Merge branch 'next/cross-platform' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include "internal.h"
30
31 /*
32 * Inode locking rules:
33 *
34 * inode->i_lock protects:
35 * inode->i_state, inode->i_hash, __iget()
36 * inode->i_sb->s_inode_lru_lock protects:
37 * inode->i_sb->s_inode_lru, inode->i_lru
38 * inode_sb_list_lock protects:
39 * sb->s_inodes, inode->i_sb_list
40 * bdi->wb.list_lock protects:
41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42 * inode_hash_lock protects:
43 * inode_hashtable, inode->i_hash
44 *
45 * Lock ordering:
46 *
47 * inode_sb_list_lock
48 * inode->i_lock
49 * inode->i_sb->s_inode_lru_lock
50 *
51 * bdi->wb.list_lock
52 * inode->i_lock
53 *
54 * inode_hash_lock
55 * inode_sb_list_lock
56 * inode->i_lock
57 *
58 * iunique_lock
59 * inode_hash_lock
60 */
61
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 static struct hlist_head *inode_hashtable __read_mostly;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
66
67 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
68
69 /*
70 * Empty aops. Can be used for the cases where the user does not
71 * define any of the address_space operations.
72 */
73 const struct address_space_operations empty_aops = {
74 };
75 EXPORT_SYMBOL(empty_aops);
76
77 /*
78 * Statistics gathering..
79 */
80 struct inodes_stat_t inodes_stat;
81
82 static DEFINE_PER_CPU(unsigned int, nr_inodes);
83 static DEFINE_PER_CPU(unsigned int, nr_unused);
84
85 static struct kmem_cache *inode_cachep __read_mostly;
86
87 static int get_nr_inodes(void)
88 {
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_inodes, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 static inline int get_nr_inodes_unused(void)
97 {
98 int i;
99 int sum = 0;
100 for_each_possible_cpu(i)
101 sum += per_cpu(nr_unused, i);
102 return sum < 0 ? 0 : sum;
103 }
104
105 int get_nr_dirty_inodes(void)
106 {
107 /* not actually dirty inodes, but a wild approximation */
108 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
109 return nr_dirty > 0 ? nr_dirty : 0;
110 }
111
112 /*
113 * Handle nr_inode sysctl
114 */
115 #ifdef CONFIG_SYSCTL
116 int proc_nr_inodes(ctl_table *table, int write,
117 void __user *buffer, size_t *lenp, loff_t *ppos)
118 {
119 inodes_stat.nr_inodes = get_nr_inodes();
120 inodes_stat.nr_unused = get_nr_inodes_unused();
121 return proc_dointvec(table, write, buffer, lenp, ppos);
122 }
123 #endif
124
125 /**
126 * inode_init_always - perform inode structure intialisation
127 * @sb: superblock inode belongs to
128 * @inode: inode to initialise
129 *
130 * These are initializations that need to be done on every inode
131 * allocation as the fields are not initialised by slab allocation.
132 */
133 int inode_init_always(struct super_block *sb, struct inode *inode)
134 {
135 static const struct inode_operations empty_iops;
136 static const struct file_operations empty_fops;
137 struct address_space *const mapping = &inode->i_data;
138
139 inode->i_sb = sb;
140 inode->i_blkbits = sb->s_blocksize_bits;
141 inode->i_flags = 0;
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &empty_fops;
145 inode->i_nlink = 1;
146 inode->i_uid = 0;
147 inode->i_gid = 0;
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_blocks = 0;
151 inode->i_bytes = 0;
152 inode->i_generation = 0;
153 #ifdef CONFIG_QUOTA
154 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
155 #endif
156 inode->i_pipe = NULL;
157 inode->i_bdev = NULL;
158 inode->i_cdev = NULL;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
161
162 if (security_inode_alloc(inode))
163 goto out;
164 spin_lock_init(&inode->i_lock);
165 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
166
167 mutex_init(&inode->i_mutex);
168 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
169
170 atomic_set(&inode->i_dio_count, 0);
171
172 mapping->a_ops = &empty_aops;
173 mapping->host = inode;
174 mapping->flags = 0;
175 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
176 mapping->assoc_mapping = NULL;
177 mapping->backing_dev_info = &default_backing_dev_info;
178 mapping->writeback_index = 0;
179
180 /*
181 * If the block_device provides a backing_dev_info for client
182 * inodes then use that. Otherwise the inode share the bdev's
183 * backing_dev_info.
184 */
185 if (sb->s_bdev) {
186 struct backing_dev_info *bdi;
187
188 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
189 mapping->backing_dev_info = bdi;
190 }
191 inode->i_private = NULL;
192 inode->i_mapping = mapping;
193 #ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196
197 #ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199 #endif
200
201 this_cpu_inc(nr_inodes);
202
203 return 0;
204 out:
205 return -ENOMEM;
206 }
207 EXPORT_SYMBOL(inode_init_always);
208
209 static struct inode *alloc_inode(struct super_block *sb)
210 {
211 struct inode *inode;
212
213 if (sb->s_op->alloc_inode)
214 inode = sb->s_op->alloc_inode(sb);
215 else
216 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
217
218 if (!inode)
219 return NULL;
220
221 if (unlikely(inode_init_always(sb, inode))) {
222 if (inode->i_sb->s_op->destroy_inode)
223 inode->i_sb->s_op->destroy_inode(inode);
224 else
225 kmem_cache_free(inode_cachep, inode);
226 return NULL;
227 }
228
229 return inode;
230 }
231
232 void free_inode_nonrcu(struct inode *inode)
233 {
234 kmem_cache_free(inode_cachep, inode);
235 }
236 EXPORT_SYMBOL(free_inode_nonrcu);
237
238 void __destroy_inode(struct inode *inode)
239 {
240 BUG_ON(inode_has_buffers(inode));
241 security_inode_free(inode);
242 fsnotify_inode_delete(inode);
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
247 posix_acl_release(inode->i_default_acl);
248 #endif
249 this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252
253 static void i_callback(struct rcu_head *head)
254 {
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 INIT_LIST_HEAD(&inode->i_dentry);
257 kmem_cache_free(inode_cachep, inode);
258 }
259
260 static void destroy_inode(struct inode *inode)
261 {
262 BUG_ON(!list_empty(&inode->i_lru));
263 __destroy_inode(inode);
264 if (inode->i_sb->s_op->destroy_inode)
265 inode->i_sb->s_op->destroy_inode(inode);
266 else
267 call_rcu(&inode->i_rcu, i_callback);
268 }
269
270 void address_space_init_once(struct address_space *mapping)
271 {
272 memset(mapping, 0, sizeof(*mapping));
273 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
274 spin_lock_init(&mapping->tree_lock);
275 mutex_init(&mapping->i_mmap_mutex);
276 INIT_LIST_HEAD(&mapping->private_list);
277 spin_lock_init(&mapping->private_lock);
278 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
279 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
280 }
281 EXPORT_SYMBOL(address_space_init_once);
282
283 /*
284 * These are initializations that only need to be done
285 * once, because the fields are idempotent across use
286 * of the inode, so let the slab aware of that.
