PM: Prevent runtime suspend during system resume
[deliverable/linux.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 EXPORT_SYMBOL(jbd2_inode_cache);
96
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99
100 /* Checksumming functions */
101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
102 {
103 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
104 return 1;
105
106 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
107 }
108
109 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
110 {
111 __u32 csum, old_csum;
112
113 old_csum = sb->s_checksum;
114 sb->s_checksum = 0;
115 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
116 sb->s_checksum = old_csum;
117
118 return cpu_to_be32(csum);
119 }
120
121 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
122 {
123 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
124 return 1;
125
126 return sb->s_checksum == jbd2_superblock_csum(j, sb);
127 }
128
129 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
130 {
131 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
132 return;
133
134 sb->s_checksum = jbd2_superblock_csum(j, sb);
135 }
136
137 /*
138 * Helper function used to manage commit timeouts
139 */
140
141 static void commit_timeout(unsigned long __data)
142 {
143 struct task_struct * p = (struct task_struct *) __data;
144
145 wake_up_process(p);
146 }
147
148 /*
149 * kjournald2: The main thread function used to manage a logging device
150 * journal.
151 *
152 * This kernel thread is responsible for two things:
153 *
154 * 1) COMMIT: Every so often we need to commit the current state of the
155 * filesystem to disk. The journal thread is responsible for writing
156 * all of the metadata buffers to disk.
157 *
158 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
159 * of the data in that part of the log has been rewritten elsewhere on
160 * the disk. Flushing these old buffers to reclaim space in the log is
161 * known as checkpointing, and this thread is responsible for that job.
162 */
163
164 static int kjournald2(void *arg)
165 {
166 journal_t *journal = arg;
167 transaction_t *transaction;
168
169 /*
170 * Set up an interval timer which can be used to trigger a commit wakeup
171 * after the commit interval expires
172 */
173 setup_timer(&journal->j_commit_timer, commit_timeout,
174 (unsigned long)current);
175
176 set_freezable();
177
178 /* Record that the journal thread is running */
179 journal->j_task = current;
180 wake_up(&journal->j_wait_done_commit);
181
182 /*
183 * And now, wait forever for commit wakeup events.
184 */
185 write_lock(&journal->j_state_lock);
186
187 loop:
188 if (journal->j_flags & JBD2_UNMOUNT)
189 goto end_loop;
190
191 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
192 journal->j_commit_sequence, journal->j_commit_request);
193
194 if (journal->j_commit_sequence != journal->j_commit_request) {
195 jbd_debug(1, "OK, requests differ\n");
196 write_unlock(&journal->j_state_lock);
197 del_timer_sync(&journal->j_commit_timer);
198 jbd2_journal_commit_transaction(journal);
199 write_lock(&journal->j_state_lock);
200 goto loop;
201 }
202
203 wake_up(&journal->j_wait_done_commit);
204 if (freezing(current)) {
205 /*
206 * The simpler the better. Flushing journal isn't a
207 * good idea, because that depends on threads that may
208 * be already stopped.
209 */
210 jbd_debug(1, "Now suspending kjournald2\n");
211 write_unlock(&journal->j_state_lock);
212 try_to_freeze();
213 write_lock(&journal->j_state_lock);
214 } else {
215 /*
216 * We assume on resume that commits are already there,
217 * so we don't sleep
218 */
219 DEFINE_WAIT(wait);
220 int should_sleep = 1;
221
222 prepare_to_wait(&journal->j_wait_commit, &wait,
223 TASK_INTERRUPTIBLE);
224 if (journal->j_commit_sequence != journal->j_commit_request)
225 should_sleep = 0;
226 transaction = journal->j_running_transaction;
227 if (transaction && time_after_eq(jiffies,
228 transaction->t_expires))
229 should_sleep = 0;
230 if (journal->j_flags & JBD2_UNMOUNT)
231 should_sleep = 0;
232 if (should_sleep) {
233 write_unlock(&journal->j_state_lock);
234 schedule();
235 write_lock(&journal->j_state_lock);
236 }
237 finish_wait(&journal->j_wait_commit, &wait);
238 }
239
240 jbd_debug(1, "kjournald2 wakes\n");
241
242 /*
243 * Were we woken up by a commit wakeup event?
244 */
245 transaction = journal->j_running_transaction;
246 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
247 journal->j_commit_request = transaction->t_tid;
248 jbd_debug(1, "woke because of timeout\n");
249 }
250 goto loop;
251
252 end_loop:
253 write_unlock(&journal->j_state_lock);
254 del_timer_sync(&journal->j_commit_timer);
255 journal->j_task = NULL;
256 wake_up(&journal->j_wait_done_commit);
257 jbd_debug(1, "Journal thread exiting.\n");
258 return 0;
259 }
260
261 static int jbd2_journal_start_thread(journal_t *journal)
262 {
263 struct task_struct *t;
264
265 t = kthread_run(kjournald2, journal, "jbd2/%s",
266 journal->j_devname);
267 if (IS_ERR(t))
268 return PTR_ERR(t);
269
270 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
271 return 0;
272 }
273
274 static void journal_kill_thread(journal_t *journal)
275 {
276 write_lock(&journal->j_state_lock);
277 journal->j_flags |= JBD2_UNMOUNT;
278
279 while (journal->j_task) {
280 wake_up(&journal->j_wait_commit);
281 write_unlock(&journal->j_state_lock);
282 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
283 write_lock(&journal->j_state_lock);
284 }
285 write_unlock(&journal->j_state_lock);
286 }
287
288 /*
289 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
290 *
291 * Writes a metadata buffer to a given disk block. The actual IO is not
292 * performed but a new buffer_head is constructed which labels the data
293 * to be written with the correct destination disk block.
294 *
295 * Any magic-number escaping which needs to be done will cause a
296 * copy-out here. If the buffer happens to start with the
297 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
298 * magic number is only written to the log for descripter blocks. In
299 * this case, we copy the data and replace the first word with 0, and we
300 * return a result code which indicates that this buffer needs to be
301 * marked as an escaped buffer in the corresponding log descriptor
302 * block. The missing word can then be restored when the block is read
303 * during recovery.
304 *
305 * If the source buffer has already been modified by a new transaction
306 * since we took the last commit snapshot, we use the frozen copy of
307 * that data for IO. If we end up using the existing buffer_head's data
308 * for the write, then we *have* to lock the buffer to prevent anyone
309 * else from using and possibly modifying it while the IO is in
310 * progress.
