inode: move inode to a different list inside lock
[deliverable/linux.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22
23 /*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 /**
118 * inode_init_always - perform inode structure intialisation
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
121 *
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
124 */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 static const struct inode_operations empty_iops;
128 static const struct file_operations empty_fops;
129 struct address_space *const mapping = &inode->i_data;
130
131 inode->i_sb = sb;
132 inode->i_blkbits = sb->s_blocksize_bits;
133 inode->i_flags = 0;
134 atomic_set(&inode->i_count, 1);
135 inode->i_op = &empty_iops;
136 inode->i_fop = &empty_fops;
137 inode->__i_nlink = 1;
138 inode->i_opflags = 0;
139 i_uid_write(inode, 0);
140 i_gid_write(inode, 0);
141 atomic_set(&inode->i_writecount, 0);
142 inode->i_size = 0;
143 inode->i_blocks = 0;
144 inode->i_bytes = 0;
145 inode->i_generation = 0;
146 #ifdef CONFIG_QUOTA
147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148 #endif
149 inode->i_pipe = NULL;
150 inode->i_bdev = NULL;
151 inode->i_cdev = NULL;
152 inode->i_rdev = 0;
153 inode->dirtied_when = 0;
154
155 if (security_inode_alloc(inode))
156 goto out;
157 spin_lock_init(&inode->i_lock);
158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159
160 mutex_init(&inode->i_mutex);
161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162
163 atomic_set(&inode->i_dio_count, 0);
164
165 mapping->a_ops = &empty_aops;
166 mapping->host = inode;
167 mapping->flags = 0;
168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
169 mapping->private_data = NULL;
170 mapping->backing_dev_info = &default_backing_dev_info;
171 mapping->writeback_index = 0;
172
173 /*
174 * If the block_device provides a backing_dev_info for client
175 * inodes then use that. Otherwise the inode share the bdev's
176 * backing_dev_info.
177 */
178 if (sb->s_bdev) {
179 struct backing_dev_info *bdi;
180
181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 mapping->backing_dev_info = bdi;
183 }
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190
191 #ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
193 #endif
194
195 this_cpu_inc(nr_inodes);
196
197 return 0;
198 out:
199 return -ENOMEM;
200 }
201 EXPORT_SYMBOL(inode_init_always);
202
203 static struct inode *alloc_inode(struct super_block *sb)
204 {
205 struct inode *inode;
206
207 if (sb->s_op->alloc_inode)
208 inode = sb->s_op->alloc_inode(sb);
209 else
210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211
212 if (!inode)
213 return NULL;
214
215 if (unlikely(inode_init_always(sb, inode))) {
216 if (inode->i_sb->s_op->destroy_inode)
217 inode->i_sb->s_op->destroy_inode(inode);
218 else
219 kmem_cache_free(inode_cachep, inode);
220 return NULL;
221 }
222
223 return inode;
224 }
225
226 void free_inode_nonrcu(struct inode *inode)
227 {
228 kmem_cache_free(inode_cachep, inode);
229 }
230 EXPORT_SYMBOL(free_inode_nonrcu);
231
232 void __destroy_inode(struct inode *inode)
233 {
234 BUG_ON(inode_has_buffers(inode));
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 if (!inode->i_nlink) {
238 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
239 atomic_long_dec(&inode->i_sb->s_remove_count);
240 }
241
242 #ifdef CONFIG_FS_POSIX_ACL
243 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_acl);
245 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_default_acl);
247 #endif
248 this_cpu_dec(nr_inodes);
249 }
250 EXPORT_SYMBOL(__destroy_inode);
251
252 static void i_callback(struct rcu_head *head)
253 {
254 struct inode *inode = container_of(head, struct inode, i_rcu);
255 kmem_cache_free(inode_cachep, inode);
256 }
257
258 static void destroy_inode(struct inode *inode)
259 {
260 BUG_ON(!list_empty(&inode->i_lru));
261 __destroy_inode(inode);
262 if (inode->i_sb->s_op->destroy_inode)
263 inode->i_sb->s_op->destroy_inode(inode);
264 else
265 call_rcu(&inode->i_rcu, i_callback);
266 }
267
268 /**
269 * drop_nlink - directly drop an inode's link count
270 * @inode: inode
271 *
272 * This is a low-level filesystem helper to replace any
273 * direct filesystem manipulation of i_nlink. In cases
274 * where we are attempting to track writes to the
275 * filesystem, a decrement to zero means an imminent
276 * write when the file is truncated and actually unlinked
277 * on the filesystem.
278 */
279 void drop_nlink(struct inode *inode)
280 {
281 WARN_ON(inode->i_nlink == 0);
282 inode->__i_nlink--;
283 if (!inode->i_nlink)
284 atomic_long_inc(&inode->i_sb->s_remove_count);
285 }
286 EXPORT_SYMBOL(drop_nlink);
287
288 /**
289 * clear_nlink - directly zero an inode's link count
290 * @inode: inode
291 *
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. See
294 * drop_nlink() for why we care about i_nlink hitting zero.
295 */
296 void clear_nlink(struct inode *inode)
297 {
298 if (inode->i_nlink) {
299 inode->__i_nlink = 0;
300 atomic_long_inc(&inode->i_sb->s_remove_count);
301 }
302 }
303 EXPORT_SYMBOL(clear_nlink);
304
305 /**
306 * set_nlink - directly set an inode's link count
307 * @inode: inode
308 * @nlink: new nlink (should be non-zero)
309 *
310 * This is a low-level filesystem helper to replace any
311 * direct filesystem manipulation of i_nlink.
312 */
313 void set_nlink(struct inode *inode, unsigned int nlink)
314 {
315 if (!nlink) {
316 clear_nlink(inode);
317 } else {
318 /* Yes, some filesystems do change nlink from zero to one */
319 if (inode->i_nlink == 0)
320 atomic_long_dec(&inode->i_sb->s_remove_count);
321
322 inode->__i_nlink = nlink;
323 }
324 }
325 EXPORT_SYMBOL(set_nlink);
326
327 /**
328 * inc_nlink - directly increment an inode's link count
329 * @inode: inode
330 *
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink. Currently,
333 * it is only here for parity with dec_nlink().