287 */
288 void inode_init_once(struct inode *inode)
289 {
290 memset(inode, 0, sizeof(*inode));
291 INIT_HLIST_NODE(&inode->i_hash);
292 INIT_LIST_HEAD(&inode->i_dentry);
293 INIT_LIST_HEAD(&inode->i_devices);
294 INIT_LIST_HEAD(&inode->i_wb_list);
295 INIT_LIST_HEAD(&inode->i_lru);
296 address_space_init_once(&inode->i_data);
297 i_size_ordered_init(inode);
298 #ifdef CONFIG_FSNOTIFY
299 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
300 #endif
301 }
302 EXPORT_SYMBOL(inode_init_once);
303
304 static void init_once(void *foo)
305 {
306 struct inode *inode = (struct inode *) foo;
307
308 inode_init_once(inode);
309 }
310
311 /*
312 * inode->i_lock must be held
313 */
314 void __iget(struct inode *inode)
315 {
316 atomic_inc(&inode->i_count);
317 }
318
319 /*
320 * get additional reference to inode; caller must already hold one.
321 */
322 void ihold(struct inode *inode)
323 {
324 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
325 }
326 EXPORT_SYMBOL(ihold);
327
328 static void inode_lru_list_add(struct inode *inode)
329 {
330 spin_lock(&inode->i_sb->s_inode_lru_lock);
331 if (list_empty(&inode->i_lru)) {
332 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
333 inode->i_sb->s_nr_inodes_unused++;
334 this_cpu_inc(nr_unused);
335 }
336 spin_unlock(&inode->i_sb->s_inode_lru_lock);
337 }
338
339 static void inode_lru_list_del(struct inode *inode)
340 {
341 spin_lock(&inode->i_sb->s_inode_lru_lock);
342 if (!list_empty(&inode->i_lru)) {
343 list_del_init(&inode->i_lru);
344 inode->i_sb->s_nr_inodes_unused--;
345 this_cpu_dec(nr_unused);
346 }
347 spin_unlock(&inode->i_sb->s_inode_lru_lock);
348 }
349
350 /**
351 * inode_sb_list_add - add inode to the superblock list of inodes
352 * @inode: inode to add
353 */
354 void inode_sb_list_add(struct inode *inode)
355 {
356 spin_lock(&inode_sb_list_lock);
357 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
358 spin_unlock(&inode_sb_list_lock);
359 }
360 EXPORT_SYMBOL_GPL(inode_sb_list_add);
361
362 static inline void inode_sb_list_del(struct inode *inode)
363 {
364 spin_lock(&inode_sb_list_lock);
365 list_del_init(&inode->i_sb_list);
366 spin_unlock(&inode_sb_list_lock);
367 }
368
369 static unsigned long hash(struct super_block *sb, unsigned long hashval)
370 {
371 unsigned long tmp;
372
373 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
374 L1_CACHE_BYTES;
375 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
376 return tmp & i_hash_mask;
377 }
378
379 /**
380 * __insert_inode_hash - hash an inode
381 * @inode: unhashed inode
382 * @hashval: unsigned long value used to locate this object in the
383 * inode_hashtable.
384 *
385 * Add an inode to the inode hash for this superblock.
386 */
387 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
388 {
389 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
390
391 spin_lock(&inode_hash_lock);
392 spin_lock(&inode->i_lock);
393 hlist_add_head(&inode->i_hash, b);
394 spin_unlock(&inode->i_lock);
395 spin_unlock(&inode_hash_lock);
396 }
397 EXPORT_SYMBOL(__insert_inode_hash);
398
399 /**
400 * remove_inode_hash - remove an inode from the hash
401 * @inode: inode to unhash
402 *
403 * Remove an inode from the superblock.
404 */
405 void remove_inode_hash(struct inode *inode)
406 {
407 spin_lock(&inode_hash_lock);
408 spin_lock(&inode->i_lock);
409 hlist_del_init(&inode->i_hash);
410 spin_unlock(&inode->i_lock);
411 spin_unlock(&inode_hash_lock);
412 }
413 EXPORT_SYMBOL(remove_inode_hash);
414
415 void end_writeback(struct inode *inode)
416 {
417 might_sleep();
418 /*
419 * We have to cycle tree_lock here because reclaim can be still in the
420 * process of removing the last page (in __delete_from_page_cache())
421 * and we must not free mapping under it.
422 */
423 spin_lock_irq(&inode->i_data.tree_lock);
424 BUG_ON(inode->i_data.nrpages);
425 spin_unlock_irq(&inode->i_data.tree_lock);
426 BUG_ON(!list_empty(&inode->i_data.private_list));
427 BUG_ON(!(inode->i_state & I_FREEING));
428 BUG_ON(inode->i_state & I_CLEAR);
429 inode_sync_wait(inode);
430 /* don't need i_lock here, no concurrent mods to i_state */
431 inode->i_state = I_FREEING | I_CLEAR;
432 }
433 EXPORT_SYMBOL(end_writeback);
434
435 /*
436 * Free the inode passed in, removing it from the lists it is still connected
437 * to. We remove any pages still attached to the inode and wait for any IO that
438 * is still in progress before finally destroying the inode.
439 *
440 * An inode must already be marked I_FREEING so that we avoid the inode being
441 * moved back onto lists if we race with other code that manipulates the lists
442 * (e.g. writeback_single_inode). The caller is responsible for setting this.
