[PATCH] bugfix: two read_inode() calls without clear_inode() call between
[deliverable/linux.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/config.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/dcache.h>
11 #include <linux/init.h>
12 #include <linux/quotaops.h>
13 #include <linux/slab.h>
14 #include <linux/writeback.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24
25 /*
26 * This is needed for the following functions:
27 * - inode_has_buffers
28 * - invalidate_inode_buffers
29 * - invalidate_bdev
30 *
31 * FIXME: remove all knowledge of the buffer layer from this file
32 */
33 #include <linux/buffer_head.h>
34
35 /*
36 * New inode.c implementation.
37 *
38 * This implementation has the basic premise of trying
39 * to be extremely low-overhead and SMP-safe, yet be
40 * simple enough to be "obviously correct".
41 *
42 * Famous last words.
43 */
44
45 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
46
47 /* #define INODE_PARANOIA 1 */
48 /* #define INODE_DEBUG 1 */
49
50 /*
51 * Inode lookup is no longer as critical as it used to be:
52 * most of the lookups are going to be through the dcache.
53 */
54 #define I_HASHBITS i_hash_shift
55 #define I_HASHMASK i_hash_mask
56
57 static unsigned int i_hash_mask;
58 static unsigned int i_hash_shift;
59
60 /*
61 * Each inode can be on two separate lists. One is
62 * the hash list of the inode, used for lookups. The
63 * other linked list is the "type" list:
64 * "in_use" - valid inode, i_count > 0, i_nlink > 0
65 * "dirty" - as "in_use" but also dirty
66 * "unused" - valid inode, i_count = 0
67 *
68 * A "dirty" list is maintained for each super block,
69 * allowing for low-overhead inode sync() operations.
70 */
71
72 LIST_HEAD(inode_in_use);
73 LIST_HEAD(inode_unused);
74 static struct hlist_head *inode_hashtable;
75
76 /*
77 * A simple spinlock to protect the list manipulations.
78 *
79 * NOTE! You also have to own the lock if you change
80 * the i_state of an inode while it is in use..
81 */
82 DEFINE_SPINLOCK(inode_lock);
83
84 /*
85 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
86 * icache shrinking path, and the umount path. Without this exclusion,
87 * by the time prune_icache calls iput for the inode whose pages it has
88 * been invalidating, or by the time it calls clear_inode & destroy_inode
89 * from its final dispose_list, the struct super_block they refer to
90 * (for inode->i_sb->s_op) may already have been freed and reused.
91 */
92 DECLARE_MUTEX(iprune_sem);
93
94 /*
95 * Statistics gathering..
96 */
97 struct inodes_stat_t inodes_stat;
98
99 static kmem_cache_t * inode_cachep;
100
101 static struct inode *alloc_inode(struct super_block *sb)
102 {
103 static struct address_space_operations empty_aops;
104 static struct inode_operations empty_iops;
105 static struct file_operations empty_fops;
106 struct inode *inode;
107
108 if (sb->s_op->alloc_inode)
109 inode = sb->s_op->alloc_inode(sb);
110 else
111 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
112
113 if (inode) {
114 struct address_space * const mapping = &inode->i_data;
115
116 inode->i_sb = sb;
117 inode->i_blkbits = sb->s_blocksize_bits;
118 inode->i_flags = 0;
119 atomic_set(&inode->i_count, 1);
120 inode->i_op = &empty_iops;
121 inode->i_fop = &empty_fops;
122 inode->i_nlink = 1;
123 atomic_set(&inode->i_writecount, 0);
124 inode->i_size = 0;
125 inode->i_blocks = 0;
126 inode->i_bytes = 0;
127 inode->i_generation = 0;
128 #ifdef CONFIG_QUOTA
129 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
130 #endif
131 inode->i_pipe = NULL;
132 inode->i_bdev = NULL;
133 inode->i_cdev = NULL;
134 inode->i_rdev = 0;
135 inode->i_security = NULL;
136 inode->dirtied_when = 0;
137 if (security_inode_alloc(inode)) {
138 if (inode->i_sb->s_op->destroy_inode)
139 inode->i_sb->s_op->destroy_inode(inode);
140 else
141 kmem_cache_free(inode_cachep, (inode));
142 return NULL;
143 }
144
145 mapping->a_ops = &empty_aops;
146 mapping->host = inode;
147 mapping->flags = 0;
148 mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
149 mapping->assoc_mapping = NULL;
150 mapping->backing_dev_info = &default_backing_dev_info;
151
152 /*
153 * If the block_device provides a backing_dev_info for client
154 * inodes then use that. Otherwise the inode share the bdev's
155 * backing_dev_info.
156 */
157 if (sb->s_bdev) {
158 struct backing_dev_info *bdi;
159
160 bdi = sb->s_bdev->bd_inode_backing_dev_info;
161 if (!bdi)
162 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
163 mapping->backing_dev_info = bdi;
164 }
165 memset(&inode->u, 0, sizeof(inode->u));
166 inode->i_mapping = mapping;
167 }
168 return inode;
169 }
170
171 void destroy_inode(struct inode *inode)
172 {
173 if (inode_has_buffers(inode))
174 BUG();
175 security_inode_free(inode);
176 if (inode->i_sb->s_op->destroy_inode)
177 inode->i_sb->s_op->destroy_inode(inode);
178 else
179 kmem_cache_free(inode_cachep, (inode));
180 }
181
182
183 /*
184 * These are initializations that only need to be done
185 * once, because the fields are idempotent across use
186 * of the inode, so let the slab aware of that.