311 *
312 * The function returns a pointer to the buffer_heads to be used for IO.
313 *
314 * We assume that the journal has already been locked in this function.
315 *
316 * Return value:
317 * <0: Error
318 * >=0: Finished OK
319 *
320 * On success:
321 * Bit 0 set == escape performed on the data
322 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
323 */
324
325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
326 struct journal_head *jh_in,
327 struct journal_head **jh_out,
328 unsigned long long blocknr)
329 {
330 int need_copy_out = 0;
331 int done_copy_out = 0;
332 int do_escape = 0;
333 char *mapped_data;
334 struct buffer_head *new_bh;
335 struct journal_head *new_jh;
336 struct page *new_page;
337 unsigned int new_offset;
338 struct buffer_head *bh_in = jh2bh(jh_in);
339 journal_t *journal = transaction->t_journal;
340
341 /*
342 * The buffer really shouldn't be locked: only the current committing
343 * transaction is allowed to write it, so nobody else is allowed
344 * to do any IO.
345 *
346 * akpm: except if we're journalling data, and write() output is
347 * also part of a shared mapping, and another thread has
348 * decided to launch a writepage() against this buffer.
349 */
350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351
352 retry_alloc:
353 new_bh = alloc_buffer_head(GFP_NOFS);
354 if (!new_bh) {
355 /*
356 * Failure is not an option, but __GFP_NOFAIL is going
357 * away; so we retry ourselves here.
358 */
359 congestion_wait(BLK_RW_ASYNC, HZ/50);
360 goto retry_alloc;
361 }
362
363 /* keep subsequent assertions sane */
364 new_bh->b_state = 0;
365 init_buffer(new_bh, NULL, NULL);
366 atomic_set(&new_bh->b_count, 1);
367 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
368
369 /*
370 * If a new transaction has already done a buffer copy-out, then
371 * we use that version of the data for the commit.
372 */
373 jbd_lock_bh_state(bh_in);
374 repeat:
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 }
383
384 mapped_data = kmap_atomic(new_page);
385 /*
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
390 */
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
394
395 /*
396 * Check for escaping
397 */
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
402 }
403 kunmap_atomic(mapped_data);
404
405 /*
406 * Do we need to do a data copy?
407 */
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
410
411 jbd_unlock_bh_state(bh_in);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 jbd2_journal_put_journal_head(new_jh);
415 return -ENOMEM;
416 }
417 jbd_lock_bh_state(bh_in);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
421 }
422
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
426 kunmap_atomic(mapped_data);
427
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
431
432 /*
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
436 */
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
438 }
439
440 /*
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
443 */
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
448 }
449
450 set_bh_page(new_bh, new_page, new_offset);
451 new_jh->b_transaction = NULL;
452 new_bh->b_size = jh2bh(jh_in)->b_size;
453 new_bh->b_bdev = transaction->t_journal->j_dev;
454 new_bh->b_blocknr = blocknr;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
457
458 *jh_out = new_jh;
459
460 /*
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
464 */
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 jbd_unlock_bh_state(bh_in);
470
471 JBUFFER_TRACE(new_jh, "file as BJ_IO");
472 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
473
474 return do_escape | (done_copy_out << 1);
475 }
476
477 /*
478 * Allocation code for the journal file. Manage the space left in the
479 * journal, so that we can begin checkpointing when appropriate.
480 */
481
482 /*
483 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
484 *
485 * Called with the journal already locked.
486 *
487 * Called under j_state_lock
488 */
489
490 int __jbd2_log_space_left(journal_t *journal)
491 {
492 int left = journal->j_free;
493
494 /* assert_spin_locked(&journal->j_state_lock); */
495
496 /*
497 * Be pessimistic here about the number of those free blocks which
498 * might be required for log descriptor control blocks.
499 */
500
501 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
502
503 left -= MIN_LOG_RESERVED_BLOCKS;
504
505 if (left <= 0)
506 return 0;
507 left -= (left >> 3);
508 return left;
509 }
510
511 /*
512 * Called with j_state_lock locked for writing.
513 * Returns true if a transaction commit was started.
514 */
515 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
516 {
517 /*
518 * The only transaction we can possibly wait upon is the
519 * currently running transaction (if it exists). Otherwise,
520 * the target tid must be an old one.
521 */
522 if (journal->j_running_transaction &&
523 journal->j_running_transaction->t_tid == target) {
524 /*
525 * We want a new commit: OK, mark the request and wakeup the
526 * commit thread. We do _not_ do the commit ourselves.
527 */
528
529 journal->j_commit_request = target;
530 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
531 journal->j_commit_request,
532 journal->j_commit_sequence);
533 wake_up(&journal->j_wait_commit);
534 return 1;
535 } else if (!tid_geq(journal->j_commit_request, target))
536 /* This should never happen, but if it does, preserve
537 the evidence before kjournald goes into a loop and
538 increments j_commit_sequence beyond all recognition. */
539 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
540 journal->j_commit_request,
541 journal->j_commit_sequence,
542 target, journal->j_running_transaction ?
543 journal->j_running_transaction->t_tid : 0);
544 return 0;
545 }
546
547 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
548 {
549 int ret;
550
551 write_lock(&journal->j_state_lock);
552 ret = __jbd2_log_start_commit(journal, tid);
553 write_unlock(&journal->j_state_lock);
554 return ret;
555 }
556
557 /*
558 * Force and wait upon a commit if the calling process is not within
559 * transaction. This is used for forcing out undo-protected data which contains
560 * bitmaps, when the fs is running out of space.
561 *
562 * We can only force the running transaction if we don't have an active handle;
563 * otherwise, we will deadlock.
564 *
565 * Returns true if a transaction was started.
