode structure intialisation
153 * @sb: superblock inode belongs to
154 * @inode: inode to initialise
155 *
156 * These are initializations that need to be done on every inode
157 * allocation as the fields are not initialised by slab allocation.
158 */
159 int inode_init_always(struct super_block *sb, struct inode *inode)
160 {
161 static const struct address_space_operations empty_aops;
162 static const struct inode_operations empty_iops;
163 static const struct file_operations empty_fops;
164 struct address_space *const mapping = &inode->i_data;
165
166 inode->i_sb = sb;
167 inode->i_blkbits = sb->s_blocksize_bits;
168 inode->i_flags = 0;
169 atomic_set(&inode->i_count, 1);
170 inode->i_op = &empty_iops;
171 inode->i_fop = &empty_fops;
172 inode->i_nlink = 1;
173 inode->i_uid = 0;
174 inode->i_gid = 0;
175 atomic_set(&inode->i_writecount, 0);
176 inode->i_size = 0;
177 inode->i_blocks = 0;
178 inode->i_bytes = 0;
179 inode->i_generation = 0;
180 #ifdef CONFIG_QUOTA
181 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
182 #endif
183 inode->i_pipe = NULL;
184 inode->i_bdev = NULL;
185 inode->i_cdev = NULL;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 if (security_inode_alloc(inode))
190 goto out;
191 spin_lock_init(&inode->i_lock);
192 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
193
194 mutex_init(&inode->i_mutex);
195 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
196
197 init_rwsem(&inode->i_alloc_sem);
198 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
199
200 mapping->a_ops = &empty_aops;
201 mapping->host = inode;
202 mapping->flags = 0;
203 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
204 mapping->assoc_mapping = NULL;
205 mapping->backing_dev_info = &default_backing_dev_info;
206 mapping->writeback_index = 0;
207
208 /*
209 * If the block_device provides a backing_dev_info for client
210 * inodes then use that. Otherwise the inode share the bdev's
211 * backing_dev_info.
212 */
213 if (sb->s_bdev) {
214 struct backing_dev_info *bdi;
215
216 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
217 mapping->backing_dev_info = bdi;
218 }
219 inode->i_private = NULL;
220 inode->i_mapping = mapping;
221 #ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223 #endif
224
225 #ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227 #endif
228
229 this_cpu_inc(nr_inodes);
230
231 return 0;
232 out:
233 return -ENOMEM;
234 }
235 EXPORT_SYMBOL(inode_init_always);
236
237 static struct inode *alloc_inode(struct super_block *sb)
238 {
239 struct inode *inode;
240
241 if (sb->s_op->alloc_inode)
242 inode = sb->s_op->alloc_inode(sb);
243 else
244 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
245
246 if (!inode)
247 return NULL;
248
249 if (unlikely(inode_init_always(sb, inode))) {
250 if (inode->i_sb->s_op->destroy_inode)
251 inode->i_sb->s_op->destroy_inode(inode);
252 else
253 kmem_cache_free(inode_cachep, inode);
254 return NULL;
255 }
256
257 return inode;
258 }
259
260 void __destroy_inode(struct inode *inode)
261 {
262 BUG_ON(inode_has_buffers(inode));
263 security_inode_free(inode);
264 fsnotify_inode_delete(inode);
265 #ifdef CONFIG_FS_POSIX_ACL
266 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
267 posix_acl_release(inode->i_acl);
268 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
269 posix_acl_release(inode->i_default_acl);
270 #endif
271 this_cpu_dec(nr_inodes);
272 }
273 EXPORT_SYMBOL(__destroy_inode);
274
275 static void destroy_inode(struct inode *inode)
276 {
277 BUG_ON(!list_empty(&inode->i_lru));
278 __destroy_inode(inode);
279 if (inode->i_sb->s_op->destroy_inode)
280 inode->i_sb->s_op->destroy_inode(inode);
281 else
282 kmem_cache_free(inode_cachep, (inode));
283 }
284
285 /*
286 * These are initializations that only need to be done
287 * once, because the fields are idempotent across use
288 * of the inode, so let the slab aware of that.
289 */
290 void inode_init_once(struct inode *inode)
291 {
292 memset(inode, 0, sizeof(*inode));
293 INIT_HLIST_NODE(&inode->i_hash);
294 INIT_LIST_HEAD(&inode->i_dentry);
295 INIT_LIST_HEAD(&inode->i_devices);
296 INIT_LIST_HEAD(&inode->i_wb_list);
297 INIT_LIST_HEAD(&inode->i_lru);
298 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
299 spin_lock_init(&inode->i_data.tree_lock);
300 spin_lock_init(&inode->i_data.i_mmap_lock);
301 INIT_LIST_HEAD(&inode->i_data.private_list);
302 spin_lock_init(&inode->i_data.private_lock);
303 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
304 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
305 i_size_ordered_init(inode);
306 #ifdef CONFIG_FSNOTIFY
307 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
308 #endif
309 }
310 EXPORT_SYMBOL(inode_init_once);
311
312 static void init_once(void *foo)
313 {
314 struct inode *inode = (struct inode *) foo;
315
316 inode_init_once(inode);
317 }
318
319 /*
320 * inode_lock must be held
321 */
322 void __iget(struct inode *inode)
323 {
324 atomic_inc(&inode->i_count);
325 }
326
327 /*
328 * get additional reference to inode; caller must already hold one.