187 */
188 void inode_init_once(struct inode *inode)
189 {
190 memset(inode, 0, sizeof(*inode));
191 INIT_HLIST_NODE(&inode->i_hash);
192 INIT_LIST_HEAD(&inode->i_dentry);
193 INIT_LIST_HEAD(&inode->i_devices);
194 sema_init(&inode->i_sem, 1);
195 init_rwsem(&inode->i_alloc_sem);
196 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
197 rwlock_init(&inode->i_data.tree_lock);
198 spin_lock_init(&inode->i_data.i_mmap_lock);
199 INIT_LIST_HEAD(&inode->i_data.private_list);
200 spin_lock_init(&inode->i_data.private_lock);
201 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
202 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
203 spin_lock_init(&inode->i_lock);
204 i_size_ordered_init(inode);
205 }
206
207 EXPORT_SYMBOL(inode_init_once);
208
209 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
210 {
211 struct inode * inode = (struct inode *) foo;
212
213 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
214 SLAB_CTOR_CONSTRUCTOR)
215 inode_init_once(inode);
216 }
217
218 /*
219 * inode_lock must be held
220 */
221 void __iget(struct inode * inode)
222 {
223 if (atomic_read(&inode->i_count)) {
224 atomic_inc(&inode->i_count);
225 return;
226 }
227 atomic_inc(&inode->i_count);
228 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
229 list_move(&inode->i_list, &inode_in_use);
230 inodes_stat.nr_unused--;
231 }
232
233 /**
234 * clear_inode - clear an inode
235 * @inode: inode to clear
236 *
237 * This is called by the filesystem to tell us
238 * that the inode is no longer useful. We just
239 * terminate it with extreme prejudice.
240 */
241 void clear_inode(struct inode *inode)
242 {
243 might_sleep();
244 invalidate_inode_buffers(inode);
245
246 if (inode->i_data.nrpages)
247 BUG();
248 if (!(inode->i_state & I_FREEING))
249 BUG();
250 if (inode->i_state & I_CLEAR)
251 BUG();
252 wait_on_inode(inode);
253 DQUOT_DROP(inode);
254 if (inode->i_sb && inode->i_sb->s_op->clear_inode)
255 inode->i_sb->s_op->clear_inode(inode);
256 if (inode->i_bdev)
257 bd_forget(inode);
258 if (inode->i_cdev)
259 cd_forget(inode);
260 inode->i_state = I_CLEAR;
261 }
262
263 EXPORT_SYMBOL(clear_inode);
264
265 /*
266 * dispose_list - dispose of the contents of a local list
267 * @head: the head of the list to free
268 *
269 * Dispose-list gets a local list with local inodes in it, so it doesn't
270 * need to worry about list corruption and SMP locks.
271 */
272 static void dispose_list(struct list_head *head)
273 {
274 int nr_disposed = 0;
275
276 while (!list_empty(head)) {
277 struct inode *inode;
278
279 inode = list_entry(head->next, struct inode, i_list);
280 list_del(&inode->i_list);
281
282 if (inode->i_data.nrpages)
283 truncate_inode_pages(&inode->i_data, 0);
284 clear_inode(inode);
285
286 spin_lock(&inode_lock);
287 hlist_del_init(&inode->i_hash);
288 list_del_init(&inode->i_sb_list);
289 spin_unlock(&inode_lock);
290
291 wake_up_inode(inode);
292 destroy_inode(inode);
293 nr_disposed++;
294 }
295 spin_lock(&inode_lock);
296 inodes_stat.nr_inodes -= nr_disposed;
297 spin_unlock(&inode_lock);
298 }
299
300 /*
301 * Invalidate all inodes for a device.
302 */
303 static int invalidate_list(struct list_head *head, struct list_head *dispose)
304 {
305 struct list_head *next;
306 int busy = 0, count = 0;
307
308 next = head->next;
309 for (;;) {
310 struct list_head * tmp = next;
311 struct inode * inode;
312
313 /*
314 * We can reschedule here without worrying about the list's
315 * consistency because the per-sb list of inodes must not
316 * change during umount anymore, and because iprune_sem keeps
317 * shrink_icache_memory() away.
318 */
319 cond_resched_lock(&inode_lock);
320
321 next = next->next;
322 if (tmp == head)
323 break;
324 inode = list_entry(tmp, struct inode, i_sb_list);
325 invalidate_inode_buffers(inode);
326 if (!atomic_read(&inode->i_count)) {
327 list_move(&inode->i_list, dispose);
328 inode->i_state |= I_FREEING;
329 count++;
330 continue;
331 }
332 busy = 1;
333 }
334 /* only unused inodes may be cached with i_count zero */
335 inodes_stat.nr_unused -= count;
336 return busy;
337 }
338
339 /**
340 * invalidate_inodes - discard the inodes on a device
341 * @sb: superblock
342 *
343 * Discard all of the inodes for a given superblock. If the discard
344 * fails because there are busy inodes then a non zero value is returned.
