locks: add a dedicated spinlock to protect i_flctx lists
[deliverable/linux.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22
23 /*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 return -ENXIO;
120 }
121
122 /**
123 * inode_init_always - perform inode structure intialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 i_uid_write(inode, 0);
145 i_gid_write(inode, 0);
146 atomic_set(&inode->i_writecount, 0);
147 inode->i_size = 0;
148 inode->i_blocks = 0;
149 inode->i_bytes = 0;
150 inode->i_generation = 0;
151 inode->i_pipe = NULL;
152 inode->i_bdev = NULL;
153 inode->i_cdev = NULL;
154 inode->i_rdev = 0;
155 inode->dirtied_when = 0;
156
157 if (security_inode_alloc(inode))
158 goto out;
159 spin_lock_init(&inode->i_lock);
160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161
162 mutex_init(&inode->i_mutex);
163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164
165 atomic_set(&inode->i_dio_count, 0);
166
167 mapping->a_ops = &empty_aops;
168 mapping->host = inode;
169 mapping->flags = 0;
170 atomic_set(&mapping->i_mmap_writable, 0);
171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 mapping->private_data = NULL;
173 mapping->backing_dev_info = &default_backing_dev_info;
174 mapping->writeback_index = 0;
175
176 /*
177 * If the block_device provides a backing_dev_info for client
178 * inodes then use that. Otherwise the inode share the bdev's
179 * backing_dev_info.
180 */
181 if (sb->s_bdev) {
182 struct backing_dev_info *bdi;
183
184 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
185 mapping->backing_dev_info = bdi;
186 }
187 inode->i_private = NULL;
188 inode->i_mapping = mapping;
189 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193
194 #ifdef CONFIG_FSNOTIFY
195 inode->i_fsnotify_mask = 0;
196 #endif
197 inode->i_flctx = NULL;
198 this_cpu_inc(nr_inodes);
199
200 return 0;
201 out:
202 return -ENOMEM;
203 }
204 EXPORT_SYMBOL(inode_init_always);
205
206 static struct inode *alloc_inode(struct super_block *sb)
207 {
208 struct inode *inode;
209
210 if (sb->s_op->alloc_inode)
211 inode = sb->s_op->alloc_inode(sb);
212 else
213 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214
215 if (!inode)
216 return NULL;
217
218 if (unlikely(inode_init_always(sb, inode))) {
219 if (inode->i_sb->s_op->destroy_inode)
220 inode->i_sb->s_op->destroy_inode(inode);
221 else
222 kmem_cache_free(inode_cachep, inode);
223 return NULL;
224 }
225
226 return inode;
227 }
228
229 void free_inode_nonrcu(struct inode *inode)
230 {
231 kmem_cache_free(inode_cachep, inode);
232 }
233 EXPORT_SYMBOL(free_inode_nonrcu);
234
235 void __destroy_inode(struct inode *inode)
236 {
237 BUG_ON(inode_has_buffers(inode));
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 locks_free_lock_context(inode->i_flctx);
241 if (!inode->i_nlink) {
242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 atomic_long_dec(&inode->i_sb->s_remove_count);
244 }
245
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
248 posix_acl_release(inode->i_acl);
249 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
250 posix_acl_release(inode->i_default_acl);
251 #endif
252 this_cpu_dec(nr_inodes);
253 }
254 EXPORT_SYMBOL(__destroy_inode);
255
256 static void i_callback(struct rcu_head *head)
257 {
258 struct inode *inode = container_of(head, struct inode, i_rcu);
259 kmem_cache_free(inode_cachep, inode);
260 }
261
262 static void destroy_inode(struct inode *inode)
263 {
264 BUG_ON(!list_empty(&inode->i_lru));
265 __destroy_inode(inode);
266 if (inode->i_sb->s_op->destroy_inode)
267 inode->i_sb->s_op->destroy_inode(inode);
268 else
269 call_rcu(&inode->i_rcu, i_callback);
270 }
271
272 /**
273 * drop_nlink - directly drop an inode's link count
274 * @inode: inode
275 *
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
281 * on the filesystem.
282 */
283 void drop_nlink(struct inode *inode)
284 {
285 WARN_ON(inode->i_nlink == 0);
286 inode->__i_nlink--;
287 if (!inode->i_nlink)
288 atomic_long_inc(&inode->i_sb->s_remove_count);
289 }
290 EXPORT_SYMBOL(drop_nlink);
291
292 /**
293 * clear_nlink - directly zero an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
299 */
300 void clear_nlink(struct inode *inode)
301 {
302 if (inode->i_nlink) {
303 inode->__i_nlink = 0;
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306 }
307 EXPORT_SYMBOL(clear_nlink);
308
309 /**
310 * set_nlink - directly set an inode's link count
311 * @inode: inode
312 * @nlink: new nlink (should be non-zero)
313 *
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
316 */
317 void set_nlink(struct inode *inode, unsigned int nlink)
318 {
319 if (!nlink) {
320 clear_nlink(inode);
321 } else {
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode->i_nlink == 0)
324 atomic_long_dec(&inode->i_sb->s_remove_count);
325
326 inode->__i_nlink = nlink;
327 }
328 }
329 EXPORT_SYMBOL(set_nlink);
330
331 /**
332 * inc_nlink - directly increment an inode's link count
333 * @inode: inode
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
338 */
339 void inc_nlink(struct inode *inode)
340 {
341 if (unlikely(inode->i_nlink == 0)) {
342 WARN_ON(!(inode->i_state & I_LINKABLE));
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344 }
345
346 inode->__i_nlink++;
347 }
348 EXPORT_SYMBOL(inc_nlink);
349
350 void address_space_init_once(struct address_space *mapping)
351 {
352 memset(mapping, 0, sizeof(*mapping));
353 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
354 spin_lock_init(&mapping->tree_lock);
355 init_rwsem(&mapping->i_mmap_rwsem);
356 INIT_LIST_HEAD(&mapping->private_list);
357 spin_lock_init(&mapping->private_lock);
358 mapping->i_mmap = RB_ROOT;
359 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
360 }
361 EXPORT_SYMBOL(address_space_init_once);
362
363 /*
364 * These are initializations that only need to be done
365 * once, because the fields are idempotent across use
366 * of the inode, so let the slab aware of that.
367 */
368 void inode_init_once(struct inode *inode)
369 {
370 memset(inode, 0, sizeof(*inode));
371 INIT_HLIST_NODE(&inode->i_hash);
372 INIT_LIST_HEAD(&inode->i_devices);
373 INIT_LIST_HEAD(&inode->i_wb_list);
374 INIT_LIST_HEAD(&inode->i_lru);
375 address_space_init_once(&inode->i_data);
376 i_size_ordered_init(inode);
377 #ifdef CONFIG_FSNOTIFY
378 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
379 #endif
380 }
381 EXPORT_SYMBOL(inode_init_once);
382
383 static void init_once(void *foo)
384 {
385 struct inode *inode = (struct inode *) foo;
386
387 inode_init_once(inode);
388 }
389
390 /*
391 * inode->i_lock must be held
392 */
393 void __iget(struct inode *inode)
394 {
395 atomic_inc(&inode->i_count);
396 }
397
398 /*
399 * get additional reference to inode; caller must already hold one.