329 */
330 void ihold(struct inode *inode)
331 {
332 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
333 }
334 EXPORT_SYMBOL(ihold);
335
336 static void inode_lru_list_add(struct inode *inode)
337 {
338 if (list_empty(&inode->i_lru)) {
339 list_add(&inode->i_lru, &inode_lru);
340 inodes_stat.nr_unused++;
341 }
342 }
343
344 static void inode_lru_list_del(struct inode *inode)
345 {
346 if (!list_empty(&inode->i_lru)) {
347 list_del_init(&inode->i_lru);
348 inodes_stat.nr_unused--;
349 }
350 }
351
352 static inline void __inode_sb_list_add(struct inode *inode)
353 {
354 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
355 }
356
357 /**
358 * inode_sb_list_add - add inode to the superblock list of inodes
359 * @inode: inode to add
360 */
361 void inode_sb_list_add(struct inode *inode)
362 {
363 spin_lock(&inode_lock);
364 __inode_sb_list_add(inode);
365 spin_unlock(&inode_lock);
366 }
367 EXPORT_SYMBOL_GPL(inode_sb_list_add);
368
369 static inline void __inode_sb_list_del(struct inode *inode)
370 {
371 list_del_init(&inode->i_sb_list);
372 }
373
374 static unsigned long hash(struct super_block *sb, unsigned long hashval)
375 {
376 unsigned long tmp;
377
378 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
379 L1_CACHE_BYTES;
380 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
381 return tmp & I_HASHMASK;
382 }
383
384 /**
385 * __insert_inode_hash - hash an inode
386 * @inode: unhashed inode
387 * @hashval: unsigned long value used to locate this object in the
388 * inode_hashtable.
389 *
390 * Add an inode to the inode hash for this superblock.
391 */
392 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
393 {
394 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
395
396 spin_lock(&inode_lock);
397 hlist_add_head(&inode->i_hash, b);
398 spin_unlock(&inode_lock);
399 }
400 EXPORT_SYMBOL(__insert_inode_hash);
401
402 /**
403 * __remove_inode_hash - remove an inode from the hash
404 * @inode: inode to unhash
405 *
406 * Remove an inode from the superblock.
407 */
408 static void __remove_inode_hash(struct inode *inode)
409 {
410 hlist_del_init(&inode->i_hash);
411 }
412
413 /**
414 * remove_inode_hash - remove an inode from the hash
415 * @inode: inode to unhash
416 *
417 * Remove an inode from the superblock.
418 */
419 void remove_inode_hash(struct inode *inode)
420 {
421 spin_lock(&inode_lock);
422 hlist_del_init(&inode->i_hash);
423 spin_unlock(&inode_lock);
424 }
425 EXPORT_SYMBOL(remove_inode_hash);
426
427 void end_writeback(struct inode *inode)
428 {
429 might_sleep();
430 BUG_ON(inode->i_data.nrpages);
431 BUG_ON(!list_empty(&inode->i_data.private_list));
432 BUG_ON(!(inode->i_state & I_FREEING));
433 BUG_ON(inode->i_state & I_CLEAR);
434 inode_sync_wait(inode);
435 inode->i_state = I_FREEING | I_CLEAR;
436 }
437 EXPORT_SYMBOL(end_writeback);
438
439 static void evict(struct inode *inode)
440 {
441 const struct super_operations *op = inode->i_sb->s_op;
442
443 if (op->evict_inode) {
444 op->evict_inode(inode);
445 } else {
446 if (inode->i_data.nrpages)
447 truncate_inode_pages(&inode->i_data, 0);
448 end_writeback(inode);
449 }
450 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
451 bd_forget(inode);
452 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
453 cd_forget(inode);
454 }
455
456 /*
457 * dispose_list - dispose of the contents of a local list
458 * @head: the head of the list to free
459 *
460 * Dispose-list gets a local list with local inodes in it, so it doesn't
461 * need to worry about list corruption and SMP locks.
462 */
463 static void dispose_list(struct list_head *head)
464 {
465 while (!list_empty(head)) {
466 struct inode *inode;
467
468 inode = list_first_entry(head, struct inode, i_lru);
469 list_del_init(&inode->i_lru);
470
471 evict(inode);
472
473 spin_lock(&inode_lock);
474 __remove_inode_hash(inode);
475 __inode_sb_list_del(inode);
476 spin_unlock(&inode_lock);
477
478 wake_up_inode(inode);
479 destroy_inode(inode);
480 }
481 }
482
483 /**
484 * evict_inodes - evict all evictable inodes for a superblock
485 * @sb: superblock to operate on
486 *
487 * Make sure that no inodes with zero refcount are retained. This is
488 * called by superblock shutdown after having MS_ACTIVE flag removed,
489 * so any inode reaching zero refcount during or after that call will
490 * be immediately evicted.
491 */
492 void evict_inodes(struct super_block *sb)
493 {
494 struct inode *inode, *next;
495 LIST_HEAD(dispose);
496
497 down_write(&iprune_sem);
498
499 spin_lock(&inode_lock);
500 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
501 if (atomic_read(&inode->i_count))
502 continue;
503
504 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
505 WARN_ON(1);
506 continue;
507 }
508
509 inode->i_state |= I_FREEING;
510
511 /*
512 * Move the inode off the IO lists and LRU once I_FREEING is
513 * set so that it won't get moved back on there if it is dirty.
514 */
515 list_move(&inode->i_lru, &dispose);
516 list_del_init(&inode->i_wb_list);
517 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
518 inodes_stat.nr_unused--;
519 }
520 spin_unlock(&inode_lock);
521
522 dispose_list(&dispose);
523 up_write(&iprune_sem);
524 }
525
526 /**
527 * invalidate_inodes - attempt to free all inodes on a superblock
528 * @sb: superblock to operate on
529 *
530 * Attempts to free all inodes for a given superblock. If there were any
531 * busy inodes return a non-zero value, else zero.
532 */
533 int invalidate_inodes(struct super_block *sb)
534 {
535 int busy = 0;
536 struct inode *inode, *next;
537 LIST_HEAD(dispose);
538
539 down_write(&iprune_sem);
540
541 spin_lock(&inode_lock);
542 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
543 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
544 continue;
545 if (atomic_read(&inode->i_count)) {
546 busy = 1;
547 continue;
548 }
549
550 inode->i_state |= I_FREEING;
551
552 /*
553 * Move the inode off the IO lists and LRU once I_FREEING is
554 * set so that it won't get moved back on there if it is dirty.
