unexport invalidate_inodes
[deliverable/linux.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27
28 /*
29 * This is needed for the following functions:
30 * - inode_has_buffers
31 * - invalidate_inode_buffers
32 * - invalidate_bdev
33 *
34 * FIXME: remove all knowledge of the buffer layer from this file
35 */
36 #include <linux/buffer_head.h>
37
38 /*
39 * New inode.c implementation.
40 *
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
44 *
45 * Famous last words.
46 */
47
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52
53 /*
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
56 */
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
59
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62
63 /*
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
70 *
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
73 */
74
75 LIST_HEAD(inode_in_use);
76 LIST_HEAD(inode_unused);
77 static struct hlist_head *inode_hashtable __read_mostly;
78
79 /*
80 * A simple spinlock to protect the list manipulations.
81 *
82 * NOTE! You also have to own the lock if you change
83 * the i_state of an inode while it is in use..
84 */
85 DEFINE_SPINLOCK(inode_lock);
86
87 /*
88 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
89 * icache shrinking path, and the umount path. Without this exclusion,
90 * by the time prune_icache calls iput for the inode whose pages it has
91 * been invalidating, or by the time it calls clear_inode & destroy_inode
92 * from its final dispose_list, the struct super_block they refer to
93 * (for inode->i_sb->s_op) may already have been freed and reused.
94 *
95 * We make this an rwsem because the fastpath is icache shrinking. In
96 * some cases a filesystem may be doing a significant amount of work in
97 * its inode reclaim code, so this should improve parallelism.
98 */
99 static DECLARE_RWSEM(iprune_sem);
100
101 /*
102 * Statistics gathering..
103 */
104 struct inodes_stat_t inodes_stat;
105
106 static struct kmem_cache *inode_cachep __read_mostly;
107
108 static void wake_up_inode(struct inode *inode)
109 {
110 /*
111 * Prevent speculative execution through spin_unlock(&inode_lock);
112 */
113 smp_mb();
114 wake_up_bit(&inode->i_state, __I_NEW);
115 }
116
117 /**
118 * inode_init_always - perform inode structure intialisation
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
121 *
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
124 */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 static const struct address_space_operations empty_aops;
128 static const struct inode_operations empty_iops;
129 static const struct file_operations empty_fops;
130 struct address_space *const mapping = &inode->i_data;
131
132 inode->i_sb = sb;
133 inode->i_blkbits = sb->s_blocksize_bits;
134 inode->i_flags = 0;
135 atomic_set(&inode->i_count, 1);
136 inode->i_op = &empty_iops;
137 inode->i_fop = &empty_fops;
138 inode->i_nlink = 1;
139 inode->i_uid = 0;
140 inode->i_gid = 0;
141 atomic_set(&inode->i_writecount, 0);
142 inode->i_size = 0;
143 inode->i_blocks = 0;
144 inode->i_bytes = 0;
145 inode->i_generation = 0;
146 #ifdef CONFIG_QUOTA
147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148 #endif
149 inode->i_pipe = NULL;
150 inode->i_bdev = NULL;
151 inode->i_cdev = NULL;
152 inode->i_rdev = 0;
153 inode->dirtied_when = 0;
154
155 if (security_inode_alloc(inode))
156 goto out;
157 spin_lock_init(&inode->i_lock);
158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159
160 mutex_init(&inode->i_mutex);
161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162
163 init_rwsem(&inode->i_alloc_sem);
164 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
165
166 mapping->a_ops = &empty_aops;
167 mapping->host = inode;
168 mapping->flags = 0;
169 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
170 mapping->assoc_mapping = NULL;
171 mapping->backing_dev_info = &default_backing_dev_info;
172 mapping->writeback_index = 0;
173
174 /*
175 * If the block_device provides a backing_dev_info for client
176 * inodes then use that. Otherwise the inode share the bdev's
177 * backing_dev_info.
178 */
179 if (sb->s_bdev) {
180 struct backing_dev_info *bdi;
181
182 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
183 mapping->backing_dev_info = bdi;
184 }
185 inode->i_private = NULL;
186 inode->i_mapping = mapping;
187 #ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190
191 #ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
193 #endif
194
195 return 0;
196 out:
197 return -ENOMEM;
198 }
199 EXPORT_SYMBOL(inode_init_always);
200
201 static struct inode *alloc_inode(struct super_block *sb)
202 {
203 struct inode *inode;
204
205 if (sb->s_op->alloc_inode)
206 inode = sb->s_op->alloc_inode(sb);
207 else
208 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
209
210 if (!inode)
211 return NULL;
212
213 if (unlikely(inode_init_always(sb, inode))) {
214 if (inode->i_sb->s_op->destroy_inode)
215 inode->i_sb->s_op->destroy_inode(inode);
216 else
217 kmem_cache_free(inode_cachep, inode);
218 return NULL;
219 }
220
221 return inode;
222 }
223
224 void __destroy_inode(struct inode *inode)
225 {
226 BUG_ON(inode_has_buffers(inode));
227 security_inode_free(inode);
228 fsnotify_inode_delete(inode);
229 #ifdef CONFIG_FS_POSIX_ACL
230 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
231 posix_acl_release(inode->i_acl);
232 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
233 posix_acl_release(inode->i_default_acl);
234 #endif
235 }
236 EXPORT_SYMBOL(__destroy_inode);
237
238 static void destroy_inode(struct inode *inode)
239 {
240 __destroy_inode(inode);
241 if (inode->i_sb->s_op->destroy_inode)
242 inode->i_sb->s_op->destroy_inode(inode);
243 else
244 kmem_cache_free(inode_cachep, (inode));
245 }
246
247 /*
248 * These are initializations that only need to be done
249 * once, because the fields are idempotent across use
250 * of the inode, so let the slab aware of that.