443 *
444 * An inode must already be removed from the LRU list before being evicted from
445 * the cache. This should occur atomically with setting the I_FREEING state
446 * flag, so no inodes here should ever be on the LRU when being evicted.
447 */
448 static void evict(struct inode *inode)
449 {
450 const struct super_operations *op = inode->i_sb->s_op;
451
452 BUG_ON(!(inode->i_state & I_FREEING));
453 BUG_ON(!list_empty(&inode->i_lru));
454
455 inode_wb_list_del(inode);
456 inode_sb_list_del(inode);
457
458 if (op->evict_inode) {
459 op->evict_inode(inode);
460 } else {
461 if (inode->i_data.nrpages)
462 truncate_inode_pages(&inode->i_data, 0);
463 end_writeback(inode);
464 }
465 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
466 bd_forget(inode);
467 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
468 cd_forget(inode);
469
470 remove_inode_hash(inode);
471
472 spin_lock(&inode->i_lock);
473 wake_up_bit(&inode->i_state, __I_NEW);
474 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
475 spin_unlock(&inode->i_lock);
476
477 destroy_inode(inode);
478 }
479
480 /*
481 * dispose_list - dispose of the contents of a local list
482 * @head: the head of the list to free
483 *
484 * Dispose-list gets a local list with local inodes in it, so it doesn't
485 * need to worry about list corruption and SMP locks.
486 */
487 static void dispose_list(struct list_head *head)
488 {
489 while (!list_empty(head)) {
490 struct inode *inode;
491
492 inode = list_first_entry(head, struct inode, i_lru);
493 list_del_init(&inode->i_lru);
494
495 evict(inode);
496 }
497 }
498
499 /**
500 * evict_inodes - evict all evictable inodes for a superblock
501 * @sb: superblock to operate on
502 *
503 * Make sure that no inodes with zero refcount are retained. This is
504 * called by superblock shutdown after having MS_ACTIVE flag removed,
505 * so any inode reaching zero refcount during or after that call will
506 * be immediately evicted.
507 */
508 void evict_inodes(struct super_block *sb)
509 {
510 struct inode *inode, *next;
511 LIST_HEAD(dispose);
512
513 spin_lock(&inode_sb_list_lock);
514 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
515 if (atomic_read(&inode->i_count))
516 continue;
517
518 spin_lock(&inode->i_lock);
519 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
520 spin_unlock(&inode->i_lock);
521 continue;
522 }
523
524 inode->i_state |= I_FREEING;
525 inode_lru_list_del(inode);
526 spin_unlock(&inode->i_lock);
527 list_add(&inode->i_lru, &dispose);
528 }
529 spin_unlock(&inode_sb_list_lock);
530
531 dispose_list(&dispose);
532 }
533
534 /**
535 * invalidate_inodes - attempt to free all inodes on a superblock
536 * @sb: superblock to operate on
537 * @kill_dirty: flag to guide handling of dirty inodes
538 *
539 * Attempts to free all inodes for a given superblock. If there were any
540 * busy inodes return a non-zero value, else zero.
541 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
542 * them as busy.
543 */
544 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
545 {
546 int busy = 0;
547 struct inode *inode, *next;
548 LIST_HEAD(dispose);
549
550 spin_lock(&inode_sb_list_lock);
551 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
552 spin_lock(&inode->i_lock);
553 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
554 spin_unlock(&inode->i_lock);
555 continue;
556 }
557 if (inode->i_state & I_DIRTY && !kill_dirty) {
558 spin_unlock(&inode->i_lock);
559 busy = 1;
560 continue;
561 }
562 if (atomic_read(&inode->i_count)) {
563 spin_unlock(&inode->i_lock);
564 busy = 1;
565 continue;
566 }
567
568 inode->i_state |= I_FREEING;
569 inode_lru_list_del(inode);
570 spin_unlock(&inode->i_lock);
571 list_add(&inode->i_lru, &dispose);
572 }
573 spin_unlock(&inode_sb_list_lock);
574
575 dispose_list(&dispose);
576
577 return busy;
578 }
579
580 static int can_unuse(struct inode *inode)
581 {
582 if (inode->i_state & ~I_REFERENCED)
583 return 0;
584 if (inode_has_buffers(inode))
585 return 0;
586 if (atomic_read(&inode->i_count))
587 return 0;
588 if (inode->i_data.nrpages)
589 return 0;
590 return 1;
591 }
592
593 /*
594 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
595 * This is called from the superblock shrinker function with a number of inodes
596 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
597 * then are freed outside inode_lock by dispose_list().
598 *
599 * Any inodes which are pinned purely because of attached pagecache have their
600 * pagecache removed. If the inode has metadata buffers attached to
601 * mapping->private_list then try to remove them.
602 *
603 * If the inode has the I_REFERENCED flag set, then it means that it has been
604 * used recently - the flag is set in iput_final(). When we encounter such an
605 * inode, clear the flag and move it to the back of the LRU so it gets another
606 * pass through the LRU before it gets reclaimed. This is necessary because of
607 * the fact we are doing lazy LRU updates to minimise lock contention so the
608 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
609 * with this flag set because they are the inodes that are out of order.
610 */
611 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
612 {
613 LIST_HEAD(freeable);
614 int nr_scanned;
615 unsigned long reap = 0;
616
617 spin_lock(&sb->s_inode_lru_lock);
618 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
619 struct inode *inode;
620
621 if (list_empty(&sb->s_inode_lru))
622 break;
623
624 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
625
626 /*
627 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
628 * so use a trylock. If we fail to get the lock, just move the
629 * inode to the back of the list so we don't spin on it.
630 */
631 if (!spin_trylock(&inode->i_lock)) {
632 list_move(&inode->i_lru, &sb->s_inode_lru);
633 continue;
634 }
635
636 /*
637 * Referenced or dirty inodes are still in use. Give them
638 * another pass through the LRU as we canot reclaim them now.
