fuse: fix truncate after open
[deliverable/linux.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28
29 /*
30 * This is needed for the following functions:
31 * - inode_has_buffers
32 * - invalidate_bdev
33 *
34 * FIXME: remove all knowledge of the buffer layer from this file
35 */
36 #include <linux/buffer_head.h>
37
38 /*
39 * New inode.c implementation.
40 *
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
44 *
45 * Famous last words.
46 */
47
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52
53 /*
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
56 */
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
59
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62
63 /*
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
70 *
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
73 */
74
75 static LIST_HEAD(inode_lru);
76 static struct hlist_head *inode_hashtable __read_mostly;
77
78 /*
79 * A simple spinlock to protect the list manipulations.
80 *
81 * NOTE! You also have to own the lock if you change
82 * the i_state of an inode while it is in use..
83 */
84 DEFINE_SPINLOCK(inode_lock);
85
86 /*
87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88 * icache shrinking path, and the umount path. Without this exclusion,
89 * by the time prune_icache calls iput for the inode whose pages it has
90 * been invalidating, or by the time it calls clear_inode & destroy_inode
91 * from its final dispose_list, the struct super_block they refer to
92 * (for inode->i_sb->s_op) may already have been freed and reused.
93 *
94 * We make this an rwsem because the fastpath is icache shrinking. In
95 * some cases a filesystem may be doing a significant amount of work in
96 * its inode reclaim code, so this should improve parallelism.
97 */
98 static DECLARE_RWSEM(iprune_sem);
99
100 /*
101 * Statistics gathering..
102 */
103 struct inodes_stat_t inodes_stat;
104
105 static DEFINE_PER_CPU(unsigned int, nr_inodes);
106
107 static struct kmem_cache *inode_cachep __read_mostly;
108
109 static int get_nr_inodes(void)
110 {
111 int i;
112 int sum = 0;
113 for_each_possible_cpu(i)
114 sum += per_cpu(nr_inodes, i);
115 return sum < 0 ? 0 : sum;
116 }
117
118 static inline int get_nr_inodes_unused(void)
119 {
120 return inodes_stat.nr_unused;
121 }
122
123 int get_nr_dirty_inodes(void)
124 {
125 /* not actually dirty inodes, but a wild approximation */
126 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
127 return nr_dirty > 0 ? nr_dirty : 0;
128 }
129
130 /*
131 * Handle nr_inode sysctl
132 */
133 #ifdef CONFIG_SYSCTL
134 int proc_nr_inodes(ctl_table *table, int write,
135 void __user *buffer, size_t *lenp, loff_t *ppos)
136 {
137 inodes_stat.nr_inodes = get_nr_inodes();
138 return proc_dointvec(table, write, buffer, lenp, ppos);
139 }
140 #endif
141
142 static void wake_up_inode(struct inode *inode)
143 {
144 /*
145 * Prevent speculative execution through spin_unlock(&inode_lock);
146 */
147 smp_mb();
148 wake_up_bit(&inode->i_state, __I_NEW);
149 }
150
151 /**
152 * inode_init_always - perform inode structure intialisation
153 * @sb: superblock inode belongs to
154 * @inode: inode to initialise
155 *
156 * These are initializations that need to be done on every inode
157 * allocation as the fields are not initialised by slab allocation.
158 */
159 int inode_init_always(struct super_block *sb, struct inode *inode)
160 {
161 static const struct address_space_operations empty_aops;
162 static const struct inode_operations empty_iops;
163 static const struct file_operations empty_fops;
164 struct address_space *const mapping = &inode->i_data;
165
166 inode->i_sb = sb;
167 inode->i_blkbits = sb->s_blocksize_bits;
168 inode->i_flags = 0;
169 atomic_set(&inode->i_count, 1);
170 inode->i_op = &empty_iops;
171 inode->i_fop = &empty_fops;
172 inode->i_nlink = 1;
173 inode->i_uid = 0;
174 inode->i_gid = 0;
175 atomic_set(&inode->i_writecount, 0);
176 inode->i_size = 0;
177 inode->i_blocks = 0;
178 inode->i_bytes = 0;
179 inode->i_generation = 0;
180 #ifdef CONFIG_QUOTA
181 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
182 #endif
183 inode->i_pipe = NULL;
184 inode->i_bdev = NULL;
185 inode->i_cdev = NULL;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 if (security_inode_alloc(inode))
190 goto out;
191 spin_lock_init(&inode->i_lock);
192 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
193
194 mutex_init(&inode->i_mutex);
195 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
196
197 init_rwsem(&inode->i_alloc_sem);
198 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
199
200 mapping->a_ops = &empty_aops;
201 mapping->host = inode;
202 mapping->flags = 0;
203 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
204 mapping->assoc_mapping = NULL;
205 mapping->backing_dev_info = &default_backing_dev_info;
206 mapping->writeback_index = 0;
207
208 /*
209 * If the block_device provides a backing_dev_info for client
210 * inodes then use that. Otherwise the inode share the bdev's
211 * backing_dev_info.