566 */
567 int jbd2_journal_force_commit_nested(journal_t *journal)
568 {
569 transaction_t *transaction = NULL;
570 tid_t tid;
571 int need_to_start = 0;
572
573 read_lock(&journal->j_state_lock);
574 if (journal->j_running_transaction && !current->journal_info) {
575 transaction = journal->j_running_transaction;
576 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
577 need_to_start = 1;
578 } else if (journal->j_committing_transaction)
579 transaction = journal->j_committing_transaction;
580
581 if (!transaction) {
582 read_unlock(&journal->j_state_lock);
583 return 0; /* Nothing to retry */
584 }
585
586 tid = transaction->t_tid;
587 read_unlock(&journal->j_state_lock);
588 if (need_to_start)
589 jbd2_log_start_commit(journal, tid);
590 jbd2_log_wait_commit(journal, tid);
591 return 1;
592 }
593
594 /*
595 * Start a commit of the current running transaction (if any). Returns true
596 * if a transaction is going to be committed (or is currently already
597 * committing), and fills its tid in at *ptid
598 */
599 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
600 {
601 int ret = 0;
602
603 write_lock(&journal->j_state_lock);
604 if (journal->j_running_transaction) {
605 tid_t tid = journal->j_running_transaction->t_tid;
606
607 __jbd2_log_start_commit(journal, tid);
608 /* There's a running transaction and we've just made sure
609 * it's commit has been scheduled. */
610 if (ptid)
611 *ptid = tid;
612 ret = 1;
613 } else if (journal->j_committing_transaction) {
614 /*
615 * If commit has been started, then we have to wait for
616 * completion of that transaction.
617 */
618 if (ptid)
619 *ptid = journal->j_committing_transaction->t_tid;
620 ret = 1;
621 }
622 write_unlock(&journal->j_state_lock);
623 return ret;
624 }
625
626 /*
627 * Return 1 if a given transaction has not yet sent barrier request
628 * connected with a transaction commit. If 0 is returned, transaction
629 * may or may not have sent the barrier. Used to avoid sending barrier
630 * twice in common cases.
631 */
632 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
633 {
634 int ret = 0;
635 transaction_t *commit_trans;
636
637 if (!(journal->j_flags & JBD2_BARRIER))
638 return 0;
639 read_lock(&journal->j_state_lock);
640 /* Transaction already committed? */
641 if (tid_geq(journal->j_commit_sequence, tid))
642 goto out;
643 commit_trans = journal->j_committing_transaction;
644 if (!commit_trans || commit_trans->t_tid != tid) {
645 ret = 1;
646 goto out;
647 }
648 /*
649 * Transaction is being committed and we already proceeded to
650 * submitting a flush to fs partition?
651 */
652 if (journal->j_fs_dev != journal->j_dev) {
653 if (!commit_trans->t_need_data_flush ||
654 commit_trans->t_state >= T_COMMIT_DFLUSH)
655 goto out;
656 } else {
657 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
658 goto out;
659 }
660 ret = 1;
661 out:
662 read_unlock(&journal->j_state_lock);
663 return ret;
664 }
665 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
666
667 /*
668 * Wait for a specified commit to complete.
669 * The caller may not hold the journal lock.
670 */
671 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
672 {
673 int err = 0;
674
675 read_lock(&journal->j_state_lock);
676 #ifdef CONFIG_JBD2_DEBUG
677 if (!tid_geq(journal->j_commit_request, tid)) {
678 printk(KERN_EMERG
679 "%s: error: j_commit_request=%d, tid=%d\n",
680 __func__, journal->j_commit_request, tid);
681 }
682 #endif
683 while (tid_gt(tid, journal->j_commit_sequence)) {
684 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
685 tid, journal->j_commit_sequence);
686 wake_up(&journal->j_wait_commit);
687 read_unlock(&journal->j_state_lock);
688 wait_event(journal->j_wait_done_commit,
689 !tid_gt(tid, journal->j_commit_sequence));
690 read_lock(&journal->j_state_lock);
691 }
692 read_unlock(&journal->j_state_lock);
693
694 if (unlikely(is_journal_aborted(journal))) {
695 printk(KERN_EMERG "journal commit I/O error\n");
696 err = -EIO;
697 }
698 return err;
699 }
700
701 /*
702 * Log buffer allocation routines:
703 */
704
705 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
706 {
707 unsigned long blocknr;
708
709 write_lock(&journal->j_state_lock);
710 J_ASSERT(journal->j_free > 1);
711
712 blocknr = journal->j_head;
713 journal->j_head++;
714 journal->j_free--;
715 if (journal->j_head == journal->j_last)
716 journal->j_head = journal->j_first;
717 write_unlock(&journal->j_state_lock);
718 return jbd2_journal_bmap(journal, blocknr, retp);
719 }
720
721 /*
722 * Conversion of logical to physical block numbers for the journal
723 *
724 * On external journals the journal blocks are identity-mapped, so
725 * this is a no-op. If needed, we can use j_blk_offset - everything is
726 * ready.
727 */
728 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
729 unsigned long long *retp)
730 {
731 int err = 0;
732 unsigned long long ret;
733
734 if (journal->j_inode) {
735 ret = bmap(journal->j_inode, blocknr);
736 if (ret)
737 *retp = ret;
738 else {
739 printk(KERN_ALERT "%s: journal block not found "
740 "at offset %lu on %s\n",
741 __func__, blocknr, journal->j_devname);
742 err = -EIO;
743 __journal_abort_soft(journal, err);
744 }
745 } else {
746 *retp = blocknr; /* +journal->j_blk_offset */
747 }
748 return err;
749 }
750
751 /*
752 * We play buffer_head aliasing tricks to write data/metadata blocks to
753 * the journal without copying their contents, but for journal
754 * descriptor blocks we do need to generate bona fide buffers.
755 *
756 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
757 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
758 * But we don't bother doing that, so there will be coherency problems with
759 * mmaps of blockdevs which hold live JBD-controlled filesystems.
760 */
761 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
762 {
763 struct buffer_head *bh;
764 unsigned long long blocknr;
765 int err;
766
767 err = jbd2_journal_next_log_block(journal, &blocknr);
768
769 if (err)
770 return NULL;
771
772 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
773 if (!bh)
774 return NULL;
775 lock_buffer(bh);
776 memset(bh->b_data, 0, journal->j_blocksize);
777 set_buffer_uptodate(bh);
778 unlock_buffer(bh);
779 BUFFER_TRACE(bh, "return this buffer");
780 return jbd2_journal_add_journal_head(bh);
781 }
782
783 /*
784 * Return tid of the oldest transaction in the journal and block in the journal
785 * where the transaction starts.
786 *
787 * If the journal is now empty, return which will be the next transaction ID
788 * we will write and where will that transaction start.
789 *
790 * The return value is 0 if journal tail cannot be pushed any further, 1 if
791 * it can.