345 * If the discard is successful all the inodes have been discarded.
346 */
347 int invalidate_inodes(struct super_block * sb)
348 {
349 int busy;
350 LIST_HEAD(throw_away);
351
352 down(&iprune_sem);
353 spin_lock(&inode_lock);
354 busy = invalidate_list(&sb->s_inodes, &throw_away);
355 spin_unlock(&inode_lock);
356
357 dispose_list(&throw_away);
358 up(&iprune_sem);
359
360 return busy;
361 }
362
363 EXPORT_SYMBOL(invalidate_inodes);
364
365 int __invalidate_device(struct block_device *bdev)
366 {
367 struct super_block *sb = get_super(bdev);
368 int res = 0;
369
370 if (sb) {
371 /*
372 * no need to lock the super, get_super holds the
373 * read semaphore so the filesystem cannot go away
374 * under us (->put_super runs with the write lock
375 * hold).
376 */
377 shrink_dcache_sb(sb);
378 res = invalidate_inodes(sb);
379 drop_super(sb);
380 }
381 invalidate_bdev(bdev, 0);
382 return res;
383 }
384 EXPORT_SYMBOL(__invalidate_device);
385
386 static int can_unuse(struct inode *inode)
387 {
388 if (inode->i_state)
389 return 0;
390 if (inode_has_buffers(inode))
391 return 0;
392 if (atomic_read(&inode->i_count))
393 return 0;
394 if (inode->i_data.nrpages)
395 return 0;
396 return 1;
397 }
398
399 /*
400 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
401 * a temporary list and then are freed outside inode_lock by dispose_list().
402 *
403 * Any inodes which are pinned purely because of attached pagecache have their
404 * pagecache removed. We expect the final iput() on that inode to add it to
405 * the front of the inode_unused list. So look for it there and if the
406 * inode is still freeable, proceed. The right inode is found 99.9% of the
407 * time in testing on a 4-way.
408 *
409 * If the inode has metadata buffers attached to mapping->private_list then
410 * try to remove them.
411 */
412 static void prune_icache(int nr_to_scan)
413 {
414 LIST_HEAD(freeable);
415 int nr_pruned = 0;
416 int nr_scanned;
417 unsigned long reap = 0;
418
419 down(&iprune_sem);
420 spin_lock(&inode_lock);
421 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
422 struct inode *inode;
423
424 if (list_empty(&inode_unused))
425 break;
426
427 inode = list_entry(inode_unused.prev, struct inode, i_list);
428
429 if (inode->i_state || atomic_read(&inode->i_count)) {
430 list_move(&inode->i_list, &inode_unused);
431 continue;
432 }
433 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
434 __iget(inode);
435 spin_unlock(&inode_lock);
436 if (remove_inode_buffers(inode))
437 reap += invalidate_inode_pages(&inode->i_data);
438 iput(inode);
439 spin_lock(&inode_lock);
440
441 if (inode != list_entry(inode_unused.next,
442 struct inode, i_list))
443 continue; /* wrong inode or list_empty */
444 if (!can_unuse(inode))
445 continue;
446 }
447 list_move(&inode->i_list, &freeable);
448 inode->i_state |= I_FREEING;
449 nr_pruned++;
450 }
451 inodes_stat.nr_unused -= nr_pruned;
452 spin_unlock(&inode_lock);
453
454 dispose_list(&freeable);
455 up(&iprune_sem);
456
457 if (current_is_kswapd())
458 mod_page_state(kswapd_inodesteal, reap);
459 else
460 mod_page_state(pginodesteal, reap);
461 }
462
463 /*
464 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
465 * "unused" means that no dentries are referring to the inodes: the files are
466 * not open and the dcache references to those inodes have already been
467 * reclaimed.
468 *
469 * This function is passed the number of inodes to scan, and it returns the
470 * total number of remaining possibly-reclaimable inodes.
471 */
472 static int shrink_icache_memory(int nr, unsigned int gfp_mask)
473 {
474 if (nr) {
475 /*
476 * Nasty deadlock avoidance. We may hold various FS locks,
477 * and we don't want to recurse into the FS that called us
478 * in clear_inode() and friends..
479 */
480 if (!(gfp_mask & __GFP_FS))
481 return -1;
482 prune_icache(nr);
483 }
484 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
485 }
486
487 static void __wait_on_freeing_inode(struct inode *inode);
488 /*
489 * Called with the inode lock held.
490 * NOTE: we are not increasing the inode-refcount, you must call __iget()
491 * by hand after calling find_inode now! This simplifies iunique and won't
492 * add any additional branch in the common code.
493 */
494 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
495 {
496 struct hlist_node *node;
497 struct inode * inode = NULL;
498
499 repeat:
500 hlist_for_each (node, head) {
501 inode = hlist_entry(node, struct inode, i_hash);
502 if (inode->i_sb != sb)
503 continue;
504 if (!test(inode, data))
505 continue;
506 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
507 __wait_on_freeing_inode(inode);
508 goto repeat;
509 }
510 break;
511 }
512 return node ? inode : NULL;
513 }
514
515 /*
516 * find_inode_fast is the fast path version of find_inode, see the comment at
517 * iget_locked for details.