400 */
401 void ihold(struct inode *inode)
402 {
403 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
404 }
405 EXPORT_SYMBOL(ihold);
406
407 static void inode_lru_list_add(struct inode *inode)
408 {
409 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
410 this_cpu_inc(nr_unused);
411 }
412
413 /*
414 * Add inode to LRU if needed (inode is unused and clean).
415 *
416 * Needs inode->i_lock held.
417 */
418 void inode_add_lru(struct inode *inode)
419 {
420 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
421 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
422 inode_lru_list_add(inode);
423 }
424
425
426 static void inode_lru_list_del(struct inode *inode)
427 {
428
429 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 this_cpu_dec(nr_unused);
431 }
432
433 /**
434 * inode_sb_list_add - add inode to the superblock list of inodes
435 * @inode: inode to add
436 */
437 void inode_sb_list_add(struct inode *inode)
438 {
439 spin_lock(&inode_sb_list_lock);
440 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
441 spin_unlock(&inode_sb_list_lock);
442 }
443 EXPORT_SYMBOL_GPL(inode_sb_list_add);
444
445 static inline void inode_sb_list_del(struct inode *inode)
446 {
447 if (!list_empty(&inode->i_sb_list)) {
448 spin_lock(&inode_sb_list_lock);
449 list_del_init(&inode->i_sb_list);
450 spin_unlock(&inode_sb_list_lock);
451 }
452 }
453
454 static unsigned long hash(struct super_block *sb, unsigned long hashval)
455 {
456 unsigned long tmp;
457
458 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
459 L1_CACHE_BYTES;
460 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
461 return tmp & i_hash_mask;
462 }
463
464 /**
465 * __insert_inode_hash - hash an inode
466 * @inode: unhashed inode
467 * @hashval: unsigned long value used to locate this object in the
468 * inode_hashtable.
469 *
470 * Add an inode to the inode hash for this superblock.
471 */
472 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
473 {
474 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
475
476 spin_lock(&inode_hash_lock);
477 spin_lock(&inode->i_lock);
478 hlist_add_head(&inode->i_hash, b);
479 spin_unlock(&inode->i_lock);
480 spin_unlock(&inode_hash_lock);
481 }
482 EXPORT_SYMBOL(__insert_inode_hash);
483
484 /**
485 * __remove_inode_hash - remove an inode from the hash
486 * @inode: inode to unhash
487 *
488 * Remove an inode from the superblock.
489 */
490 void __remove_inode_hash(struct inode *inode)
491 {
492 spin_lock(&inode_hash_lock);
493 spin_lock(&inode->i_lock);
494 hlist_del_init(&inode->i_hash);
495 spin_unlock(&inode->i_lock);
496 spin_unlock(&inode_hash_lock);
497 }
498 EXPORT_SYMBOL(__remove_inode_hash);
499
500 void clear_inode(struct inode *inode)
501 {
502 might_sleep();
503 /*
504 * We have to cycle tree_lock here because reclaim can be still in the
505 * process of removing the last page (in __delete_from_page_cache())
506 * and we must not free mapping under it.
507 */
508 spin_lock_irq(&inode->i_data.tree_lock);
509 BUG_ON(inode->i_data.nrpages);
510 BUG_ON(inode->i_data.nrshadows);
511 spin_unlock_irq(&inode->i_data.tree_lock);
512 BUG_ON(!list_empty(&inode->i_data.private_list));
513 BUG_ON(!(inode->i_state & I_FREEING));
514 BUG_ON(inode->i_state & I_CLEAR);
515 /* don't need i_lock here, no concurrent mods to i_state */
516 inode->i_state = I_FREEING | I_CLEAR;
517 }
518 EXPORT_SYMBOL(clear_inode);
519
520 /*
521 * Free the inode passed in, removing it from the lists it is still connected
522 * to. We remove any pages still attached to the inode and wait for any IO that
523 * is still in progress before finally destroying the inode.
524 *
525 * An inode must already be marked I_FREEING so that we avoid the inode being
526 * moved back onto lists if we race with other code that manipulates the lists
527 * (e.g. writeback_single_inode). The caller is responsible for setting this.
528 *
529 * An inode must already be removed from the LRU list before being evicted from
530 * the cache. This should occur atomically with setting the I_FREEING state
531 * flag, so no inodes here should ever be on the LRU when being evicted.
532 */
533 static void evict(struct inode *inode)
534 {
535 const struct super_operations *op = inode->i_sb->s_op;
536
537 BUG_ON(!(inode->i_state & I_FREEING));
538 BUG_ON(!list_empty(&inode->i_lru));
539
540 if (!list_empty(&inode->i_wb_list))
541 inode_wb_list_del(inode);
542
543 inode_sb_list_del(inode);
544
545 /*
546 * Wait for flusher thread to be done with the inode so that filesystem
547 * does not start destroying it while writeback is still running. Since
548 * the inode has I_FREEING set, flusher thread won't start new work on
549 * the inode. We just have to wait for running writeback to finish.
550 */
551 inode_wait_for_writeback(inode);
552
553 if (op->evict_inode) {
554 op->evict_inode(inode);
555 } else {
556 truncate_inode_pages_final(&inode->i_data);
557 clear_inode(inode);
558 }
559 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
560 bd_forget(inode);
561 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
562 cd_forget(inode);
563
564 remove_inode_hash(inode);
565
566 spin_lock(&inode->i_lock);
567 wake_up_bit(&inode->i_state, __I_NEW);
568 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
569 spin_unlock(&inode->i_lock);
570
571 destroy_inode(inode);
572 }
573
574 /*
575 * dispose_list - dispose of the contents of a local list
576 * @head: the head of the list to free
577 *
578 * Dispose-list gets a local list with local inodes in it, so it doesn't
579 * need to worry about list corruption and SMP locks.
580 */
581 static void dispose_list(struct list_head *head)
582 {
583 while (!list_empty(head)) {
584 struct inode *inode;
585
586 inode = list_first_entry(head, struct inode, i_lru);
587 list_del_init(&inode->i_lru);
588
589 evict(inode);
590 }
591 }
592
593 /**
594 * evict_inodes - evict all evictable inodes for a superblock
595 * @sb: superblock to operate on
596 *
597 * Make sure that no inodes with zero refcount are retained. This is
598 * called by superblock shutdown after having MS_ACTIVE flag removed,
599 * so any inode reaching zero refcount during or after that call will
600 * be immediately evicted.