334 */
335 void inc_nlink(struct inode *inode)
336 {
337 if (unlikely(inode->i_nlink == 0)) {
338 WARN_ON(!(inode->i_state & I_LINKABLE));
339 atomic_long_dec(&inode->i_sb->s_remove_count);
340 }
341
342 inode->__i_nlink++;
343 }
344 EXPORT_SYMBOL(inc_nlink);
345
346 void address_space_init_once(struct address_space *mapping)
347 {
348 memset(mapping, 0, sizeof(*mapping));
349 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 spin_lock_init(&mapping->tree_lock);
351 mutex_init(&mapping->i_mmap_mutex);
352 INIT_LIST_HEAD(&mapping->private_list);
353 spin_lock_init(&mapping->private_lock);
354 mapping->i_mmap = RB_ROOT;
355 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358
359 /*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364 void inode_init_once(struct inode *inode)
365 {
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_wb_list);
370 INIT_LIST_HEAD(&inode->i_lru);
371 address_space_init_once(&inode->i_data);
372 i_size_ordered_init(inode);
373 #ifdef CONFIG_FSNOTIFY
374 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
375 #endif
376 }
377 EXPORT_SYMBOL(inode_init_once);
378
379 static void init_once(void *foo)
380 {
381 struct inode *inode = (struct inode *) foo;
382
383 inode_init_once(inode);
384 }
385
386 /*
387 * inode->i_lock must be held
388 */
389 void __iget(struct inode *inode)
390 {
391 atomic_inc(&inode->i_count);
392 }
393
394 /*
395 * get additional reference to inode; caller must already hold one.
396 */
397 void ihold(struct inode *inode)
398 {
399 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 this_cpu_inc(nr_unused);
407 }
408
409 /*
410 * Add inode to LRU if needed (inode is unused and clean).
411 *
412 * Needs inode->i_lock held.
413 */
414 void inode_add_lru(struct inode *inode)
415 {
416 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
417 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 inode_lru_list_add(inode);
419 }
420
421
422 static void inode_lru_list_del(struct inode *inode)
423 {
424
425 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
426 this_cpu_dec(nr_unused);
427 }
428
429 /**
430 * inode_sb_list_add - add inode to the superblock list of inodes
431 * @inode: inode to add
432 */
433 void inode_sb_list_add(struct inode *inode)
434 {
435 spin_lock(&inode_sb_list_lock);
436 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 spin_unlock(&inode_sb_list_lock);
438 }
439 EXPORT_SYMBOL_GPL(inode_sb_list_add);
440
441 static inline void inode_sb_list_del(struct inode *inode)
442 {
443 if (!list_empty(&inode->i_sb_list)) {
444 spin_lock(&inode_sb_list_lock);
445 list_del_init(&inode->i_sb_list);
446 spin_unlock(&inode_sb_list_lock);
447 }
448 }
449
450 static unsigned long hash(struct super_block *sb, unsigned long hashval)
451 {
452 unsigned long tmp;
453
454 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 L1_CACHE_BYTES;
456 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 return tmp & i_hash_mask;
458 }
459
460 /**
461 * __insert_inode_hash - hash an inode
462 * @inode: unhashed inode
463 * @hashval: unsigned long value used to locate this object in the
464 * inode_hashtable.
465 *
466 * Add an inode to the inode hash for this superblock.
467 */
468 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469 {
470 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471
472 spin_lock(&inode_hash_lock);
473 spin_lock(&inode->i_lock);
474 hlist_add_head(&inode->i_hash, b);
475 spin_unlock(&inode->i_lock);
476 spin_unlock(&inode_hash_lock);
477 }
478 EXPORT_SYMBOL(__insert_inode_hash);
479
480 /**
481 * __remove_inode_hash - remove an inode from the hash
482 * @inode: inode to unhash
483 *
484 * Remove an inode from the superblock.
485 */
486 void __remove_inode_hash(struct inode *inode)
487 {
488 spin_lock(&inode_hash_lock);
489 spin_lock(&inode->i_lock);
490 hlist_del_init(&inode->i_hash);
491 spin_unlock(&inode->i_lock);
492 spin_unlock(&inode_hash_lock);
493 }
494 EXPORT_SYMBOL(__remove_inode_hash);
495
496 void clear_inode(struct inode *inode)
497 {
498 might_sleep();
499 /*
500 * We have to cycle tree_lock here because reclaim can be still in the
501 * process of removing the last page (in __delete_from_page_cache())
502 * and we must not free mapping under it.
503 */
504 spin_lock_irq(&inode->i_data.tree_lock);
505 BUG_ON(inode->i_data.nrpages);
506 spin_unlock_irq(&inode->i_data.tree_lock);
507 BUG_ON(!list_empty(&inode->i_data.private_list));
508 BUG_ON(!(inode->i_state & I_FREEING));
509 BUG_ON(inode->i_state & I_CLEAR);
510 /* don't need i_lock here, no concurrent mods to i_state */
511 inode->i_state = I_FREEING | I_CLEAR;
512 }
513 EXPORT_SYMBOL(clear_inode);
514
515 /*
516 * Free the inode passed in, removing it from the lists it is still connected
517 * to. We remove any pages still attached to the inode and wait for any IO that
518 * is still in progress before finally destroying the inode.
519 *
520 * An inode must already be marked I_FREEING so that we avoid the inode being
521 * moved back onto lists if we race with other code that manipulates the lists
522 * (e.g. writeback_single_inode). The caller is responsible for setting this.
523 *
524 * An inode must already be removed from the LRU list before being evicted from
525 * the cache. This should occur atomically with setting the I_FREEING state
526 * flag, so no inodes here should ever be on the LRU when being evicted.
527 */
528 static void evict(struct inode *inode)
529 {
530 const struct super_operations *op = inode->i_sb->s_op;
531
532 BUG_ON(!(inode->i_state & I_FREEING));
533 BUG_ON(!list_empty(&inode->i_lru));
534
535 if (!list_empty(&inode->i_wb_list))
536 inode_wb_list_del(inode);
537
538 inode_sb_list_del(inode);
539
540 /*
541 * Wait for flusher thread to be done with the inode so that filesystem
542 * does not start destroying it while writeback is still running. Since
543 * the inode has I_FREEING set, flusher thread won't start new work on
544 * the inode. We just have to wait for running writeback to finish.