518 */
519 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
520 {
521 struct hlist_node *node;
522 struct inode * inode = NULL;
523
524 repeat:
525 hlist_for_each (node, head) {
526 inode = hlist_entry(node, struct inode, i_hash);
527 if (inode->i_ino != ino)
528 continue;
529 if (inode->i_sb != sb)
530 continue;
531 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
532 __wait_on_freeing_inode(inode);
533 goto repeat;
534 }
535 break;
536 }
537 return node ? inode : NULL;
538 }
539
540 /**
541 * new_inode - obtain an inode
542 * @sb: superblock
543 *
544 * Allocates a new inode for given superblock.
545 */
546 struct inode *new_inode(struct super_block *sb)
547 {
548 static unsigned long last_ino;
549 struct inode * inode;
550
551 spin_lock_prefetch(&inode_lock);
552
553 inode = alloc_inode(sb);
554 if (inode) {
555 spin_lock(&inode_lock);
556 inodes_stat.nr_inodes++;
557 list_add(&inode->i_list, &inode_in_use);
558 list_add(&inode->i_sb_list, &sb->s_inodes);
559 inode->i_ino = ++last_ino;
560 inode->i_state = 0;
561 spin_unlock(&inode_lock);
562 }
563 return inode;
564 }
565
566 EXPORT_SYMBOL(new_inode);
567
568 void unlock_new_inode(struct inode *inode)
569 {
570 /*
571 * This is special! We do not need the spinlock
572 * when clearing I_LOCK, because we're guaranteed
573 * that nobody else tries to do anything about the
574 * state of the inode when it is locked, as we
575 * just created it (so there can be no old holders
576 * that haven't tested I_LOCK).
577 */
578 inode->i_state &= ~(I_LOCK|I_NEW);
579 wake_up_inode(inode);
580 }
581
582 EXPORT_SYMBOL(unlock_new_inode);
583
584 /*
585 * This is called without the inode lock held.. Be careful.
586 *
587 * We no longer cache the sb_flags in i_flags - see fs.h
588 * -- rmk@arm.uk.linux.org
589 */
590 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
591 {
592 struct inode * inode;
593
594 inode = alloc_inode(sb);
595 if (inode) {
596 struct inode * old;
597
598 spin_lock(&inode_lock);
599 /* We released the lock, so.. */
600 old = find_inode(sb, head, test, data);
601 if (!old) {
602 if (set(inode, data))
603 goto set_failed;
604
605 inodes_stat.nr_inodes++;
606 list_add(&inode->i_list, &inode_in_use);
607 list_add(&inode->i_sb_list, &sb->s_inodes);
608 hlist_add_head(&inode->i_hash, head);
609 inode->i_state = I_LOCK|I_NEW;
610 spin_unlock(&inode_lock);
611
612 /* Return the locked inode with I_NEW set, the
613 * caller is responsible for filling in the contents
614 */
615 return inode;
616 }
617
618 /*
619 * Uhhuh, somebody else created the same inode under
620 * us. Use the old inode instead of the one we just
621 * allocated.
622 */
623 __iget(old);
624 spin_unlock(&inode_lock);
625 destroy_inode(inode);
626 inode = old;
627 wait_on_inode(inode);
628 }
629 return inode;
630
631 set_failed:
632 spin_unlock(&inode_lock);
633 destroy_inode(inode);
634 return NULL;
635 }
636
637 /*
638 * get_new_inode_fast is the fast path version of get_new_inode, see the
639 * comment at iget_locked for details.
640 */
641 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
642 {
643 struct inode * inode;
644
645 inode = alloc_inode(sb);
646 if (inode) {
647 struct inode * old;
648
649 spin_lock(&inode_lock);
650 /* We released the lock, so.. */
651 old = find_inode_fast(sb, head, ino);
652 if (!old) {
653 inode->i_ino = ino;
654 inodes_stat.nr_inodes++;
655 list_add(&inode->i_list, &inode_in_use);
656 list_add(&inode->i_sb_list, &sb->s_inodes);
657 hlist_add_head(&inode->i_hash, head);
658 inode->i_state = I_LOCK|I_NEW;
659 spin_unlock(&inode_lock);
660
661 /* Return the locked inode with I_NEW set, the
662 * caller is responsible for filling in the contents
663 */
664 return inode;
665 }
666
667 /*
668 * Uhhuh, somebody else created the same inode under
669 * us. Use the old inode instead of the one we just
670 * allocated.
671 */
672 __iget(old);
673 spin_unlock(&inode_lock);
674 destroy_inode(inode);
675 inode = old;
676 wait_on_inode(inode);
677 }
678 return inode;
679 }
680
681 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
682 {
683 unsigned long tmp;
684
685 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
686 L1_CACHE_BYTES;
687 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
688 return tmp & I_HASHMASK;
689 }
690
691 /**
692 * iunique - get a unique inode number
693 * @sb: superblock
694 * @max_reserved: highest reserved inode number
695 *
696 * Obtain an inode number that is unique on the system for a given
697 * superblock. This is used by file systems that have no natural
698 * permanent inode numbering system. An inode number is returned that
699 * is higher than the reserved limit but unique.