639 */
640 if (atomic_read(&inode->i_count) ||
641 (inode->i_state & ~I_REFERENCED)) {
642 list_del_init(&inode->i_lru);
643 spin_unlock(&inode->i_lock);
644 sb->s_nr_inodes_unused--;
645 this_cpu_dec(nr_unused);
646 continue;
647 }
648
649 /* recently referenced inodes get one more pass */
650 if (inode->i_state & I_REFERENCED) {
651 inode->i_state &= ~I_REFERENCED;
652 list_move(&inode->i_lru, &sb->s_inode_lru);
653 spin_unlock(&inode->i_lock);
654 continue;
655 }
656 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
657 __iget(inode);
658 spin_unlock(&inode->i_lock);
659 spin_unlock(&sb->s_inode_lru_lock);
660 if (remove_inode_buffers(inode))
661 reap += invalidate_mapping_pages(&inode->i_data,
662 0, -1);
663 iput(inode);
664 spin_lock(&sb->s_inode_lru_lock);
665
666 if (inode != list_entry(sb->s_inode_lru.next,
667 struct inode, i_lru))
668 continue; /* wrong inode or list_empty */
669 /* avoid lock inversions with trylock */
670 if (!spin_trylock(&inode->i_lock))
671 continue;
672 if (!can_unuse(inode)) {
673 spin_unlock(&inode->i_lock);
674 continue;
675 }
676 }
677 WARN_ON(inode->i_state & I_NEW);
678 inode->i_state |= I_FREEING;
679 spin_unlock(&inode->i_lock);
680
681 list_move(&inode->i_lru, &freeable);
682 sb->s_nr_inodes_unused--;
683 this_cpu_dec(nr_unused);
684 }
685 if (current_is_kswapd())
686 __count_vm_events(KSWAPD_INODESTEAL, reap);
687 else
688 __count_vm_events(PGINODESTEAL, reap);
689 spin_unlock(&sb->s_inode_lru_lock);
690
691 dispose_list(&freeable);
692 }
693
694 static void __wait_on_freeing_inode(struct inode *inode);
695 /*
696 * Called with the inode lock held.
697 */
698 static struct inode *find_inode(struct super_block *sb,
699 struct hlist_head *head,
700 int (*test)(struct inode *, void *),
701 void *data)
702 {
703 struct hlist_node *node;
704 struct inode *inode = NULL;
705
706 repeat:
707 hlist_for_each_entry(inode, node, head, i_hash) {
708 spin_lock(&inode->i_lock);
709 if (inode->i_sb != sb) {
710 spin_unlock(&inode->i_lock);
711 continue;
712 }
713 if (!test(inode, data)) {
714 spin_unlock(&inode->i_lock);
715 continue;
716 }
717 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
718 __wait_on_freeing_inode(inode);
719 goto repeat;
720 }
721 __iget(inode);
722 spin_unlock(&inode->i_lock);
723 return inode;
724 }
725 return NULL;
726 }
727
728 /*
729 * find_inode_fast is the fast path version of find_inode, see the comment at
730 * iget_locked for details.
731 */
732 static struct inode *find_inode_fast(struct super_block *sb,
733 struct hlist_head *head, unsigned long ino)
734 {
735 struct hlist_node *node;
736 struct inode *inode = NULL;
737
738 repeat:
739 hlist_for_each_entry(inode, node, head, i_hash) {
740 spin_lock(&inode->i_lock);
741 if (inode->i_ino != ino) {
742 spin_unlock(&inode->i_lock);
743 continue;
744 }
745 if (inode->i_sb != sb) {
746 spin_unlock(&inode->i_lock);
747 continue;
748 }
749 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
750 __wait_on_freeing_inode(inode);
751 goto repeat;
752 }
753 __iget(inode);
754 spin_unlock(&inode->i_lock);
755 return inode;
756 }
757 return NULL;
758 }
759
760 /*
761 * Each cpu owns a range of LAST_INO_BATCH numbers.
762 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
763 * to renew the exhausted range.
764 *
765 * This does not significantly increase overflow rate because every CPU can
766 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
767 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
768 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
769 * overflow rate by 2x, which does not seem too significant.
770 *
771 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
772 * error if st_ino won't fit in target struct field. Use 32bit counter
773 * here to attempt to avoid that.
774 */
775 #define LAST_INO_BATCH 1024
776 static DEFINE_PER_CPU(unsigned int, last_ino);
777
778 unsigned int get_next_ino(void)
779 {
780 unsigned int *p = &get_cpu_var(last_ino);
781 unsigned int res = *p;
782
783 #ifdef CONFIG_SMP
784 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
785 static atomic_t shared_last_ino;
786 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
787
788 res = next - LAST_INO_BATCH;
789 }
790 #endif
791
792 *p = ++res;
793 put_cpu_var(last_ino);
794 return res;
795 }
796 EXPORT_SYMBOL(get_next_ino);
797
798 /**
799 * new_inode - obtain an inode
800 * @sb: superblock
801 *
802 * Allocates a new inode for given superblock. The default gfp_mask
803 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
804 * If HIGHMEM pages are unsuitable or it is known that pages allocated
805 * for the page cache are not reclaimable or migratable,
806 * mapping_set_gfp_mask() must be called with suitable flags on the
807 * newly created inode's mapping
808 *
809 */
810 struct inode *new_inode(struct super_block *sb)
811 {
812 struct inode *inode;
813
814 spin_lock_prefetch(&inode_sb_list_lock);
815
816 inode = alloc_inode(sb);
817 if (inode) {
818 spin_lock(&inode->i_lock);
819 inode->i_state = 0;
820 spin_unlock(&inode->i_lock);
821 inode_sb_list_add(inode);
822 }
823 return inode;
824 }
825 EXPORT_SYMBOL(new_inode);
826
827 /**
828 * unlock_new_inode - clear the I_NEW state and wake up any waiters
829 * @inode: new inode to unlock
830 *
831 * Called when the inode is fully initialised to clear the new state of the
832 * inode and wake up anyone waiting for the inode to finish initialisation.