601 */
602 void evict_inodes(struct super_block *sb)
603 {
604 struct inode *inode, *next;
605 LIST_HEAD(dispose);
606
607 spin_lock(&inode_sb_list_lock);
608 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
609 if (atomic_read(&inode->i_count))
610 continue;
611
612 spin_lock(&inode->i_lock);
613 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
614 spin_unlock(&inode->i_lock);
615 continue;
616 }
617
618 inode->i_state |= I_FREEING;
619 inode_lru_list_del(inode);
620 spin_unlock(&inode->i_lock);
621 list_add(&inode->i_lru, &dispose);
622 }
623 spin_unlock(&inode_sb_list_lock);
624
625 dispose_list(&dispose);
626 }
627
628 /**
629 * invalidate_inodes - attempt to free all inodes on a superblock
630 * @sb: superblock to operate on
631 * @kill_dirty: flag to guide handling of dirty inodes
632 *
633 * Attempts to free all inodes for a given superblock. If there were any
634 * busy inodes return a non-zero value, else zero.
635 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
636 * them as busy.
637 */
638 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
639 {
640 int busy = 0;
641 struct inode *inode, *next;
642 LIST_HEAD(dispose);
643
644 spin_lock(&inode_sb_list_lock);
645 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
646 spin_lock(&inode->i_lock);
647 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
648 spin_unlock(&inode->i_lock);
649 continue;
650 }
651 if (inode->i_state & I_DIRTY && !kill_dirty) {
652 spin_unlock(&inode->i_lock);
653 busy = 1;
654 continue;
655 }
656 if (atomic_read(&inode->i_count)) {
657 spin_unlock(&inode->i_lock);
658 busy = 1;
659 continue;
660 }
661
662 inode->i_state |= I_FREEING;
663 inode_lru_list_del(inode);
664 spin_unlock(&inode->i_lock);
665 list_add(&inode->i_lru, &dispose);
666 }
667 spin_unlock(&inode_sb_list_lock);
668
669 dispose_list(&dispose);
670
671 return busy;
672 }
673
674 /*
675 * Isolate the inode from the LRU in preparation for freeing it.
676 *
677 * Any inodes which are pinned purely because of attached pagecache have their
678 * pagecache removed. If the inode has metadata buffers attached to
679 * mapping->private_list then try to remove them.
680 *
681 * If the inode has the I_REFERENCED flag set, then it means that it has been
682 * used recently - the flag is set in iput_final(). When we encounter such an
683 * inode, clear the flag and move it to the back of the LRU so it gets another
684 * pass through the LRU before it gets reclaimed. This is necessary because of
685 * the fact we are doing lazy LRU updates to minimise lock contention so the
686 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
687 * with this flag set because they are the inodes that are out of order.
688 */
689 static enum lru_status
690 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
691 {
692 struct list_head *freeable = arg;
693 struct inode *inode = container_of(item, struct inode, i_lru);
694
695 /*
696 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
697 * If we fail to get the lock, just skip it.
698 */
699 if (!spin_trylock(&inode->i_lock))
700 return LRU_SKIP;
701
702 /*
703 * Referenced or dirty inodes are still in use. Give them another pass
704 * through the LRU as we canot reclaim them now.
705 */
706 if (atomic_read(&inode->i_count) ||
707 (inode->i_state & ~I_REFERENCED)) {
708 list_del_init(&inode->i_lru);
709 spin_unlock(&inode->i_lock);
710 this_cpu_dec(nr_unused);
711 return LRU_REMOVED;
712 }
713
714 /* recently referenced inodes get one more pass */
715 if (inode->i_state & I_REFERENCED) {
716 inode->i_state &= ~I_REFERENCED;
717 spin_unlock(&inode->i_lock);
718 return LRU_ROTATE;
719 }
720
721 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
722 __iget(inode);
723 spin_unlock(&inode->i_lock);
724 spin_unlock(lru_lock);
725 if (remove_inode_buffers(inode)) {
726 unsigned long reap;
727 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
728 if (current_is_kswapd())
729 __count_vm_events(KSWAPD_INODESTEAL, reap);
730 else
731 __count_vm_events(PGINODESTEAL, reap);
732 if (current->reclaim_state)
733 current->reclaim_state->reclaimed_slab += reap;
734 }
735 iput(inode);
736 spin_lock(lru_lock);
737 return LRU_RETRY;
738 }
739
740 WARN_ON(inode->i_state & I_NEW);
741 inode->i_state |= I_FREEING;
742 list_move(&inode->i_lru, freeable);
743 spin_unlock(&inode->i_lock);
744
745 this_cpu_dec(nr_unused);
746 return LRU_REMOVED;
747 }
748
749 /*
750 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
751 * This is called from the superblock shrinker function with a number of inodes
752 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
753 * then are freed outside inode_lock by dispose_list().
754 */
755 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
756 int nid)
757 {
758 LIST_HEAD(freeable);
759 long freed;
760
761 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
762 &freeable, &nr_to_scan);
763 dispose_list(&freeable);
764 return freed;
765 }
766
767 static void __wait_on_freeing_inode(struct inode *inode);
768 /*
769 * Called with the inode lock held.
770 */
771 static struct inode *find_inode(struct super_block *sb,
772 struct hlist_head *head,
773 int (*test)(struct inode *, void *),
774 void *data)
775 {
776 struct inode *inode = NULL;
777
778 repeat:
779 hlist_for_each_entry(inode, head, i_hash) {
780 if (inode->i_sb != sb)
781 continue;
782 if (!test(inode, data))
783 continue;
784 spin_lock(&inode->i_lock);
785 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
786 __wait_on_freeing_inode(inode);
787 goto repeat;
788 }
789 __iget(inode);
790 spin_unlock(&inode->i_lock);
791 return inode;
792 }
793 return NULL;
794 }
795
796 /*
797 * find_inode_fast is the fast path version of find_inode, see the comment at
798 * iget_locked for details.
799 */
800 static struct inode *find_inode_fast(struct super_block *sb,
801 struct hlist_head *head, unsigned long ino)
802 {
803 struct inode *inode = NULL;
804
805 repeat:
806 hlist_for_each_entry(inode, head, i_hash) {
807 if (inode->i_ino != ino)
808 continue;
809 if (inode->i_sb != sb)
810 continue;
811 spin_lock(&inode->i_lock);
812 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
813 __wait_on_freeing_inode(inode);
814 goto repeat;
815 }
816 __iget(inode);
817 spin_unlock(&inode->i_lock);
818 return inode;
819 }
820 return NULL;
821 }
822
823 /*
824 * Each cpu owns a range of LAST_INO_BATCH numbers.
825 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
826 * to renew the exhausted range.
827 *
828 * This does not significantly increase overflow rate because every CPU can
829 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
830 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
831 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
832 * overflow rate by 2x, which does not seem too significant.
833 *
834 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
835 * error if st_ino won't fit in target struct field. Use 32bit counter
836 * here to attempt to avoid that.