700 *
701 * BUGS:
702 * With a large number of inodes live on the file system this function
703 * currently becomes quite slow.
704 */
705 ino_t iunique(struct super_block *sb, ino_t max_reserved)
706 {
707 static ino_t counter;
708 struct inode *inode;
709 struct hlist_head * head;
710 ino_t res;
711 spin_lock(&inode_lock);
712 retry:
713 if (counter > max_reserved) {
714 head = inode_hashtable + hash(sb,counter);
715 res = counter++;
716 inode = find_inode_fast(sb, head, res);
717 if (!inode) {
718 spin_unlock(&inode_lock);
719 return res;
720 }
721 } else {
722 counter = max_reserved + 1;
723 }
724 goto retry;
725
726 }
727
728 EXPORT_SYMBOL(iunique);
729
730 struct inode *igrab(struct inode *inode)
731 {
732 spin_lock(&inode_lock);
733 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
734 __iget(inode);
735 else
736 /*
737 * Handle the case where s_op->clear_inode is not been
738 * called yet, and somebody is calling igrab
739 * while the inode is getting freed.
740 */
741 inode = NULL;
742 spin_unlock(&inode_lock);
743 return inode;
744 }
745
746 EXPORT_SYMBOL(igrab);
747
748 /**
749 * ifind - internal function, you want ilookup5() or iget5().
750 * @sb: super block of file system to search
751 * @head: the head of the list to search
752 * @test: callback used for comparisons between inodes
753 * @data: opaque data pointer to pass to @test
754 *
755 * ifind() searches for the inode specified by @data in the inode
756 * cache. This is a generalized version of ifind_fast() for file systems where
757 * the inode number is not sufficient for unique identification of an inode.
758 *
759 * If the inode is in the cache, the inode is returned with an incremented
760 * reference count.
761 *
762 * Otherwise NULL is returned.
763 *
764 * Note, @test is called with the inode_lock held, so can't sleep.
765 */
766 static inline struct inode *ifind(struct super_block *sb,
767 struct hlist_head *head, int (*test)(struct inode *, void *),
768 void *data)
769 {
770 struct inode *inode;
771
772 spin_lock(&inode_lock);
773 inode = find_inode(sb, head, test, data);
774 if (inode) {
775 __iget(inode);
776 spin_unlock(&inode_lock);
777 wait_on_inode(inode);
778 return inode;
779 }
780 spin_unlock(&inode_lock);
781 return NULL;
782 }
783
784 /**
785 * ifind_fast - internal function, you want ilookup() or iget().
786 * @sb: super block of file system to search
787 * @head: head of the list to search
788 * @ino: inode number to search for
789 *
790 * ifind_fast() searches for the inode @ino in the inode cache. This is for
791 * file systems where the inode number is sufficient for unique identification
792 * of an inode.
793 *
794 * If the inode is in the cache, the inode is returned with an incremented
795 * reference count.
796 *
797 * Otherwise NULL is returned.
798 */
799 static inline struct inode *ifind_fast(struct super_block *sb,
800 struct hlist_head *head, unsigned long ino)
801 {
802 struct inode *inode;
803
804 spin_lock(&inode_lock);
805 inode = find_inode_fast(sb, head, ino);
806 if (inode) {
807 __iget(inode);
808 spin_unlock(&inode_lock);
809 wait_on_inode(inode);
810 return inode;
811 }
812 spin_unlock(&inode_lock);
813 return NULL;
814 }
815
816 /**
817 * ilookup5 - search for an inode in the inode cache
818 * @sb: super block of file system to search
819 * @hashval: hash value (usually inode number) to search for
820 * @test: callback used for comparisons between inodes
821 * @data: opaque data pointer to pass to @test
822 *
823 * ilookup5() uses ifind() to search for the inode specified by @hashval and
824 * @data in the inode cache. This is a generalized version of ilookup() for
825 * file systems where the inode number is not sufficient for unique
826 * identification of an inode.
827 *
828 * If the inode is in the cache, the inode is returned with an incremented
829 * reference count.
830 *
831 * Otherwise NULL is returned.
832 *
833 * Note, @test is called with the inode_lock held, so can't sleep.
834 */
835 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
836 int (*test)(struct inode *, void *), void *data)
837 {
838 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
839
840 return ifind(sb, head, test, data);
841 }
842
843 EXPORT_SYMBOL(ilookup5);
844
845 /**
846 * ilookup - search for an inode in the inode cache
847 * @sb: super block of file system to search
848 * @ino: inode number to search for
849 *
850 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
851 * This is for file systems where the inode number is sufficient for unique
852 * identification of an inode.
853 *
854 * If the inode is in the cache, the inode is returned with an incremented
855 * reference count.
856 *
857 * Otherwise NULL is returned.
858 */
859 struct inode *ilookup(struct super_block *sb, unsigned long ino)
860 {
861 struct hlist_head *head = inode_hashtable + hash(sb, ino);
862
863 return ifind_fast(sb, head, ino);
864 }
865
866 EXPORT_SYMBOL(ilookup);
867
868 /**
869 * iget5_locked - obtain an inode from a mounted file system
870 * @sb: super block of file system
871 * @hashval: hash value (usually inode number) to get
872 * @test: callback used for comparisons between inodes
873 * @set: callback used to initialize a new struct inode
874 * @data: opaque data pointer to pass to @test and @set
875 *
876 * This is iget() without the read_inode() portion of get_new_inode().