833 */
834 void unlock_new_inode(struct inode *inode)
835 {
836 #ifdef CONFIG_DEBUG_LOCK_ALLOC
837 if (S_ISDIR(inode->i_mode)) {
838 struct file_system_type *type = inode->i_sb->s_type;
839
840 /* Set new key only if filesystem hasn't already changed it */
841 if (!lockdep_match_class(&inode->i_mutex,
842 &type->i_mutex_key)) {
843 /*
844 * ensure nobody is actually holding i_mutex
845 */
846 mutex_destroy(&inode->i_mutex);
847 mutex_init(&inode->i_mutex);
848 lockdep_set_class(&inode->i_mutex,
849 &type->i_mutex_dir_key);
850 }
851 }
852 #endif
853 spin_lock(&inode->i_lock);
854 WARN_ON(!(inode->i_state & I_NEW));
855 inode->i_state &= ~I_NEW;
856 wake_up_bit(&inode->i_state, __I_NEW);
857 spin_unlock(&inode->i_lock);
858 }
859 EXPORT_SYMBOL(unlock_new_inode);
860
861 /**
862 * iget5_locked - obtain an inode from a mounted file system
863 * @sb: super block of file system
864 * @hashval: hash value (usually inode number) to get
865 * @test: callback used for comparisons between inodes
866 * @set: callback used to initialize a new struct inode
867 * @data: opaque data pointer to pass to @test and @set
868 *
869 * Search for the inode specified by @hashval and @data in the inode cache,
870 * and if present it is return it with an increased reference count. This is
871 * a generalized version of iget_locked() for file systems where the inode
872 * number is not sufficient for unique identification of an inode.
873 *
874 * If the inode is not in cache, allocate a new inode and return it locked,
875 * hashed, and with the I_NEW flag set. The file system gets to fill it in
876 * before unlocking it via unlock_new_inode().
877 *
878 * Note both @test and @set are called with the inode_hash_lock held, so can't
879 * sleep.
880 */
881 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
882 int (*test)(struct inode *, void *),
883 int (*set)(struct inode *, void *), void *data)
884 {
885 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
886 struct inode *inode;
887
888 spin_lock(&inode_hash_lock);
889 inode = find_inode(sb, head, test, data);
890 spin_unlock(&inode_hash_lock);
891
892 if (inode) {
893 wait_on_inode(inode);
894 return inode;
895 }
896
897 inode = alloc_inode(sb);
898 if (inode) {
899 struct inode *old;
900
901 spin_lock(&inode_hash_lock);
902 /* We released the lock, so.. */
903 old = find_inode(sb, head, test, data);
904 if (!old) {
905 if (set(inode, data))
906 goto set_failed;
907
908 spin_lock(&inode->i_lock);
909 inode->i_state = I_NEW;
910 hlist_add_head(&inode->i_hash, head);
911 spin_unlock(&inode->i_lock);
912 inode_sb_list_add(inode);
913 spin_unlock(&inode_hash_lock);
914
915 /* Return the locked inode with I_NEW set, the
916 * caller is responsible for filling in the contents
917 */
918 return inode;
919 }
920
921 /*
922 * Uhhuh, somebody else created the same inode under
923 * us. Use the old inode instead of the one we just
924 * allocated.
925 */
926 spin_unlock(&inode_hash_lock);
927 destroy_inode(inode);
928 inode = old;
929 wait_on_inode(inode);
930 }
931 return inode;
932
933 set_failed:
934 spin_unlock(&inode_hash_lock);
935 destroy_inode(inode);
936 return NULL;
937 }
938 EXPORT_SYMBOL(iget5_locked);
939
940 /**
941 * iget_locked - obtain an inode from a mounted file system
942 * @sb: super block of file system
943 * @ino: inode number to get
944 *
945 * Search for the inode specified by @ino in the inode cache and if present
946 * return it with an increased reference count. This is for file systems
947 * where the inode number is sufficient for unique identification of an inode.
948 *
949 * If the inode is not in cache, allocate a new inode and return it locked,
950 * hashed, and with the I_NEW flag set. The file system gets to fill it in
951 * before unlocking it via unlock_new_inode().
952 */
953 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
954 {
955 struct hlist_head *head = inode_hashtable + hash(sb, ino);
956 struct inode *inode;
957
958 spin_lock(&inode_hash_lock);
959 inode = find_inode_fast(sb, head, ino);
960 spin_unlock(&inode_hash_lock);
961 if (inode) {
962 wait_on_inode(inode);
963 return inode;
964 }
965
966 inode = alloc_inode(sb);
967 if (inode) {
968 struct inode *old;
969
970 spin_lock(&inode_hash_lock);
971 /* We released the lock, so.. */
972 old = find_inode_fast(sb, head, ino);
973 if (!old) {
974 inode->i_ino = ino;
975 spin_lock(&inode->i_lock);
976 inode->i_state = I_NEW;
977 hlist_add_head(&inode->i_hash, head);
978 spin_unlock(&inode->i_lock);
979 inode_sb_list_add(inode);
980 spin_unlock(&inode_hash_lock);
981
982 /* Return the locked inode with I_NEW set, the
983 * caller is responsible for filling in the contents
984 */
985 return inode;
986 }
987
988 /*
989 * Uhhuh, somebody else created the same inode under
990 * us. Use the old inode instead of the one we just
991 * allocated.
992 */
993 spin_unlock(&inode_hash_lock);
994 destroy_inode(inode);
995 inode = old;
996 wait_on_inode(inode);
997 }
998 return inode;
999 }
1000 EXPORT_SYMBOL(iget_locked);
1001
1002 /*
1003 * search the inode cache for a matching inode number.
1004 * If we find one, then the inode number we are trying to
1005 * allocate is not unique and so we should not use it.
1006 *
1007 * Returns 1 if the inode number is unique, 0 if it is not.
1008 */
1009 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1010 {
1011 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1012 struct hlist_node *node;
1013 struct inode *inode;
1014
1015 spin_lock(&inode_hash_lock);
1016 hlist_for_each_entry(inode, node, b, i_hash) {
1017 if (inode->i_ino == ino && inode->i_sb == sb) {
1018 spin_unlock(&inode_hash_lock);
1019 return 0;
1020 }
1021 }
1022 spin_unlock(&inode_hash_lock);
1023
1024 return 1;
1025 }
1026
1027 /**
1028 * iunique - get a unique inode number
1029 * @sb: superblock
1030 * @max_reserved: highest reserved inode number
1031 *
1032 * Obtain an inode number that is unique on the system for a given
1033 * superblock. This is used by file systems that have no natural
1034 * permanent inode numbering system. An inode number is returned that
1035 * is higher than the reserved limit but unique.
1036 *
1037 * BUGS:
1038 * With a large number of inodes live on the file system this function
1039 * currently becomes quite slow.