212 */
213 if (sb->s_bdev) {
214 struct backing_dev_info *bdi;
215
216 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
217 mapping->backing_dev_info = bdi;
218 }
219 inode->i_private = NULL;
220 inode->i_mapping = mapping;
221 #ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223 #endif
224
225 #ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227 #endif
228
229 this_cpu_inc(nr_inodes);
230
231 return 0;
232 out:
233 return -ENOMEM;
234 }
235 EXPORT_SYMBOL(inode_init_always);
236
237 static struct inode *alloc_inode(struct super_block *sb)
238 {
239 struct inode *inode;
240
241 if (sb->s_op->alloc_inode)
242 inode = sb->s_op->alloc_inode(sb);
243 else
244 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
245
246 if (!inode)
247 return NULL;
248
249 if (unlikely(inode_init_always(sb, inode))) {
250 if (inode->i_sb->s_op->destroy_inode)
251 inode->i_sb->s_op->destroy_inode(inode);
252 else
253 kmem_cache_free(inode_cachep, inode);
254 return NULL;
255 }
256
257 return inode;
258 }
259
260 void free_inode_nonrcu(struct inode *inode)
261 {
262 kmem_cache_free(inode_cachep, inode);
263 }
264 EXPORT_SYMBOL(free_inode_nonrcu);
265
266 void __destroy_inode(struct inode *inode)
267 {
268 BUG_ON(inode_has_buffers(inode));
269 security_inode_free(inode);
270 fsnotify_inode_delete(inode);
271 #ifdef CONFIG_FS_POSIX_ACL
272 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
273 posix_acl_release(inode->i_acl);
274 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
275 posix_acl_release(inode->i_default_acl);
276 #endif
277 this_cpu_dec(nr_inodes);
278 }
279 EXPORT_SYMBOL(__destroy_inode);
280
281 static void i_callback(struct rcu_head *head)
282 {
283 struct inode *inode = container_of(head, struct inode, i_rcu);
284 INIT_LIST_HEAD(&inode->i_dentry);
285 kmem_cache_free(inode_cachep, inode);
286 }
287
288 static void destroy_inode(struct inode *inode)
289 {
290 BUG_ON(!list_empty(&inode->i_lru));
291 __destroy_inode(inode);
292 if (inode->i_sb->s_op->destroy_inode)
293 inode->i_sb->s_op->destroy_inode(inode);
294 else
295 call_rcu(&inode->i_rcu, i_callback);
296 }
297
298 void address_space_init_once(struct address_space *mapping)
299 {
300 memset(mapping, 0, sizeof(*mapping));
301 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
302 spin_lock_init(&mapping->tree_lock);
303 spin_lock_init(&mapping->i_mmap_lock);
304 INIT_LIST_HEAD(&mapping->private_list);
305 spin_lock_init(&mapping->private_lock);
306 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
307 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
308 mutex_init(&mapping->unmap_mutex);
309 }
310 EXPORT_SYMBOL(address_space_init_once);
311
312 /*
313 * These are initializations that only need to be done
314 * once, because the fields are idempotent across use
315 * of the inode, so let the slab aware of that.
316 */
317 void inode_init_once(struct inode *inode)
318 {
319 memset(inode, 0, sizeof(*inode));
320 INIT_HLIST_NODE(&inode->i_hash);
321 INIT_LIST_HEAD(&inode->i_dentry);
322 INIT_LIST_HEAD(&inode->i_devices);
323 INIT_LIST_HEAD(&inode->i_wb_list);
324 INIT_LIST_HEAD(&inode->i_lru);
325 address_space_init_once(&inode->i_data);
326 i_size_ordered_init(inode);
327 #ifdef CONFIG_FSNOTIFY
328 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
329 #endif
330 }
331 EXPORT_SYMBOL(inode_init_once);
332
333 static void init_once(void *foo)
334 {
335 struct inode *inode = (struct inode *) foo;
336
337 inode_init_once(inode);
338 }
339
340 /*
341 * inode_lock must be held
342 */
343 void __iget(struct inode *inode)
344 {
345 atomic_inc(&inode->i_count);
346 }
347
348 /*
349 * get additional reference to inode; caller must already hold one.
350 */
351 void ihold(struct inode *inode)
352 {
353 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
354 }
355 EXPORT_SYMBOL(ihold);
356
357 static void inode_lru_list_add(struct inode *inode)
358 {
359 if (list_empty(&inode->i_lru)) {
360 list_add(&inode->i_lru, &inode_lru);
361 inodes_stat.nr_unused++;
362 }
363 }
364
365 static void inode_lru_list_del(struct inode *inode)
366 {
367 if (!list_empty(&inode->i_lru)) {
368 list_del_init(&inode->i_lru);
369 inodes_stat.nr_unused--;
370 }
371 }
372
373 static inline void __inode_sb_list_add(struct inode *inode)
374 {
375 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
376 }
377
378 /**
379 * inode_sb_list_add - add inode to the superblock list of inodes
380 * @inode: inode to add
381 */
382 void inode_sb_list_add(struct inode *inode)
383 {
384 spin_lock(&inode_lock);
385 __inode_sb_list_add(inode);
386 spin_unlock(&inode_lock);
387 }
388 EXPORT_SYMBOL_GPL(inode_sb_list_add);
389
390 static inline void __inode_sb_list_del(struct inode *inode)
391 {
392 list_del_init(&inode->i_sb_list);
393 }
394
395 static unsigned long hash(struct super_block *sb, unsigned long hashval)
396 {
397 unsigned long tmp;
398
399 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
400 L1_CACHE_BYTES;
401 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
402 return tmp & I_HASHMASK;
403 }
404
405 /**
406 * __insert_inode_hash - hash an inode
407 * @inode: unhashed inode
408 * @hashval: unsigned long value used to locate this object in the
409 * inode_hashtable.
410 *
411 * Add an inode to the inode hash for this superblock.
412 */
413 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
414 {
415 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
416
417 spin_lock(&inode_lock);
418 hlist_add_head(&inode->i_hash, b);
419 spin_unlock(&inode_lock);
420 }
421 EXPORT_SYMBOL(__insert_inode_hash);
422
423 /**
424 * __remove_inode_hash - remove an inode from the hash
425 * @inode: inode to unhash
426 *
427 * Remove an inode from the superblock.
428 */
429 static void __remove_inode_hash(struct inode *inode)
430 {
431 hlist_del_init(&inode->i_hash);
432 }
433
434 /**
435 * remove_inode_hash - remove an inode from the hash
436 * @inode: inode to unhash
437 *
438 * Remove an inode from the superblock.
439 */
440 void remove_inode_hash(struct inode *inode)
441 {
442 spin_lock(&inode_lock);
443 hlist_del_init(&inode->i_hash);
444 spin_unlock(&inode_lock);
445 }
446 EXPORT_SYMBOL(remove_inode_hash);
447
448 void end_writeback(struct inode *inode)
449 {
450 might_sleep();
451 BUG_ON(inode->i_data.nrpages);
452 BUG_ON(!list_empty(&inode->i_data.private_list));
453 BUG_ON(!(inode->i_state & I_FREEING));
454 BUG_ON(inode->i_state & I_CLEAR);
455 inode_sync_wait(inode);
456 /* don't need i_lock here, no concurrent mods to i_state */
457 inode->i_state = I_FREEING | I_CLEAR;
458 }
459 EXPORT_SYMBOL(end_writeback);
460
461 static void evict(struct inode *inode)
462 {
463 const struct super_operations *op = inode->i_sb->s_op;
464
465 if (op->evict_inode) {
466 op->evict_inode(inode);
467 } else {
468 if (inode->i_data.nrpages)
469 truncate_inode_pages(&inode->i_data, 0);
470 end_writeback(inode);
471 }
472 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
473 bd_forget(inode);
474 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
475 cd_forget(inode);
476 }
477
478 /*
479 * dispose_list - dispose of the contents of a local list
480 * @head: the head of the list to free
481 *
482 * Dispose-list gets a local list with local inodes in it, so it doesn't
483 * need to worry about list corruption and SMP locks.