792 */
793 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
794 unsigned long *block)
795 {
796 transaction_t *transaction;
797 int ret;
798
799 read_lock(&journal->j_state_lock);
800 spin_lock(&journal->j_list_lock);
801 transaction = journal->j_checkpoint_transactions;
802 if (transaction) {
803 *tid = transaction->t_tid;
804 *block = transaction->t_log_start;
805 } else if ((transaction = journal->j_committing_transaction) != NULL) {
806 *tid = transaction->t_tid;
807 *block = transaction->t_log_start;
808 } else if ((transaction = journal->j_running_transaction) != NULL) {
809 *tid = transaction->t_tid;
810 *block = journal->j_head;
811 } else {
812 *tid = journal->j_transaction_sequence;
813 *block = journal->j_head;
814 }
815 ret = tid_gt(*tid, journal->j_tail_sequence);
816 spin_unlock(&journal->j_list_lock);
817 read_unlock(&journal->j_state_lock);
818
819 return ret;
820 }
821
822 /*
823 * Update information in journal structure and in on disk journal superblock
824 * about log tail. This function does not check whether information passed in
825 * really pushes log tail further. It's responsibility of the caller to make
826 * sure provided log tail information is valid (e.g. by holding
827 * j_checkpoint_mutex all the time between computing log tail and calling this
828 * function as is the case with jbd2_cleanup_journal_tail()).
829 *
830 * Requires j_checkpoint_mutex
831 */
832 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
833 {
834 unsigned long freed;
835
836 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
837
838 /*
839 * We cannot afford for write to remain in drive's caches since as
840 * soon as we update j_tail, next transaction can start reusing journal
841 * space and if we lose sb update during power failure we'd replay
842 * old transaction with possibly newly overwritten data.
843 */
844 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
845 write_lock(&journal->j_state_lock);
846 freed = block - journal->j_tail;
847 if (block < journal->j_tail)
848 freed += journal->j_last - journal->j_first;
849
850 trace_jbd2_update_log_tail(journal, tid, block, freed);
851 jbd_debug(1,
852 "Cleaning journal tail from %d to %d (offset %lu), "
853 "freeing %lu\n",
854 journal->j_tail_sequence, tid, block, freed);
855
856 journal->j_free += freed;
857 journal->j_tail_sequence = tid;
858 journal->j_tail = block;
859 write_unlock(&journal->j_state_lock);
860 }
861
862 /*
863 * This is a variaon of __jbd2_update_log_tail which checks for validity of
864 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
865 * with other threads updating log tail.
866 */
867 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
868 {
869 mutex_lock(&journal->j_checkpoint_mutex);
870 if (tid_gt(tid, journal->j_tail_sequence))
871 __jbd2_update_log_tail(journal, tid, block);
872 mutex_unlock(&journal->j_checkpoint_mutex);
873 }
874
875 struct jbd2_stats_proc_session {
876 journal_t *journal;
877 struct transaction_stats_s *stats;
878 int start;
879 int max;
880 };
881
882 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
883 {
884 return *pos ? NULL : SEQ_START_TOKEN;
885 }
886
887 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
888 {
889 return NULL;
890 }
891
892 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
893 {
894 struct jbd2_stats_proc_session *s = seq->private;
895
896 if (v != SEQ_START_TOKEN)
897 return 0;
898 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
899 s->stats->ts_tid,
900 s->journal->j_max_transaction_buffers);
901 if (s->stats->ts_tid == 0)
902 return 0;
903 seq_printf(seq, "average: \n %ums waiting for transaction\n",
904 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
905 seq_printf(seq, " %ums running transaction\n",
906 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
907 seq_printf(seq, " %ums transaction was being locked\n",
908 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
909 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
910 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
911 seq_printf(seq, " %ums logging transaction\n",
912 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
913 seq_printf(seq, " %lluus average transaction commit time\n",
914 div_u64(s->journal->j_average_commit_time, 1000));
915 seq_printf(seq, " %lu handles per transaction\n",
916 s->stats->run.rs_handle_count / s->stats->ts_tid);
917 seq_printf(seq, " %lu blocks per transaction\n",
918 s->stats->run.rs_blocks / s->stats->ts_tid);
919 seq_printf(seq, " %lu logged blocks per transaction\n",
920 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
921 return 0;
922 }
923
924 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
925 {
926 }
927
928 static const struct seq_operations jbd2_seq_info_ops = {
929 .start = jbd2_seq_info_start,
930 .next = jbd2_seq_info_next,
931 .stop = jbd2_seq_info_stop,
932 .show = jbd2_seq_info_show,
933 };
934
935 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
936 {
937 journal_t *journal = PDE(inode)->data;
938 struct jbd2_stats_proc_session *s;
939 int rc, size;
940
941 s = kmalloc(sizeof(*s), GFP_KERNEL);
942 if (s == NULL)
943 return -ENOMEM;
944 size = sizeof(struct transaction_stats_s);
945 s->stats = kmalloc(size, GFP_KERNEL);
946 if (s->stats == NULL) {
947 kfree(s);
948 return -ENOMEM;
949 }
950 spin_lock(&journal->j_history_lock);
951 memcpy(s->stats, &journal->j_stats, size);
952 s->journal = journal;
953 spin_unlock(&journal->j_history_lock);
954
955 rc = seq_open(file, &jbd2_seq_info_ops);
956 if (rc == 0) {
957 struct seq_file *m = file->private_data;
958 m->private = s;
959 } else {
960 kfree(s->stats);
961 kfree(s);
962 }
963 return rc;
964
965 }
966
967 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
968 {
969 struct seq_file *seq = file->private_data;
970 struct jbd2_stats_proc_session *s = seq->private;
971 kfree(s->stats);
972 kfree(s);
973 return seq_release(inode, file);
974 }
975
976 static const struct file_operations jbd2_seq_info_fops = {
977 .owner = THIS_MODULE,
978 .open = jbd2_seq_info_open,
979 .read = seq_read,
980 .llseek = seq_lseek,
981 .release = jbd2_seq_info_release,
982 };
983
984 static struct proc_dir_entry *proc_jbd2_stats;
985
986 static void jbd2_stats_proc_init(journal_t *journal)
987 {
988 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
989 if (journal->j_proc_entry) {
990 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
991 &jbd2_seq_info_fops, journal);
992 }
993 }
994
995 static void jbd2_stats_proc_exit(journal_t *journal)
996 {
997 remove_proc_entry("info", journal->j_proc_entry);