837 */
838 #define LAST_INO_BATCH 1024
839 static DEFINE_PER_CPU(unsigned int, last_ino);
840
841 unsigned int get_next_ino(void)
842 {
843 unsigned int *p = &get_cpu_var(last_ino);
844 unsigned int res = *p;
845
846 #ifdef CONFIG_SMP
847 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
848 static atomic_t shared_last_ino;
849 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
850
851 res = next - LAST_INO_BATCH;
852 }
853 #endif
854
855 *p = ++res;
856 put_cpu_var(last_ino);
857 return res;
858 }
859 EXPORT_SYMBOL(get_next_ino);
860
861 /**
862 * new_inode_pseudo - obtain an inode
863 * @sb: superblock
864 *
865 * Allocates a new inode for given superblock.
866 * Inode wont be chained in superblock s_inodes list
867 * This means :
868 * - fs can't be unmount
869 * - quotas, fsnotify, writeback can't work
870 */
871 struct inode *new_inode_pseudo(struct super_block *sb)
872 {
873 struct inode *inode = alloc_inode(sb);
874
875 if (inode) {
876 spin_lock(&inode->i_lock);
877 inode->i_state = 0;
878 spin_unlock(&inode->i_lock);
879 INIT_LIST_HEAD(&inode->i_sb_list);
880 }
881 return inode;
882 }
883
884 /**
885 * new_inode - obtain an inode
886 * @sb: superblock
887 *
888 * Allocates a new inode for given superblock. The default gfp_mask
889 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
890 * If HIGHMEM pages are unsuitable or it is known that pages allocated
891 * for the page cache are not reclaimable or migratable,
892 * mapping_set_gfp_mask() must be called with suitable flags on the
893 * newly created inode's mapping
894 *
895 */
896 struct inode *new_inode(struct super_block *sb)
897 {
898 struct inode *inode;
899
900 spin_lock_prefetch(&inode_sb_list_lock);
901
902 inode = new_inode_pseudo(sb);
903 if (inode)
904 inode_sb_list_add(inode);
905 return inode;
906 }
907 EXPORT_SYMBOL(new_inode);
908
909 #ifdef CONFIG_DEBUG_LOCK_ALLOC
910 void lockdep_annotate_inode_mutex_key(struct inode *inode)
911 {
912 if (S_ISDIR(inode->i_mode)) {
913 struct file_system_type *type = inode->i_sb->s_type;
914
915 /* Set new key only if filesystem hasn't already changed it */
916 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
917 /*
918 * ensure nobody is actually holding i_mutex
919 */
920 mutex_destroy(&inode->i_mutex);
921 mutex_init(&inode->i_mutex);
922 lockdep_set_class(&inode->i_mutex,
923 &type->i_mutex_dir_key);
924 }
925 }
926 }
927 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
928 #endif
929
930 /**
931 * unlock_new_inode - clear the I_NEW state and wake up any waiters
932 * @inode: new inode to unlock
933 *
934 * Called when the inode is fully initialised to clear the new state of the
935 * inode and wake up anyone waiting for the inode to finish initialisation.
936 */
937 void unlock_new_inode(struct inode *inode)
938 {
939 lockdep_annotate_inode_mutex_key(inode);
940 spin_lock(&inode->i_lock);
941 WARN_ON(!(inode->i_state & I_NEW));
942 inode->i_state &= ~I_NEW;
943 smp_mb();
944 wake_up_bit(&inode->i_state, __I_NEW);
945 spin_unlock(&inode->i_lock);
946 }
947 EXPORT_SYMBOL(unlock_new_inode);
948
949 /**
950 * lock_two_nondirectories - take two i_mutexes on non-directory objects
951 *
952 * Lock any non-NULL argument that is not a directory.
953 * Zero, one or two objects may be locked by this function.
954 *
955 * @inode1: first inode to lock
956 * @inode2: second inode to lock
957 */
958 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
959 {
960 if (inode1 > inode2)
961 swap(inode1, inode2);
962
963 if (inode1 && !S_ISDIR(inode1->i_mode))
964 mutex_lock(&inode1->i_mutex);
965 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
966 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
967 }
968 EXPORT_SYMBOL(lock_two_nondirectories);
969
970 /**
971 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
972 * @inode1: first inode to unlock
973 * @inode2: second inode to unlock
974 */
975 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
976 {
977 if (inode1 && !S_ISDIR(inode1->i_mode))
978 mutex_unlock(&inode1->i_mutex);
979 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
980 mutex_unlock(&inode2->i_mutex);
981 }
982 EXPORT_SYMBOL(unlock_two_nondirectories);
983
984 /**
985 * iget5_locked - obtain an inode from a mounted file system
986 * @sb: super block of file system
987 * @hashval: hash value (usually inode number) to get
988 * @test: callback used for comparisons between inodes
989 * @set: callback used to initialize a new struct inode
990 * @data: opaque data pointer to pass to @test and @set
991 *
992 * Search for the inode specified by @hashval and @data in the inode cache,
993 * and if present it is return it with an increased reference count. This is
994 * a generalized version of iget_locked() for file systems where the inode
995 * number is not sufficient for unique identification of an inode.
996 *
997 * If the inode is not in cache, allocate a new inode and return it locked,
998 * hashed, and with the I_NEW flag set. The file system gets to fill it in
999 * before unlocking it via unlock_new_inode().
1000 *
1001 * Note both @test and @set are called with the inode_hash_lock held, so can't
1002 * sleep.
1003 */
1004 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1005 int (*test)(struct inode *, void *),
1006 int (*set)(struct inode *, void *), void *data)
1007 {
1008 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1009 struct inode *inode;
1010
1011 spin_lock(&inode_hash_lock);
1012 inode = find_inode(sb, head, test, data);
1013 spin_unlock(&inode_hash_lock);
1014
1015 if (inode) {
1016 wait_on_inode(inode);
1017 return inode;
1018 }
1019
1020 inode = alloc_inode(sb);
1021 if (inode) {
1022 struct inode *old;
1023
1024 spin_lock(&inode_hash_lock);
1025 /* We released the lock, so.. */
1026 old = find_inode(sb, head, test, data);
1027 if (!old) {
1028 if (set(inode, data))
1029 goto set_failed;
1030
1031 spin_lock(&inode->i_lock);
1032 inode->i_state = I_NEW;
1033 hlist_add_head(&inode->i_hash, head);
1034 spin_unlock(&inode->i_lock);
1035 inode_sb_list_add(inode);
1036 spin_unlock(&inode_hash_lock);
1037
1038 /* Return the locked inode with I_NEW set, the
1039 * caller is responsible for filling in the contents
1040 */
1041 return inode;
1042 }
1043
1044 /*
1045 * Uhhuh, somebody else created the same inode under
1046 * us. Use the old inode instead of the one we just
1047 * allocated.