877 *
878 * iget5_locked() uses ifind() to search for the inode specified by @hashval
879 * and @data in the inode cache and if present it is returned with an increased
880 * reference count. This is a generalized version of iget_locked() for file
881 * systems where the inode number is not sufficient for unique identification
882 * of an inode.
883 *
884 * If the inode is not in cache, get_new_inode() is called to allocate a new
885 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
886 * file system gets to fill it in before unlocking it via unlock_new_inode().
887 *
888 * Note both @test and @set are called with the inode_lock held, so can't sleep.
889 */
890 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
891 int (*test)(struct inode *, void *),
892 int (*set)(struct inode *, void *), void *data)
893 {
894 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
895 struct inode *inode;
896
897 inode = ifind(sb, head, test, data);
898 if (inode)
899 return inode;
900 /*
901 * get_new_inode() will do the right thing, re-trying the search
902 * in case it had to block at any point.
903 */
904 return get_new_inode(sb, head, test, set, data);
905 }
906
907 EXPORT_SYMBOL(iget5_locked);
908
909 /**
910 * iget_locked - obtain an inode from a mounted file system
911 * @sb: super block of file system
912 * @ino: inode number to get
913 *
914 * This is iget() without the read_inode() portion of get_new_inode_fast().
915 *
916 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
917 * the inode cache and if present it is returned with an increased reference
918 * count. This is for file systems where the inode number is sufficient for
919 * unique identification of an inode.
920 *
921 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
922 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
923 * The file system gets to fill it in before unlocking it via
924 * unlock_new_inode().
925 */
926 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
927 {
928 struct hlist_head *head = inode_hashtable + hash(sb, ino);
929 struct inode *inode;
930
931 inode = ifind_fast(sb, head, ino);
932 if (inode)
933 return inode;
934 /*
935 * get_new_inode_fast() will do the right thing, re-trying the search
936 * in case it had to block at any point.
937 */
938 return get_new_inode_fast(sb, head, ino);
939 }
940
941 EXPORT_SYMBOL(iget_locked);
942
943 /**
944 * __insert_inode_hash - hash an inode
945 * @inode: unhashed inode
946 * @hashval: unsigned long value used to locate this object in the
947 * inode_hashtable.
948 *
949 * Add an inode to the inode hash for this superblock.
950 */
951 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
952 {
953 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
954 spin_lock(&inode_lock);
955 hlist_add_head(&inode->i_hash, head);
956 spin_unlock(&inode_lock);
957 }
958
959 EXPORT_SYMBOL(__insert_inode_hash);
960
961 /**
962 * remove_inode_hash - remove an inode from the hash
963 * @inode: inode to unhash
964 *
965 * Remove an inode from the superblock.
966 */
967 void remove_inode_hash(struct inode *inode)
968 {
969 spin_lock(&inode_lock);
970 hlist_del_init(&inode->i_hash);
971 spin_unlock(&inode_lock);
972 }
973
974 EXPORT_SYMBOL(remove_inode_hash);
975
976 /*
977 * Tell the filesystem that this inode is no longer of any interest and should
978 * be completely destroyed.
979 *
980 * We leave the inode in the inode hash table until *after* the filesystem's
981 * ->delete_inode completes. This ensures that an iget (such as nfsd might
982 * instigate) will always find up-to-date information either in the hash or on
983 * disk.
984 *
985 * I_FREEING is set so that no-one will take a new reference to the inode while
986 * it is being deleted.
987 */
988 void generic_delete_inode(struct inode *inode)
989 {
990 struct super_operations *op = inode->i_sb->s_op;
991
992 list_del_init(&inode->i_list);
993 list_del_init(&inode->i_sb_list);
994 inode->i_state|=I_FREEING;
995 inodes_stat.nr_inodes--;
996 spin_unlock(&inode_lock);
997
998 if (inode->i_data.nrpages)
999 truncate_inode_pages(&inode->i_data, 0);
1000
1001 security_inode_delete(inode);
1002
1003 if (op->delete_inode) {
1004 void (*delete)(struct inode *) = op->delete_inode;
1005 if (!is_bad_inode(inode))
1006 DQUOT_INIT(inode);
1007 /* s_op->delete_inode internally recalls clear_inode() */
1008 delete(inode);
1009 } else
1010 clear_inode(inode);
1011 spin_lock(&inode_lock);
1012 hlist_del_init(&inode->i_hash);
1013 spin_unlock(&inode_lock);
1014 wake_up_inode(inode);
1015 if (inode->i_state != I_CLEAR)
1016 BUG();
1017 destroy_inode(inode);
1018 }
1019
1020 EXPORT_SYMBOL(generic_delete_inode);
1021
1022 static void generic_forget_inode(struct inode *inode)
1023 {
1024 struct super_block *sb = inode->i_sb;
1025
1026 if (!hlist_unhashed(&inode->i_hash)) {
1027 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1028 list_move(&inode->i_list, &inode_unused);
1029 inodes_stat.nr_unused++;
1030 if (!sb || (sb->s_flags & MS_ACTIVE)) {
1031 spin_unlock(&inode_lock);
1032 return;
1033 }
1034 inode->i_state |= I_WILL_FREE;
1035 spin_unlock(&inode_lock);
1036 write_inode_now(inode, 1);
1037 spin_lock(&inode_lock);
1038 inode->i_state &= ~I_WILL_FREE;
1039 inodes_stat.nr_unused--;
1040 hlist_del_init(&inode->i_hash);
1041 }
1042 list_del_init(&inode->i_list);
1043 list_del_init(&inode->i_sb_list);
1044 inode->i_state |= I_FREEING;
1045 inodes_stat.nr_inodes--;
1046 spin_unlock(&inode_lock);
1047 if (inode->i_data.nrpages)
1048 truncate_inode_pages(&inode->i_data, 0);
1049 clear_inode(inode);
1050 destroy_inode(inode);
1051 }
1052
1053 /*
1054 * Normal UNIX filesystem behaviour: delete the
1055 * inode when the usage count drops to zero, and
1056 * i_nlink is zero.