251 */
252 void inode_init_once(struct inode *inode)
253 {
254 memset(inode, 0, sizeof(*inode));
255 INIT_HLIST_NODE(&inode->i_hash);
256 INIT_LIST_HEAD(&inode->i_dentry);
257 INIT_LIST_HEAD(&inode->i_devices);
258 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
259 spin_lock_init(&inode->i_data.tree_lock);
260 spin_lock_init(&inode->i_data.i_mmap_lock);
261 INIT_LIST_HEAD(&inode->i_data.private_list);
262 spin_lock_init(&inode->i_data.private_lock);
263 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
264 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
265 i_size_ordered_init(inode);
266 #ifdef CONFIG_FSNOTIFY
267 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
268 #endif
269 }
270 EXPORT_SYMBOL(inode_init_once);
271
272 static void init_once(void *foo)
273 {
274 struct inode *inode = (struct inode *) foo;
275
276 inode_init_once(inode);
277 }
278
279 /*
280 * inode_lock must be held
281 */
282 void __iget(struct inode *inode)
283 {
284 if (atomic_inc_return(&inode->i_count) != 1)
285 return;
286
287 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
288 list_move(&inode->i_list, &inode_in_use);
289 inodes_stat.nr_unused--;
290 }
291
292 void end_writeback(struct inode *inode)
293 {
294 might_sleep();
295 BUG_ON(inode->i_data.nrpages);
296 BUG_ON(!list_empty(&inode->i_data.private_list));
297 BUG_ON(!(inode->i_state & I_FREEING));
298 BUG_ON(inode->i_state & I_CLEAR);
299 inode_sync_wait(inode);
300 inode->i_state = I_FREEING | I_CLEAR;
301 }
302 EXPORT_SYMBOL(end_writeback);
303
304 static void evict(struct inode *inode)
305 {
306 const struct super_operations *op = inode->i_sb->s_op;
307
308 if (op->evict_inode) {
309 op->evict_inode(inode);
310 } else {
311 if (inode->i_data.nrpages)
312 truncate_inode_pages(&inode->i_data, 0);
313 end_writeback(inode);
314 }
315 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
316 bd_forget(inode);
317 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
318 cd_forget(inode);
319 }
320
321 /*
322 * dispose_list - dispose of the contents of a local list
323 * @head: the head of the list to free
324 *
325 * Dispose-list gets a local list with local inodes in it, so it doesn't
326 * need to worry about list corruption and SMP locks.
327 */
328 static void dispose_list(struct list_head *head)
329 {
330 int nr_disposed = 0;
331
332 while (!list_empty(head)) {
333 struct inode *inode;
334
335 inode = list_first_entry(head, struct inode, i_list);
336 list_del(&inode->i_list);
337
338 evict(inode);
339
340 spin_lock(&inode_lock);
341 hlist_del_init(&inode->i_hash);
342 list_del_init(&inode->i_sb_list);
343 spin_unlock(&inode_lock);
344
345 wake_up_inode(inode);
346 destroy_inode(inode);
347 nr_disposed++;
348 }
349 spin_lock(&inode_lock);
350 inodes_stat.nr_inodes -= nr_disposed;
351 spin_unlock(&inode_lock);
352 }
353
354 /*
355 * Invalidate all inodes for a device.
356 */
357 static int invalidate_list(struct list_head *head, struct list_head *dispose)
358 {
359 struct list_head *next;
360 int busy = 0, count = 0;
361
362 next = head->next;
363 for (;;) {
364 struct list_head *tmp = next;
365 struct inode *inode;
366
367 /*
368 * We can reschedule here without worrying about the list's
369 * consistency because the per-sb list of inodes must not
370 * change during umount anymore, and because iprune_sem keeps
371 * shrink_icache_memory() away.
372 */
373 cond_resched_lock(&inode_lock);
374
375 next = next->next;
376 if (tmp == head)
377 break;
378 inode = list_entry(tmp, struct inode, i_sb_list);
379 if (inode->i_state & I_NEW)
380 continue;
381 invalidate_inode_buffers(inode);
382 if (!atomic_read(&inode->i_count)) {
383 list_move(&inode->i_list, dispose);
384 WARN_ON(inode->i_state & I_NEW);
385 inode->i_state |= I_FREEING;
386 count++;
387 continue;
388 }
389 busy = 1;
390 }
391 /* only unused inodes may be cached with i_count zero */
392 inodes_stat.nr_unused -= count;
393 return busy;
394 }
395
396 /**
397 * invalidate_inodes - discard the inodes on a device
398 * @sb: superblock
399 *
400 * Discard all of the inodes for a given superblock. If the discard
401 * fails because there are busy inodes then a non zero value is returned.
402 * If the discard is successful all the inodes have been discarded.
403 */
404 int invalidate_inodes(struct super_block *sb)
405 {
406 int busy;
407 LIST_HEAD(throw_away);
408
409 down_write(&iprune_sem);
410 spin_lock(&inode_lock);
411 fsnotify_unmount_inodes(&sb->s_inodes);
412 busy = invalidate_list(&sb->s_inodes, &throw_away);
413 spin_unlock(&inode_lock);
414
415 dispose_list(&throw_away);
416 up_write(&iprune_sem);
417
418 return busy;
419 }
420
421 static int can_unuse(struct inode *inode)
422 {
423 if (inode->i_state)
424 return 0;
425 if (inode_has_buffers(inode))
426 return 0;
427 if (atomic_read(&inode->i_count))
428 return 0;
429 if (inode->i_data.nrpages)
430 return 0;
431 return 1;
432 }
433
434 /*
435 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
436 * a temporary list and then are freed outside inode_lock by dispose_list().
437 *
438 * Any inodes which are pinned purely because of attached pagecache have their
439 * pagecache removed. We expect the final iput() on that inode to add it to
440 * the front of the inode_unused list. So look for it there and if the
441 * inode is still freeable, proceed. The right inode is found 99.9% of the
442 * time in testing on a 4-way.