1048 */
1049 spin_unlock(&inode_hash_lock);
1050 destroy_inode(inode);
1051 inode = old;
1052 wait_on_inode(inode);
1053 }
1054 return inode;
1055
1056 set_failed:
1057 spin_unlock(&inode_hash_lock);
1058 destroy_inode(inode);
1059 return NULL;
1060 }
1061 EXPORT_SYMBOL(iget5_locked);
1062
1063 /**
1064 * iget_locked - obtain an inode from a mounted file system
1065 * @sb: super block of file system
1066 * @ino: inode number to get
1067 *
1068 * Search for the inode specified by @ino in the inode cache and if present
1069 * return it with an increased reference count. This is for file systems
1070 * where the inode number is sufficient for unique identification of an inode.
1071 *
1072 * If the inode is not in cache, allocate a new inode and return it locked,
1073 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1074 * before unlocking it via unlock_new_inode().
1075 */
1076 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1077 {
1078 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1079 struct inode *inode;
1080
1081 spin_lock(&inode_hash_lock);
1082 inode = find_inode_fast(sb, head, ino);
1083 spin_unlock(&inode_hash_lock);
1084 if (inode) {
1085 wait_on_inode(inode);
1086 return inode;
1087 }
1088
1089 inode = alloc_inode(sb);
1090 if (inode) {
1091 struct inode *old;
1092
1093 spin_lock(&inode_hash_lock);
1094 /* We released the lock, so.. */
1095 old = find_inode_fast(sb, head, ino);
1096 if (!old) {
1097 inode->i_ino = ino;
1098 spin_lock(&inode->i_lock);
1099 inode->i_state = I_NEW;
1100 hlist_add_head(&inode->i_hash, head);
1101 spin_unlock(&inode->i_lock);
1102 inode_sb_list_add(inode);
1103 spin_unlock(&inode_hash_lock);
1104
1105 /* Return the locked inode with I_NEW set, the
1106 * caller is responsible for filling in the contents
1107 */
1108 return inode;
1109 }
1110
1111 /*
1112 * Uhhuh, somebody else created the same inode under
1113 * us. Use the old inode instead of the one we just
1114 * allocated.
1115 */
1116 spin_unlock(&inode_hash_lock);
1117 destroy_inode(inode);
1118 inode = old;
1119 wait_on_inode(inode);
1120 }
1121 return inode;
1122 }
1123 EXPORT_SYMBOL(iget_locked);
1124
1125 /*
1126 * search the inode cache for a matching inode number.
1127 * If we find one, then the inode number we are trying to
1128 * allocate is not unique and so we should not use it.
1129 *
1130 * Returns 1 if the inode number is unique, 0 if it is not.
1131 */
1132 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1133 {
1134 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1135 struct inode *inode;
1136
1137 spin_lock(&inode_hash_lock);
1138 hlist_for_each_entry(inode, b, i_hash) {
1139 if (inode->i_ino == ino && inode->i_sb == sb) {
1140 spin_unlock(&inode_hash_lock);
1141 return 0;
1142 }
1143 }
1144 spin_unlock(&inode_hash_lock);
1145
1146 return 1;
1147 }
1148
1149 /**
1150 * iunique - get a unique inode number
1151 * @sb: superblock
1152 * @max_reserved: highest reserved inode number
1153 *
1154 * Obtain an inode number that is unique on the system for a given
1155 * superblock. This is used by file systems that have no natural
1156 * permanent inode numbering system. An inode number is returned that
1157 * is higher than the reserved limit but unique.
1158 *
1159 * BUGS:
1160 * With a large number of inodes live on the file system this function
1161 * currently becomes quite slow.
1162 */
1163 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1164 {
1165 /*
1166 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1167 * error if st_ino won't fit in target struct field. Use 32bit counter
1168 * here to attempt to avoid that.
1169 */
1170 static DEFINE_SPINLOCK(iunique_lock);
1171 static unsigned int counter;
1172 ino_t res;
1173
1174 spin_lock(&iunique_lock);
1175 do {
1176 if (counter <= max_reserved)
1177 counter = max_reserved + 1;
1178 res = counter++;
1179 } while (!test_inode_iunique(sb, res));
1180 spin_unlock(&iunique_lock);
1181
1182 return res;
1183 }
1184 EXPORT_SYMBOL(iunique);
1185
1186 struct inode *igrab(struct inode *inode)
1187 {
1188 spin_lock(&inode->i_lock);
1189 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1190 __iget(inode);
1191 spin_unlock(&inode->i_lock);
1192 } else {
1193 spin_unlock(&inode->i_lock);
1194 /*
1195 * Handle the case where s_op->clear_inode is not been
1196 * called yet, and somebody is calling igrab
1197 * while the inode is getting freed.
1198 */
1199 inode = NULL;
1200 }
1201 return inode;
1202 }
1203 EXPORT_SYMBOL(igrab);
1204
1205 /**
1206 * ilookup5_nowait - search for an inode in the inode cache
1207 * @sb: super block of file system to search
1208 * @hashval: hash value (usually inode number) to search for
1209 * @test: callback used for comparisons between inodes
1210 * @data: opaque data pointer to pass to @test
1211 *
1212 * Search for the inode specified by @hashval and @data in the inode cache.
1213 * If the inode is in the cache, the inode is returned with an incremented
1214 * reference count.
1215 *
1216 * Note: I_NEW is not waited upon so you have to be very careful what you do
1217 * with the returned inode. You probably should be using ilookup5() instead.
1218 *
1219 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1220 */
1221 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1222 int (*test)(struct inode *, void *), void *data)
1223 {
1224 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1225 struct inode *inode;
1226
1227 spin_lock(&inode_hash_lock);
1228 inode = find_inode(sb, head, test, data);
1229 spin_unlock(&inode_hash_lock);
1230
1231 return inode;
1232 }
1233 EXPORT_SYMBOL(ilookup5_nowait);
1234
1235 /**
1236 * ilookup5 - search for an inode in the inode cache
1237 * @sb: super block of file system to search
1238 * @hashval: hash value (usually inode number) to search for
1239 * @test: callback used for comparisons between inodes
1240 * @data: opaque data pointer to pass to @test
1241 *
1242 * Search for the inode specified by @hashval and @data in the inode cache,
1243 * and if the inode is in the cache, return the inode with an incremented
1244 * reference count. Waits on I_NEW before returning the inode.
1245 * returned with an incremented reference count.
1246 *
1247 * This is a generalized version of ilookup() for file systems where the
1248 * inode number is not sufficient for unique identification of an inode.
1249 *
1250 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1251 */
1252 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1253 int (*test)(struct inode *, void *), void *data)
1254 {
1255 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1256
1257 if (inode)
1258 wait_on_inode(inode);
1259 return inode;
1260 }
1261 EXPORT_SYMBOL(ilookup5);
1262
1263 /**
1264 * ilookup - search for an inode in the inode cache
1265 * @sb: super block of file system to search
1266 * @ino: inode number to search for
1267 *
1268 * Search for the inode @ino in the inode cache, and if the inode is in the
1269 * cache, the inode is returned with an incremented reference count.