1040 */
1041 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1042 {
1043 /*
1044 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1045 * error if st_ino won't fit in target struct field. Use 32bit counter
1046 * here to attempt to avoid that.
1047 */
1048 static DEFINE_SPINLOCK(iunique_lock);
1049 static unsigned int counter;
1050 ino_t res;
1051
1052 spin_lock(&iunique_lock);
1053 do {
1054 if (counter <= max_reserved)
1055 counter = max_reserved + 1;
1056 res = counter++;
1057 } while (!test_inode_iunique(sb, res));
1058 spin_unlock(&iunique_lock);
1059
1060 return res;
1061 }
1062 EXPORT_SYMBOL(iunique);
1063
1064 struct inode *igrab(struct inode *inode)
1065 {
1066 spin_lock(&inode->i_lock);
1067 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1068 __iget(inode);
1069 spin_unlock(&inode->i_lock);
1070 } else {
1071 spin_unlock(&inode->i_lock);
1072 /*
1073 * Handle the case where s_op->clear_inode is not been
1074 * called yet, and somebody is calling igrab
1075 * while the inode is getting freed.
1076 */
1077 inode = NULL;
1078 }
1079 return inode;
1080 }
1081 EXPORT_SYMBOL(igrab);
1082
1083 /**
1084 * ilookup5_nowait - search for an inode in the inode cache
1085 * @sb: super block of file system to search
1086 * @hashval: hash value (usually inode number) to search for
1087 * @test: callback used for comparisons between inodes
1088 * @data: opaque data pointer to pass to @test
1089 *
1090 * Search for the inode specified by @hashval and @data in the inode cache.
1091 * If the inode is in the cache, the inode is returned with an incremented
1092 * reference count.
1093 *
1094 * Note: I_NEW is not waited upon so you have to be very careful what you do
1095 * with the returned inode. You probably should be using ilookup5() instead.
1096 *
1097 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1098 */
1099 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1100 int (*test)(struct inode *, void *), void *data)
1101 {
1102 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1103 struct inode *inode;
1104
1105 spin_lock(&inode_hash_lock);
1106 inode = find_inode(sb, head, test, data);
1107 spin_unlock(&inode_hash_lock);
1108
1109 return inode;
1110 }
1111 EXPORT_SYMBOL(ilookup5_nowait);
1112
1113 /**
1114 * ilookup5 - search for an inode in the inode cache
1115 * @sb: super block of file system to search
1116 * @hashval: hash value (usually inode number) to search for
1117 * @test: callback used for comparisons between inodes
1118 * @data: opaque data pointer to pass to @test
1119 *
1120 * Search for the inode specified by @hashval and @data in the inode cache,
1121 * and if the inode is in the cache, return the inode with an incremented
1122 * reference count. Waits on I_NEW before returning the inode.
1123 * returned with an incremented reference count.
1124 *
1125 * This is a generalized version of ilookup() for file systems where the
1126 * inode number is not sufficient for unique identification of an inode.
1127 *
1128 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1129 */
1130 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1131 int (*test)(struct inode *, void *), void *data)
1132 {
1133 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1134
1135 if (inode)
1136 wait_on_inode(inode);
1137 return inode;
1138 }
1139 EXPORT_SYMBOL(ilookup5);
1140
1141 /**
1142 * ilookup - search for an inode in the inode cache
1143 * @sb: super block of file system to search
1144 * @ino: inode number to search for
1145 *
1146 * Search for the inode @ino in the inode cache, and if the inode is in the
1147 * cache, the inode is returned with an incremented reference count.
1148 */
1149 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1150 {
1151 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1152 struct inode *inode;
1153
1154 spin_lock(&inode_hash_lock);
1155 inode = find_inode_fast(sb, head, ino);
1156 spin_unlock(&inode_hash_lock);
1157
1158 if (inode)
1159 wait_on_inode(inode);
1160 return inode;
1161 }
1162 EXPORT_SYMBOL(ilookup);
1163
1164 int insert_inode_locked(struct inode *inode)
1165 {
1166 struct super_block *sb = inode->i_sb;
1167 ino_t ino = inode->i_ino;
1168 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1169
1170 while (1) {
1171 struct hlist_node *node;
1172 struct inode *old = NULL;
1173 spin_lock(&inode_hash_lock);
1174 hlist_for_each_entry(old, node, head, i_hash) {
1175 if (old->i_ino != ino)
1176 continue;
1177 if (old->i_sb != sb)
1178 continue;
1179 spin_lock(&old->i_lock);
1180 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1181 spin_unlock(&old->i_lock);
1182 continue;
1183 }
1184 break;
1185 }
1186 if (likely(!node)) {
1187 spin_lock(&inode->i_lock);
1188 inode->i_state |= I_NEW;
1189 hlist_add_head(&inode->i_hash, head);
1190 spin_unlock(&inode->i_lock);
1191 spin_unlock(&inode_hash_lock);
1192 return 0;
1193 }
1194 __iget(old);
1195 spin_unlock(&old->i_lock);
1196 spin_unlock(&inode_hash_lock);
1197 wait_on_inode(old);
1198 if (unlikely(!inode_unhashed(old))) {
1199 iput(old);
1200 return -EBUSY;
1201 }
1202 iput(old);
1203 }
1204 }
1205 EXPORT_SYMBOL(insert_inode_locked);
1206
1207 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1208 int (*test)(struct inode *, void *), void *data)
1209 {
1210 struct super_block *sb = inode->i_sb;
1211 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1212
1213 while (1) {
1214 struct hlist_node *node;
1215 struct inode *old = NULL;
1216
1217 spin_lock(&inode_hash_lock);
1218 hlist_for_each_entry(old, node, head, i_hash) {
1219 if (old->i_sb != sb)
1220 continue;
1221 if (!test(old, data))
1222 continue;
1223 spin_lock(&old->i_lock);
1224 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1225 spin_unlock(&old->i_lock);
1226 continue;
1227 }
1228 break;
1229 }
1230 if (likely(!node)) {
1231 spin_lock(&inode->i_lock);
1232 inode->i_state |= I_NEW;
1233 hlist_add_head(&inode->i_hash, head);
1234 spin_unlock(&inode->i_lock);
1235 spin_unlock(&inode_hash_lock);
1236 return 0;
1237 }
1238 __iget(old);
1239 spin_unlock(&old->i_lock);
1240 spin_unlock(&inode_hash_lock);
1241 wait_on_inode(old);
1242 if (unlikely(!inode_unhashed(old))) {
1243 iput(old);
1244 return -EBUSY;
1245 }
1246 iput(old);
1247 }
1248 }
1249 EXPORT_SYMBOL(insert_inode_locked4);
1250
1251
1252 int generic_delete_inode(struct inode *inode)
1253 {
1254 return 1;
1255 }
1256 EXPORT_SYMBOL(generic_delete_inode);
1257
1258 /*
1259 * Normal UNIX filesystem behaviour: delete the
1260 * inode when the usage count drops to zero, and
1261 * i_nlink is zero.