443 *
444 * If the inode has metadata buffers attached to mapping->private_list then
445 * try to remove them.
446 */
447 static void prune_icache(int nr_to_scan)
448 {
449 LIST_HEAD(freeable);
450 int nr_pruned = 0;
451 int nr_scanned;
452 unsigned long reap = 0;
453
454 down_read(&iprune_sem);
455 spin_lock(&inode_lock);
456 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
457 struct inode *inode;
458
459 if (list_empty(&inode_unused))
460 break;
461
462 inode = list_entry(inode_unused.prev, struct inode, i_list);
463
464 if (inode->i_state || atomic_read(&inode->i_count)) {
465 list_move(&inode->i_list, &inode_unused);
466 continue;
467 }
468 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
469 __iget(inode);
470 spin_unlock(&inode_lock);
471 if (remove_inode_buffers(inode))
472 reap += invalidate_mapping_pages(&inode->i_data,
473 0, -1);
474 iput(inode);
475 spin_lock(&inode_lock);
476
477 if (inode != list_entry(inode_unused.next,
478 struct inode, i_list))
479 continue; /* wrong inode or list_empty */
480 if (!can_unuse(inode))
481 continue;
482 }
483 list_move(&inode->i_list, &freeable);
484 WARN_ON(inode->i_state & I_NEW);
485 inode->i_state |= I_FREEING;
486 nr_pruned++;
487 }
488 inodes_stat.nr_unused -= nr_pruned;
489 if (current_is_kswapd())
490 __count_vm_events(KSWAPD_INODESTEAL, reap);
491 else
492 __count_vm_events(PGINODESTEAL, reap);
493 spin_unlock(&inode_lock);
494
495 dispose_list(&freeable);
496 up_read(&iprune_sem);
497 }
498
499 /*
500 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
501 * "unused" means that no dentries are referring to the inodes: the files are
502 * not open and the dcache references to those inodes have already been
503 * reclaimed.
504 *
505 * This function is passed the number of inodes to scan, and it returns the
506 * total number of remaining possibly-reclaimable inodes.
507 */
508 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
509 {
510 if (nr) {
511 /*
512 * Nasty deadlock avoidance. We may hold various FS locks,
513 * and we don't want to recurse into the FS that called us
514 * in clear_inode() and friends..
515 */
516 if (!(gfp_mask & __GFP_FS))
517 return -1;
518 prune_icache(nr);
519 }
520 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
521 }
522
523 static struct shrinker icache_shrinker = {
524 .shrink = shrink_icache_memory,
525 .seeks = DEFAULT_SEEKS,
526 };
527
528 static void __wait_on_freeing_inode(struct inode *inode);
529 /*
530 * Called with the inode lock held.
531 * NOTE: we are not increasing the inode-refcount, you must call __iget()
532 * by hand after calling find_inode now! This simplifies iunique and won't
533 * add any additional branch in the common code.
534 */
535 static struct inode *find_inode(struct super_block *sb,
536 struct hlist_head *head,
537 int (*test)(struct inode *, void *),
538 void *data)
539 {
540 struct hlist_node *node;
541 struct inode *inode = NULL;
542
543 repeat:
544 hlist_for_each_entry(inode, node, head, i_hash) {
545 if (inode->i_sb != sb)
546 continue;
547 if (!test(inode, data))
548 continue;
549 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
550 __wait_on_freeing_inode(inode);
551 goto repeat;
552 }
553 break;
554 }
555 return node ? inode : NULL;
556 }
557
558 /*
559 * find_inode_fast is the fast path version of find_inode, see the comment at
560 * iget_locked for details.
561 */
562 static struct inode *find_inode_fast(struct super_block *sb,
563 struct hlist_head *head, unsigned long ino)
564 {
565 struct hlist_node *node;
566 struct inode *inode = NULL;
567
568 repeat:
569 hlist_for_each_entry(inode, node, head, i_hash) {
570 if (inode->i_ino != ino)
571 continue;
572 if (inode->i_sb != sb)
573 continue;
574 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
575 __wait_on_freeing_inode(inode);
576 goto repeat;
577 }
578 break;
579 }
580 return node ? inode : NULL;
581 }
582
583 static unsigned long hash(struct super_block *sb, unsigned long hashval)
584 {
585 unsigned long tmp;
586
587 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
588 L1_CACHE_BYTES;
589 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
590 return tmp & I_HASHMASK;
591 }
592
593 static inline void
594 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
595 struct inode *inode)
596 {
597 inodes_stat.nr_inodes++;
598 list_add(&inode->i_list, &inode_in_use);
599 list_add(&inode->i_sb_list, &sb->s_inodes);
600 if (head)
601 hlist_add_head(&inode->i_hash, head);
602 }
603
604 /**
605 * inode_add_to_lists - add a new inode to relevant lists
606 * @sb: superblock inode belongs to
607 * @inode: inode to mark in use
608 *
609 * When an inode is allocated it needs to be accounted for, added to the in use
610 * list, the owning superblock and the inode hash. This needs to be done under
611 * the inode_lock, so export a function to do this rather than the inode lock
612 * itself. We calculate the hash list to add to here so it is all internal
613 * which requires the caller to have already set up the inode number in the
614 * inode to add.
615 */
616 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
617 {
618 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
619
620 spin_lock(&inode_lock);
621 __inode_add_to_lists(sb, head, inode);
622 spin_unlock(&inode_lock);
623 }
624 EXPORT_SYMBOL_GPL(inode_add_to_lists);
625
626 /**
627 * new_inode - obtain an inode
628 * @sb: superblock
629 *
630 * Allocates a new inode for given superblock. The default gfp_mask
631 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
632 * If HIGHMEM pages are unsuitable or it is known that pages allocated
633 * for the page cache are not reclaimable or migratable,
634 * mapping_set_gfp_mask() must be called with suitable flags on the
635 * newly created inode's mapping
636 *
637 */
638 struct inode *new_inode(struct super_block *sb)
639 {
640 /*
641 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
642 * error if st_ino won't fit in target struct field. Use 32bit counter
643 * here to attempt to avoid that.