484 */
485 static void dispose_list(struct list_head *head)
486 {
487 while (!list_empty(head)) {
488 struct inode *inode;
489
490 inode = list_first_entry(head, struct inode, i_lru);
491 list_del_init(&inode->i_lru);
492
493 evict(inode);
494
495 spin_lock(&inode_lock);
496 __remove_inode_hash(inode);
497 __inode_sb_list_del(inode);
498 spin_unlock(&inode_lock);
499
500 wake_up_inode(inode);
501 destroy_inode(inode);
502 }
503 }
504
505 /**
506 * evict_inodes - evict all evictable inodes for a superblock
507 * @sb: superblock to operate on
508 *
509 * Make sure that no inodes with zero refcount are retained. This is
510 * called by superblock shutdown after having MS_ACTIVE flag removed,
511 * so any inode reaching zero refcount during or after that call will
512 * be immediately evicted.
513 */
514 void evict_inodes(struct super_block *sb)
515 {
516 struct inode *inode, *next;
517 LIST_HEAD(dispose);
518
519 down_write(&iprune_sem);
520
521 spin_lock(&inode_lock);
522 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
523 if (atomic_read(&inode->i_count))
524 continue;
525
526 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
527 WARN_ON(1);
528 continue;
529 }
530
531 inode->i_state |= I_FREEING;
532
533 /*
534 * Move the inode off the IO lists and LRU once I_FREEING is
535 * set so that it won't get moved back on there if it is dirty.
536 */
537 list_move(&inode->i_lru, &dispose);
538 list_del_init(&inode->i_wb_list);
539 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
540 inodes_stat.nr_unused--;
541 }
542 spin_unlock(&inode_lock);
543
544 dispose_list(&dispose);
545 up_write(&iprune_sem);
546 }
547
548 /**
549 * invalidate_inodes - attempt to free all inodes on a superblock
550 * @sb: superblock to operate on
551 *
552 * Attempts to free all inodes for a given superblock. If there were any
553 * busy inodes return a non-zero value, else zero.
554 */
555 int invalidate_inodes(struct super_block *sb)
556 {
557 int busy = 0;
558 struct inode *inode, *next;
559 LIST_HEAD(dispose);
560
561 down_write(&iprune_sem);
562
563 spin_lock(&inode_lock);
564 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
565 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
566 continue;
567 if (atomic_read(&inode->i_count)) {
568 busy = 1;
569 continue;
570 }
571
572 inode->i_state |= I_FREEING;
573
574 /*
575 * Move the inode off the IO lists and LRU once I_FREEING is
576 * set so that it won't get moved back on there if it is dirty.
577 */
578 list_move(&inode->i_lru, &dispose);
579 list_del_init(&inode->i_wb_list);
580 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
581 inodes_stat.nr_unused--;
582 }
583 spin_unlock(&inode_lock);
584
585 dispose_list(&dispose);
586 up_write(&iprune_sem);
587
588 return busy;
589 }
590
591 static int can_unuse(struct inode *inode)
592 {
593 if (inode->i_state & ~I_REFERENCED)
594 return 0;
595 if (inode_has_buffers(inode))
596 return 0;
597 if (atomic_read(&inode->i_count))
598 return 0;
599 if (inode->i_data.nrpages)
600 return 0;
601 return 1;
602 }
603
604 /*
605 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
606 * temporary list and then are freed outside inode_lock by dispose_list().
607 *
608 * Any inodes which are pinned purely because of attached pagecache have their
609 * pagecache removed. If the inode has metadata buffers attached to
610 * mapping->private_list then try to remove them.
611 *
612 * If the inode has the I_REFERENCED flag set, then it means that it has been
613 * used recently - the flag is set in iput_final(). When we encounter such an
614 * inode, clear the flag and move it to the back of the LRU so it gets another
615 * pass through the LRU before it gets reclaimed. This is necessary because of
616 * the fact we are doing lazy LRU updates to minimise lock contention so the
617 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
618 * with this flag set because they are the inodes that are out of order.
619 */
620 static void prune_icache(int nr_to_scan)
621 {
622 LIST_HEAD(freeable);
623 int nr_scanned;
624 unsigned long reap = 0;
625
626 down_read(&iprune_sem);
627 spin_lock(&inode_lock);
628 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
629 struct inode *inode;
630
631 if (list_empty(&inode_lru))
632 break;
633
634 inode = list_entry(inode_lru.prev, struct inode, i_lru);
635
636 /*
637 * Referenced or dirty inodes are still in use. Give them
638 * another pass through the LRU as we canot reclaim them now.
639 */
640 if (atomic_read(&inode->i_count) ||
641 (inode->i_state & ~I_REFERENCED)) {
642 list_del_init(&inode->i_lru);
643 inodes_stat.nr_unused--;
644 continue;
645 }
646
647 /* recently referenced inodes get one more pass */
648 if (inode->i_state & I_REFERENCED) {
649 list_move(&inode->i_lru, &inode_lru);
650 inode->i_state &= ~I_REFERENCED;
651 continue;
652 }
653 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
654 __iget(inode);
655 spin_unlock(&inode_lock);
656 if (remove_inode_buffers(inode))
657 reap += invalidate_mapping_pages(&inode->i_data,
658 0, -1);
659 iput(inode);
660 spin_lock(&inode_lock);
661
662 if (inode != list_entry(inode_lru.next,
663 struct inode, i_lru))
664 continue; /* wrong inode or list_empty */
665 if (!can_unuse(inode))
666 continue;
667 }
668 WARN_ON(inode->i_state & I_NEW);
669 inode->i_state |= I_FREEING;
670
671 /*
672 * Move the inode off the IO lists and LRU once I_FREEING is
673 * set so that it won't get moved back on there if it is dirty.
674 */
675 list_move(&inode->i_lru, &freeable);
676 list_del_init(&inode->i_wb_list);
677 inodes_stat.nr_unused--;
678 }
679 if (current_is_kswapd())
680 __count_vm_events(KSWAPD_INODESTEAL, reap);
681 else
682 __count_vm_events(PGINODESTEAL, reap);
683 spin_unlock(&inode_lock);
684
685 dispose_list(&freeable);
686 up_read(&iprune_sem);
687 }
688
689 /*
690 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
691 * "unused" means that no dentries are referring to the inodes: the files are
692 * not open and the dcache references to those inodes have already been
693 * reclaimed.