555 */
556 list_move(&inode->i_lru, &dispose);
557 list_del_init(&inode->i_wb_list);
558 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
559 inodes_stat.nr_unused--;
560 }
561 spin_unlock(&inode_lock);
562
563 dispose_list(&dispose);
564 up_write(&iprune_sem);
565
566 return busy;
567 }
568
569 static int can_unuse(struct inode *inode)
570 {
571 if (inode->i_state & ~I_REFERENCED)
572 return 0;
573 if (inode_has_buffers(inode))
574 return 0;
575 if (atomic_read(&inode->i_count))
576 return 0;
577 if (inode->i_data.nrpages)
578 return 0;
579 return 1;
580 }
581
582 /*
583 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
584 * temporary list and then are freed outside inode_lock by dispose_list().
585 *
586 * Any inodes which are pinned purely because of attached pagecache have their
587 * pagecache removed. If the inode has metadata buffers attached to
588 * mapping->private_list then try to remove them.
589 *
590 * If the inode has the I_REFERENCED flag set, then it means that it has been
591 * used recently - the flag is set in iput_final(). When we encounter such an
592 * inode, clear the flag and move it to the back of the LRU so it gets another
593 * pass through the LRU before it gets reclaimed. This is necessary because of
594 * the fact we are doing lazy LRU updates to minimise lock contention so the
595 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
596 * with this flag set because they are the inodes that are out of order.
597 */
598 static void prune_icache(int nr_to_scan)
599 {
600 LIST_HEAD(freeable);
601 int nr_scanned;
602 unsigned long reap = 0;
603
604 down_read(&iprune_sem);
605 spin_lock(&inode_lock);
606 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
607 struct inode *inode;
608
609 if (list_empty(&inode_lru))
610 break;
611
612 inode = list_entry(inode_lru.prev, struct inode, i_lru);
613
614 /*
615 * Referenced or dirty inodes are still in use. Give them
616 * another pass through the LRU as we canot reclaim them now.
617 */
618 if (atomic_read(&inode->i_count) ||
619 (inode->i_state & ~I_REFERENCED)) {
620 list_del_init(&inode->i_lru);
621 inodes_stat.nr_unused--;
622 continue;
623 }
624
625 /* recently referenced inodes get one more pass */
626 if (inode->i_state & I_REFERENCED) {
627 list_move(&inode->i_lru, &inode_lru);
628 inode->i_state &= ~I_REFERENCED;
629 continue;
630 }
631 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
632 __iget(inode);
633 spin_unlock(&inode_lock);
634 if (remove_inode_buffers(inode))
635 reap += invalidate_mapping_pages(&inode->i_data,
636 0, -1);
637 iput(inode);
638 spin_lock(&inode_lock);
639
640 if (inode != list_entry(inode_lru.next,
641 struct inode, i_lru))
642 continue; /* wrong inode or list_empty */
643 if (!can_unuse(inode))
644 continue;
645 }
646 WARN_ON(inode->i_state & I_NEW);
647 inode->i_state |= I_FREEING;
648
649 /*
650 * Move the inode off the IO lists and LRU once I_FREEING is
651 * set so that it won't get moved back on there if it is dirty.
652 */
653 list_move(&inode->i_lru, &freeable);
654 list_del_init(&inode->i_wb_list);
655 inodes_stat.nr_unused--;
656 }
657 if (current_is_kswapd())
658 __count_vm_events(KSWAPD_INODESTEAL, reap);
659 else
660 __count_vm_events(PGINODESTEAL, reap);
661 spin_unlock(&inode_lock);
662
663 dispose_list(&freeable);
664 up_read(&iprune_sem);
665 }
666
667 /*
668 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
669 * "unused" means that no dentries are referring to the inodes: the files are
670 * not open and the dcache references to those inodes have already been
671 * reclaimed.
672 *
673 * This function is passed the number of inodes to scan, and it returns the
674 * total number of remaining possibly-reclaimable inodes.
675 */
676 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
677 {
678 if (nr) {
679 /*
680 * Nasty deadlock avoidance. We may hold various FS locks,
681 * and we don't want to recurse into the FS that called us
682 * in clear_inode() and friends..
683 */
684 if (!(gfp_mask & __GFP_FS))
685 return -1;
686 prune_icache(nr);
687 }
688 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
689 }
690
691 static struct shrinker icache_shrinker = {
692 .shrink = shrink_icache_memory,
693 .seeks = DEFAULT_SEEKS,
694 };
695
696 static void __wait_on_freeing_inode(struct inode *inode);
697 /*
698 * Called with the inode lock held.
699 */
700 static struct inode *find_inode(struct super_block *sb,
701 struct hlist_head *head,
702 int (*test)(struct inode *, void *),
703 void *data)
704 {
705 struct hlist_node *node;
706 struct inode *inode = NULL;
707
708 repeat:
709 hlist_for_each_entry(inode, node, head, i_hash) {
710 if (inode->i_sb != sb)
711 continue;
712 if (!test(inode, data))
713 continue;
714 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
715 __wait_on_freeing_inode(inode);
716 goto repeat;
717 }
718 __iget(inode);
719 return inode;
720 }
721 return NULL;
722 }
723
724 /*
725 * find_inode_fast is the fast path version of find_inode, see the comment at
726 * iget_locked for details.
727 */
728 static struct inode *find_inode_fast(struct super_block *sb,
729 struct hlist_head *head, unsigned long ino)
730 {
731 struct hlist_node *node;
732 struct inode *inode = NULL;
733
734 repeat:
735 hlist_for_each_entry(inode, node, head, i_hash) {
736 if (inode->i_ino != ino)
737 continue;
738 if (inode->i_sb != sb)
739 continue;
740 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
741 __wait_on_freeing_inode(inode);
742 goto repeat;
743 }
744 __iget(inode);
745 return inode;
746 }
747 return NULL;
748 }
749
750 /*
751 * Each cpu owns a range of LAST_INO_BATCH numbers.
752 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
753 * to renew the exhausted range.