644 */
645 static unsigned int last_ino;
646 struct inode *inode;
647
648 spin_lock_prefetch(&inode_lock);
649
650 inode = alloc_inode(sb);
651 if (inode) {
652 spin_lock(&inode_lock);
653 __inode_add_to_lists(sb, NULL, inode);
654 inode->i_ino = ++last_ino;
655 inode->i_state = 0;
656 spin_unlock(&inode_lock);
657 }
658 return inode;
659 }
660 EXPORT_SYMBOL(new_inode);
661
662 void unlock_new_inode(struct inode *inode)
663 {
664 #ifdef CONFIG_DEBUG_LOCK_ALLOC
665 if (S_ISDIR(inode->i_mode)) {
666 struct file_system_type *type = inode->i_sb->s_type;
667
668 /* Set new key only if filesystem hasn't already changed it */
669 if (!lockdep_match_class(&inode->i_mutex,
670 &type->i_mutex_key)) {
671 /*
672 * ensure nobody is actually holding i_mutex
673 */
674 mutex_destroy(&inode->i_mutex);
675 mutex_init(&inode->i_mutex);
676 lockdep_set_class(&inode->i_mutex,
677 &type->i_mutex_dir_key);
678 }
679 }
680 #endif
681 /*
682 * This is special! We do not need the spinlock when clearing I_NEW,
683 * because we're guaranteed that nobody else tries to do anything about
684 * the state of the inode when it is locked, as we just created it (so
685 * there can be no old holders that haven't tested I_NEW).
686 * However we must emit the memory barrier so that other CPUs reliably
687 * see the clearing of I_NEW after the other inode initialisation has
688 * completed.
689 */
690 smp_mb();
691 WARN_ON(!(inode->i_state & I_NEW));
692 inode->i_state &= ~I_NEW;
693 wake_up_inode(inode);
694 }
695 EXPORT_SYMBOL(unlock_new_inode);
696
697 /*
698 * This is called without the inode lock held.. Be careful.
699 *
700 * We no longer cache the sb_flags in i_flags - see fs.h
701 * -- rmk@arm.uk.linux.org
702 */
703 static struct inode *get_new_inode(struct super_block *sb,
704 struct hlist_head *head,
705 int (*test)(struct inode *, void *),
706 int (*set)(struct inode *, void *),
707 void *data)
708 {
709 struct inode *inode;
710
711 inode = alloc_inode(sb);
712 if (inode) {
713 struct inode *old;
714
715 spin_lock(&inode_lock);
716 /* We released the lock, so.. */
717 old = find_inode(sb, head, test, data);
718 if (!old) {
719 if (set(inode, data))
720 goto set_failed;
721
722 __inode_add_to_lists(sb, head, inode);
723 inode->i_state = I_NEW;
724 spin_unlock(&inode_lock);
725
726 /* Return the locked inode with I_NEW set, the
727 * caller is responsible for filling in the contents
728 */
729 return inode;
730 }
731
732 /*
733 * Uhhuh, somebody else created the same inode under
734 * us. Use the old inode instead of the one we just
735 * allocated.
736 */
737 __iget(old);
738 spin_unlock(&inode_lock);
739 destroy_inode(inode);
740 inode = old;
741 wait_on_inode(inode);
742 }
743 return inode;
744
745 set_failed:
746 spin_unlock(&inode_lock);
747 destroy_inode(inode);
748 return NULL;
749 }
750
751 /*
752 * get_new_inode_fast is the fast path version of get_new_inode, see the
753 * comment at iget_locked for details.
754 */
755 static struct inode *get_new_inode_fast(struct super_block *sb,
756 struct hlist_head *head, unsigned long ino)
757 {
758 struct inode *inode;
759
760 inode = alloc_inode(sb);
761 if (inode) {
762 struct inode *old;
763
764 spin_lock(&inode_lock);
765 /* We released the lock, so.. */
766 old = find_inode_fast(sb, head, ino);
767 if (!old) {
768 inode->i_ino = ino;
769 __inode_add_to_lists(sb, head, inode);
770 inode->i_state = I_NEW;
771 spin_unlock(&inode_lock);
772
773 /* Return the locked inode with I_NEW set, the
774 * caller is responsible for filling in the contents
775 */
776 return inode;
777 }
778
779 /*
780 * Uhhuh, somebody else created the same inode under
781 * us. Use the old inode instead of the one we just
782 * allocated.
783 */
784 __iget(old);
785 spin_unlock(&inode_lock);
786 destroy_inode(inode);
787 inode = old;
788 wait_on_inode(inode);
789 }
790 return inode;
791 }
792
793 /**
794 * iunique - get a unique inode number
795 * @sb: superblock
796 * @max_reserved: highest reserved inode number
797 *
798 * Obtain an inode number that is unique on the system for a given
799 * superblock. This is used by file systems that have no natural
800 * permanent inode numbering system. An inode number is returned that
801 * is higher than the reserved limit but unique.
802 *
803 * BUGS:
804 * With a large number of inodes live on the file system this function
805 * currently becomes quite slow.
806 */
807 ino_t iunique(struct super_block *sb, ino_t max_reserved)
808 {
809 /*
810 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
811 * error if st_ino won't fit in target struct field. Use 32bit counter
812 * here to attempt to avoid that.