998 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
999 }
1000
1001 /*
1002 * Management for journal control blocks: functions to create and
1003 * destroy journal_t structures, and to initialise and read existing
1004 * journal blocks from disk. */
1005
1006 /* First: create and setup a journal_t object in memory. We initialise
1007 * very few fields yet: that has to wait until we have created the
1008 * journal structures from from scratch, or loaded them from disk. */
1009
1010 static journal_t * journal_init_common (void)
1011 {
1012 journal_t *journal;
1013 int err;
1014
1015 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1016 if (!journal)
1017 return NULL;
1018
1019 init_waitqueue_head(&journal->j_wait_transaction_locked);
1020 init_waitqueue_head(&journal->j_wait_logspace);
1021 init_waitqueue_head(&journal->j_wait_done_commit);
1022 init_waitqueue_head(&journal->j_wait_checkpoint);
1023 init_waitqueue_head(&journal->j_wait_commit);
1024 init_waitqueue_head(&journal->j_wait_updates);
1025 mutex_init(&journal->j_barrier);
1026 mutex_init(&journal->j_checkpoint_mutex);
1027 spin_lock_init(&journal->j_revoke_lock);
1028 spin_lock_init(&journal->j_list_lock);
1029 rwlock_init(&journal->j_state_lock);
1030
1031 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1032 journal->j_min_batch_time = 0;
1033 journal->j_max_batch_time = 15000; /* 15ms */
1034
1035 /* The journal is marked for error until we succeed with recovery! */
1036 journal->j_flags = JBD2_ABORT;
1037
1038 /* Set up a default-sized revoke table for the new mount. */
1039 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1040 if (err) {
1041 kfree(journal);
1042 return NULL;
1043 }
1044
1045 spin_lock_init(&journal->j_history_lock);
1046
1047 return journal;
1048 }
1049
1050 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1051 *
1052 * Create a journal structure assigned some fixed set of disk blocks to
1053 * the journal. We don't actually touch those disk blocks yet, but we
1054 * need to set up all of the mapping information to tell the journaling
1055 * system where the journal blocks are.
1056 *
1057 */
1058
1059 /**
1060 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1061 * @bdev: Block device on which to create the journal
1062 * @fs_dev: Device which hold journalled filesystem for this journal.
1063 * @start: Block nr Start of journal.
1064 * @len: Length of the journal in blocks.
1065 * @blocksize: blocksize of journalling device
1066 *
1067 * Returns: a newly created journal_t *
1068 *
1069 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1070 * range of blocks on an arbitrary block device.
1071 *
1072 */
1073 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1074 struct block_device *fs_dev,
1075 unsigned long long start, int len, int blocksize)
1076 {
1077 journal_t *journal = journal_init_common();
1078 struct buffer_head *bh;
1079 char *p;
1080 int n;
1081
1082 if (!journal)
1083 return NULL;
1084
1085 /* journal descriptor can store up to n blocks -bzzz */
1086 journal->j_blocksize = blocksize;
1087 journal->j_dev = bdev;
1088 journal->j_fs_dev = fs_dev;
1089 journal->j_blk_offset = start;
1090 journal->j_maxlen = len;
1091 bdevname(journal->j_dev, journal->j_devname);
1092 p = journal->j_devname;
1093 while ((p = strchr(p, '/')))
1094 *p = '!';
1095 jbd2_stats_proc_init(journal);
1096 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1097 journal->j_wbufsize = n;
1098 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1099 if (!journal->j_wbuf) {
1100 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1101 __func__);
1102 goto out_err;
1103 }
1104
1105 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1106 if (!bh) {
1107 printk(KERN_ERR
1108 "%s: Cannot get buffer for journal superblock\n",
1109 __func__);
1110 goto out_err;
1111 }
1112 journal->j_sb_buffer = bh;
1113 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1114
1115 return journal;
1116 out_err:
1117 kfree(journal->j_wbuf);
1118 jbd2_stats_proc_exit(journal);
1119 kfree(journal);
1120 return NULL;
1121 }
1122
1123 /**
1124 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1125 * @inode: An inode to create the journal in
1126 *
1127 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1128 * the journal. The inode must exist already, must support bmap() and
1129 * must have all data blocks preallocated.
1130 */
1131 journal_t * jbd2_journal_init_inode (struct inode *inode)
1132 {
1133 struct buffer_head *bh;
1134 journal_t *journal = journal_init_common();
1135 char *p;
1136 int err;
1137 int n;
1138 unsigned long long blocknr;
1139
1140 if (!journal)
1141 return NULL;
1142
1143 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1144 journal->j_inode = inode;
1145 bdevname(journal->j_dev, journal->j_devname);
1146 p = journal->j_devname;
1147 while ((p = strchr(p, '/')))
1148 *p = '!';
1149 p = journal->j_devname + strlen(journal->j_devname);
1150 sprintf(p, "-%lu", journal->j_inode->i_ino);
1151 jbd_debug(1,
1152 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1153 journal, inode->i_sb->s_id, inode->i_ino,
1154 (long long) inode->i_size,
1155 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1156
1157 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1158 journal->j_blocksize = inode->i_sb->s_blocksize;
1159 jbd2_stats_proc_init(journal);
1160
1161 /* journal descriptor can store up to n blocks -bzzz */
1162 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1163 journal->j_wbufsize = n;
1164 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1165 if (!journal->j_wbuf) {
1166 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1167 __func__);
1168 goto out_err;
1169 }
1170
1171 err = jbd2_journal_bmap(journal, 0, &blocknr);
1172 /* If that failed, give up */
1173 if (err) {
1174 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1175 __func__);
1176 goto out_err;
1177 }
1178
1179 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1180 if (!bh) {
1181 printk(KERN_ERR
1182 "%s: Cannot get buffer for journal superblock\n",
1183 __func__);
1184 goto out_err;
1185 }
1186 journal->j_sb_buffer = bh;
1187 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1188
1189 return journal;
1190 out_err:
1191 kfree(journal->j_wbuf);
1192 jbd2_stats_proc_exit(journal);
1193 kfree(journal);
1194 return NULL;
1195 }
1196
1197 /*
1198 * If the journal init or create aborts, we need to mark the journal
1199 * superblock as being NULL to prevent the journal destroy from writing
1200 * back a bogus superblock.