754 *
755 * This does not significantly increase overflow rate because every CPU can
756 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
757 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
758 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
759 * overflow rate by 2x, which does not seem too significant.
760 *
761 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
762 * error if st_ino won't fit in target struct field. Use 32bit counter
763 * here to attempt to avoid that.
764 */
765 #define LAST_INO_BATCH 1024
766 static DEFINE_PER_CPU(unsigned int, last_ino);
767
768 unsigned int get_next_ino(void)
769 {
770 unsigned int *p = &get_cpu_var(last_ino);
771 unsigned int res = *p;
772
773 #ifdef CONFIG_SMP
774 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
775 static atomic_t shared_last_ino;
776 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
777
778 res = next - LAST_INO_BATCH;
779 }
780 #endif
781
782 *p = ++res;
783 put_cpu_var(last_ino);
784 return res;
785 }
786 EXPORT_SYMBOL(get_next_ino);
787
788 /**
789 * new_inode - obtain an inode
790 * @sb: superblock
791 *
792 * Allocates a new inode for given superblock. The default gfp_mask
793 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
794 * If HIGHMEM pages are unsuitable or it is known that pages allocated
795 * for the page cache are not reclaimable or migratable,
796 * mapping_set_gfp_mask() must be called with suitable flags on the
797 * newly created inode's mapping
798 *
799 */
800 struct inode *new_inode(struct super_block *sb)
801 {
802 struct inode *inode;
803
804 spin_lock_prefetch(&inode_lock);
805
806 inode = alloc_inode(sb);
807 if (inode) {
808 spin_lock(&inode_lock);
809 __inode_sb_list_add(inode);
810 inode->i_state = 0;
811 spin_unlock(&inode_lock);
812 }
813 return inode;
814 }
815 EXPORT_SYMBOL(new_inode);
816
817 void unlock_new_inode(struct inode *inode)
818 {
819 #ifdef CONFIG_DEBUG_LOCK_ALLOC
820 if (S_ISDIR(inode->i_mode)) {
821 struct file_system_type *type = inode->i_sb->s_type;
822
823 /* Set new key only if filesystem hasn't already changed it */
824 if (!lockdep_match_class(&inode->i_mutex,
825 &type->i_mutex_key)) {
826 /*
827 * ensure nobody is actually holding i_mutex
828 */
829 mutex_destroy(&inode->i_mutex);
830 mutex_init(&inode->i_mutex);
831 lockdep_set_class(&inode->i_mutex,
832 &type->i_mutex_dir_key);
833 }
834 }
835 #endif
836 /*
837 * This is special! We do not need the spinlock when clearing I_NEW,
838 * because we're guaranteed that nobody else tries to do anything about
839 * the state of the inode when it is locked, as we just created it (so
840 * there can be no old holders that haven't tested I_NEW).
841 * However we must emit the memory barrier so that other CPUs reliably
842 * see the clearing of I_NEW after the other inode initialisation has
843 * completed.
844 */
845 smp_mb();
846 WARN_ON(!(inode->i_state & I_NEW));
847 inode->i_state &= ~I_NEW;
848 wake_up_inode(inode);
849 }
850 EXPORT_SYMBOL(unlock_new_inode);
851
852 /*
853 * This is called without the inode lock held.. Be careful.
854 *
855 * We no longer cache the sb_flags in i_flags - see fs.h
856 * -- rmk@arm.uk.linux.org
857 */
858 static struct inode *get_new_inode(struct super_block *sb,
859 struct hlist_head *head,
860 int (*test)(struct inode *, void *),
861 int (*set)(struct inode *, void *),
862 void *data)
863 {
864 struct inode *inode;
865
866 inode = alloc_inode(sb);
867 if (inode) {
868 struct inode *old;
869
870 spin_lock(&inode_lock);
871 /* We released the lock, so.. */
872 old = find_inode(sb, head, test, data);
873 if (!old) {
874 if (set(inode, data))
875 goto set_failed;
876
877 hlist_add_head(&inode->i_hash, head);
878 __inode_sb_list_add(inode);
879 inode->i_state = I_NEW;
880 spin_unlock(&inode_lock);
881
882 /* Return the locked inode with I_NEW set, the
883 * caller is responsible for filling in the contents
884 */
885 return inode;
886 }
887
888 /*
889 * Uhhuh, somebody else created the same inode under
890 * us. Use the old inode instead of the one we just
891 * allocated.
892 */
893 spin_unlock(&inode_lock);
894 destroy_inode(inode);
895 inode = old;
896 wait_on_inode(inode);
897 }
898 return inode;
899
900 set_failed:
901 spin_unlock(&inode_lock);
902 destroy_inode(inode);
903 return NULL;
904 }
905
906 /*
907 * get_new_inode_fast is the fast path version of get_new_inode, see the
908 * comment at iget_locked for details.
909 */
910 static struct inode *get_new_inode_fast(struct super_block *sb,
911 struct hlist_head *head, unsigned long ino)
912 {
913 struct inode *inode;
914
915 inode = alloc_inode(sb);
916 if (inode) {
917 struct inode *old;
918
919 spin_lock(&inode_lock);
920 /* We released the lock, so.. */
921 old = find_inode_fast(sb, head, ino);
922 if (!old) {
923 inode->i_ino = ino;
924 hlist_add_head(&inode->i_hash, head);
925 __inode_sb_list_add(inode);
926 inode->i_state = I_NEW;
927 spin_unlock(&inode_lock);
928
929 /* Return the locked inode with I_NEW set, the
930 * caller is responsible for filling in the contents
931 */
932 return inode;
933 }
934
935 /*
936 * Uhhuh, somebody else created the same inode under
937 * us. Use the old inode instead of the one we just
938 * allocated.
939 */
940 spin_unlock(&inode_lock);
941 destroy_inode(inode);
942 inode = old;
943 wait_on_inode(inode);
944 }
945 return inode;
946 }
947
948 /*
949 * search the inode cache for a matching inode number.
950 * If we find one, then the inode number we are trying to
951 * allocate is not unique and so we should not use it.