813 */
814 static unsigned int counter;
815 struct inode *inode;
816 struct hlist_head *head;
817 ino_t res;
818
819 spin_lock(&inode_lock);
820 do {
821 if (counter <= max_reserved)
822 counter = max_reserved + 1;
823 res = counter++;
824 head = inode_hashtable + hash(sb, res);
825 inode = find_inode_fast(sb, head, res);
826 } while (inode != NULL);
827 spin_unlock(&inode_lock);
828
829 return res;
830 }
831 EXPORT_SYMBOL(iunique);
832
833 struct inode *igrab(struct inode *inode)
834 {
835 spin_lock(&inode_lock);
836 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
837 __iget(inode);
838 else
839 /*
840 * Handle the case where s_op->clear_inode is not been
841 * called yet, and somebody is calling igrab
842 * while the inode is getting freed.
843 */
844 inode = NULL;
845 spin_unlock(&inode_lock);
846 return inode;
847 }
848 EXPORT_SYMBOL(igrab);
849
850 /**
851 * ifind - internal function, you want ilookup5() or iget5().
852 * @sb: super block of file system to search
853 * @head: the head of the list to search
854 * @test: callback used for comparisons between inodes
855 * @data: opaque data pointer to pass to @test
856 * @wait: if true wait for the inode to be unlocked, if false do not
857 *
858 * ifind() searches for the inode specified by @data in the inode
859 * cache. This is a generalized version of ifind_fast() for file systems where
860 * the inode number is not sufficient for unique identification of an inode.
861 *
862 * If the inode is in the cache, the inode is returned with an incremented
863 * reference count.
864 *
865 * Otherwise NULL is returned.
866 *
867 * Note, @test is called with the inode_lock held, so can't sleep.
868 */
869 static struct inode *ifind(struct super_block *sb,
870 struct hlist_head *head, int (*test)(struct inode *, void *),
871 void *data, const int wait)
872 {
873 struct inode *inode;
874
875 spin_lock(&inode_lock);
876 inode = find_inode(sb, head, test, data);
877 if (inode) {
878 __iget(inode);
879 spin_unlock(&inode_lock);
880 if (likely(wait))
881 wait_on_inode(inode);
882 return inode;
883 }
884 spin_unlock(&inode_lock);
885 return NULL;
886 }
887
888 /**
889 * ifind_fast - internal function, you want ilookup() or iget().
890 * @sb: super block of file system to search
891 * @head: head of the list to search
892 * @ino: inode number to search for
893 *
894 * ifind_fast() searches for the inode @ino in the inode cache. This is for
895 * file systems where the inode number is sufficient for unique identification
896 * of an inode.
897 *
898 * If the inode is in the cache, the inode is returned with an incremented
899 * reference count.
900 *
901 * Otherwise NULL is returned.
902 */
903 static struct inode *ifind_fast(struct super_block *sb,
904 struct hlist_head *head, unsigned long ino)
905 {
906 struct inode *inode;
907
908 spin_lock(&inode_lock);
909 inode = find_inode_fast(sb, head, ino);
910 if (inode) {
911 __iget(inode);
912 spin_unlock(&inode_lock);
913 wait_on_inode(inode);
914 return inode;
915 }
916 spin_unlock(&inode_lock);
917 return NULL;
918 }
919
920 /**
921 * ilookup5_nowait - search for an inode in the inode cache
922 * @sb: super block of file system to search
923 * @hashval: hash value (usually inode number) to search for
924 * @test: callback used for comparisons between inodes
925 * @data: opaque data pointer to pass to @test
926 *
927 * ilookup5() uses ifind() to search for the inode specified by @hashval and
928 * @data in the inode cache. This is a generalized version of ilookup() for
929 * file systems where the inode number is not sufficient for unique
930 * identification of an inode.
931 *
932 * If the inode is in the cache, the inode is returned with an incremented
933 * reference count. Note, the inode lock is not waited upon so you have to be
934 * very careful what you do with the returned inode. You probably should be
935 * using ilookup5() instead.
936 *
937 * Otherwise NULL is returned.
938 *
939 * Note, @test is called with the inode_lock held, so can't sleep.
940 */
941 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
942 int (*test)(struct inode *, void *), void *data)
943 {
944 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
945
946 return ifind(sb, head, test, data, 0);
947 }
948 EXPORT_SYMBOL(ilookup5_nowait);
949
950 /**
951 * ilookup5 - search for an inode in the inode cache
952 * @sb: super block of file system to search
953 * @hashval: hash value (usually inode number) to search for
954 * @test: callback used for comparisons between inodes
955 * @data: opaque data pointer to pass to @test
956 *
957 * ilookup5() uses ifind() to search for the inode specified by @hashval and
958 * @data in the inode cache. This is a generalized version of ilookup() for
959 * file systems where the inode number is not sufficient for unique
960 * identification of an inode.
961 *
962 * If the inode is in the cache, the inode lock is waited upon and the inode is
963 * returned with an incremented reference count.
964 *
965 * Otherwise NULL is returned.
966 *
967 * Note, @test is called with the inode_lock held, so can't sleep.
968 */
969 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
970 int (*test)(struct inode *, void *), void *data)
971 {
972 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
973
974 return ifind(sb, head, test, data, 1);
975 }
976 EXPORT_SYMBOL(ilookup5);
977
978 /**
979 * ilookup - search for an inode in the inode cache
980 * @sb: super block of file system to search
981 * @ino: inode number to search for
982 *
983 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
984 * This is for file systems where the inode number is sufficient for unique
985 * identification of an inode.
986 *
987 * If the inode is in the cache, the inode is returned with an incremented
988 * reference count.
989 *
990 * Otherwise NULL is returned.