545 */
546 inode_wait_for_writeback(inode);
547
548 if (op->evict_inode) {
549 op->evict_inode(inode);
550 } else {
551 if (inode->i_data.nrpages)
552 truncate_inode_pages(&inode->i_data, 0);
553 clear_inode(inode);
554 }
555 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 bd_forget(inode);
557 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 cd_forget(inode);
559
560 remove_inode_hash(inode);
561
562 spin_lock(&inode->i_lock);
563 wake_up_bit(&inode->i_state, __I_NEW);
564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 spin_unlock(&inode->i_lock);
566
567 destroy_inode(inode);
568 }
569
570 /*
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
573 *
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
576 */
577 static void dispose_list(struct list_head *head)
578 {
579 while (!list_empty(head)) {
580 struct inode *inode;
581
582 inode = list_first_entry(head, struct inode, i_lru);
583 list_del_init(&inode->i_lru);
584
585 evict(inode);
586 }
587 }
588
589 /**
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
592 *
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
597 */
598 void evict_inodes(struct super_block *sb)
599 {
600 struct inode *inode, *next;
601 LIST_HEAD(dispose);
602
603 spin_lock(&inode_sb_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
606 continue;
607
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
611 continue;
612 }
613
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
618 }
619 spin_unlock(&inode_sb_list_lock);
620
621 dispose_list(&dispose);
622 }
623
624 /**
625 * invalidate_inodes - attempt to free all inodes on a superblock
626 * @sb: superblock to operate on
627 * @kill_dirty: flag to guide handling of dirty inodes
628 *
629 * Attempts to free all inodes for a given superblock. If there were any
630 * busy inodes return a non-zero value, else zero.
631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
632 * them as busy.
633 */
634 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
635 {
636 int busy = 0;
637 struct inode *inode, *next;
638 LIST_HEAD(dispose);
639
640 spin_lock(&inode_sb_list_lock);
641 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
645 continue;
646 }
647 if (inode->i_state & I_DIRTY && !kill_dirty) {
648 spin_unlock(&inode->i_lock);
649 busy = 1;
650 continue;
651 }
652 if (atomic_read(&inode->i_count)) {
653 spin_unlock(&inode->i_lock);
654 busy = 1;
655 continue;
656 }
657
658 inode->i_state |= I_FREEING;
659 inode_lru_list_del(inode);
660 spin_unlock(&inode->i_lock);
661 list_add(&inode->i_lru, &dispose);
662 }
663 spin_unlock(&inode_sb_list_lock);
664
665 dispose_list(&dispose);
666
667 return busy;
668 }
669
670 /*
671 * Isolate the inode from the LRU in preparation for freeing it.
672 *
673 * Any inodes which are pinned purely because of attached pagecache have their
674 * pagecache removed. If the inode has metadata buffers attached to
675 * mapping->private_list then try to remove them.
676 *
677 * If the inode has the I_REFERENCED flag set, then it means that it has been
678 * used recently - the flag is set in iput_final(). When we encounter such an
679 * inode, clear the flag and move it to the back of the LRU so it gets another
680 * pass through the LRU before it gets reclaimed. This is necessary because of
681 * the fact we are doing lazy LRU updates to minimise lock contention so the
682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683 * with this flag set because they are the inodes that are out of order.
684 */
685 static enum lru_status
686 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
687 {
688 struct list_head *freeable = arg;
689 struct inode *inode = container_of(item, struct inode, i_lru);
690
691 /*
692 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 * If we fail to get the lock, just skip it.
694 */
695 if (!spin_trylock(&inode->i_lock))
696 return LRU_SKIP;
697
698 /*
699 * Referenced or dirty inodes are still in use. Give them another pass
700 * through the LRU as we canot reclaim them now.
701 */
702 if (atomic_read(&inode->i_count) ||
703 (inode->i_state & ~I_REFERENCED)) {
704 list_del_init(&inode->i_lru);
705 spin_unlock(&inode->i_lock);
706 this_cpu_dec(nr_unused);
707 return LRU_REMOVED;
708 }
709
710 /* recently referenced inodes get one more pass */
711 if (inode->i_state & I_REFERENCED) {
712 inode->i_state &= ~I_REFERENCED;
713 spin_unlock(&inode->i_lock);
714 return LRU_ROTATE;
715 }
716
717 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
718 __iget(inode);
719 spin_unlock(&inode->i_lock);
720 spin_unlock(lru_lock);
721 if (remove_inode_buffers(inode)) {
722 unsigned long reap;
723 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
724 if (current_is_kswapd())
725 __count_vm_events(KSWAPD_INODESTEAL, reap);
726 else
727 __count_vm_events(PGINODESTEAL, reap);
728 if (current->reclaim_state)
729 current->reclaim_state->reclaimed_slab += reap;
730 }
731 iput(inode);
732 spin_lock(lru_lock);
733 return LRU_RETRY;
734 }
735
736 WARN_ON(inode->i_state & I_NEW);
737 inode->i_state |= I_FREEING;
738 list_move(&inode->i_lru, freeable);
739 spin_unlock(&inode->i_lock);
740
741 this_cpu_dec(nr_unused);
742 return LRU_REMOVED;
743 }
744
745 /*
746 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747 * This is called from the superblock shrinker function with a number of inodes
748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749 * then are freed outside inode_lock by dispose_list().
750 */
751 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan)
752 {
753 LIST_HEAD(freeable);
754 long freed;
755
756 freed = list_lru_walk(&sb->s_inode_lru, inode_lru_isolate,
757 &freeable, nr_to_scan);
758 dispose_list(&freeable);
759 return freed;
760 }
761
762 static void __wait_on_freeing_inode(struct inode *inode);
763 /*
764 * Called with the inode lock held.
765 */
766 static struct inode *find_inode(struct super_block *sb,
767 struct hlist_head *head,
768 int (*test)(struct inode *, void *),
769 void *data)
770 {
771 struct inode *inode = NULL;
772
773 repeat:
774 hlist_for_each_entry(inode, head, i_hash) {
775 spin_lock(&inode->i_lock);
776 if (inode->i_sb != sb) {
777 spin_unlock(&inode->i_lock);
778 continue;
779 }
780 if (!test(inode, data)) {
781 spin_unlock(&inode->i_lock);
782 continue;
783 }
784 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
785 __wait_on_freeing_inode(inode);
786 goto repeat;
787 }
788 __iget(inode);
789 spin_unlock(&inode->i_lock);
790 return inode;
791 }
792 return NULL;
793 }
794
795 /*
796 * find_inode_fast is the fast path version of find_inode, see the comment at
797 * iget_locked for details.
798 */
799 static struct inode *find_inode_fast(struct super_block *sb,
800 struct hlist_head *head, unsigned long ino)
801 {
802 struct inode *inode = NULL;
803
804 repeat:
805 hlist_for_each_entry(inode, head, i_hash) {
806 spin_lock(&inode->i_lock);
807 if (inode->i_ino != ino) {
808 spin_unlock(&inode->i_lock);
809 continue;
810 }
811 if (inode->i_sb != sb) {
812 spin_unlock(&inode->i_lock);
813 continue;
814 }
815 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
816 __wait_on_freeing_inode(inode);
817 goto repeat;
818 }
819 __iget(inode);
820 spin_unlock(&inode->i_lock);
821 return inode;
822 }
823 return NULL;
824 }
825
826 /*
827 * Each cpu owns a range of LAST_INO_BATCH numbers.