1057 */
1058 void generic_drop_inode(struct inode *inode)
1059 {
1060 if (!inode->i_nlink)
1061 generic_delete_inode(inode);
1062 else
1063 generic_forget_inode(inode);
1064 }
1065
1066 EXPORT_SYMBOL_GPL(generic_drop_inode);
1067
1068 /*
1069 * Called when we're dropping the last reference
1070 * to an inode.
1071 *
1072 * Call the FS "drop()" function, defaulting to
1073 * the legacy UNIX filesystem behaviour..
1074 *
1075 * NOTE! NOTE! NOTE! We're called with the inode lock
1076 * held, and the drop function is supposed to release
1077 * the lock!
1078 */
1079 static inline void iput_final(struct inode *inode)
1080 {
1081 struct super_operations *op = inode->i_sb->s_op;
1082 void (*drop)(struct inode *) = generic_drop_inode;
1083
1084 if (op && op->drop_inode)
1085 drop = op->drop_inode;
1086 drop(inode);
1087 }
1088
1089 /**
1090 * iput - put an inode
1091 * @inode: inode to put
1092 *
1093 * Puts an inode, dropping its usage count. If the inode use count hits
1094 * zero, the inode is then freed and may also be destroyed.
1095 *
1096 * Consequently, iput() can sleep.
1097 */
1098 void iput(struct inode *inode)
1099 {
1100 if (inode) {
1101 struct super_operations *op = inode->i_sb->s_op;
1102
1103 BUG_ON(inode->i_state == I_CLEAR);
1104
1105 if (op && op->put_inode)
1106 op->put_inode(inode);
1107
1108 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1109 iput_final(inode);
1110 }
1111 }
1112
1113 EXPORT_SYMBOL(iput);
1114
1115 /**
1116 * bmap - find a block number in a file
1117 * @inode: inode of file
1118 * @block: block to find
1119 *
1120 * Returns the block number on the device holding the inode that
1121 * is the disk block number for the block of the file requested.
1122 * That is, asked for block 4 of inode 1 the function will return the
1123 * disk block relative to the disk start that holds that block of the
1124 * file.
1125 */
1126 sector_t bmap(struct inode * inode, sector_t block)
1127 {
1128 sector_t res = 0;
1129 if (inode->i_mapping->a_ops->bmap)
1130 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1131 return res;
1132 }
1133
1134 EXPORT_SYMBOL(bmap);
1135
1136 /**
1137 * update_atime - update the access time
1138 * @inode: inode accessed
1139 *
1140 * Update the accessed time on an inode and mark it for writeback.
1141 * This function automatically handles read only file systems and media,
1142 * as well as the "noatime" flag and inode specific "noatime" markers.
1143 */
1144 void update_atime(struct inode *inode)
1145 {
1146 struct timespec now;
1147
1148 if (IS_NOATIME(inode))
1149 return;
1150 if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode))
1151 return;
1152 if (IS_RDONLY(inode))
1153 return;
1154
1155 now = current_fs_time(inode->i_sb);
1156 if (!timespec_equal(&inode->i_atime, &now)) {
1157 inode->i_atime = now;
1158 mark_inode_dirty_sync(inode);
1159 } else {
1160 if (!timespec_equal(&inode->i_atime, &now))
1161 inode->i_atime = now;
1162 }
1163 }
1164
1165 EXPORT_SYMBOL(update_atime);
1166
1167 /**
1168 * inode_update_time - update mtime and ctime time
1169 * @inode: inode accessed
1170 * @ctime_too: update ctime too
1171 *
1172 * Update the mtime time on an inode and mark it for writeback.
1173 * When ctime_too is specified update the ctime too.