1201 */
1202 static void journal_fail_superblock (journal_t *journal)
1203 {
1204 struct buffer_head *bh = journal->j_sb_buffer;
1205 brelse(bh);
1206 journal->j_sb_buffer = NULL;
1207 }
1208
1209 /*
1210 * Given a journal_t structure, initialise the various fields for
1211 * startup of a new journaling session. We use this both when creating
1212 * a journal, and after recovering an old journal to reset it for
1213 * subsequent use.
1214 */
1215
1216 static int journal_reset(journal_t *journal)
1217 {
1218 journal_superblock_t *sb = journal->j_superblock;
1219 unsigned long long first, last;
1220
1221 first = be32_to_cpu(sb->s_first);
1222 last = be32_to_cpu(sb->s_maxlen);
1223 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1224 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1225 first, last);
1226 journal_fail_superblock(journal);
1227 return -EINVAL;
1228 }
1229
1230 journal->j_first = first;
1231 journal->j_last = last;
1232
1233 journal->j_head = first;
1234 journal->j_tail = first;
1235 journal->j_free = last - first;
1236
1237 journal->j_tail_sequence = journal->j_transaction_sequence;
1238 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1239 journal->j_commit_request = journal->j_commit_sequence;
1240
1241 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1242
1243 /*
1244 * As a special case, if the on-disk copy is already marked as needing
1245 * no recovery (s_start == 0), then we can safely defer the superblock
1246 * update until the next commit by setting JBD2_FLUSHED. This avoids
1247 * attempting a write to a potential-readonly device.
1248 */
1249 if (sb->s_start == 0) {
1250 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1251 "(start %ld, seq %d, errno %d)\n",
1252 journal->j_tail, journal->j_tail_sequence,
1253 journal->j_errno);
1254 journal->j_flags |= JBD2_FLUSHED;
1255 } else {
1256 /* Lock here to make assertions happy... */
1257 mutex_lock(&journal->j_checkpoint_mutex);
1258 /*
1259 * Update log tail information. We use WRITE_FUA since new
1260 * transaction will start reusing journal space and so we
1261 * must make sure information about current log tail is on
1262 * disk before that.
1263 */
1264 jbd2_journal_update_sb_log_tail(journal,
1265 journal->j_tail_sequence,
1266 journal->j_tail,
1267 WRITE_FUA);
1268 mutex_unlock(&journal->j_checkpoint_mutex);
1269 }
1270 return jbd2_journal_start_thread(journal);
1271 }
1272
1273 static void jbd2_write_superblock(journal_t *journal, int write_op)
1274 {
1275 struct buffer_head *bh = journal->j_sb_buffer;
1276 int ret;
1277
1278 trace_jbd2_write_superblock(journal, write_op);
1279 if (!(journal->j_flags & JBD2_BARRIER))
1280 write_op &= ~(REQ_FUA | REQ_FLUSH);
1281 lock_buffer(bh);
1282 if (buffer_write_io_error(bh)) {
1283 /*
1284 * Oh, dear. A previous attempt to write the journal
1285 * superblock failed. This could happen because the
1286 * USB device was yanked out. Or it could happen to
1287 * be a transient write error and maybe the block will
1288 * be remapped. Nothing we can do but to retry the
1289 * write and hope for the best.
1290 */
1291 printk(KERN_ERR "JBD2: previous I/O error detected "
1292 "for journal superblock update for %s.\n",
1293 journal->j_devname);
1294 clear_buffer_write_io_error(bh);
1295 set_buffer_uptodate(bh);
1296 }
1297 get_bh(bh);
1298 bh->b_end_io = end_buffer_write_sync;
1299 ret = submit_bh(write_op, bh);
1300 wait_on_buffer(bh);
1301 if (buffer_write_io_error(bh)) {
1302 clear_buffer_write_io_error(bh);
1303 set_buffer_uptodate(bh);
1304 ret = -EIO;
1305 }
1306 if (ret) {
1307 printk(KERN_ERR "JBD2: Error %d detected when updating "
1308 "journal superblock for %s.\n", ret,
1309 journal->j_devname);
1310 }
1311 }
1312
1313 /**
1314 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1315 * @journal: The journal to update.
1316 * @tail_tid: TID of the new transaction at the tail of the log
1317 * @tail_block: The first block of the transaction at the tail of the log
1318 * @write_op: With which operation should we write the journal sb
1319 *
1320 * Update a journal's superblock information about log tail and write it to
1321 * disk, waiting for the IO to complete.
1322 */
1323 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1324 unsigned long tail_block, int write_op)
1325 {
1326 journal_superblock_t *sb = journal->j_superblock;
1327
1328 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1329 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1330 tail_block, tail_tid);
1331
1332 sb->s_sequence = cpu_to_be32(tail_tid);
1333 sb->s_start = cpu_to_be32(tail_block);
1334
1335 jbd2_write_superblock(journal, write_op);
1336
1337 /* Log is no longer empty */
1338 write_lock(&journal->j_state_lock);
1339 WARN_ON(!sb->s_sequence);
1340 journal->j_flags &= ~JBD2_FLUSHED;
1341 write_unlock(&journal->j_state_lock);
1342 }
1343
1344 /**
1345 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1346 * @journal: The journal to update.
1347 *
1348 * Update a journal's dynamic superblock fields to show that journal is empty.
1349 * Write updated superblock to disk waiting for IO to complete.
1350 */
1351 static void jbd2_mark_journal_empty(journal_t *journal)
1352 {
1353 journal_superblock_t *sb = journal->j_superblock;
1354
1355 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1356 read_lock(&journal->j_state_lock);
1357 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1358 journal->j_tail_sequence);
1359
1360 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1361 sb->s_start = cpu_to_be32(0);
1362 read_unlock(&journal->j_state_lock);
1363
1364 jbd2_write_superblock(journal, WRITE_FUA);
1365
1366 /* Log is no longer empty */
1367 write_lock(&journal->j_state_lock);
1368 journal->j_flags |= JBD2_FLUSHED;
1369 write_unlock(&journal->j_state_lock);
1370 }
1371
1372
1373 /**
1374 * jbd2_journal_update_sb_errno() - Update error in the journal.
1375 * @journal: The journal to update.