952 *
953 * Returns 1 if the inode number is unique, 0 if it is not.
954 */
955 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
956 {
957 struct hlist_head *b = inode_hashtable + hash(sb, ino);
958 struct hlist_node *node;
959 struct inode *inode;
960
961 hlist_for_each_entry(inode, node, b, i_hash) {
962 if (inode->i_ino == ino && inode->i_sb == sb)
963 return 0;
964 }
965
966 return 1;
967 }
968
969 /**
970 * iunique - get a unique inode number
971 * @sb: superblock
972 * @max_reserved: highest reserved inode number
973 *
974 * Obtain an inode number that is unique on the system for a given
975 * superblock. This is used by file systems that have no natural
976 * permanent inode numbering system. An inode number is returned that
977 * is higher than the reserved limit but unique.
978 *
979 * BUGS:
980 * With a large number of inodes live on the file system this function
981 * currently becomes quite slow.
982 */
983 ino_t iunique(struct super_block *sb, ino_t max_reserved)
984 {
985 /*
986 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
987 * error if st_ino won't fit in target struct field. Use 32bit counter
988 * here to attempt to avoid that.
989 */
990 static DEFINE_SPINLOCK(iunique_lock);
991 static unsigned int counter;
992 ino_t res;
993
994 spin_lock(&inode_lock);
995 spin_lock(&iunique_lock);
996 do {
997 if (counter <= max_reserved)
998 counter = max_reserved + 1;
999 res = counter++;
1000 } while (!test_inode_iunique(sb, res));
1001 spin_unlock(&iunique_lock);
1002 spin_unlock(&inode_lock);
1003
1004 return res;
1005 }
1006 EXPORT_SYMBOL(iunique);
1007
1008 struct inode *igrab(struct inode *inode)
1009 {
1010 spin_lock(&inode_lock);
1011 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1012 __iget(inode);
1013 else
1014 /*
1015 * Handle the case where s_op->clear_inode is not been
1016 * called yet, and somebody is calling igrab
1017 * while the inode is getting freed.
1018 */
1019 inode = NULL;
1020 spin_unlock(&inode_lock);
1021 return inode;
1022 }
1023 EXPORT_SYMBOL(igrab);
1024
1025 /**
1026 * ifind - internal function, you want ilookup5() or iget5().
1027 * @sb: super block of file system to search
1028 * @head: the head of the list to search
1029 * @test: callback used for comparisons between inodes
1030 * @data: opaque data pointer to pass to @test
1031 * @wait: if true wait for the inode to be unlocked, if false do not
1032 *
1033 * ifind() searches for the inode specified by @data in the inode
1034 * cache. This is a generalized version of ifind_fast() for file systems where
1035 * the inode number is not sufficient for unique identification of an inode.
1036 *
1037 * If the inode is in the cache, the inode is returned with an incremented
1038 * reference count.
1039 *
1040 * Otherwise NULL is returned.
1041 *
1042 * Note, @test is called with the inode_lock held, so can't sleep.
1043 */
1044 static struct inode *ifind(struct super_block *sb,
1045 struct hlist_head *head, int (*test)(struct inode *, void *),
1046 void *data, const int wait)
1047 {
1048 struct inode *inode;
1049
1050 spin_lock(&inode_lock);
1051 inode = find_inode(sb, head, test, data);
1052 if (inode) {
1053 spin_unlock(&inode_lock);
1054 if (likely(wait))
1055 wait_on_inode(inode);
1056 return inode;
1057 }
1058 spin_unlock(&inode_lock);
1059 return NULL;
1060 }
1061
1062 /**
1063 * ifind_fast - internal function, you want ilookup() or iget().
1064 * @sb: super block of file system to search
1065 * @head: head of the list to search
1066 * @ino: inode number to search for
1067 *
1068 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1069 * file systems where the inode number is sufficient for unique identification
1070 * of an inode.
1071 *
1072 * If the inode is in the cache, the inode is returned with an incremented
1073 * reference count.
1074 *
1075 * Otherwise NULL is returned.
1076 */
1077 static struct inode *ifind_fast(struct super_block *sb,
1078 struct hlist_head *head, unsigned long ino)
1079 {
1080 struct inode *inode;
1081
1082 spin_lock(&inode_lock);
1083 inode = find_inode_fast(sb, head, ino);
1084 if (inode) {
1085 spin_unlock(&inode_lock);
1086 wait_on_inode(inode);
1087 return inode;
1088 }
1089 spin_unlock(&inode_lock);
1090 return NULL;
1091 }
1092
1093 /**
1094 * ilookup5_nowait - search for an inode in the inode cache
1095 * @sb: super block of file system to search
1096 * @hashval: hash value (usually inode number) to search for
1097 * @test: callback used for comparisons between inodes
1098 * @data: opaque data pointer to pass to @test
1099 *
1100 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1101 * @data in the inode cache. This is a generalized version of ilookup() for
1102 * file systems where the inode number is not sufficient for unique
1103 * identification of an inode.
1104 *
1105 * If the inode is in the cache, the inode is returned with an incremented
1106 * reference count. Note, the inode lock is not waited upon so you have to be
1107 * very careful what you do with the returned inode. You probably should be
1108 * using ilookup5() instead.
1109 *
1110 * Otherwise NULL is returned.
1111 *
1112 * Note, @test is called with the inode_lock held, so can't sleep.
1113 */
1114 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1115 int (*test)(struct inode *, void *), void *data)
1116 {
1117 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1118
1119 return ifind(sb, head, test, data, 0);
1120 }
1121 EXPORT_SYMBOL(ilookup5_nowait);
1122
1123 /**
1124 * ilookup5 - search for an inode in the inode cache
1125 * @sb: super block of file system to search
1126 * @hashval: hash value (usually inode number) to search for
1127 * @test: callback used for comparisons between inodes
1128 * @data: opaque data pointer to pass to @test
1129 *
1130 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1131 * @data in the inode cache. This is a generalized version of ilookup() for
1132 * file systems where the inode number is not sufficient for unique
1133 * identification of an inode.