694 *
695 * This function is passed the number of inodes to scan, and it returns the
696 * total number of remaining possibly-reclaimable inodes.
697 */
698 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
699 {
700 if (nr) {
701 /*
702 * Nasty deadlock avoidance. We may hold various FS locks,
703 * and we don't want to recurse into the FS that called us
704 * in clear_inode() and friends..
705 */
706 if (!(gfp_mask & __GFP_FS))
707 return -1;
708 prune_icache(nr);
709 }
710 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
711 }
712
713 static struct shrinker icache_shrinker = {
714 .shrink = shrink_icache_memory,
715 .seeks = DEFAULT_SEEKS,
716 };
717
718 static void __wait_on_freeing_inode(struct inode *inode);
719 /*
720 * Called with the inode lock held.
721 */
722 static struct inode *find_inode(struct super_block *sb,
723 struct hlist_head *head,
724 int (*test)(struct inode *, void *),
725 void *data)
726 {
727 struct hlist_node *node;
728 struct inode *inode = NULL;
729
730 repeat:
731 hlist_for_each_entry(inode, node, head, i_hash) {
732 if (inode->i_sb != sb)
733 continue;
734 if (!test(inode, data))
735 continue;
736 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
737 __wait_on_freeing_inode(inode);
738 goto repeat;
739 }
740 __iget(inode);
741 return inode;
742 }
743 return NULL;
744 }
745
746 /*
747 * find_inode_fast is the fast path version of find_inode, see the comment at
748 * iget_locked for details.
749 */
750 static struct inode *find_inode_fast(struct super_block *sb,
751 struct hlist_head *head, unsigned long ino)
752 {
753 struct hlist_node *node;
754 struct inode *inode = NULL;
755
756 repeat:
757 hlist_for_each_entry(inode, node, head, i_hash) {
758 if (inode->i_ino != ino)
759 continue;
760 if (inode->i_sb != sb)
761 continue;
762 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
763 __wait_on_freeing_inode(inode);
764 goto repeat;
765 }
766 __iget(inode);
767 return inode;
768 }
769 return NULL;
770 }
771
772 /*
773 * Each cpu owns a range of LAST_INO_BATCH numbers.
774 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
775 * to renew the exhausted range.
776 *
777 * This does not significantly increase overflow rate because every CPU can
778 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
779 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
780 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
781 * overflow rate by 2x, which does not seem too significant.
782 *
783 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
784 * error if st_ino won't fit in target struct field. Use 32bit counter
785 * here to attempt to avoid that.
786 */
787 #define LAST_INO_BATCH 1024
788 static DEFINE_PER_CPU(unsigned int, last_ino);
789
790 unsigned int get_next_ino(void)
791 {
792 unsigned int *p = &get_cpu_var(last_ino);
793 unsigned int res = *p;
794
795 #ifdef CONFIG_SMP
796 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
797 static atomic_t shared_last_ino;
798 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
799
800 res = next - LAST_INO_BATCH;
801 }
802 #endif
803
804 *p = ++res;
805 put_cpu_var(last_ino);
806 return res;
807 }
808 EXPORT_SYMBOL(get_next_ino);
809
810 /**
811 * new_inode - obtain an inode
812 * @sb: superblock
813 *
814 * Allocates a new inode for given superblock. The default gfp_mask
815 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
816 * If HIGHMEM pages are unsuitable or it is known that pages allocated
817 * for the page cache are not reclaimable or migratable,
818 * mapping_set_gfp_mask() must be called with suitable flags on the
819 * newly created inode's mapping
820 *
821 */
822 struct inode *new_inode(struct super_block *sb)
823 {
824 struct inode *inode;
825
826 spin_lock_prefetch(&inode_lock);
827
828 inode = alloc_inode(sb);
829 if (inode) {
830 spin_lock(&inode_lock);
831 __inode_sb_list_add(inode);
832 inode->i_state = 0;
833 spin_unlock(&inode_lock);
834 }
835 return inode;
836 }
837 EXPORT_SYMBOL(new_inode);
838
839 void unlock_new_inode(struct inode *inode)
840 {
841 #ifdef CONFIG_DEBUG_LOCK_ALLOC
842 if (S_ISDIR(inode->i_mode)) {
843 struct file_system_type *type = inode->i_sb->s_type;
844
845 /* Set new key only if filesystem hasn't already changed it */
846 if (!lockdep_match_class(&inode->i_mutex,
847 &type->i_mutex_key)) {
848 /*
849 * ensure nobody is actually holding i_mutex
850 */
851 mutex_destroy(&inode->i_mutex);
852 mutex_init(&inode->i_mutex);
853 lockdep_set_class(&inode->i_mutex,
854 &type->i_mutex_dir_key);
855 }
856 }
857 #endif
858 /*
859 * This is special! We do not need the spinlock when clearing I_NEW,
860 * because we're guaranteed that nobody else tries to do anything about
861 * the state of the inode when it is locked, as we just created it (so
862 * there can be no old holders that haven't tested I_NEW).
863 * However we must emit the memory barrier so that other CPUs reliably
864 * see the clearing of I_NEW after the other inode initialisation has
865 * completed.
866 */
867 smp_mb();
868 WARN_ON(!(inode->i_state & I_NEW));
869 inode->i_state &= ~I_NEW;
870 wake_up_inode(inode);
871 }
872 EXPORT_SYMBOL(unlock_new_inode);
873
874 /*
875 * This is called without the inode lock held.. Be careful.
876 *
877 * We no longer cache the sb_flags in i_flags - see fs.h
878 * -- rmk@arm.uk.linux.org
879 */
880 static struct inode *get_new_inode(struct super_block *sb,
881 struct hlist_head *head,
882 int (*test)(struct inode *, void *),
883 int (*set)(struct inode *, void *),
884 void *data)
885 {
886 struct inode *inode;
887
888 inode = alloc_inode(sb);
889 if (inode) {
890 struct inode *old;
891
892 spin_lock(&inode_lock);
893 /* We released the lock, so.. */
894 old = find_inode(sb, head, test, data);
895 if (!old) {
896 if (set(inode, data))
897 goto set_failed;
898
899 hlist_add_head(&inode->i_hash, head);
900 __inode_sb_list_add(inode);
901 inode->i_state = I_NEW;
902 spin_unlock(&inode_lock);
903
904 /* Return the locked inode with I_NEW set, the
905 * caller is responsible for filling in the contents
906 */
907 return inode;
908 }
909
910 /*
911 * Uhhuh, somebody else created the same inode under
912 * us. Use the old inode instead of the one we just
913 * allocated.