828 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
829 * to renew the exhausted range.
830 *
831 * This does not significantly increase overflow rate because every CPU can
832 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
833 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
834 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
835 * overflow rate by 2x, which does not seem too significant.
836 *
837 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
838 * error if st_ino won't fit in target struct field. Use 32bit counter
839 * here to attempt to avoid that.
840 */
841 #define LAST_INO_BATCH 1024
842 static DEFINE_PER_CPU(unsigned int, last_ino);
843
844 unsigned int get_next_ino(void)
845 {
846 unsigned int *p = &get_cpu_var(last_ino);
847 unsigned int res = *p;
848
849 #ifdef CONFIG_SMP
850 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
851 static atomic_t shared_last_ino;
852 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
853
854 res = next - LAST_INO_BATCH;
855 }
856 #endif
857
858 *p = ++res;
859 put_cpu_var(last_ino);
860 return res;
861 }
862 EXPORT_SYMBOL(get_next_ino);
863
864 /**
865 * new_inode_pseudo - obtain an inode
866 * @sb: superblock
867 *
868 * Allocates a new inode for given superblock.
869 * Inode wont be chained in superblock s_inodes list
870 * This means :
871 * - fs can't be unmount
872 * - quotas, fsnotify, writeback can't work
873 */
874 struct inode *new_inode_pseudo(struct super_block *sb)
875 {
876 struct inode *inode = alloc_inode(sb);
877
878 if (inode) {
879 spin_lock(&inode->i_lock);
880 inode->i_state = 0;
881 spin_unlock(&inode->i_lock);
882 INIT_LIST_HEAD(&inode->i_sb_list);
883 }
884 return inode;
885 }
886
887 /**
888 * new_inode - obtain an inode
889 * @sb: superblock
890 *
891 * Allocates a new inode for given superblock. The default gfp_mask
892 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
893 * If HIGHMEM pages are unsuitable or it is known that pages allocated
894 * for the page cache are not reclaimable or migratable,
895 * mapping_set_gfp_mask() must be called with suitable flags on the
896 * newly created inode's mapping
897 *
898 */
899 struct inode *new_inode(struct super_block *sb)
900 {
901 struct inode *inode;
902
903 spin_lock_prefetch(&inode_sb_list_lock);
904
905 inode = new_inode_pseudo(sb);
906 if (inode)
907 inode_sb_list_add(inode);
908 return inode;
909 }
910 EXPORT_SYMBOL(new_inode);
911
912 #ifdef CONFIG_DEBUG_LOCK_ALLOC
913 void lockdep_annotate_inode_mutex_key(struct inode *inode)
914 {
915 if (S_ISDIR(inode->i_mode)) {
916 struct file_system_type *type = inode->i_sb->s_type;
917
918 /* Set new key only if filesystem hasn't already changed it */
919 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
920 /*
921 * ensure nobody is actually holding i_mutex
922 */
923 mutex_destroy(&inode->i_mutex);
924 mutex_init(&inode->i_mutex);
925 lockdep_set_class(&inode->i_mutex,
926 &type->i_mutex_dir_key);
927 }
928 }
929 }
930 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
931 #endif
932
933 /**
934 * unlock_new_inode - clear the I_NEW state and wake up any waiters
935 * @inode: new inode to unlock
936 *
937 * Called when the inode is fully initialised to clear the new state of the
938 * inode and wake up anyone waiting for the inode to finish initialisation.
939 */
940 void unlock_new_inode(struct inode *inode)
941 {
942 lockdep_annotate_inode_mutex_key(inode);
943 spin_lock(&inode->i_lock);
944 WARN_ON(!(inode->i_state & I_NEW));
945 inode->i_state &= ~I_NEW;
946 smp_mb();
947 wake_up_bit(&inode->i_state, __I_NEW);
948 spin_unlock(&inode->i_lock);
949 }
950 EXPORT_SYMBOL(unlock_new_inode);
951
952 /**
953 * iget5_locked - obtain an inode from a mounted file system
954 * @sb: super block of file system
955 * @hashval: hash value (usually inode number) to get
956 * @test: callback used for comparisons between inodes
957 * @set: callback used to initialize a new struct inode
958 * @data: opaque data pointer to pass to @test and @set
959 *
960 * Search for the inode specified by @hashval and @data in the inode cache,
961 * and if present it is return it with an increased reference count. This is
962 * a generalized version of iget_locked() for file systems where the inode
963 * number is not sufficient for unique identification of an inode.
964 *
965 * If the inode is not in cache, allocate a new inode and return it locked,
966 * hashed, and with the I_NEW flag set. The file system gets to fill it in
967 * before unlocking it via unlock_new_inode().
968 *
969 * Note both @test and @set are called with the inode_hash_lock held, so can't
970 * sleep.
971 */
972 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
973 int (*test)(struct inode *, void *),
974 int (*set)(struct inode *, void *), void *data)
975 {
976 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
977 struct inode *inode;
978
979 spin_lock(&inode_hash_lock);
980 inode = find_inode(sb, head, test, data);
981 spin_unlock(&inode_hash_lock);
982
983 if (inode) {
984 wait_on_inode(inode);
985 return inode;
986 }
987
988 inode = alloc_inode(sb);
989 if (inode) {
990 struct inode *old;
991
992 spin_lock(&inode_hash_lock);
993 /* We released the lock, so.. */
994 old = find_inode(sb, head, test, data);
995 if (!old) {
996 if (set(inode, data))
997 goto set_failed;
998
999 spin_lock(&inode->i_lock);
1000 inode->i_state = I_NEW;
1001 hlist_add_head(&inode->i_hash, head);
1002 spin_unlock(&inode->i_lock);
1003 inode_sb_list_add(inode);
1004 spin_unlock(&inode_hash_lock);
1005
1006 /* Return the locked inode with I_NEW set, the
1007 * caller is responsible for filling in the contents
1008 */
1009 return inode;
1010 }
1011
1012 /*
1013 * Uhhuh, somebody else created the same inode under
1014 * us. Use the old inode instead of the one we just
1015 * allocated.