1270 */
1271 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1272 {
1273 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1274 struct inode *inode;
1275
1276 spin_lock(&inode_hash_lock);
1277 inode = find_inode_fast(sb, head, ino);
1278 spin_unlock(&inode_hash_lock);
1279
1280 if (inode)
1281 wait_on_inode(inode);
1282 return inode;
1283 }
1284 EXPORT_SYMBOL(ilookup);
1285
1286 int insert_inode_locked(struct inode *inode)
1287 {
1288 struct super_block *sb = inode->i_sb;
1289 ino_t ino = inode->i_ino;
1290 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1291
1292 while (1) {
1293 struct inode *old = NULL;
1294 spin_lock(&inode_hash_lock);
1295 hlist_for_each_entry(old, head, i_hash) {
1296 if (old->i_ino != ino)
1297 continue;
1298 if (old->i_sb != sb)
1299 continue;
1300 spin_lock(&old->i_lock);
1301 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1302 spin_unlock(&old->i_lock);
1303 continue;
1304 }
1305 break;
1306 }
1307 if (likely(!old)) {
1308 spin_lock(&inode->i_lock);
1309 inode->i_state |= I_NEW;
1310 hlist_add_head(&inode->i_hash, head);
1311 spin_unlock(&inode->i_lock);
1312 spin_unlock(&inode_hash_lock);
1313 return 0;
1314 }
1315 __iget(old);
1316 spin_unlock(&old->i_lock);
1317 spin_unlock(&inode_hash_lock);
1318 wait_on_inode(old);
1319 if (unlikely(!inode_unhashed(old))) {
1320 iput(old);
1321 return -EBUSY;
1322 }
1323 iput(old);
1324 }
1325 }
1326 EXPORT_SYMBOL(insert_inode_locked);
1327
1328 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1329 int (*test)(struct inode *, void *), void *data)
1330 {
1331 struct super_block *sb = inode->i_sb;
1332 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1333
1334 while (1) {
1335 struct inode *old = NULL;
1336
1337 spin_lock(&inode_hash_lock);
1338 hlist_for_each_entry(old, head, i_hash) {
1339 if (old->i_sb != sb)
1340 continue;
1341 if (!test(old, data))
1342 continue;
1343 spin_lock(&old->i_lock);
1344 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1345 spin_unlock(&old->i_lock);
1346 continue;
1347 }
1348 break;
1349 }
1350 if (likely(!old)) {
1351 spin_lock(&inode->i_lock);
1352 inode->i_state |= I_NEW;
1353 hlist_add_head(&inode->i_hash, head);
1354 spin_unlock(&inode->i_lock);
1355 spin_unlock(&inode_hash_lock);
1356 return 0;
1357 }
1358 __iget(old);
1359 spin_unlock(&old->i_lock);
1360 spin_unlock(&inode_hash_lock);
1361 wait_on_inode(old);
1362 if (unlikely(!inode_unhashed(old))) {
1363 iput(old);
1364 return -EBUSY;
1365 }
1366 iput(old);
1367 }
1368 }
1369 EXPORT_SYMBOL(insert_inode_locked4);
1370
1371
1372 int generic_delete_inode(struct inode *inode)
1373 {
1374 return 1;
1375 }
1376 EXPORT_SYMBOL(generic_delete_inode);
1377
1378 /*
1379 * Called when we're dropping the last reference
1380 * to an inode.
1381 *
1382 * Call the FS "drop_inode()" function, defaulting to
1383 * the legacy UNIX filesystem behaviour. If it tells
1384 * us to evict inode, do so. Otherwise, retain inode
1385 * in cache if fs is alive, sync and evict if fs is
1386 * shutting down.
1387 */
1388 static void iput_final(struct inode *inode)
1389 {
1390 struct super_block *sb = inode->i_sb;
1391 const struct super_operations *op = inode->i_sb->s_op;
1392 int drop;
1393
1394 WARN_ON(inode->i_state & I_NEW);
1395
1396 if (op->drop_inode)
1397 drop = op->drop_inode(inode);
1398 else
1399 drop = generic_drop_inode(inode);
1400
1401 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1402 inode->i_state |= I_REFERENCED;
1403 inode_add_lru(inode);
1404 spin_unlock(&inode->i_lock);
1405 return;
1406 }
1407
1408 if (!drop) {
1409 inode->i_state |= I_WILL_FREE;
1410 spin_unlock(&inode->i_lock);
1411 write_inode_now(inode, 1);
1412 spin_lock(&inode->i_lock);
1413 WARN_ON(inode->i_state & I_NEW);
1414 inode->i_state &= ~I_WILL_FREE;
1415 }
1416
1417 inode->i_state |= I_FREEING;
1418 if (!list_empty(&inode->i_lru))
1419 inode_lru_list_del(inode);
1420 spin_unlock(&inode->i_lock);
1421
1422 evict(inode);
1423 }
1424
1425 /**
1426 * iput - put an inode
1427 * @inode: inode to put
1428 *
1429 * Puts an inode, dropping its usage count. If the inode use count hits
1430 * zero, the inode is then freed and may also be destroyed.
1431 *
1432 * Consequently, iput() can sleep.
1433 */
1434 void iput(struct inode *inode)
1435 {
1436 if (inode) {
1437 BUG_ON(inode->i_state & I_CLEAR);
1438
1439 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1440 iput_final(inode);
1441 }
1442 }
1443 EXPORT_SYMBOL(iput);
1444
1445 /**
1446 * bmap - find a block number in a file
1447 * @inode: inode of file
1448 * @block: block to find
1449 *
1450 * Returns the block number on the device holding the inode that
1451 * is the disk block number for the block of the file requested.
1452 * That is, asked for block 4 of inode 1 the function will return the
1453 * disk block relative to the disk start that holds that block of the
1454 * file.
1455 */
1456 sector_t bmap(struct inode *inode, sector_t block)
1457 {
1458 sector_t res = 0;
1459 if (inode->i_mapping->a_ops->bmap)
1460 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1461 return res;
1462 }
1463 EXPORT_SYMBOL(bmap);
1464
1465 /*
1466 * With relative atime, only update atime if the previous atime is
1467 * earlier than either the ctime or mtime or if at least a day has
1468 * passed since the last atime update.
1469 */
1470 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1471 struct timespec now)
1472 {
1473
1474 if (!(mnt->mnt_flags & MNT_RELATIME))
1475 return 1;
1476 /*
1477 * Is mtime younger than atime? If yes, update atime:
1478 */
1479 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1480 return 1;
1481 /*
1482 * Is ctime younger than atime? If yes, update atime:
1483 */
1484 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1485 return 1;
1486
1487 /*
1488 * Is the previous atime value older than a day? If yes,
1489 * update atime:
1490 */
1491 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1492 return 1;
1493 /*
1494 * Good, we can skip the atime update:
1495 */
1496 return 0;
1497 }
1498
1499 /*
1500 * This does the actual work of updating an inodes time or version. Must have
1501 * had called mnt_want_write() before calling this.