914 */
915 spin_unlock(&inode_lock);
916 destroy_inode(inode);
917 inode = old;
918 wait_on_inode(inode);
919 }
920 return inode;
921
922 set_failed:
923 spin_unlock(&inode_lock);
924 destroy_inode(inode);
925 return NULL;
926 }
927
928 /*
929 * get_new_inode_fast is the fast path version of get_new_inode, see the
930 * comment at iget_locked for details.
931 */
932 static struct inode *get_new_inode_fast(struct super_block *sb,
933 struct hlist_head *head, unsigned long ino)
934 {
935 struct inode *inode;
936
937 inode = alloc_inode(sb);
938 if (inode) {
939 struct inode *old;
940
941 spin_lock(&inode_lock);
942 /* We released the lock, so.. */
943 old = find_inode_fast(sb, head, ino);
944 if (!old) {
945 inode->i_ino = ino;
946 hlist_add_head(&inode->i_hash, head);
947 __inode_sb_list_add(inode);
948 inode->i_state = I_NEW;
949 spin_unlock(&inode_lock);
950
951 /* Return the locked inode with I_NEW set, the
952 * caller is responsible for filling in the contents
953 */
954 return inode;
955 }
956
957 /*
958 * Uhhuh, somebody else created the same inode under
959 * us. Use the old inode instead of the one we just
960 * allocated.
961 */
962 spin_unlock(&inode_lock);
963 destroy_inode(inode);
964 inode = old;
965 wait_on_inode(inode);
966 }
967 return inode;
968 }
969
970 /*
971 * search the inode cache for a matching inode number.
972 * If we find one, then the inode number we are trying to
973 * allocate is not unique and so we should not use it.
974 *
975 * Returns 1 if the inode number is unique, 0 if it is not.
976 */
977 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
978 {
979 struct hlist_head *b = inode_hashtable + hash(sb, ino);
980 struct hlist_node *node;
981 struct inode *inode;
982
983 hlist_for_each_entry(inode, node, b, i_hash) {
984 if (inode->i_ino == ino && inode->i_sb == sb)
985 return 0;
986 }
987
988 return 1;
989 }
990
991 /**
992 * iunique - get a unique inode number
993 * @sb: superblock
994 * @max_reserved: highest reserved inode number
995 *
996 * Obtain an inode number that is unique on the system for a given
997 * superblock. This is used by file systems that have no natural
998 * permanent inode numbering system. An inode number is returned that
999 * is higher than the reserved limit but unique.
1000 *
1001 * BUGS:
1002 * With a large number of inodes live on the file system this function
1003 * currently becomes quite slow.
1004 */
1005 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1006 {
1007 /*
1008 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1009 * error if st_ino won't fit in target struct field. Use 32bit counter
1010 * here to attempt to avoid that.
1011 */
1012 static DEFINE_SPINLOCK(iunique_lock);
1013 static unsigned int counter;
1014 ino_t res;
1015
1016 spin_lock(&inode_lock);
1017 spin_lock(&iunique_lock);
1018 do {
1019 if (counter <= max_reserved)
1020 counter = max_reserved + 1;
1021 res = counter++;
1022 } while (!test_inode_iunique(sb, res));
1023 spin_unlock(&iunique_lock);
1024 spin_unlock(&inode_lock);
1025
1026 return res;
1027 }
1028 EXPORT_SYMBOL(iunique);
1029
1030 struct inode *igrab(struct inode *inode)
1031 {
1032 spin_lock(&inode_lock);
1033 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1034 __iget(inode);
1035 else
1036 /*
1037 * Handle the case where s_op->clear_inode is not been
1038 * called yet, and somebody is calling igrab
1039 * while the inode is getting freed.
1040 */
1041 inode = NULL;
1042 spin_unlock(&inode_lock);
1043 return inode;
1044 }
1045 EXPORT_SYMBOL(igrab);
1046
1047 /**
1048 * ifind - internal function, you want ilookup5() or iget5().
1049 * @sb: super block of file system to search
1050 * @head: the head of the list to search
1051 * @test: callback used for comparisons between inodes
1052 * @data: opaque data pointer to pass to @test
1053 * @wait: if true wait for the inode to be unlocked, if false do not
1054 *
1055 * ifind() searches for the inode specified by @data in the inode
1056 * cache. This is a generalized version of ifind_fast() for file systems where
1057 * the inode number is not sufficient for unique identification of an inode.
1058 *
1059 * If the inode is in the cache, the inode is returned with an incremented
1060 * reference count.
1061 *
1062 * Otherwise NULL is returned.
1063 *
1064 * Note, @test is called with the inode_lock held, so can't sleep.
1065 */
1066 static struct inode *ifind(struct super_block *sb,
1067 struct hlist_head *head, int (*test)(struct inode *, void *),
1068 void *data, const int wait)
1069 {
1070 struct inode *inode;
1071
1072 spin_lock(&inode_lock);
1073 inode = find_inode(sb, head, test, data);
1074 if (inode) {
1075 spin_unlock(&inode_lock);
1076 if (likely(wait))
1077 wait_on_inode(inode);
1078 return inode;
1079 }
1080 spin_unlock(&inode_lock);
1081 return NULL;
1082 }
1083
1084 /**
1085 * ifind_fast - internal function, you want ilookup() or iget().
1086 * @sb: super block of file system to search
1087 * @head: head of the list to search
1088 * @ino: inode number to search for
1089 *
1090 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1091 * file systems where the inode number is sufficient for unique identification
1092 * of an inode.
1093 *
1094 * If the inode is in the cache, the inode is returned with an incremented
1095 * reference count.
1096 *
1097 * Otherwise NULL is returned.
1098 */
1099 static struct inode *ifind_fast(struct super_block *sb,
1100 struct hlist_head *head, unsigned long ino)
1101 {
1102 struct inode *inode;
1103
1104 spin_lock(&inode_lock);
1105 inode = find_inode_fast(sb, head, ino);
1106 if (inode) {
1107 spin_unlock(&inode_lock);
1108 wait_on_inode(inode);
1109 return inode;
1110 }
1111 spin_unlock(&inode_lock);
1112 return NULL;
1113 }
1114
1115 /**
1116 * ilookup5_nowait - search for an inode in the inode cache
1117 * @sb: super block of file system to search
1118 * @hashval: hash value (usually inode number) to search for
1119 * @test: callback used for comparisons between inodes
1120 * @data: opaque data pointer to pass to @test
1121 *
1122 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1123 * @data in the inode cache. This is a generalized version of ilookup() for
1124 * file systems where the inode number is not sufficient for unique
1125 * identification of an inode.