1174 */
1175
1176 void inode_update_time(struct inode *inode, int ctime_too)
1177 {
1178 struct timespec now;
1179 int sync_it = 0;
1180
1181 if (IS_NOCMTIME(inode))
1182 return;
1183 if (IS_RDONLY(inode))
1184 return;
1185
1186 now = current_fs_time(inode->i_sb);
1187 if (!timespec_equal(&inode->i_mtime, &now))
1188 sync_it = 1;
1189 inode->i_mtime = now;
1190
1191 if (ctime_too) {
1192 if (!timespec_equal(&inode->i_ctime, &now))
1193 sync_it = 1;
1194 inode->i_ctime = now;
1195 }
1196 if (sync_it)
1197 mark_inode_dirty_sync(inode);
1198 }
1199
1200 EXPORT_SYMBOL(inode_update_time);
1201
1202 int inode_needs_sync(struct inode *inode)
1203 {
1204 if (IS_SYNC(inode))
1205 return 1;
1206 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1207 return 1;
1208 return 0;
1209 }
1210
1211 EXPORT_SYMBOL(inode_needs_sync);
1212
1213 /*
1214 * Quota functions that want to walk the inode lists..
1215 */
1216 #ifdef CONFIG_QUOTA
1217
1218 /* Function back in dquot.c */
1219 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1220
1221 void remove_dquot_ref(struct super_block *sb, int type,
1222 struct list_head *tofree_head)
1223 {
1224 struct inode *inode;
1225
1226 if (!sb->dq_op)
1227 return; /* nothing to do */
1228 spin_lock(&inode_lock); /* This lock is for inodes code */
1229
1230 /*
1231 * We don't have to lock against quota code - test IS_QUOTAINIT is
1232 * just for speedup...
1233 */
1234 list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1235 if (!IS_NOQUOTA(inode))
1236 remove_inode_dquot_ref(inode, type, tofree_head);
1237
1238 spin_unlock(&inode_lock);
1239 }
1240
1241 #endif
1242
1243 int inode_wait(void *word)
1244 {
1245 schedule();
1246 return 0;
1247 }
1248
1249 /*
1250 * If we try to find an inode in the inode hash while it is being
1251 * deleted, we have to wait until the filesystem completes its
1252 * deletion before reporting that it isn't found. This function waits
1253 * until the deletion _might_ have completed. Callers are responsible
1254 * to recheck inode state.
1255 *
1256 * It doesn't matter if I_LOCK is not set initially, a call to
1257 * wake_up_inode() after removing from the hash list will DTRT.
1258 *
1259 * This is called with inode_lock held.
1260 */
1261 static void __wait_on_freeing_inode(struct inode *inode)
1262 {
1263 wait_queue_head_t *wq;
1264 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1265 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1266 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1267 spin_unlock(&inode_lock);
1268 schedule();
1269 finish_wait(wq, &wait.wait);
1270 spin_lock(&inode_lock);
1271 }
1272
1273 void wake_up_inode(struct inode *inode)
1274 {
1275 /*
1276 * Prevent speculative execution through spin_unlock(&inode_lock);
1277 */
1278 smp_mb();
1279 wake_up_bit(&inode->i_state, __I_LOCK);
1280 }
1281
1282 static __initdata unsigned long ihash_entries;
1283 static int __init set_ihash_entries(char *str)
1284 {
1285 if (!str)
1286 return 0;
1287 ihash_entries = simple_strtoul(str, &str, 0);
1288 return 1;
1289 }
1290 __setup("ihash_entries=", set_ihash_entries);
1291
1292 /*
1293 * Initialize the waitqueues and inode hash table.
1294 */
1295 void __init inode_init_early(void)
1296 {
1297 int loop;
1298
1299 /* If hashes are distributed across NUMA nodes, defer
1300 * hash allocation until vmalloc space is available.
1301 */
1302 if (hashdist)
1303 return;
1304
1305 inode_hashtable =
1306 alloc_large_system_hash("Inode-cache",
1307 sizeof(struct hlist_head),
1308 ihash_entries,
1309 14,
1310 HASH_EARLY,
1311 &i_hash_shift,
1312 &i_hash_mask,
1313 0);
1314
1315 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1316 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1317 }
1318
1319 void __init inode_init(unsigned long mempages)
1320 {
1321 int loop;
1322
1323 /* inode slab cache */
1324 inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
1325 0, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_once, NULL);
1326 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1327
1328 /* Hash may have been set up in inode_init_early */
1329 if (!hashdist)
1330 return;
1331
1332 inode_hashtable =
1333 alloc_large_system_hash("Inode-cache",
1334 sizeof(struct hlist_head),
1335 ihash_entries,
1336 14,
1337 0,
1338 &i_hash_shift,
1339 &i_hash_mask,
1340 0);
1341
1342 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1343 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1344 }
1345
1346 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1347 {
1348 inode->i_mode = mode;
1349 if (S_ISCHR(mode)) {
1350 inode->i_fop = &def_chr_fops;
1351 inode->i_rdev = rdev;
1352 } else if (S_ISBLK(mode)) {
1353 inode->i_fop = &def_blk_fops;
1354 inode->i_rdev = rdev;
1355 } else if (S_ISFIFO(mode))
1356 inode->i_fop = &def_fifo_fops;
1357 else if (S_ISSOCK(mode))
1358 inode->i_fop = &bad_sock_fops;
1359 else
1360 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1361 mode);
1362 }
1363 EXPORT_SYMBOL(init_special_inode);
This page took 0.14861 seconds and 6 git commands to generate.