1502 */
1503 static int update_time(struct inode *inode, struct timespec *time, int flags)
1504 {
1505 if (inode->i_op->update_time)
1506 return inode->i_op->update_time(inode, time, flags);
1507
1508 if (flags & S_ATIME)
1509 inode->i_atime = *time;
1510 if (flags & S_VERSION)
1511 inode_inc_iversion(inode);
1512 if (flags & S_CTIME)
1513 inode->i_ctime = *time;
1514 if (flags & S_MTIME)
1515 inode->i_mtime = *time;
1516 mark_inode_dirty_sync(inode);
1517 return 0;
1518 }
1519
1520 /**
1521 * touch_atime - update the access time
1522 * @path: the &struct path to update
1523 *
1524 * Update the accessed time on an inode and mark it for writeback.
1525 * This function automatically handles read only file systems and media,
1526 * as well as the "noatime" flag and inode specific "noatime" markers.
1527 */
1528 void touch_atime(const struct path *path)
1529 {
1530 struct vfsmount *mnt = path->mnt;
1531 struct inode *inode = path->dentry->d_inode;
1532 struct timespec now;
1533
1534 if (inode->i_flags & S_NOATIME)
1535 return;
1536 if (IS_NOATIME(inode))
1537 return;
1538 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1539 return;
1540
1541 if (mnt->mnt_flags & MNT_NOATIME)
1542 return;
1543 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1544 return;
1545
1546 now = current_fs_time(inode->i_sb);
1547
1548 if (!relatime_need_update(mnt, inode, now))
1549 return;
1550
1551 if (timespec_equal(&inode->i_atime, &now))
1552 return;
1553
1554 if (!sb_start_write_trylock(inode->i_sb))
1555 return;
1556
1557 if (__mnt_want_write(mnt))
1558 goto skip_update;
1559 /*
1560 * File systems can error out when updating inodes if they need to
1561 * allocate new space to modify an inode (such is the case for
1562 * Btrfs), but since we touch atime while walking down the path we
1563 * really don't care if we failed to update the atime of the file,
1564 * so just ignore the return value.
1565 * We may also fail on filesystems that have the ability to make parts
1566 * of the fs read only, e.g. subvolumes in Btrfs.
1567 */
1568 update_time(inode, &now, S_ATIME);
1569 __mnt_drop_write(mnt);
1570 skip_update:
1571 sb_end_write(inode->i_sb);
1572 }
1573 EXPORT_SYMBOL(touch_atime);
1574
1575 /*
1576 * The logic we want is
1577 *
1578 * if suid or (sgid and xgrp)
1579 * remove privs
1580 */
1581 int should_remove_suid(struct dentry *dentry)
1582 {
1583 umode_t mode = dentry->d_inode->i_mode;
1584 int kill = 0;
1585
1586 /* suid always must be killed */
1587 if (unlikely(mode & S_ISUID))
1588 kill = ATTR_KILL_SUID;
1589
1590 /*
1591 * sgid without any exec bits is just a mandatory locking mark; leave
1592 * it alone. If some exec bits are set, it's a real sgid; kill it.
1593 */
1594 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1595 kill |= ATTR_KILL_SGID;
1596
1597 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1598 return kill;
1599
1600 return 0;
1601 }
1602 EXPORT_SYMBOL(should_remove_suid);
1603
1604 static int __remove_suid(struct dentry *dentry, int kill)
1605 {
1606 struct iattr newattrs;
1607
1608 newattrs.ia_valid = ATTR_FORCE | kill;
1609 /*
1610 * Note we call this on write, so notify_change will not
1611 * encounter any conflicting delegations:
1612 */
1613 return notify_change(dentry, &newattrs, NULL);
1614 }
1615
1616 int file_remove_suid(struct file *file)
1617 {
1618 struct dentry *dentry = file->f_path.dentry;
1619 struct inode *inode = dentry->d_inode;
1620 int killsuid;
1621 int killpriv;
1622 int error = 0;
1623
1624 /* Fast path for nothing security related */
1625 if (IS_NOSEC(inode))
1626 return 0;
1627
1628 killsuid = should_remove_suid(dentry);
1629 killpriv = security_inode_need_killpriv(dentry);
1630
1631 if (killpriv < 0)
1632 return killpriv;
1633 if (killpriv)
1634 error = security_inode_killpriv(dentry);
1635 if (!error && killsuid)
1636 error = __remove_suid(dentry, killsuid);
1637 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1638 inode->i_flags |= S_NOSEC;
1639
1640 return error;
1641 }
1642 EXPORT_SYMBOL(file_remove_suid);
1643
1644 /**
1645 * file_update_time - update mtime and ctime time
1646 * @file: file accessed
1647 *
1648 * Update the mtime and ctime members of an inode and mark the inode
1649 * for writeback. Note that this function is meant exclusively for
1650 * usage in the file write path of filesystems, and filesystems may
1651 * choose to explicitly ignore update via this function with the
1652 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1653 * timestamps are handled by the server. This can return an error for
1654 * file systems who need to allocate space in order to update an inode.
1655 */
1656
1657 int file_update_time(struct file *file)
1658 {
1659 struct inode *inode = file_inode(file);
1660 struct timespec now;
1661 int sync_it = 0;
1662 int ret;
1663
1664 /* First try to exhaust all avenues to not sync */
1665 if (IS_NOCMTIME(inode))
1666 return 0;
1667
1668 now = current_fs_time(inode->i_sb);
1669 if (!timespec_equal(&inode->i_mtime, &now))
1670 sync_it = S_MTIME;
1671
1672 if (!timespec_equal(&inode->i_ctime, &now))
1673 sync_it |= S_CTIME;
1674
1675 if (IS_I_VERSION(inode))
1676 sync_it |= S_VERSION;
1677
1678 if (!sync_it)
1679 return 0;
1680
1681 /* Finally allowed to write? Takes lock. */
1682 if (__mnt_want_write_file(file))
1683 return 0;
1684
1685 ret = update_time(inode, &now, sync_it);
1686 __mnt_drop_write_file(file);
1687
1688 return ret;
1689 }
1690 EXPORT_SYMBOL(file_update_time);
1691
1692 int inode_needs_sync(struct inode *inode)
1693 {
1694 if (IS_SYNC(inode))
1695 return 1;
1696 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1697 return 1;
1698 return 0;
1699 }
1700 EXPORT_SYMBOL(inode_needs_sync);
1701
1702 /*
1703 * If we try to find an inode in the inode hash while it is being
1704 * deleted, we have to wait until the filesystem completes its
1705 * deletion before reporting that it isn't found. This function waits
1706 * until the deletion _might_ have completed. Callers are responsible
1707 * to recheck inode state.
1708 *
1709 * It doesn't matter if I_NEW is not set initially, a call to
1710 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1711 * will DTRT.