1126 *
1127 * If the inode is in the cache, the inode is returned with an incremented
1128 * reference count. Note, the inode lock is not waited upon so you have to be
1129 * very careful what you do with the returned inode. You probably should be
1130 * using ilookup5() instead.
1131 *
1132 * Otherwise NULL is returned.
1133 *
1134 * Note, @test is called with the inode_lock held, so can't sleep.
1135 */
1136 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1137 int (*test)(struct inode *, void *), void *data)
1138 {
1139 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1140
1141 return ifind(sb, head, test, data, 0);
1142 }
1143 EXPORT_SYMBOL(ilookup5_nowait);
1144
1145 /**
1146 * ilookup5 - search for an inode in the inode cache
1147 * @sb: super block of file system to search
1148 * @hashval: hash value (usually inode number) to search for
1149 * @test: callback used for comparisons between inodes
1150 * @data: opaque data pointer to pass to @test
1151 *
1152 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1153 * @data in the inode cache. This is a generalized version of ilookup() for
1154 * file systems where the inode number is not sufficient for unique
1155 * identification of an inode.
1156 *
1157 * If the inode is in the cache, the inode lock is waited upon and the inode is
1158 * returned with an incremented reference count.
1159 *
1160 * Otherwise NULL is returned.
1161 *
1162 * Note, @test is called with the inode_lock held, so can't sleep.
1163 */
1164 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1165 int (*test)(struct inode *, void *), void *data)
1166 {
1167 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1168
1169 return ifind(sb, head, test, data, 1);
1170 }
1171 EXPORT_SYMBOL(ilookup5);
1172
1173 /**
1174 * ilookup - search for an inode in the inode cache
1175 * @sb: super block of file system to search
1176 * @ino: inode number to search for
1177 *
1178 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1179 * This is for file systems where the inode number is sufficient for unique
1180 * identification of an inode.
1181 *
1182 * If the inode is in the cache, the inode is returned with an incremented
1183 * reference count.
1184 *
1185 * Otherwise NULL is returned.
1186 */
1187 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1188 {
1189 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1190
1191 return ifind_fast(sb, head, ino);
1192 }
1193 EXPORT_SYMBOL(ilookup);
1194
1195 /**
1196 * iget5_locked - obtain an inode from a mounted file system
1197 * @sb: super block of file system
1198 * @hashval: hash value (usually inode number) to get
1199 * @test: callback used for comparisons between inodes
1200 * @set: callback used to initialize a new struct inode
1201 * @data: opaque data pointer to pass to @test and @set
1202 *
1203 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1204 * and @data in the inode cache and if present it is returned with an increased
1205 * reference count. This is a generalized version of iget_locked() for file
1206 * systems where the inode number is not sufficient for unique identification
1207 * of an inode.
1208 *
1209 * If the inode is not in cache, get_new_inode() is called to allocate a new
1210 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1211 * file system gets to fill it in before unlocking it via unlock_new_inode().
1212 *
1213 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1214 */
1215 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1216 int (*test)(struct inode *, void *),
1217 int (*set)(struct inode *, void *), void *data)
1218 {
1219 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1220 struct inode *inode;
1221
1222 inode = ifind(sb, head, test, data, 1);
1223 if (inode)
1224 return inode;
1225 /*
1226 * get_new_inode() will do the right thing, re-trying the search
1227 * in case it had to block at any point.
1228 */
1229 return get_new_inode(sb, head, test, set, data);
1230 }
1231 EXPORT_SYMBOL(iget5_locked);
1232
1233 /**
1234 * iget_locked - obtain an inode from a mounted file system
1235 * @sb: super block of file system
1236 * @ino: inode number to get
1237 *
1238 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1239 * the inode cache and if present it is returned with an increased reference
1240 * count. This is for file systems where the inode number is sufficient for
1241 * unique identification of an inode.
1242 *
1243 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1244 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1245 * The file system gets to fill it in before unlocking it via
1246 * unlock_new_inode().
1247 */
1248 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1249 {
1250 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1251 struct inode *inode;
1252
1253 inode = ifind_fast(sb, head, ino);
1254 if (inode)
1255 return inode;
1256 /*
1257 * get_new_inode_fast() will do the right thing, re-trying the search
1258 * in case it had to block at any point.
1259 */
1260 return get_new_inode_fast(sb, head, ino);
1261 }
1262 EXPORT_SYMBOL(iget_locked);
1263
1264 int insert_inode_locked(struct inode *inode)
1265 {
1266 struct super_block *sb = inode->i_sb;
1267 ino_t ino = inode->i_ino;
1268 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1269
1270 inode->i_state |= I_NEW;
1271 while (1) {
1272 struct hlist_node *node;
1273 struct inode *old = NULL;
1274 spin_lock(&inode_lock);
1275 hlist_for_each_entry(old, node, head, i_hash) {
1276 if (old->i_ino != ino)
1277 continue;
1278 if (old->i_sb != sb)
1279 continue;
1280 if (old->i_state & (I_FREEING|I_WILL_FREE))
1281 continue;
1282 break;
1283 }
1284 if (likely(!node)) {
1285 hlist_add_head(&inode->i_hash, head);
1286 spin_unlock(&inode_lock);
1287 return 0;
1288 }
1289 __iget(old);
1290 spin_unlock(&inode_lock);
1291 wait_on_inode(old);
1292 if (unlikely(!inode_unhashed(old))) {
1293 iput(old);
1294 return -EBUSY;
1295 }
1296 iput(old);
1297 }
1298 }
1299 EXPORT_SYMBOL(insert_inode_locked);
1300
1301 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1302 int (*test)(struct inode *, void *), void *data)
1303 {
1304 struct super_block *sb = inode->i_sb;
1305 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1306
1307 inode->i_state |= I_NEW;
1308
1309 while (1) {
1310 struct hlist_node *node;
1311 struct inode *old = NULL;
1312
1313 spin_lock(&inode_lock);
1314 hlist_for_each_entry(old, node, head, i_hash) {
1315 if (old->i_sb != sb)
1316 continue;
1317 if (!test(old, data))
1318 continue;
1319 if (old->i_state & (I_FREEING|I_WILL_FREE))
1320 continue;
1321 break;
1322 }
1323 if (likely(!node)) {
1324 hlist_add_head(&inode->i_hash, head);
1325 spin_unlock(&inode_lock);
1326 return 0;
1327 }
1328 __iget(old);
1329 spin_unlock(&inode_lock);
1330 wait_on_inode(old);
1331 if (unlikely(!inode_unhashed(old))) {
1332 iput(old);
1333 return -EBUSY;
1334 }
1335 iput(old);
1336 }
1337 }
1338 EXPORT_SYMBOL(insert_inode_locked4);
1339
1340
1341 int generic_delete_inode(struct inode *inode)
1342 {
1343 return 1;
1344 }
1345 EXPORT_SYMBOL(generic_delete_inode);
1346
1347 /*
1348 * Normal UNIX filesystem behaviour: delete the
1349 * inode when the usage count drops to zero, and
1350 * i_nlink is zero.