1134 *
1135 * If the inode is in the cache, the inode lock is waited upon and the inode is
1136 * returned with an incremented reference count.
1137 *
1138 * Otherwise NULL is returned.
1139 *
1140 * Note, @test is called with the inode_lock held, so can't sleep.
1141 */
1142 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1143 int (*test)(struct inode *, void *), void *data)
1144 {
1145 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1146
1147 return ifind(sb, head, test, data, 1);
1148 }
1149 EXPORT_SYMBOL(ilookup5);
1150
1151 /**
1152 * ilookup - search for an inode in the inode cache
1153 * @sb: super block of file system to search
1154 * @ino: inode number to search for
1155 *
1156 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1157 * This is for file systems where the inode number is sufficient for unique
1158 * identification of an inode.
1159 *
1160 * If the inode is in the cache, the inode is returned with an incremented
1161 * reference count.
1162 *
1163 * Otherwise NULL is returned.
1164 */
1165 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1166 {
1167 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1168
1169 return ifind_fast(sb, head, ino);
1170 }
1171 EXPORT_SYMBOL(ilookup);
1172
1173 /**
1174 * iget5_locked - obtain an inode from a mounted file system
1175 * @sb: super block of file system
1176 * @hashval: hash value (usually inode number) to get
1177 * @test: callback used for comparisons between inodes
1178 * @set: callback used to initialize a new struct inode
1179 * @data: opaque data pointer to pass to @test and @set
1180 *
1181 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1182 * and @data in the inode cache and if present it is returned with an increased
1183 * reference count. This is a generalized version of iget_locked() for file
1184 * systems where the inode number is not sufficient for unique identification
1185 * of an inode.
1186 *
1187 * If the inode is not in cache, get_new_inode() is called to allocate a new
1188 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1189 * file system gets to fill it in before unlocking it via unlock_new_inode().
1190 *
1191 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1192 */
1193 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1194 int (*test)(struct inode *, void *),
1195 int (*set)(struct inode *, void *), void *data)
1196 {
1197 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1198 struct inode *inode;
1199
1200 inode = ifind(sb, head, test, data, 1);
1201 if (inode)
1202 return inode;
1203 /*
1204 * get_new_inode() will do the right thing, re-trying the search
1205 * in case it had to block at any point.
1206 */
1207 return get_new_inode(sb, head, test, set, data);
1208 }
1209 EXPORT_SYMBOL(iget5_locked);
1210
1211 /**
1212 * iget_locked - obtain an inode from a mounted file system
1213 * @sb: super block of file system
1214 * @ino: inode number to get
1215 *
1216 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1217 * the inode cache and if present it is returned with an increased reference
1218 * count. This is for file systems where the inode number is sufficient for
1219 * unique identification of an inode.
1220 *
1221 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1222 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1223 * The file system gets to fill it in before unlocking it via
1224 * unlock_new_inode().
1225 */
1226 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1227 {
1228 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1229 struct inode *inode;
1230
1231 inode = ifind_fast(sb, head, ino);
1232 if (inode)
1233 return inode;
1234 /*
1235 * get_new_inode_fast() will do the right thing, re-trying the search
1236 * in case it had to block at any point.
1237 */
1238 return get_new_inode_fast(sb, head, ino);
1239 }
1240 EXPORT_SYMBOL(iget_locked);
1241
1242 int insert_inode_locked(struct inode *inode)
1243 {
1244 struct super_block *sb = inode->i_sb;
1245 ino_t ino = inode->i_ino;
1246 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1247
1248 inode->i_state |= I_NEW;
1249 while (1) {
1250 struct hlist_node *node;
1251 struct inode *old = NULL;
1252 spin_lock(&inode_lock);
1253 hlist_for_each_entry(old, node, head, i_hash) {
1254 if (old->i_ino != ino)
1255 continue;
1256 if (old->i_sb != sb)
1257 continue;
1258 if (old->i_state & (I_FREEING|I_WILL_FREE))
1259 continue;
1260 break;
1261 }
1262 if (likely(!node)) {
1263 hlist_add_head(&inode->i_hash, head);
1264 spin_unlock(&inode_lock);
1265 return 0;
1266 }
1267 __iget(old);
1268 spin_unlock(&inode_lock);
1269 wait_on_inode(old);
1270 if (unlikely(!inode_unhashed(old))) {
1271 iput(old);
1272 return -EBUSY;
1273 }
1274 iput(old);
1275 }
1276 }
1277 EXPORT_SYMBOL(insert_inode_locked);
1278
1279 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1280 int (*test)(struct inode *, void *), void *data)
1281 {
1282 struct super_block *sb = inode->i_sb;
1283 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1284
1285 inode->i_state |= I_NEW;
1286
1287 while (1) {
1288 struct hlist_node *node;
1289 struct inode *old = NULL;
1290
1291 spin_lock(&inode_lock);
1292 hlist_for_each_entry(old, node, head, i_hash) {
1293 if (old->i_sb != sb)
1294 continue;
1295 if (!test(old, data))
1296 continue;
1297 if (old->i_state & (I_FREEING|I_WILL_FREE))
1298 continue;
1299 break;
1300 }
1301 if (likely(!node)) {
1302 hlist_add_head(&inode->i_hash, head);
1303 spin_unlock(&inode_lock);
1304 return 0;
1305 }
1306 __iget(old);
1307 spin_unlock(&inode_lock);
1308 wait_on_inode(old);
1309 if (unlikely(!inode_unhashed(old))) {
1310 iput(old);
1311 return -EBUSY;
1312 }
1313 iput(old);
1314 }
1315 }
1316 EXPORT_SYMBOL(insert_inode_locked4);
1317
1318
1319 int generic_delete_inode(struct inode *inode)
1320 {
1321 return 1;
1322 }
1323 EXPORT_SYMBOL(generic_delete_inode);
1324
1325 /*
1326 * Normal UNIX filesystem behaviour: delete the
1327 * inode when the usage count drops to zero, and
1328 * i_nlink is zero.