1376 *
1377 * Update a journal's errno. Write updated superblock to disk waiting for IO
1378 * to complete.
1379 */
1380 static void jbd2_journal_update_sb_errno(journal_t *journal)
1381 {
1382 journal_superblock_t *sb = journal->j_superblock;
1383
1384 read_lock(&journal->j_state_lock);
1385 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1386 journal->j_errno);
1387 sb->s_errno = cpu_to_be32(journal->j_errno);
1388 jbd2_superblock_csum_set(journal, sb);
1389 read_unlock(&journal->j_state_lock);
1390
1391 jbd2_write_superblock(journal, WRITE_SYNC);
1392 }
1393
1394 /*
1395 * Read the superblock for a given journal, performing initial
1396 * validation of the format.
1397 */
1398 static int journal_get_superblock(journal_t *journal)
1399 {
1400 struct buffer_head *bh;
1401 journal_superblock_t *sb;
1402 int err = -EIO;
1403
1404 bh = journal->j_sb_buffer;
1405
1406 J_ASSERT(bh != NULL);
1407 if (!buffer_uptodate(bh)) {
1408 ll_rw_block(READ, 1, &bh);
1409 wait_on_buffer(bh);
1410 if (!buffer_uptodate(bh)) {
1411 printk(KERN_ERR
1412 "JBD2: IO error reading journal superblock\n");
1413 goto out;
1414 }
1415 }
1416
1417 if (buffer_verified(bh))
1418 return 0;
1419
1420 sb = journal->j_superblock;
1421
1422 err = -EINVAL;
1423
1424 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1425 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1426 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1427 goto out;
1428 }
1429
1430 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1431 case JBD2_SUPERBLOCK_V1:
1432 journal->j_format_version = 1;
1433 break;
1434 case JBD2_SUPERBLOCK_V2:
1435 journal->j_format_version = 2;
1436 break;
1437 default:
1438 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1439 goto out;
1440 }
1441
1442 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1443 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1444 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1445 printk(KERN_WARNING "JBD2: journal file too short\n");
1446 goto out;
1447 }
1448
1449 if (be32_to_cpu(sb->s_first) == 0 ||
1450 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1451 printk(KERN_WARNING
1452 "JBD2: Invalid start block of journal: %u\n",
1453 be32_to_cpu(sb->s_first));
1454 goto out;
1455 }
1456
1457 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1458 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1459 /* Can't have checksum v1 and v2 on at the same time! */
1460 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1461 "at the same time!\n");
1462 goto out;
1463 }
1464
1465 if (!jbd2_verify_csum_type(journal, sb)) {
1466 printk(KERN_ERR "JBD: Unknown checksum type\n");
1467 goto out;
1468 }
1469
1470 /* Load the checksum driver */
1471 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1472 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1473 if (IS_ERR(journal->j_chksum_driver)) {
1474 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1475 err = PTR_ERR(journal->j_chksum_driver);
1476 journal->j_chksum_driver = NULL;
1477 goto out;
1478 }
1479 }
1480
1481 /* Check superblock checksum */
1482 if (!jbd2_superblock_csum_verify(journal, sb)) {
1483 printk(KERN_ERR "JBD: journal checksum error\n");
1484 goto out;
1485 }
1486
1487 /* Precompute checksum seed for all metadata */
1488 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1489 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1490 sizeof(sb->s_uuid));
1491
1492 set_buffer_verified(bh);
1493
1494 return 0;
1495
1496 out:
1497 journal_fail_superblock(journal);
1498 return err;
1499 }
1500
1501 /*
1502 * Load the on-disk journal superblock and read the key fields into the
1503 * journal_t.
1504 */
1505
1506 static int load_superblock(journal_t *journal)
1507 {
1508 int err;
1509 journal_superblock_t *sb;
1510
1511 err = journal_get_superblock(journal);
1512 if (err)
1513 return err;
1514
1515 sb = journal->j_superblock;
1516
1517 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1518 journal->j_tail = be32_to_cpu(sb->s_start);
1519 journal->j_first = be32_to_cpu(sb->s_first);
1520 journal->j_last = be32_to_cpu(sb->s_maxlen);
1521 journal->j_errno = be32_to_cpu(sb->s_errno);
1522
1523 return 0;
1524 }
1525
1526
1527 /**
1528 * int jbd2_journal_load() - Read journal from disk.
1529 * @journal: Journal to act on.
1530 *
1531 * Given a journal_t structure which tells us which disk blocks contain
1532 * a journal, read the journal from disk to initialise the in-memory
1533 * structures.
1534 */
1535 int jbd2_journal_load(journal_t *journal)
1536 {
1537 int err;
1538 journal_superblock_t *sb;
1539
1540 err = load_superblock(journal);
1541 if (err)
1542 return err;
1543
1544 sb = journal->j_superblock;
1545 /* If this is a V2 superblock, then we have to check the
1546 * features flags on it. */
1547
1548 if (journal->j_format_version >= 2) {
1549 if ((sb->s_feature_ro_compat &
1550 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1551 (sb->s_feature_incompat &
1552 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1553 printk(KERN_WARNING
1554 "JBD2: Unrecognised features on journal\n");
1555 return -EINVAL;
1556 }
1557 }
1558
1559 /*
1560 * Create a slab for this blocksize
1561 */
1562 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1563 if (err)
1564 return err;
1565
1566 /* Let the recovery code check whether it needs to recover any
1567 * data from the journal. */
1568 if (jbd2_journal_recover(journal))
1569 goto recovery_error;
1570
1571 if (journal->j_failed_commit) {
1572 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1573 "is corrupt.\n", journal->j_failed_commit,
1574 journal->j_devname);
1575 return -EIO;
1576 }
1577
1578 /* OK, we've finished with the dynamic journal bits:
1579 * reinitialise the dynamic contents of the superblock in memory
1580 * and reset them on disk. */
1581 if (journal_reset(journal))
1582 goto recovery_error;
1583
1584 journal->j_flags &= ~JBD2_ABORT;
1585 journal->j_flags |= JBD2_LOADED;
1586 return 0;
1587
1588 recovery_error:
1589 printk(KERN_WARNING "JBD2: recovery failed\n");
1590 return -EIO;
1591 }
1592
1593 /**
1594 * void jbd2_journal_destroy() - Release a journal_t structure.
1595 * @journal: Journal to act on.