1262 */
1263 int generic_drop_inode(struct inode *inode)
1264 {
1265 return !inode->i_nlink || inode_unhashed(inode);
1266 }
1267 EXPORT_SYMBOL_GPL(generic_drop_inode);
1268
1269 /*
1270 * Called when we're dropping the last reference
1271 * to an inode.
1272 *
1273 * Call the FS "drop_inode()" function, defaulting to
1274 * the legacy UNIX filesystem behaviour. If it tells
1275 * us to evict inode, do so. Otherwise, retain inode
1276 * in cache if fs is alive, sync and evict if fs is
1277 * shutting down.
1278 */
1279 static void iput_final(struct inode *inode)
1280 {
1281 struct super_block *sb = inode->i_sb;
1282 const struct super_operations *op = inode->i_sb->s_op;
1283 int drop;
1284
1285 WARN_ON(inode->i_state & I_NEW);
1286
1287 if (op->drop_inode)
1288 drop = op->drop_inode(inode);
1289 else
1290 drop = generic_drop_inode(inode);
1291
1292 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1293 inode->i_state |= I_REFERENCED;
1294 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1295 inode_lru_list_add(inode);
1296 spin_unlock(&inode->i_lock);
1297 return;
1298 }
1299
1300 if (!drop) {
1301 inode->i_state |= I_WILL_FREE;
1302 spin_unlock(&inode->i_lock);
1303 write_inode_now(inode, 1);
1304 spin_lock(&inode->i_lock);
1305 WARN_ON(inode->i_state & I_NEW);
1306 inode->i_state &= ~I_WILL_FREE;
1307 }
1308
1309 inode->i_state |= I_FREEING;
1310 inode_lru_list_del(inode);
1311 spin_unlock(&inode->i_lock);
1312
1313 evict(inode);
1314 }
1315
1316 /**
1317 * iput - put an inode
1318 * @inode: inode to put
1319 *
1320 * Puts an inode, dropping its usage count. If the inode use count hits
1321 * zero, the inode is then freed and may also be destroyed.
1322 *
1323 * Consequently, iput() can sleep.
1324 */
1325 void iput(struct inode *inode)
1326 {
1327 if (inode) {
1328 BUG_ON(inode->i_state & I_CLEAR);
1329
1330 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1331 iput_final(inode);
1332 }
1333 }
1334 EXPORT_SYMBOL(iput);
1335
1336 /**
1337 * bmap - find a block number in a file
1338 * @inode: inode of file
1339 * @block: block to find
1340 *
1341 * Returns the block number on the device holding the inode that
1342 * is the disk block number for the block of the file requested.
1343 * That is, asked for block 4 of inode 1 the function will return the
1344 * disk block relative to the disk start that holds that block of the
1345 * file.
1346 */
1347 sector_t bmap(struct inode *inode, sector_t block)
1348 {
1349 sector_t res = 0;
1350 if (inode->i_mapping->a_ops->bmap)
1351 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1352 return res;
1353 }
1354 EXPORT_SYMBOL(bmap);
1355
1356 /*
1357 * With relative atime, only update atime if the previous atime is
1358 * earlier than either the ctime or mtime or if at least a day has
1359 * passed since the last atime update.
1360 */
1361 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1362 struct timespec now)
1363 {
1364
1365 if (!(mnt->mnt_flags & MNT_RELATIME))
1366 return 1;
1367 /*
1368 * Is mtime younger than atime? If yes, update atime:
1369 */
1370 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1371 return 1;
1372 /*
1373 * Is ctime younger than atime? If yes, update atime:
1374 */
1375 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1376 return 1;
1377
1378 /*
1379 * Is the previous atime value older than a day? If yes,
1380 * update atime:
1381 */
1382 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1383 return 1;
1384 /*
1385 * Good, we can skip the atime update:
1386 */
1387 return 0;
1388 }
1389
1390 /**
1391 * touch_atime - update the access time
1392 * @mnt: mount the inode is accessed on
1393 * @dentry: dentry accessed
1394 *
1395 * Update the accessed time on an inode and mark it for writeback.
1396 * This function automatically handles read only file systems and media,
1397 * as well as the "noatime" flag and inode specific "noatime" markers.
1398 */
1399 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1400 {
1401 struct inode *inode = dentry->d_inode;
1402 struct timespec now;
1403
1404 if (inode->i_flags & S_NOATIME)
1405 return;
1406 if (IS_NOATIME(inode))
1407 return;
1408 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1409 return;
1410
1411 if (mnt->mnt_flags & MNT_NOATIME)
1412 return;
1413 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1414 return;
1415
1416 now = current_fs_time(inode->i_sb);
1417
1418 if (!relatime_need_update(mnt, inode, now))
1419 return;
1420
1421 if (timespec_equal(&inode->i_atime, &now))
1422 return;
1423
1424 if (mnt_want_write(mnt))
1425 return;
1426
1427 inode->i_atime = now;
1428 mark_inode_dirty_sync(inode);
1429 mnt_drop_write(mnt);
1430 }
1431 EXPORT_SYMBOL(touch_atime);
1432
1433 /**
1434 * file_update_time - update mtime and ctime time
1435 * @file: file accessed
1436 *
1437 * Update the mtime and ctime members of an inode and mark the inode
1438 * for writeback. Note that this function is meant exclusively for
1439 * usage in the file write path of filesystems, and filesystems may
1440 * choose to explicitly ignore update via this function with the
1441 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1442 * timestamps are handled by the server.