1016 */
1017 spin_unlock(&inode_hash_lock);
1018 destroy_inode(inode);
1019 inode = old;
1020 wait_on_inode(inode);
1021 }
1022 return inode;
1023
1024 set_failed:
1025 spin_unlock(&inode_hash_lock);
1026 destroy_inode(inode);
1027 return NULL;
1028 }
1029 EXPORT_SYMBOL(iget5_locked);
1030
1031 /**
1032 * iget_locked - obtain an inode from a mounted file system
1033 * @sb: super block of file system
1034 * @ino: inode number to get
1035 *
1036 * Search for the inode specified by @ino in the inode cache and if present
1037 * return it with an increased reference count. This is for file systems
1038 * where the inode number is sufficient for unique identification of an inode.
1039 *
1040 * If the inode is not in cache, allocate a new inode and return it locked,
1041 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1042 * before unlocking it via unlock_new_inode().
1043 */
1044 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1045 {
1046 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1047 struct inode *inode;
1048
1049 spin_lock(&inode_hash_lock);
1050 inode = find_inode_fast(sb, head, ino);
1051 spin_unlock(&inode_hash_lock);
1052 if (inode) {
1053 wait_on_inode(inode);
1054 return inode;
1055 }
1056
1057 inode = alloc_inode(sb);
1058 if (inode) {
1059 struct inode *old;
1060
1061 spin_lock(&inode_hash_lock);
1062 /* We released the lock, so.. */
1063 old = find_inode_fast(sb, head, ino);
1064 if (!old) {
1065 inode->i_ino = ino;
1066 spin_lock(&inode->i_lock);
1067 inode->i_state = I_NEW;
1068 hlist_add_head(&inode->i_hash, head);
1069 spin_unlock(&inode->i_lock);
1070 inode_sb_list_add(inode);
1071 spin_unlock(&inode_hash_lock);
1072
1073 /* Return the locked inode with I_NEW set, the
1074 * caller is responsible for filling in the contents
1075 */
1076 return inode;
1077 }
1078
1079 /*
1080 * Uhhuh, somebody else created the same inode under
1081 * us. Use the old inode instead of the one we just
1082 * allocated.
1083 */
1084 spin_unlock(&inode_hash_lock);
1085 destroy_inode(inode);
1086 inode = old;
1087 wait_on_inode(inode);
1088 }
1089 return inode;
1090 }
1091 EXPORT_SYMBOL(iget_locked);
1092
1093 /*
1094 * search the inode cache for a matching inode number.
1095 * If we find one, then the inode number we are trying to
1096 * allocate is not unique and so we should not use it.
1097 *
1098 * Returns 1 if the inode number is unique, 0 if it is not.
1099 */
1100 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1101 {
1102 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1103 struct inode *inode;
1104
1105 spin_lock(&inode_hash_lock);
1106 hlist_for_each_entry(inode, b, i_hash) {
1107 if (inode->i_ino == ino && inode->i_sb == sb) {
1108 spin_unlock(&inode_hash_lock);
1109 return 0;
1110 }
1111 }
1112 spin_unlock(&inode_hash_lock);
1113
1114 return 1;
1115 }
1116
1117 /**
1118 * iunique - get a unique inode number
1119 * @sb: superblock
1120 * @max_reserved: highest reserved inode number
1121 *
1122 * Obtain an inode number that is unique on the system for a given
1123 * superblock. This is used by file systems that have no natural
1124 * permanent inode numbering system. An inode number is returned that
1125 * is higher than the reserved limit but unique.
1126 *
1127 * BUGS:
1128 * With a large number of inodes live on the file system this function
1129 * currently becomes quite slow.
1130 */
1131 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1132 {
1133 /*
1134 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1135 * error if st_ino won't fit in target struct field. Use 32bit counter
1136 * here to attempt to avoid that.
1137 */
1138 static DEFINE_SPINLOCK(iunique_lock);
1139 static unsigned int counter;
1140 ino_t res;
1141
1142 spin_lock(&iunique_lock);
1143 do {
1144 if (counter <= max_reserved)
1145 counter = max_reserved + 1;
1146 res = counter++;
1147 } while (!test_inode_iunique(sb, res));
1148 spin_unlock(&iunique_lock);
1149
1150 return res;
1151 }
1152 EXPORT_SYMBOL(iunique);
1153
1154 struct inode *igrab(struct inode *inode)
1155 {
1156 spin_lock(&inode->i_lock);
1157 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1158 __iget(inode);
1159 spin_unlock(&inode->i_lock);
1160 } else {
1161 spin_unlock(&inode->i_lock);
1162 /*
1163 * Handle the case where s_op->clear_inode is not been
1164 * called yet, and somebody is calling igrab
1165 * while the inode is getting freed.
1166 */
1167 inode = NULL;
1168 }
1169 return inode;
1170 }
1171 EXPORT_SYMBOL(igrab);
1172
1173 /**
1174 * ilookup5_nowait - search for an inode in the inode cache
1175 * @sb: super block of file system to search
1176 * @hashval: hash value (usually inode number) to search for
1177 * @test: callback used for comparisons between inodes
1178 * @data: opaque data pointer to pass to @test
1179 *
1180 * Search for the inode specified by @hashval and @data in the inode cache.
1181 * If the inode is in the cache, the inode is returned with an incremented
1182 * reference count.
1183 *
1184 * Note: I_NEW is not waited upon so you have to be very careful what you do
1185 * with the returned inode. You probably should be using ilookup5() instead.
1186 *
1187 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1188 */
1189 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1190 int (*test)(struct inode *, void *), void *data)
1191 {
1192 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1193 struct inode *inode;
1194
1195 spin_lock(&inode_hash_lock);
1196 inode = find_inode(sb, head, test, data);
1197 spin_unlock(&inode_hash_lock);
1198
1199 return inode;
1200 }
1201 EXPORT_SYMBOL(ilookup5_nowait);
1202
1203 /**
1204 * ilookup5 - search for an inode in the inode cache
1205 * @sb: super block of file system to search
1206 * @hashval: hash value (usually inode number) to search for
1207 * @test: callback used for comparisons between inodes
1208 * @data: opaque data pointer to pass to @test
1209 *
1210 * Search for the inode specified by @hashval and @data in the inode cache,
1211 * and if the inode is in the cache, return the inode with an incremented
1212 * reference count. Waits on I_NEW before returning the inode.
1213 * returned with an incremented reference count.
1214 *
1215 * This is a generalized version of ilookup() for file systems where the
1216 * inode number is not sufficient for unique identification of an inode.
1217 *
1218 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1219 */
1220 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1221 int (*test)(struct inode *, void *), void *data)
1222 {
1223 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1224
1225 if (inode)
1226 wait_on_inode(inode);
1227 return inode;
1228 }
1229 EXPORT_SYMBOL(ilookup5);
1230
1231 /**
1232 * ilookup - search for an inode in the inode cache
1233 * @sb: super block of file system to search
1234 * @ino: inode number to search for
1235 *
1236 * Search for the inode @ino in the inode cache, and if the inode is in the
1237 * cache, the inode is returned with an incremented reference count.