991 */
992 struct inode *ilookup(struct super_block *sb, unsigned long ino)
993 {
994 struct hlist_head *head = inode_hashtable + hash(sb, ino);
995
996 return ifind_fast(sb, head, ino);
997 }
998 EXPORT_SYMBOL(ilookup);
999
1000 /**
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb: super block of file system
1003 * @hashval: hash value (usually inode number) to get
1004 * @test: callback used for comparisons between inodes
1005 * @set: callback used to initialize a new struct inode
1006 * @data: opaque data pointer to pass to @test and @set
1007 *
1008 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1009 * and @data in the inode cache and if present it is returned with an increased
1010 * reference count. This is a generalized version of iget_locked() for file
1011 * systems where the inode number is not sufficient for unique identification
1012 * of an inode.
1013 *
1014 * If the inode is not in cache, get_new_inode() is called to allocate a new
1015 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1016 * file system gets to fill it in before unlocking it via unlock_new_inode().
1017 *
1018 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1019 */
1020 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021 int (*test)(struct inode *, void *),
1022 int (*set)(struct inode *, void *), void *data)
1023 {
1024 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025 struct inode *inode;
1026
1027 inode = ifind(sb, head, test, data, 1);
1028 if (inode)
1029 return inode;
1030 /*
1031 * get_new_inode() will do the right thing, re-trying the search
1032 * in case it had to block at any point.
1033 */
1034 return get_new_inode(sb, head, test, set, data);
1035 }
1036 EXPORT_SYMBOL(iget5_locked);
1037
1038 /**
1039 * iget_locked - obtain an inode from a mounted file system
1040 * @sb: super block of file system
1041 * @ino: inode number to get
1042 *
1043 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1044 * the inode cache and if present it is returned with an increased reference
1045 * count. This is for file systems where the inode number is sufficient for
1046 * unique identification of an inode.
1047 *
1048 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1049 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1050 * The file system gets to fill it in before unlocking it via
1051 * unlock_new_inode().
1052 */
1053 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1054 {
1055 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1056 struct inode *inode;
1057
1058 inode = ifind_fast(sb, head, ino);
1059 if (inode)
1060 return inode;
1061 /*
1062 * get_new_inode_fast() will do the right thing, re-trying the search
1063 * in case it had to block at any point.
1064 */
1065 return get_new_inode_fast(sb, head, ino);
1066 }
1067 EXPORT_SYMBOL(iget_locked);
1068
1069 int insert_inode_locked(struct inode *inode)
1070 {
1071 struct super_block *sb = inode->i_sb;
1072 ino_t ino = inode->i_ino;
1073 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1074
1075 inode->i_state |= I_NEW;
1076 while (1) {
1077 struct hlist_node *node;
1078 struct inode *old = NULL;
1079 spin_lock(&inode_lock);
1080 hlist_for_each_entry(old, node, head, i_hash) {
1081 if (old->i_ino != ino)
1082 continue;
1083 if (old->i_sb != sb)
1084 continue;
1085 if (old->i_state & (I_FREEING|I_WILL_FREE))
1086 continue;
1087 break;
1088 }
1089 if (likely(!node)) {
1090 hlist_add_head(&inode->i_hash, head);
1091 spin_unlock(&inode_lock);
1092 return 0;
1093 }
1094 __iget(old);
1095 spin_unlock(&inode_lock);
1096 wait_on_inode(old);
1097 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1098 iput(old);
1099 return -EBUSY;
1100 }
1101 iput(old);
1102 }
1103 }
1104 EXPORT_SYMBOL(insert_inode_locked);
1105
1106 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1107 int (*test)(struct inode *, void *), void *data)
1108 {
1109 struct super_block *sb = inode->i_sb;
1110 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1111
1112 inode->i_state |= I_NEW;
1113
1114 while (1) {
1115 struct hlist_node *node;
1116 struct inode *old = NULL;
1117
1118 spin_lock(&inode_lock);
1119 hlist_for_each_entry(old, node, head, i_hash) {
1120 if (old->i_sb != sb)
1121 continue;
1122 if (!test(old, data))
1123 continue;
1124 if (old->i_state & (I_FREEING|I_WILL_FREE))
1125 continue;
1126 break;
1127 }
1128 if (likely(!node)) {
1129 hlist_add_head(&inode->i_hash, head);
1130 spin_unlock(&inode_lock);
1131 return 0;
1132 }
1133 __iget(old);
1134 spin_unlock(&inode_lock);
1135 wait_on_inode(old);
1136 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1137 iput(old);
1138 return -EBUSY;
1139 }
1140 iput(old);
1141 }
1142 }
1143 EXPORT_SYMBOL(insert_inode_locked4);
1144
1145 /**
1146 * __insert_inode_hash - hash an inode
1147 * @inode: unhashed inode
1148 * @hashval: unsigned long value used to locate this object in the
1149 * inode_hashtable.
1150 *
1151 * Add an inode to the inode hash for this superblock.
1152 */
1153 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1154 {
1155 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1156 spin_lock(&inode_lock);
1157 hlist_add_head(&inode->i_hash, head);
1158 spin_unlock(&inode_lock);
1159 }
1160 EXPORT_SYMBOL(__insert_inode_hash);
1161
1162 /**
1163 * remove_inode_hash - remove an inode from the hash
1164 * @inode: inode to unhash
1165 *
1166 * Remove an inode from the superblock.
1167 */
1168 void remove_inode_hash(struct inode *inode)
1169 {
1170 spin_lock(&inode_lock);
1171 hlist_del_init(&inode->i_hash);
1172 spin_unlock(&inode_lock);
1173 }
1174 EXPORT_SYMBOL(remove_inode_hash);
1175
1176 int generic_delete_inode(struct inode *inode)
1177 {
1178 return 1;
1179 }
1180 EXPORT_SYMBOL(generic_delete_inode);
1181
1182 /*
1183 * Normal UNIX filesystem behaviour: delete the
1184 * inode when the usage count drops to zero, and
1185 * i_nlink is zero.