1443 */
1444
1445 void file_update_time(struct file *file)
1446 {
1447 struct inode *inode = file->f_path.dentry->d_inode;
1448 struct timespec now;
1449 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1450
1451 /* First try to exhaust all avenues to not sync */
1452 if (IS_NOCMTIME(inode))
1453 return;
1454
1455 now = current_fs_time(inode->i_sb);
1456 if (!timespec_equal(&inode->i_mtime, &now))
1457 sync_it = S_MTIME;
1458
1459 if (!timespec_equal(&inode->i_ctime, &now))
1460 sync_it |= S_CTIME;
1461
1462 if (IS_I_VERSION(inode))
1463 sync_it |= S_VERSION;
1464
1465 if (!sync_it)
1466 return;
1467
1468 /* Finally allowed to write? Takes lock. */
1469 if (mnt_want_write_file(file))
1470 return;
1471
1472 /* Only change inode inside the lock region */
1473 if (sync_it & S_VERSION)
1474 inode_inc_iversion(inode);
1475 if (sync_it & S_CTIME)
1476 inode->i_ctime = now;
1477 if (sync_it & S_MTIME)
1478 inode->i_mtime = now;
1479 mark_inode_dirty_sync(inode);
1480 mnt_drop_write(file->f_path.mnt);
1481 }
1482 EXPORT_SYMBOL(file_update_time);
1483
1484 int inode_needs_sync(struct inode *inode)
1485 {
1486 if (IS_SYNC(inode))
1487 return 1;
1488 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1489 return 1;
1490 return 0;
1491 }
1492 EXPORT_SYMBOL(inode_needs_sync);
1493
1494 int inode_wait(void *word)
1495 {
1496 schedule();
1497 return 0;
1498 }
1499 EXPORT_SYMBOL(inode_wait);
1500
1501 /*
1502 * If we try to find an inode in the inode hash while it is being
1503 * deleted, we have to wait until the filesystem completes its
1504 * deletion before reporting that it isn't found. This function waits
1505 * until the deletion _might_ have completed. Callers are responsible
1506 * to recheck inode state.
1507 *
1508 * It doesn't matter if I_NEW is not set initially, a call to
1509 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1510 * will DTRT.
1511 */
1512 static void __wait_on_freeing_inode(struct inode *inode)
1513 {
1514 wait_queue_head_t *wq;
1515 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1516 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1517 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1518 spin_unlock(&inode->i_lock);
1519 spin_unlock(&inode_hash_lock);
1520 schedule();
1521 finish_wait(wq, &wait.wait);
1522 spin_lock(&inode_hash_lock);
1523 }
1524
1525 static __initdata unsigned long ihash_entries;
1526 static int __init set_ihash_entries(char *str)
1527 {
1528 if (!str)
1529 return 0;
1530 ihash_entries = simple_strtoul(str, &str, 0);
1531 return 1;
1532 }
1533 __setup("ihash_entries=", set_ihash_entries);
1534
1535 /*
1536 * Initialize the waitqueues and inode hash table.
1537 */
1538 void __init inode_init_early(void)
1539 {
1540 int loop;
1541
1542 /* If hashes are distributed across NUMA nodes, defer
1543 * hash allocation until vmalloc space is available.
1544 */
1545 if (hashdist)
1546 return;
1547
1548 inode_hashtable =
1549 alloc_large_system_hash("Inode-cache",
1550 sizeof(struct hlist_head),
1551 ihash_entries,
1552 14,
1553 HASH_EARLY,
1554 &i_hash_shift,
1555 &i_hash_mask,
1556 0);
1557
1558 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1559 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1560 }
1561
1562 void __init inode_init(void)
1563 {
1564 int loop;
1565
1566 /* inode slab cache */
1567 inode_cachep = kmem_cache_create("inode_cache",
1568 sizeof(struct inode),
1569 0,
1570 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1571 SLAB_MEM_SPREAD),
1572 init_once);
1573
1574 /* Hash may have been set up in inode_init_early */
1575 if (!hashdist)
1576 return;
1577
1578 inode_hashtable =
1579 alloc_large_system_hash("Inode-cache",
1580 sizeof(struct hlist_head),
1581 ihash_entries,
1582 14,
1583 0,
1584 &i_hash_shift,
1585 &i_hash_mask,
1586 0);
1587
1588 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1589 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1590 }
1591
1592 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1593 {
1594 inode->i_mode = mode;
1595 if (S_ISCHR(mode)) {
1596 inode->i_fop = &def_chr_fops;
1597 inode->i_rdev = rdev;
1598 } else if (S_ISBLK(mode)) {
1599 inode->i_fop = &def_blk_fops;
1600 inode->i_rdev = rdev;
1601 } else if (S_ISFIFO(mode))
1602 inode->i_fop = &def_fifo_fops;
1603 else if (S_ISSOCK(mode))
1604 inode->i_fop = &bad_sock_fops;
1605 else
1606 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1607 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1608 inode->i_ino);
1609 }
1610 EXPORT_SYMBOL(init_special_inode);
1611
1612 /**
1613 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1614 * @inode: New inode
1615 * @dir: Directory inode
1616 * @mode: mode of the new inode
1617 */
1618 void inode_init_owner(struct inode *inode, const struct inode *dir,
1619 mode_t mode)
1620 {
1621 inode->i_uid = current_fsuid();
1622 if (dir && dir->i_mode & S_ISGID) {
1623 inode->i_gid = dir->i_gid;
1624 if (S_ISDIR(mode))
1625 mode |= S_ISGID;
1626 } else
1627 inode->i_gid = current_fsgid();
1628 inode->i_mode = mode;
1629 }
1630 EXPORT_SYMBOL(inode_init_owner);
1631
1632 /**
1633 * inode_owner_or_capable - check current task permissions to inode
1634 * @inode: inode being checked
1635 *
1636 * Return true if current either has CAP_FOWNER to the inode, or
1637 * owns the file.
1638 */
1639 bool inode_owner_or_capable(const struct inode *inode)
1640 {
1641 struct user_namespace *ns = inode_userns(inode);
1642
1643 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1644 return true;
1645 if (ns_capable(ns, CAP_FOWNER))
1646 return true;
1647 return false;
1648 }
1649 EXPORT_SYMBOL(inode_owner_or_capable);
This page took 0.067291 seconds and 6 git commands to generate.