1329 */
1330 int generic_drop_inode(struct inode *inode)
1331 {
1332 return !inode->i_nlink || inode_unhashed(inode);
1333 }
1334 EXPORT_SYMBOL_GPL(generic_drop_inode);
1335
1336 /*
1337 * Called when we're dropping the last reference
1338 * to an inode.
1339 *
1340 * Call the FS "drop_inode()" function, defaulting to
1341 * the legacy UNIX filesystem behaviour. If it tells
1342 * us to evict inode, do so. Otherwise, retain inode
1343 * in cache if fs is alive, sync and evict if fs is
1344 * shutting down.
1345 */
1346 static void iput_final(struct inode *inode)
1347 {
1348 struct super_block *sb = inode->i_sb;
1349 const struct super_operations *op = inode->i_sb->s_op;
1350 int drop;
1351
1352 if (op && op->drop_inode)
1353 drop = op->drop_inode(inode);
1354 else
1355 drop = generic_drop_inode(inode);
1356
1357 if (!drop) {
1358 if (sb->s_flags & MS_ACTIVE) {
1359 inode->i_state |= I_REFERENCED;
1360 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1361 inode_lru_list_add(inode);
1362 }
1363 spin_unlock(&inode_lock);
1364 return;
1365 }
1366 WARN_ON(inode->i_state & I_NEW);
1367 inode->i_state |= I_WILL_FREE;
1368 spin_unlock(&inode_lock);
1369 write_inode_now(inode, 1);
1370 spin_lock(&inode_lock);
1371 WARN_ON(inode->i_state & I_NEW);
1372 inode->i_state &= ~I_WILL_FREE;
1373 __remove_inode_hash(inode);
1374 }
1375
1376 WARN_ON(inode->i_state & I_NEW);
1377 inode->i_state |= I_FREEING;
1378
1379 /*
1380 * Move the inode off the IO lists and LRU once I_FREEING is
1381 * set so that it won't get moved back on there if it is dirty.
1382 */
1383 inode_lru_list_del(inode);
1384 list_del_init(&inode->i_wb_list);
1385
1386 __inode_sb_list_del(inode);
1387 spin_unlock(&inode_lock);
1388 evict(inode);
1389 remove_inode_hash(inode);
1390 wake_up_inode(inode);
1391 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1392 destroy_inode(inode);
1393 }
1394
1395 /**
1396 * iput - put an inode
1397 * @inode: inode to put
1398 *
1399 * Puts an inode, dropping its usage count. If the inode use count hits
1400 * zero, the inode is then freed and may also be destroyed.
1401 *
1402 * Consequently, iput() can sleep.
1403 */
1404 void iput(struct inode *inode)
1405 {
1406 if (inode) {
1407 BUG_ON(inode->i_state & I_CLEAR);
1408
1409 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1410 iput_final(inode);
1411 }
1412 }
1413 EXPORT_SYMBOL(iput);
1414
1415 /**
1416 * bmap - find a block number in a file
1417 * @inode: inode of file
1418 * @block: block to find
1419 *
1420 * Returns the block number on the device holding the inode that
1421 * is the disk block number for the block of the file requested.
1422 * That is, asked for block 4 of inode 1 the function will return the
1423 * disk block relative to the disk start that holds that block of the
1424 * file.
1425 */
1426 sector_t bmap(struct inode *inode, sector_t block)
1427 {
1428 sector_t res = 0;
1429 if (inode->i_mapping->a_ops->bmap)
1430 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1431 return res;
1432 }
1433 EXPORT_SYMBOL(bmap);
1434
1435 /*
1436 * With relative atime, only update atime if the previous atime is
1437 * earlier than either the ctime or mtime or if at least a day has
1438 * passed since the last atime update.
1439 */
1440 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1441 struct timespec now)
1442 {
1443
1444 if (!(mnt->mnt_flags & MNT_RELATIME))
1445 return 1;
1446 /*
1447 * Is mtime younger than atime? If yes, update atime:
1448 */
1449 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1450 return 1;
1451 /*
1452 * Is ctime younger than atime? If yes, update atime:
1453 */
1454 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1455 return 1;
1456
1457 /*
1458 * Is the previous atime value older than a day? If yes,
1459 * update atime:
1460 */
1461 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1462 return 1;
1463 /*
1464 * Good, we can skip the atime update:
1465 */
1466 return 0;
1467 }
1468
1469 /**
1470 * touch_atime - update the access time
1471 * @mnt: mount the inode is accessed on
1472 * @dentry: dentry accessed
1473 *
1474 * Update the accessed time on an inode and mark it for writeback.
1475 * This function automatically handles read only file systems and media,
1476 * as well as the "noatime" flag and inode specific "noatime" markers.
1477 */
1478 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1479 {
1480 struct inode *inode = dentry->d_inode;
1481 struct timespec now;
1482
1483 if (inode->i_flags & S_NOATIME)
1484 return;
1485 if (IS_NOATIME(inode))
1486 return;
1487 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1488 return;
1489
1490 if (mnt->mnt_flags & MNT_NOATIME)
1491 return;
1492 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1493 return;
1494
1495 now = current_fs_time(inode->i_sb);
1496
1497 if (!relatime_need_update(mnt, inode, now))
1498 return;
1499
1500 if (timespec_equal(&inode->i_atime, &now))
1501 return;
1502
1503 if (mnt_want_write(mnt))
1504 return;
1505
1506 inode->i_atime = now;
1507 mark_inode_dirty_sync(inode);
1508 mnt_drop_write(mnt);
1509 }
1510 EXPORT_SYMBOL(touch_atime);
1511
1512 /**
1513 * file_update_time - update mtime and ctime time
1514 * @file: file accessed
1515 *
1516 * Update the mtime and ctime members of an inode and mark the inode
1517 * for writeback. Note that this function is meant exclusively for
1518 * usage in the file write path of filesystems, and filesystems may
1519 * choose to explicitly ignore update via this function with the
1520 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1521 * timestamps are handled by the server.