1186 */
1187 int generic_drop_inode(struct inode *inode)
1188 {
1189 return !inode->i_nlink || hlist_unhashed(&inode->i_hash);
1190 }
1191 EXPORT_SYMBOL_GPL(generic_drop_inode);
1192
1193 /*
1194 * Called when we're dropping the last reference
1195 * to an inode.
1196 *
1197 * Call the FS "drop_inode()" function, defaulting to
1198 * the legacy UNIX filesystem behaviour. If it tells
1199 * us to evict inode, do so. Otherwise, retain inode
1200 * in cache if fs is alive, sync and evict if fs is
1201 * shutting down.
1202 */
1203 static void iput_final(struct inode *inode)
1204 {
1205 struct super_block *sb = inode->i_sb;
1206 const struct super_operations *op = inode->i_sb->s_op;
1207 int drop;
1208
1209 if (op && op->drop_inode)
1210 drop = op->drop_inode(inode);
1211 else
1212 drop = generic_drop_inode(inode);
1213
1214 if (!drop) {
1215 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1216 list_move(&inode->i_list, &inode_unused);
1217 inodes_stat.nr_unused++;
1218 if (sb->s_flags & MS_ACTIVE) {
1219 spin_unlock(&inode_lock);
1220 return;
1221 }
1222 WARN_ON(inode->i_state & I_NEW);
1223 inode->i_state |= I_WILL_FREE;
1224 spin_unlock(&inode_lock);
1225 write_inode_now(inode, 1);
1226 spin_lock(&inode_lock);
1227 WARN_ON(inode->i_state & I_NEW);
1228 inode->i_state &= ~I_WILL_FREE;
1229 inodes_stat.nr_unused--;
1230 hlist_del_init(&inode->i_hash);
1231 }
1232 list_del_init(&inode->i_list);
1233 list_del_init(&inode->i_sb_list);
1234 WARN_ON(inode->i_state & I_NEW);
1235 inode->i_state |= I_FREEING;
1236 inodes_stat.nr_inodes--;
1237 spin_unlock(&inode_lock);
1238 evict(inode);
1239 spin_lock(&inode_lock);
1240 hlist_del_init(&inode->i_hash);
1241 spin_unlock(&inode_lock);
1242 wake_up_inode(inode);
1243 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1244 destroy_inode(inode);
1245 }
1246
1247 /**
1248 * iput - put an inode
1249 * @inode: inode to put
1250 *
1251 * Puts an inode, dropping its usage count. If the inode use count hits
1252 * zero, the inode is then freed and may also be destroyed.
1253 *
1254 * Consequently, iput() can sleep.
1255 */
1256 void iput(struct inode *inode)
1257 {
1258 if (inode) {
1259 BUG_ON(inode->i_state & I_CLEAR);
1260
1261 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1262 iput_final(inode);
1263 }
1264 }
1265 EXPORT_SYMBOL(iput);
1266
1267 /**
1268 * bmap - find a block number in a file
1269 * @inode: inode of file
1270 * @block: block to find
1271 *
1272 * Returns the block number on the device holding the inode that
1273 * is the disk block number for the block of the file requested.
1274 * That is, asked for block 4 of inode 1 the function will return the
1275 * disk block relative to the disk start that holds that block of the
1276 * file.
1277 */
1278 sector_t bmap(struct inode *inode, sector_t block)
1279 {
1280 sector_t res = 0;
1281 if (inode->i_mapping->a_ops->bmap)
1282 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1283 return res;
1284 }
1285 EXPORT_SYMBOL(bmap);
1286
1287 /*
1288 * With relative atime, only update atime if the previous atime is
1289 * earlier than either the ctime or mtime or if at least a day has
1290 * passed since the last atime update.
1291 */
1292 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1293 struct timespec now)
1294 {
1295
1296 if (!(mnt->mnt_flags & MNT_RELATIME))
1297 return 1;
1298 /*
1299 * Is mtime younger than atime? If yes, update atime:
1300 */
1301 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1302 return 1;
1303 /*
1304 * Is ctime younger than atime? If yes, update atime:
1305 */
1306 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1307 return 1;
1308
1309 /*
1310 * Is the previous atime value older than a day? If yes,
1311 * update atime:
1312 */
1313 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1314 return 1;
1315 /*
1316 * Good, we can skip the atime update:
1317 */
1318 return 0;
1319 }
1320
1321 /**
1322 * touch_atime - update the access time
1323 * @mnt: mount the inode is accessed on
1324 * @dentry: dentry accessed
1325 *
1326 * Update the accessed time on an inode and mark it for writeback.
1327 * This function automatically handles read only file systems and media,
1328 * as well as the "noatime" flag and inode specific "noatime" markers.
1329 */
1330 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1331 {
1332 struct inode *inode = dentry->d_inode;
1333 struct timespec now;
1334
1335 if (inode->i_flags & S_NOATIME)
1336 return;
1337 if (IS_NOATIME(inode))
1338 return;
1339 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1340 return;
1341
1342 if (mnt->mnt_flags & MNT_NOATIME)
1343 return;
1344 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1345 return;
1346
1347 now = current_fs_time(inode->i_sb);
1348
1349 if (!relatime_need_update(mnt, inode, now))
1350 return;
1351
1352 if (timespec_equal(&inode->i_atime, &now))
1353 return;
1354
1355 if (mnt_want_write(mnt))
1356 return;
1357
1358 inode->i_atime = now;
1359 mark_inode_dirty_sync(inode);
1360 mnt_drop_write(mnt);
1361 }
1362 EXPORT_SYMBOL(touch_atime);
1363
1364 /**
1365 * file_update_time - update mtime and ctime time
1366 * @file: file accessed
1367 *
1368 * Update the mtime and ctime members of an inode and mark the inode
1369 * for writeback. Note that this function is meant exclusively for
1370 * usage in the file write path of filesystems, and filesystems may
1371 * choose to explicitly ignore update via this function with the
1372 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1373 * timestamps are handled by the server.