1238 */
1239 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1240 {
1241 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1242 struct inode *inode;
1243
1244 spin_lock(&inode_hash_lock);
1245 inode = find_inode_fast(sb, head, ino);
1246 spin_unlock(&inode_hash_lock);
1247
1248 if (inode)
1249 wait_on_inode(inode);
1250 return inode;
1251 }
1252 EXPORT_SYMBOL(ilookup);
1253
1254 int insert_inode_locked(struct inode *inode)
1255 {
1256 struct super_block *sb = inode->i_sb;
1257 ino_t ino = inode->i_ino;
1258 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1259
1260 while (1) {
1261 struct inode *old = NULL;
1262 spin_lock(&inode_hash_lock);
1263 hlist_for_each_entry(old, head, i_hash) {
1264 if (old->i_ino != ino)
1265 continue;
1266 if (old->i_sb != sb)
1267 continue;
1268 spin_lock(&old->i_lock);
1269 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1270 spin_unlock(&old->i_lock);
1271 continue;
1272 }
1273 break;
1274 }
1275 if (likely(!old)) {
1276 spin_lock(&inode->i_lock);
1277 inode->i_state |= I_NEW;
1278 hlist_add_head(&inode->i_hash, head);
1279 spin_unlock(&inode->i_lock);
1280 spin_unlock(&inode_hash_lock);
1281 return 0;
1282 }
1283 __iget(old);
1284 spin_unlock(&old->i_lock);
1285 spin_unlock(&inode_hash_lock);
1286 wait_on_inode(old);
1287 if (unlikely(!inode_unhashed(old))) {
1288 iput(old);
1289 return -EBUSY;
1290 }
1291 iput(old);
1292 }
1293 }
1294 EXPORT_SYMBOL(insert_inode_locked);
1295
1296 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1297 int (*test)(struct inode *, void *), void *data)
1298 {
1299 struct super_block *sb = inode->i_sb;
1300 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1301
1302 while (1) {
1303 struct inode *old = NULL;
1304
1305 spin_lock(&inode_hash_lock);
1306 hlist_for_each_entry(old, head, i_hash) {
1307 if (old->i_sb != sb)
1308 continue;
1309 if (!test(old, data))
1310 continue;
1311 spin_lock(&old->i_lock);
1312 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1313 spin_unlock(&old->i_lock);
1314 continue;
1315 }
1316 break;
1317 }
1318 if (likely(!old)) {
1319 spin_lock(&inode->i_lock);
1320 inode->i_state |= I_NEW;
1321 hlist_add_head(&inode->i_hash, head);
1322 spin_unlock(&inode->i_lock);
1323 spin_unlock(&inode_hash_lock);
1324 return 0;
1325 }
1326 __iget(old);
1327 spin_unlock(&old->i_lock);
1328 spin_unlock(&inode_hash_lock);
1329 wait_on_inode(old);
1330 if (unlikely(!inode_unhashed(old))) {
1331 iput(old);
1332 return -EBUSY;
1333 }
1334 iput(old);
1335 }
1336 }
1337 EXPORT_SYMBOL(insert_inode_locked4);
1338
1339
1340 int generic_delete_inode(struct inode *inode)
1341 {
1342 return 1;
1343 }
1344 EXPORT_SYMBOL(generic_delete_inode);
1345
1346 /*
1347 * Called when we're dropping the last reference
1348 * to an inode.
1349 *
1350 * Call the FS "drop_inode()" function, defaulting to
1351 * the legacy UNIX filesystem behaviour. If it tells
1352 * us to evict inode, do so. Otherwise, retain inode
1353 * in cache if fs is alive, sync and evict if fs is
1354 * shutting down.
1355 */
1356 static void iput_final(struct inode *inode)
1357 {
1358 struct super_block *sb = inode->i_sb;
1359 const struct super_operations *op = inode->i_sb->s_op;
1360 int drop;
1361
1362 WARN_ON(inode->i_state & I_NEW);
1363
1364 if (op->drop_inode)
1365 drop = op->drop_inode(inode);
1366 else
1367 drop = generic_drop_inode(inode);
1368
1369 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1370 inode->i_state |= I_REFERENCED;
1371 inode_add_lru(inode);
1372 spin_unlock(&inode->i_lock);
1373 return;
1374 }
1375
1376 if (!drop) {
1377 inode->i_state |= I_WILL_FREE;
1378 spin_unlock(&inode->i_lock);
1379 write_inode_now(inode, 1);
1380 spin_lock(&inode->i_lock);
1381 WARN_ON(inode->i_state & I_NEW);
1382 inode->i_state &= ~I_WILL_FREE;
1383 }
1384
1385 inode->i_state |= I_FREEING;
1386 if (!list_empty(&inode->i_lru))
1387 inode_lru_list_del(inode);
1388 spin_unlock(&inode->i_lock);
1389
1390 evict(inode);
1391 }
1392
1393 /**
1394 * iput - put an inode
1395 * @inode: inode to put
1396 *
1397 * Puts an inode, dropping its usage count. If the inode use count hits
1398 * zero, the inode is then freed and may also be destroyed.
1399 *
1400 * Consequently, iput() can sleep.
1401 */
1402 void iput(struct inode *inode)
1403 {
1404 if (inode) {
1405 BUG_ON(inode->i_state & I_CLEAR);
1406
1407 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1408 iput_final(inode);
1409 }
1410 }
1411 EXPORT_SYMBOL(iput);
1412
1413 /**
1414 * bmap - find a block number in a file
1415 * @inode: inode of file
1416 * @block: block to find
1417 *
1418 * Returns the block number on the device holding the inode that
1419 * is the disk block number for the block of the file requested.
1420 * That is, asked for block 4 of inode 1 the function will return the
1421 * disk block relative to the disk start that holds that block of the
1422 * file.
1423 */
1424 sector_t bmap(struct inode *inode, sector_t block)
1425 {
1426 sector_t res = 0;
1427 if (inode->i_mapping->a_ops->bmap)
1428 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1429 return res;
1430 }
1431 EXPORT_SYMBOL(bmap);
1432
1433 /*
1434 * With relative atime, only update atime if the previous atime is
1435 * earlier than either the ctime or mtime or if at least a day has
1436 * passed since the last atime update.