1351 */
1352 int generic_drop_inode(struct inode *inode)
1353 {
1354 return !inode->i_nlink || inode_unhashed(inode);
1355 }
1356 EXPORT_SYMBOL_GPL(generic_drop_inode);
1357
1358 /*
1359 * Called when we're dropping the last reference
1360 * to an inode.
1361 *
1362 * Call the FS "drop_inode()" function, defaulting to
1363 * the legacy UNIX filesystem behaviour. If it tells
1364 * us to evict inode, do so. Otherwise, retain inode
1365 * in cache if fs is alive, sync and evict if fs is
1366 * shutting down.
1367 */
1368 static void iput_final(struct inode *inode)
1369 {
1370 struct super_block *sb = inode->i_sb;
1371 const struct super_operations *op = inode->i_sb->s_op;
1372 int drop;
1373
1374 if (op && op->drop_inode)
1375 drop = op->drop_inode(inode);
1376 else
1377 drop = generic_drop_inode(inode);
1378
1379 if (!drop) {
1380 if (sb->s_flags & MS_ACTIVE) {
1381 inode->i_state |= I_REFERENCED;
1382 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1383 inode_lru_list_add(inode);
1384 }
1385 spin_unlock(&inode_lock);
1386 return;
1387 }
1388 WARN_ON(inode->i_state & I_NEW);
1389 inode->i_state |= I_WILL_FREE;
1390 spin_unlock(&inode_lock);
1391 write_inode_now(inode, 1);
1392 spin_lock(&inode_lock);
1393 WARN_ON(inode->i_state & I_NEW);
1394 inode->i_state &= ~I_WILL_FREE;
1395 __remove_inode_hash(inode);
1396 }
1397
1398 WARN_ON(inode->i_state & I_NEW);
1399 inode->i_state |= I_FREEING;
1400
1401 /*
1402 * Move the inode off the IO lists and LRU once I_FREEING is
1403 * set so that it won't get moved back on there if it is dirty.
1404 */
1405 inode_lru_list_del(inode);
1406 list_del_init(&inode->i_wb_list);
1407
1408 __inode_sb_list_del(inode);
1409 spin_unlock(&inode_lock);
1410 evict(inode);
1411 remove_inode_hash(inode);
1412 wake_up_inode(inode);
1413 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1414 destroy_inode(inode);
1415 }
1416
1417 /**
1418 * iput - put an inode
1419 * @inode: inode to put
1420 *
1421 * Puts an inode, dropping its usage count. If the inode use count hits
1422 * zero, the inode is then freed and may also be destroyed.
1423 *
1424 * Consequently, iput() can sleep.
1425 */
1426 void iput(struct inode *inode)
1427 {
1428 if (inode) {
1429 BUG_ON(inode->i_state & I_CLEAR);
1430
1431 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1432 iput_final(inode);
1433 }
1434 }
1435 EXPORT_SYMBOL(iput);
1436
1437 /**
1438 * bmap - find a block number in a file
1439 * @inode: inode of file
1440 * @block: block to find
1441 *
1442 * Returns the block number on the device holding the inode that
1443 * is the disk block number for the block of the file requested.
1444 * That is, asked for block 4 of inode 1 the function will return the
1445 * disk block relative to the disk start that holds that block of the
1446 * file.
1447 */
1448 sector_t bmap(struct inode *inode, sector_t block)
1449 {
1450 sector_t res = 0;
1451 if (inode->i_mapping->a_ops->bmap)
1452 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1453 return res;
1454 }
1455 EXPORT_SYMBOL(bmap);
1456
1457 /*
1458 * With relative atime, only update atime if the previous atime is
1459 * earlier than either the ctime or mtime or if at least a day has
1460 * passed since the last atime update.
1461 */
1462 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1463 struct timespec now)
1464 {
1465
1466 if (!(mnt->mnt_flags & MNT_RELATIME))
1467 return 1;
1468 /*
1469 * Is mtime younger than atime? If yes, update atime:
1470 */
1471 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1472 return 1;
1473 /*
1474 * Is ctime younger than atime? If yes, update atime:
1475 */
1476 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1477 return 1;
1478
1479 /*
1480 * Is the previous atime value older than a day? If yes,
1481 * update atime:
1482 */
1483 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1484 return 1;
1485 /*
1486 * Good, we can skip the atime update:
1487 */
1488 return 0;
1489 }
1490
1491 /**
1492 * touch_atime - update the access time
1493 * @mnt: mount the inode is accessed on
1494 * @dentry: dentry accessed
1495 *
1496 * Update the accessed time on an inode and mark it for writeback.
1497 * This function automatically handles read only file systems and media,
1498 * as well as the "noatime" flag and inode specific "noatime" markers.
1499 */
1500 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1501 {
1502 struct inode *inode = dentry->d_inode;
1503 struct timespec now;
1504
1505 if (inode->i_flags & S_NOATIME)
1506 return;
1507 if (IS_NOATIME(inode))
1508 return;
1509 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1510 return;
1511
1512 if (mnt->mnt_flags & MNT_NOATIME)
1513 return;
1514 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1515 return;
1516
1517 now = current_fs_time(inode->i_sb);
1518
1519 if (!relatime_need_update(mnt, inode, now))
1520 return;
1521
1522 if (timespec_equal(&inode->i_atime, &now))
1523 return;
1524
1525 if (mnt_want_write(mnt))
1526 return;
1527
1528 inode->i_atime = now;
1529 mark_inode_dirty_sync(inode);
1530 mnt_drop_write(mnt);
1531 }
1532 EXPORT_SYMBOL(touch_atime);
1533
1534 /**
1535 * file_update_time - update mtime and ctime time
1536 * @file: file accessed
1537 *
1538 * Update the mtime and ctime members of an inode and mark the inode
1539 * for writeback. Note that this function is meant exclusively for
1540 * usage in the file write path of filesystems, and filesystems may
1541 * choose to explicitly ignore update via this function with the
1542 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1543 * timestamps are handled by the server.