1374 */
1375
1376 void file_update_time(struct file *file)
1377 {
1378 struct inode *inode = file->f_path.dentry->d_inode;
1379 struct timespec now;
1380 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1381
1382 /* First try to exhaust all avenues to not sync */
1383 if (IS_NOCMTIME(inode))
1384 return;
1385
1386 now = current_fs_time(inode->i_sb);
1387 if (!timespec_equal(&inode->i_mtime, &now))
1388 sync_it = S_MTIME;
1389
1390 if (!timespec_equal(&inode->i_ctime, &now))
1391 sync_it |= S_CTIME;
1392
1393 if (IS_I_VERSION(inode))
1394 sync_it |= S_VERSION;
1395
1396 if (!sync_it)
1397 return;
1398
1399 /* Finally allowed to write? Takes lock. */
1400 if (mnt_want_write_file(file))
1401 return;
1402
1403 /* Only change inode inside the lock region */
1404 if (sync_it & S_VERSION)
1405 inode_inc_iversion(inode);
1406 if (sync_it & S_CTIME)
1407 inode->i_ctime = now;
1408 if (sync_it & S_MTIME)
1409 inode->i_mtime = now;
1410 mark_inode_dirty_sync(inode);
1411 mnt_drop_write(file->f_path.mnt);
1412 }
1413 EXPORT_SYMBOL(file_update_time);
1414
1415 int inode_needs_sync(struct inode *inode)
1416 {
1417 if (IS_SYNC(inode))
1418 return 1;
1419 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1420 return 1;
1421 return 0;
1422 }
1423 EXPORT_SYMBOL(inode_needs_sync);
1424
1425 int inode_wait(void *word)
1426 {
1427 schedule();
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(inode_wait);
1431
1432 /*
1433 * If we try to find an inode in the inode hash while it is being
1434 * deleted, we have to wait until the filesystem completes its
1435 * deletion before reporting that it isn't found. This function waits
1436 * until the deletion _might_ have completed. Callers are responsible
1437 * to recheck inode state.
1438 *
1439 * It doesn't matter if I_NEW is not set initially, a call to
1440 * wake_up_inode() after removing from the hash list will DTRT.
1441 *
1442 * This is called with inode_lock held.
1443 */
1444 static void __wait_on_freeing_inode(struct inode *inode)
1445 {
1446 wait_queue_head_t *wq;
1447 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1448 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1449 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1450 spin_unlock(&inode_lock);
1451 schedule();
1452 finish_wait(wq, &wait.wait);
1453 spin_lock(&inode_lock);
1454 }
1455
1456 static __initdata unsigned long ihash_entries;
1457 static int __init set_ihash_entries(char *str)
1458 {
1459 if (!str)
1460 return 0;
1461 ihash_entries = simple_strtoul(str, &str, 0);
1462 return 1;
1463 }
1464 __setup("ihash_entries=", set_ihash_entries);
1465
1466 /*
1467 * Initialize the waitqueues and inode hash table.
1468 */
1469 void __init inode_init_early(void)
1470 {
1471 int loop;
1472
1473 /* If hashes are distributed across NUMA nodes, defer
1474 * hash allocation until vmalloc space is available.
1475 */
1476 if (hashdist)
1477 return;
1478
1479 inode_hashtable =
1480 alloc_large_system_hash("Inode-cache",
1481 sizeof(struct hlist_head),
1482 ihash_entries,
1483 14,
1484 HASH_EARLY,
1485 &i_hash_shift,
1486 &i_hash_mask,
1487 0);
1488
1489 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1490 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1491 }
1492
1493 void __init inode_init(void)
1494 {
1495 int loop;
1496
1497 /* inode slab cache */
1498 inode_cachep = kmem_cache_create("inode_cache",
1499 sizeof(struct inode),
1500 0,
1501 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1502 SLAB_MEM_SPREAD),
1503 init_once);
1504 register_shrinker(&icache_shrinker);
1505
1506 /* Hash may have been set up in inode_init_early */
1507 if (!hashdist)
1508 return;
1509
1510 inode_hashtable =
1511 alloc_large_system_hash("Inode-cache",
1512 sizeof(struct hlist_head),
1513 ihash_entries,
1514 14,
1515 0,
1516 &i_hash_shift,
1517 &i_hash_mask,
1518 0);
1519
1520 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1521 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1522 }
1523
1524 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1525 {
1526 inode->i_mode = mode;
1527 if (S_ISCHR(mode)) {
1528 inode->i_fop = &def_chr_fops;
1529 inode->i_rdev = rdev;
1530 } else if (S_ISBLK(mode)) {
1531 inode->i_fop = &def_blk_fops;
1532 inode->i_rdev = rdev;
1533 } else if (S_ISFIFO(mode))
1534 inode->i_fop = &def_fifo_fops;
1535 else if (S_ISSOCK(mode))
1536 inode->i_fop = &bad_sock_fops;
1537 else
1538 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1539 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1540 inode->i_ino);
1541 }
1542 EXPORT_SYMBOL(init_special_inode);
1543
1544 /**
1545 * Init uid,gid,mode for new inode according to posix standards
1546 * @inode: New inode
1547 * @dir: Directory inode
1548 * @mode: mode of the new inode
1549 */
1550 void inode_init_owner(struct inode *inode, const struct inode *dir,
1551 mode_t mode)
1552 {
1553 inode->i_uid = current_fsuid();
1554 if (dir && dir->i_mode & S_ISGID) {
1555 inode->i_gid = dir->i_gid;
1556 if (S_ISDIR(mode))
1557 mode |= S_ISGID;
1558 } else
1559 inode->i_gid = current_fsgid();
1560 inode->i_mode = mode;
1561 }
1562 EXPORT_SYMBOL(inode_init_owner);
This page took 0.106788 seconds and 5 git commands to generate.