1437 */
1438 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1439 struct timespec now)
1440 {
1441
1442 if (!(mnt->mnt_flags & MNT_RELATIME))
1443 return 1;
1444 /*
1445 * Is mtime younger than atime? If yes, update atime:
1446 */
1447 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1448 return 1;
1449 /*
1450 * Is ctime younger than atime? If yes, update atime:
1451 */
1452 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1453 return 1;
1454
1455 /*
1456 * Is the previous atime value older than a day? If yes,
1457 * update atime:
1458 */
1459 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1460 return 1;
1461 /*
1462 * Good, we can skip the atime update:
1463 */
1464 return 0;
1465 }
1466
1467 /*
1468 * This does the actual work of updating an inodes time or version. Must have
1469 * had called mnt_want_write() before calling this.
1470 */
1471 static int update_time(struct inode *inode, struct timespec *time, int flags)
1472 {
1473 if (inode->i_op->update_time)
1474 return inode->i_op->update_time(inode, time, flags);
1475
1476 if (flags & S_ATIME)
1477 inode->i_atime = *time;
1478 if (flags & S_VERSION)
1479 inode_inc_iversion(inode);
1480 if (flags & S_CTIME)
1481 inode->i_ctime = *time;
1482 if (flags & S_MTIME)
1483 inode->i_mtime = *time;
1484 mark_inode_dirty_sync(inode);
1485 return 0;
1486 }
1487
1488 /**
1489 * touch_atime - update the access time
1490 * @path: the &struct path to update
1491 *
1492 * Update the accessed time on an inode and mark it for writeback.
1493 * This function automatically handles read only file systems and media,
1494 * as well as the "noatime" flag and inode specific "noatime" markers.
1495 */
1496 void touch_atime(const struct path *path)
1497 {
1498 struct vfsmount *mnt = path->mnt;
1499 struct inode *inode = path->dentry->d_inode;
1500 struct timespec now;
1501
1502 if (inode->i_flags & S_NOATIME)
1503 return;
1504 if (IS_NOATIME(inode))
1505 return;
1506 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1507 return;
1508
1509 if (mnt->mnt_flags & MNT_NOATIME)
1510 return;
1511 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1512 return;
1513
1514 now = current_fs_time(inode->i_sb);
1515
1516 if (!relatime_need_update(mnt, inode, now))
1517 return;
1518
1519 if (timespec_equal(&inode->i_atime, &now))
1520 return;
1521
1522 if (!sb_start_write_trylock(inode->i_sb))
1523 return;
1524
1525 if (__mnt_want_write(mnt))
1526 goto skip_update;
1527 /*
1528 * File systems can error out when updating inodes if they need to
1529 * allocate new space to modify an inode (such is the case for
1530 * Btrfs), but since we touch atime while walking down the path we
1531 * really don't care if we failed to update the atime of the file,
1532 * so just ignore the return value.
1533 * We may also fail on filesystems that have the ability to make parts
1534 * of the fs read only, e.g. subvolumes in Btrfs.
1535 */
1536 update_time(inode, &now, S_ATIME);
1537 __mnt_drop_write(mnt);
1538 skip_update:
1539 sb_end_write(inode->i_sb);
1540 }
1541 EXPORT_SYMBOL(touch_atime);
1542
1543 /*
1544 * The logic we want is
1545 *
1546 * if suid or (sgid and xgrp)
1547 * remove privs
1548 */
1549 int should_remove_suid(struct dentry *dentry)
1550 {
1551 umode_t mode = dentry->d_inode->i_mode;
1552 int kill = 0;
1553
1554 /* suid always must be killed */
1555 if (unlikely(mode & S_ISUID))
1556 kill = ATTR_KILL_SUID;
1557
1558 /*
1559 * sgid without any exec bits is just a mandatory locking mark; leave
1560 * it alone. If some exec bits are set, it's a real sgid; kill it.
1561 */
1562 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1563 kill |= ATTR_KILL_SGID;
1564
1565 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1566 return kill;
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL(should_remove_suid);
1571
1572 static int __remove_suid(struct dentry *dentry, int kill)
1573 {
1574 struct iattr newattrs;
1575
1576 newattrs.ia_valid = ATTR_FORCE | kill;
1577 return notify_change(dentry, &newattrs);
1578 }
1579
1580 int file_remove_suid(struct file *file)
1581 {
1582 struct dentry *dentry = file->f_path.dentry;
1583 struct inode *inode = dentry->d_inode;
1584 int killsuid;
1585 int killpriv;
1586 int error = 0;
1587
1588 /* Fast path for nothing security related */
1589 if (IS_NOSEC(inode))
1590 return 0;
1591
1592 killsuid = should_remove_suid(dentry);
1593 killpriv = security_inode_need_killpriv(dentry);
1594
1595 if (killpriv < 0)
1596 return killpriv;
1597 if (killpriv)
1598 error = security_inode_killpriv(dentry);
1599 if (!error && killsuid)
1600 error = __remove_suid(dentry, killsuid);
1601 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1602 inode->i_flags |= S_NOSEC;
1603
1604 return error;
1605 }
1606 EXPORT_SYMBOL(file_remove_suid);
1607
1608 /**
1609 * file_update_time - update mtime and ctime time
1610 * @file: file accessed
1611 *
1612 * Update the mtime and ctime members of an inode and mark the inode
1613 * for writeback. Note that this function is meant exclusively for
1614 * usage in the file write path of filesystems, and filesystems may
1615 * choose to explicitly ignore update via this function with the
1616 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1617 * timestamps are handled by the server. This can return an error for
1618 * file systems who need to allocate space in order to update an inode.
1619 */
1620
1621 int file_update_time(struct file *file)
1622 {
1623 struct inode *inode = file_inode(file);
1624 struct timespec now;
1625 int sync_it = 0;
1626 int ret;
1627
1628 /* First try to exhaust all avenues to not sync */
1629 if (IS_NOCMTIME(inode))
1630 return 0;
1631
1632 now = current_fs_time(inode->i_sb);
1633 if (!timespec_equal(&inode->i_mtime, &now))
1634 sync_it = S_MTIME;
1635
1636 if (!timespec_equal(&inode->i_ctime, &now))
1637 sync_it |= S_CTIME;
1638
1639 if (IS_I_VERSION(inode))
1640 sync_it |= S_VERSION;
1641
1642 if (!sync_it)
1643 return 0;
1644
1645 /* Finally allowed to write? Takes lock. */
1646 if (__mnt_want_write_file(file))
1647 return 0;
1648
1649 ret = update_time(inode, &now, sync_it);
1650 __mnt_drop_write_file(file);
1651
1652 return ret;
1653 }
1654 EXPORT_SYMBOL(file_update_time);
1655
1656 int inode_needs_sync(struct inode *inode)
1657 {
1658 if (IS_SYNC(inode))
1659 return 1;
1660 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1661 return 1;
1662 return 0;
1663 }
1664 EXPORT_SYMBOL(inode_needs_sync);
1665
1666 int inode_wait(void *word)
1667 {
1668 schedule();
1669 return 0;
1670 }
1671 EXPORT_SYMBOL(inode_wait);
1672
1673 /*
1674 * If we try to find an inode in the inode hash while it is being
1675 * deleted, we have to wait until the filesystem completes its
1676 * deletion before reporting that it isn't found. This function waits
1677 * until the deletion _might_ have completed. Callers are responsible
1678 * to recheck inode state.