1544 */
1545
1546 void file_update_time(struct file *file)
1547 {
1548 struct inode *inode = file->f_path.dentry->d_inode;
1549 struct timespec now;
1550 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1551
1552 /* First try to exhaust all avenues to not sync */
1553 if (IS_NOCMTIME(inode))
1554 return;
1555
1556 now = current_fs_time(inode->i_sb);
1557 if (!timespec_equal(&inode->i_mtime, &now))
1558 sync_it = S_MTIME;
1559
1560 if (!timespec_equal(&inode->i_ctime, &now))
1561 sync_it |= S_CTIME;
1562
1563 if (IS_I_VERSION(inode))
1564 sync_it |= S_VERSION;
1565
1566 if (!sync_it)
1567 return;
1568
1569 /* Finally allowed to write? Takes lock. */
1570 if (mnt_want_write_file(file))
1571 return;
1572
1573 /* Only change inode inside the lock region */
1574 if (sync_it & S_VERSION)
1575 inode_inc_iversion(inode);
1576 if (sync_it & S_CTIME)
1577 inode->i_ctime = now;
1578 if (sync_it & S_MTIME)
1579 inode->i_mtime = now;
1580 mark_inode_dirty_sync(inode);
1581 mnt_drop_write(file->f_path.mnt);
1582 }
1583 EXPORT_SYMBOL(file_update_time);
1584
1585 int inode_needs_sync(struct inode *inode)
1586 {
1587 if (IS_SYNC(inode))
1588 return 1;
1589 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1590 return 1;
1591 return 0;
1592 }
1593 EXPORT_SYMBOL(inode_needs_sync);
1594
1595 int inode_wait(void *word)
1596 {
1597 schedule();
1598 return 0;
1599 }
1600 EXPORT_SYMBOL(inode_wait);
1601
1602 /*
1603 * If we try to find an inode in the inode hash while it is being
1604 * deleted, we have to wait until the filesystem completes its
1605 * deletion before reporting that it isn't found. This function waits
1606 * until the deletion _might_ have completed. Callers are responsible
1607 * to recheck inode state.
1608 *
1609 * It doesn't matter if I_NEW is not set initially, a call to
1610 * wake_up_inode() after removing from the hash list will DTRT.
1611 *
1612 * This is called with inode_lock held.
1613 */
1614 static void __wait_on_freeing_inode(struct inode *inode)
1615 {
1616 wait_queue_head_t *wq;
1617 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1618 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1619 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1620 spin_unlock(&inode_lock);
1621 schedule();
1622 finish_wait(wq, &wait.wait);
1623 spin_lock(&inode_lock);
1624 }
1625
1626 static __initdata unsigned long ihash_entries;
1627 static int __init set_ihash_entries(char *str)
1628 {
1629 if (!str)
1630 return 0;
1631 ihash_entries = simple_strtoul(str, &str, 0);
1632 return 1;
1633 }
1634 __setup("ihash_entries=", set_ihash_entries);
1635
1636 /*
1637 * Initialize the waitqueues and inode hash table.
1638 */
1639 void __init inode_init_early(void)
1640 {
1641 int loop;
1642
1643 /* If hashes are distributed across NUMA nodes, defer
1644 * hash allocation until vmalloc space is available.
1645 */
1646 if (hashdist)
1647 return;
1648
1649 inode_hashtable =
1650 alloc_large_system_hash("Inode-cache",
1651 sizeof(struct hlist_head),
1652 ihash_entries,
1653 14,
1654 HASH_EARLY,
1655 &i_hash_shift,
1656 &i_hash_mask,
1657 0);
1658
1659 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1660 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1661 }
1662
1663 void __init inode_init(void)
1664 {
1665 int loop;
1666
1667 /* inode slab cache */
1668 inode_cachep = kmem_cache_create("inode_cache",
1669 sizeof(struct inode),
1670 0,
1671 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1672 SLAB_MEM_SPREAD),
1673 init_once);
1674 register_shrinker(&icache_shrinker);
1675
1676 /* Hash may have been set up in inode_init_early */
1677 if (!hashdist)
1678 return;
1679
1680 inode_hashtable =
1681 alloc_large_system_hash("Inode-cache",
1682 sizeof(struct hlist_head),
1683 ihash_entries,
1684 14,
1685 0,
1686 &i_hash_shift,
1687 &i_hash_mask,
1688 0);
1689
1690 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1691 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1692 }
1693
1694 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1695 {
1696 inode->i_mode = mode;
1697 if (S_ISCHR(mode)) {
1698 inode->i_fop = &def_chr_fops;
1699 inode->i_rdev = rdev;
1700 } else if (S_ISBLK(mode)) {
1701 inode->i_fop = &def_blk_fops;
1702 inode->i_rdev = rdev;
1703 } else if (S_ISFIFO(mode))
1704 inode->i_fop = &def_fifo_fops;
1705 else if (S_ISSOCK(mode))
1706 inode->i_fop = &bad_sock_fops;
1707 else
1708 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1709 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1710 inode->i_ino);
1711 }
1712 EXPORT_SYMBOL(init_special_inode);
1713
1714 /**
1715 * Init uid,gid,mode for new inode according to posix standards
1716 * @inode: New inode
1717 * @dir: Directory inode
1718 * @mode: mode of the new inode
1719 */
1720 void inode_init_owner(struct inode *inode, const struct inode *dir,
1721 mode_t mode)
1722 {
1723 inode->i_uid = current_fsuid();
1724 if (dir && dir->i_mode & S_ISGID) {
1725 inode->i_gid = dir->i_gid;
1726 if (S_ISDIR(mode))
1727 mode |= S_ISGID;
1728 } else
1729 inode->i_gid = current_fsgid();
1730 inode->i_mode = mode;
1731 }
1732 EXPORT_SYMBOL(inode_init_owner);
This page took 0.064636 seconds and 5 git commands to generate.