1522 */
1523
1524 void file_update_time(struct file *file)
1525 {
1526 struct inode *inode = file->f_path.dentry->d_inode;
1527 struct timespec now;
1528 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1529
1530 /* First try to exhaust all avenues to not sync */
1531 if (IS_NOCMTIME(inode))
1532 return;
1533
1534 now = current_fs_time(inode->i_sb);
1535 if (!timespec_equal(&inode->i_mtime, &now))
1536 sync_it = S_MTIME;
1537
1538 if (!timespec_equal(&inode->i_ctime, &now))
1539 sync_it |= S_CTIME;
1540
1541 if (IS_I_VERSION(inode))
1542 sync_it |= S_VERSION;
1543
1544 if (!sync_it)
1545 return;
1546
1547 /* Finally allowed to write? Takes lock. */
1548 if (mnt_want_write_file(file))
1549 return;
1550
1551 /* Only change inode inside the lock region */
1552 if (sync_it & S_VERSION)
1553 inode_inc_iversion(inode);
1554 if (sync_it & S_CTIME)
1555 inode->i_ctime = now;
1556 if (sync_it & S_MTIME)
1557 inode->i_mtime = now;
1558 mark_inode_dirty_sync(inode);
1559 mnt_drop_write(file->f_path.mnt);
1560 }
1561 EXPORT_SYMBOL(file_update_time);
1562
1563 int inode_needs_sync(struct inode *inode)
1564 {
1565 if (IS_SYNC(inode))
1566 return 1;
1567 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1568 return 1;
1569 return 0;
1570 }
1571 EXPORT_SYMBOL(inode_needs_sync);
1572
1573 int inode_wait(void *word)
1574 {
1575 schedule();
1576 return 0;
1577 }
1578 EXPORT_SYMBOL(inode_wait);
1579
1580 /*
1581 * If we try to find an inode in the inode hash while it is being
1582 * deleted, we have to wait until the filesystem completes its
1583 * deletion before reporting that it isn't found. This function waits
1584 * until the deletion _might_ have completed. Callers are responsible
1585 * to recheck inode state.
1586 *
1587 * It doesn't matter if I_NEW is not set initially, a call to
1588 * wake_up_inode() after removing from the hash list will DTRT.
1589 *
1590 * This is called with inode_lock held.
1591 */
1592 static void __wait_on_freeing_inode(struct inode *inode)
1593 {
1594 wait_queue_head_t *wq;
1595 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1596 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1597 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1598 spin_unlock(&inode_lock);
1599 schedule();
1600 finish_wait(wq, &wait.wait);
1601 spin_lock(&inode_lock);
1602 }
1603
1604 static __initdata unsigned long ihash_entries;
1605 static int __init set_ihash_entries(char *str)
1606 {
1607 if (!str)
1608 return 0;
1609 ihash_entries = simple_strtoul(str, &str, 0);
1610 return 1;
1611 }
1612 __setup("ihash_entries=", set_ihash_entries);
1613
1614 /*
1615 * Initialize the waitqueues and inode hash table.
1616 */
1617 void __init inode_init_early(void)
1618 {
1619 int loop;
1620
1621 /* If hashes are distributed across NUMA nodes, defer
1622 * hash allocation until vmalloc space is available.
1623 */
1624 if (hashdist)
1625 return;
1626
1627 inode_hashtable =
1628 alloc_large_system_hash("Inode-cache",
1629 sizeof(struct hlist_head),
1630 ihash_entries,
1631 14,
1632 HASH_EARLY,
1633 &i_hash_shift,
1634 &i_hash_mask,
1635 0);
1636
1637 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1638 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1639 }
1640
1641 void __init inode_init(void)
1642 {
1643 int loop;
1644
1645 /* inode slab cache */
1646 inode_cachep = kmem_cache_create("inode_cache",
1647 sizeof(struct inode),
1648 0,
1649 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1650 SLAB_MEM_SPREAD),
1651 init_once);
1652 register_shrinker(&icache_shrinker);
1653
1654 /* Hash may have been set up in inode_init_early */
1655 if (!hashdist)
1656 return;
1657
1658 inode_hashtable =
1659 alloc_large_system_hash("Inode-cache",
1660 sizeof(struct hlist_head),
1661 ihash_entries,
1662 14,
1663 0,
1664 &i_hash_shift,
1665 &i_hash_mask,
1666 0);
1667
1668 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1669 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1670 }
1671
1672 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1673 {
1674 inode->i_mode = mode;
1675 if (S_ISCHR(mode)) {
1676 inode->i_fop = &def_chr_fops;
1677 inode->i_rdev = rdev;
1678 } else if (S_ISBLK(mode)) {
1679 inode->i_fop = &def_blk_fops;
1680 inode->i_rdev = rdev;
1681 } else if (S_ISFIFO(mode))
1682 inode->i_fop = &def_fifo_fops;
1683 else if (S_ISSOCK(mode))
1684 inode->i_fop = &bad_sock_fops;
1685 else
1686 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1687 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1688 inode->i_ino);
1689 }
1690 EXPORT_SYMBOL(init_special_inode);
1691
1692 /**
1693 * Init uid,gid,mode for new inode according to posix standards
1694 * @inode: New inode
1695 * @dir: Directory inode
1696 * @mode: mode of the new inode
1697 */
1698 void inode_init_owner(struct inode *inode, const struct inode *dir,
1699 mode_t mode)
1700 {
1701 inode->i_uid = current_fsuid();
1702 if (dir && dir->i_mode & S_ISGID) {
1703 inode->i_gid = dir->i_gid;
1704 if (S_ISDIR(mode))
1705 mode |= S_ISGID;
1706 } else
1707 inode->i_gid = current_fsgid();
1708 inode->i_mode = mode;
1709 }
1710 EXPORT_SYMBOL(inode_init_owner);
This page took 0.06849 seconds and 5 git commands to generate.