1712 */
1713 static void __wait_on_freeing_inode(struct inode *inode)
1714 {
1715 wait_queue_head_t *wq;
1716 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1717 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1718 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1719 spin_unlock(&inode->i_lock);
1720 spin_unlock(&inode_hash_lock);
1721 schedule();
1722 finish_wait(wq, &wait.wait);
1723 spin_lock(&inode_hash_lock);
1724 }
1725
1726 static __initdata unsigned long ihash_entries;
1727 static int __init set_ihash_entries(char *str)
1728 {
1729 if (!str)
1730 return 0;
1731 ihash_entries = simple_strtoul(str, &str, 0);
1732 return 1;
1733 }
1734 __setup("ihash_entries=", set_ihash_entries);
1735
1736 /*
1737 * Initialize the waitqueues and inode hash table.
1738 */
1739 void __init inode_init_early(void)
1740 {
1741 unsigned int loop;
1742
1743 /* If hashes are distributed across NUMA nodes, defer
1744 * hash allocation until vmalloc space is available.
1745 */
1746 if (hashdist)
1747 return;
1748
1749 inode_hashtable =
1750 alloc_large_system_hash("Inode-cache",
1751 sizeof(struct hlist_head),
1752 ihash_entries,
1753 14,
1754 HASH_EARLY,
1755 &i_hash_shift,
1756 &i_hash_mask,
1757 0,
1758 0);
1759
1760 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1761 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1762 }
1763
1764 void __init inode_init(void)
1765 {
1766 unsigned int loop;
1767
1768 /* inode slab cache */
1769 inode_cachep = kmem_cache_create("inode_cache",
1770 sizeof(struct inode),
1771 0,
1772 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1773 SLAB_MEM_SPREAD),
1774 init_once);
1775
1776 /* Hash may have been set up in inode_init_early */
1777 if (!hashdist)
1778 return;
1779
1780 inode_hashtable =
1781 alloc_large_system_hash("Inode-cache",
1782 sizeof(struct hlist_head),
1783 ihash_entries,
1784 14,
1785 0,
1786 &i_hash_shift,
1787 &i_hash_mask,
1788 0,
1789 0);
1790
1791 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1792 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1793 }
1794
1795 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1796 {
1797 inode->i_mode = mode;
1798 if (S_ISCHR(mode)) {
1799 inode->i_fop = &def_chr_fops;
1800 inode->i_rdev = rdev;
1801 } else if (S_ISBLK(mode)) {
1802 inode->i_fop = &def_blk_fops;
1803 inode->i_rdev = rdev;
1804 } else if (S_ISFIFO(mode))
1805 inode->i_fop = &pipefifo_fops;
1806 else if (S_ISSOCK(mode))
1807 ; /* leave it no_open_fops */
1808 else
1809 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1810 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1811 inode->i_ino);
1812 }
1813 EXPORT_SYMBOL(init_special_inode);
1814
1815 /**
1816 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1817 * @inode: New inode
1818 * @dir: Directory inode
1819 * @mode: mode of the new inode
1820 */
1821 void inode_init_owner(struct inode *inode, const struct inode *dir,
1822 umode_t mode)
1823 {
1824 inode->i_uid = current_fsuid();
1825 if (dir && dir->i_mode & S_ISGID) {
1826 inode->i_gid = dir->i_gid;
1827 if (S_ISDIR(mode))
1828 mode |= S_ISGID;
1829 } else
1830 inode->i_gid = current_fsgid();
1831 inode->i_mode = mode;
1832 }
1833 EXPORT_SYMBOL(inode_init_owner);
1834
1835 /**
1836 * inode_owner_or_capable - check current task permissions to inode
1837 * @inode: inode being checked
1838 *
1839 * Return true if current either has CAP_FOWNER in a namespace with the
1840 * inode owner uid mapped, or owns the file.
1841 */
1842 bool inode_owner_or_capable(const struct inode *inode)
1843 {
1844 struct user_namespace *ns;
1845
1846 if (uid_eq(current_fsuid(), inode->i_uid))
1847 return true;
1848
1849 ns = current_user_ns();
1850 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1851 return true;
1852 return false;
1853 }
1854 EXPORT_SYMBOL(inode_owner_or_capable);
1855
1856 /*
1857 * Direct i/o helper functions
1858 */
1859 static void __inode_dio_wait(struct inode *inode)
1860 {
1861 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1862 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1863
1864 do {
1865 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1866 if (atomic_read(&inode->i_dio_count))
1867 schedule();
1868 } while (atomic_read(&inode->i_dio_count));
1869 finish_wait(wq, &q.wait);
1870 }
1871
1872 /**
1873 * inode_dio_wait - wait for outstanding DIO requests to finish
1874 * @inode: inode to wait for
1875 *
1876 * Waits for all pending direct I/O requests to finish so that we can
1877 * proceed with a truncate or equivalent operation.
1878 *
1879 * Must be called under a lock that serializes taking new references
1880 * to i_dio_count, usually by inode->i_mutex.
1881 */
1882 void inode_dio_wait(struct inode *inode)
1883 {
1884 if (atomic_read(&inode->i_dio_count))
1885 __inode_dio_wait(inode);
1886 }
1887 EXPORT_SYMBOL(inode_dio_wait);
1888
1889 /*
1890 * inode_dio_done - signal finish of a direct I/O requests
1891 * @inode: inode the direct I/O happens on
1892 *
1893 * This is called once we've finished processing a direct I/O request,
1894 * and is used to wake up callers waiting for direct I/O to be quiesced.
1895 */
1896 void inode_dio_done(struct inode *inode)
1897 {
1898 if (atomic_dec_and_test(&inode->i_dio_count))
1899 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1900 }
1901 EXPORT_SYMBOL(inode_dio_done);
1902
1903 /*
1904 * inode_set_flags - atomically set some inode flags
1905 *
1906 * Note: the caller should be holding i_mutex, or else be sure that
1907 * they have exclusive access to the inode structure (i.e., while the
1908 * inode is being instantiated). The reason for the cmpxchg() loop
1909 * --- which wouldn't be necessary if all code paths which modify
1910 * i_flags actually followed this rule, is that there is at least one
1911 * code path which doesn't today --- for example,
1912 * __generic_file_aio_write() calls file_remove_suid() without holding
1913 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1914 *
1915 * In the long run, i_mutex is overkill, and we should probably look
1916 * at using the i_lock spinlock to protect i_flags, and then make sure
1917 * it is so documented in include/linux/fs.h and that all code follows
1918 * the locking convention!!
1919 */
1920 void inode_set_flags(struct inode *inode, unsigned int flags,
1921 unsigned int mask)
1922 {
1923 unsigned int old_flags, new_flags;
1924
1925 WARN_ON_ONCE(flags & ~mask);
1926 do {
1927 old_flags = ACCESS_ONCE(inode->i_flags);
1928 new_flags = (old_flags & ~mask) | flags;
1929 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1930 new_flags) != old_flags));
1931 }
1932 EXPORT_SYMBOL(inode_set_flags);
This page took 0.070156 seconds and 5 git commands to generate.