1679 *
1680 * It doesn't matter if I_NEW is not set initially, a call to
1681 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1682 * will DTRT.
1683 */
1684 static void __wait_on_freeing_inode(struct inode *inode)
1685 {
1686 wait_queue_head_t *wq;
1687 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1688 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1689 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1690 spin_unlock(&inode->i_lock);
1691 spin_unlock(&inode_hash_lock);
1692 schedule();
1693 finish_wait(wq, &wait.wait);
1694 spin_lock(&inode_hash_lock);
1695 }
1696
1697 static __initdata unsigned long ihash_entries;
1698 static int __init set_ihash_entries(char *str)
1699 {
1700 if (!str)
1701 return 0;
1702 ihash_entries = simple_strtoul(str, &str, 0);
1703 return 1;
1704 }
1705 __setup("ihash_entries=", set_ihash_entries);
1706
1707 /*
1708 * Initialize the waitqueues and inode hash table.
1709 */
1710 void __init inode_init_early(void)
1711 {
1712 unsigned int loop;
1713
1714 /* If hashes are distributed across NUMA nodes, defer
1715 * hash allocation until vmalloc space is available.
1716 */
1717 if (hashdist)
1718 return;
1719
1720 inode_hashtable =
1721 alloc_large_system_hash("Inode-cache",
1722 sizeof(struct hlist_head),
1723 ihash_entries,
1724 14,
1725 HASH_EARLY,
1726 &i_hash_shift,
1727 &i_hash_mask,
1728 0,
1729 0);
1730
1731 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1732 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1733 }
1734
1735 void __init inode_init(void)
1736 {
1737 unsigned int loop;
1738
1739 /* inode slab cache */
1740 inode_cachep = kmem_cache_create("inode_cache",
1741 sizeof(struct inode),
1742 0,
1743 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1744 SLAB_MEM_SPREAD),
1745 init_once);
1746
1747 /* Hash may have been set up in inode_init_early */
1748 if (!hashdist)
1749 return;
1750
1751 inode_hashtable =
1752 alloc_large_system_hash("Inode-cache",
1753 sizeof(struct hlist_head),
1754 ihash_entries,
1755 14,
1756 0,
1757 &i_hash_shift,
1758 &i_hash_mask,
1759 0,
1760 0);
1761
1762 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1763 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1764 }
1765
1766 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1767 {
1768 inode->i_mode = mode;
1769 if (S_ISCHR(mode)) {
1770 inode->i_fop = &def_chr_fops;
1771 inode->i_rdev = rdev;
1772 } else if (S_ISBLK(mode)) {
1773 inode->i_fop = &def_blk_fops;
1774 inode->i_rdev = rdev;
1775 } else if (S_ISFIFO(mode))
1776 inode->i_fop = &pipefifo_fops;
1777 else if (S_ISSOCK(mode))
1778 inode->i_fop = &bad_sock_fops;
1779 else
1780 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1781 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1782 inode->i_ino);
1783 }
1784 EXPORT_SYMBOL(init_special_inode);
1785
1786 /**
1787 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1788 * @inode: New inode
1789 * @dir: Directory inode
1790 * @mode: mode of the new inode
1791 */
1792 void inode_init_owner(struct inode *inode, const struct inode *dir,
1793 umode_t mode)
1794 {
1795 inode->i_uid = current_fsuid();
1796 if (dir && dir->i_mode & S_ISGID) {
1797 inode->i_gid = dir->i_gid;
1798 if (S_ISDIR(mode))
1799 mode |= S_ISGID;
1800 } else
1801 inode->i_gid = current_fsgid();
1802 inode->i_mode = mode;
1803 }
1804 EXPORT_SYMBOL(inode_init_owner);
1805
1806 /**
1807 * inode_owner_or_capable - check current task permissions to inode
1808 * @inode: inode being checked
1809 *
1810 * Return true if current either has CAP_FOWNER to the inode, or
1811 * owns the file.
1812 */
1813 bool inode_owner_or_capable(const struct inode *inode)
1814 {
1815 if (uid_eq(current_fsuid(), inode->i_uid))
1816 return true;
1817 if (inode_capable(inode, CAP_FOWNER))
1818 return true;
1819 return false;
1820 }
1821 EXPORT_SYMBOL(inode_owner_or_capable);
1822
1823 /*
1824 * Direct i/o helper functions
1825 */
1826 static void __inode_dio_wait(struct inode *inode)
1827 {
1828 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1829 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1830
1831 do {
1832 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1833 if (atomic_read(&inode->i_dio_count))
1834 schedule();
1835 } while (atomic_read(&inode->i_dio_count));
1836 finish_wait(wq, &q.wait);
1837 }
1838
1839 /**
1840 * inode_dio_wait - wait for outstanding DIO requests to finish
1841 * @inode: inode to wait for
1842 *
1843 * Waits for all pending direct I/O requests to finish so that we can
1844 * proceed with a truncate or equivalent operation.
1845 *
1846 * Must be called under a lock that serializes taking new references
1847 * to i_dio_count, usually by inode->i_mutex.
1848 */
1849 void inode_dio_wait(struct inode *inode)
1850 {
1851 if (atomic_read(&inode->i_dio_count))
1852 __inode_dio_wait(inode);
1853 }
1854 EXPORT_SYMBOL(inode_dio_wait);
1855
1856 /*
1857 * inode_dio_done - signal finish of a direct I/O requests
1858 * @inode: inode the direct I/O happens on
1859 *
1860 * This is called once we've finished processing a direct I/O request,
1861 * and is used to wake up callers waiting for direct I/O to be quiesced.
1862 */
1863 void inode_dio_done(struct inode *inode)
1864 {
1865 if (atomic_dec_and_test(&inode->i_dio_count))
1866 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1867 }
1868 EXPORT_SYMBOL(inode_dio_done);
This page took 0.090575 seconds and 6 git commands to generate.