1596 *
1597 * Release a journal_t structure once it is no longer in use by the
1598 * journaled object.
1599 * Return <0 if we couldn't clean up the journal.
1600 */
1601 int jbd2_journal_destroy(journal_t *journal)
1602 {
1603 int err = 0;
1604
1605 /* Wait for the commit thread to wake up and die. */
1606 journal_kill_thread(journal);
1607
1608 /* Force a final log commit */
1609 if (journal->j_running_transaction)
1610 jbd2_journal_commit_transaction(journal);
1611
1612 /* Force any old transactions to disk */
1613
1614 /* Totally anal locking here... */
1615 spin_lock(&journal->j_list_lock);
1616 while (journal->j_checkpoint_transactions != NULL) {
1617 spin_unlock(&journal->j_list_lock);
1618 mutex_lock(&journal->j_checkpoint_mutex);
1619 jbd2_log_do_checkpoint(journal);
1620 mutex_unlock(&journal->j_checkpoint_mutex);
1621 spin_lock(&journal->j_list_lock);
1622 }
1623
1624 J_ASSERT(journal->j_running_transaction == NULL);
1625 J_ASSERT(journal->j_committing_transaction == NULL);
1626 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1627 spin_unlock(&journal->j_list_lock);
1628
1629 if (journal->j_sb_buffer) {
1630 if (!is_journal_aborted(journal)) {
1631 mutex_lock(&journal->j_checkpoint_mutex);
1632 jbd2_mark_journal_empty(journal);
1633 mutex_unlock(&journal->j_checkpoint_mutex);
1634 } else
1635 err = -EIO;
1636 brelse(journal->j_sb_buffer);
1637 }
1638
1639 if (journal->j_proc_entry)
1640 jbd2_stats_proc_exit(journal);
1641 if (journal->j_inode)
1642 iput(journal->j_inode);
1643 if (journal->j_revoke)
1644 jbd2_journal_destroy_revoke(journal);
1645 if (journal->j_chksum_driver)
1646 crypto_free_shash(journal->j_chksum_driver);
1647 kfree(journal->j_wbuf);
1648 kfree(journal);
1649
1650 return err;
1651 }
1652
1653
1654 /**
1655 *int jbd2_journal_check_used_features () - Check if features specified are used.
1656 * @journal: Journal to check.
1657 * @compat: bitmask of compatible features
1658 * @ro: bitmask of features that force read-only mount
1659 * @incompat: bitmask of incompatible features
1660 *
1661 * Check whether the journal uses all of a given set of
1662 * features. Return true (non-zero) if it does.
1663 **/
1664
1665 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1666 unsigned long ro, unsigned long incompat)
1667 {
1668 journal_superblock_t *sb;
1669
1670 if (!compat && !ro && !incompat)
1671 return 1;
1672 /* Load journal superblock if it is not loaded yet. */
1673 if (journal->j_format_version == 0 &&
1674 journal_get_superblock(journal) != 0)
1675 return 0;
1676 if (journal->j_format_version == 1)
1677 return 0;
1678
1679 sb = journal->j_superblock;
1680
1681 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1682 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1683 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1684 return 1;
1685
1686 return 0;
1687 }
1688
1689 /**
1690 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1691 * @journal: Journal to check.
1692 * @compat: bitmask of compatible features
1693 * @ro: bitmask of features that force read-only mount
1694 * @incompat: bitmask of incompatible features
1695 *
1696 * Check whether the journaling code supports the use of
1697 * all of a given set of features on this journal. Return true
1698 * (non-zero) if it can. */
1699
1700 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1701 unsigned long ro, unsigned long incompat)
1702 {
1703 if (!compat && !ro && !incompat)
1704 return 1;
1705
1706 /* We can support any known requested features iff the
1707 * superblock is in version 2. Otherwise we fail to support any
1708 * extended sb features. */
1709
1710 if (journal->j_format_version != 2)
1711 return 0;
1712
1713 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1714 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1715 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 /**
1722 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1723 * @journal: Journal to act on.
1724 * @compat: bitmask of compatible features
1725 * @ro: bitmask of features that force read-only mount
1726 * @incompat: bitmask of incompatible features
1727 *
1728 * Mark a given journal feature as present on the
1729 * superblock. Returns true if the requested features could be set.
1730 *
1731 */
1732
1733 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1734 unsigned long ro, unsigned long incompat)
1735 {
1736 #define INCOMPAT_FEATURE_ON(f) \
1737 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1738 #define COMPAT_FEATURE_ON(f) \
1739 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1740 journal_superblock_t *sb;
1741
1742 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1743 return 1;
1744
1745 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1746 return 0;
1747
1748 /* Asking for checksumming v2 and v1? Only give them v2. */
1749 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1750 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1751 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1752
1753 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1754 compat, ro, incompat);
1755
1756 sb = journal->j_superblock;
1757
1758 /* If enabling v2 checksums, update superblock */
1759 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1760 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1761 sb->s_feature_compat &=
1762 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1763
1764 /* Load the checksum driver */
1765 if (journal->j_chksum_driver == NULL) {
1766 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1767 0, 0);
1768 if (IS_ERR(journal->j_chksum_driver)) {
1769 printk(KERN_ERR "JBD: Cannot load crc32c "
1770 "driver.\n");
1771 journal->j_chksum_driver = NULL;
1772 return 0;
1773 }
1774 }
1775
1776 /* Precompute checksum seed for all metadata */
1777 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1778 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1779 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1780 sb->s_uuid,
1781 sizeof(sb->s_uuid));
1782 }
1783
1784 /* If enabling v1 checksums, downgrade superblock */
1785 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1786 sb->s_feature_incompat &=
1787 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1788
1789 sb->s_feature_compat |= cpu_to_be32(compat);
1790 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1791 sb->s_feature_incompat |= cpu_to_be32(incompat);
1792
1793 return 1;
1794 #undef COMPAT_FEATURE_ON
1795 #undef INCOMPAT_FEATURE_ON
1796 }
1797
1798 /*
1799 * jbd2_journal_clear_features () - Clear a given journal feature in the
1800 * superblock
1801 * @journal: Journal to act on.
1802 * @compat: bitmask of compatible features
1803 * @ro: bitmask of features that force read-only mount
1804 * @incompat: bitmask of incompatible features
1805 *
1806 * Clear a given journal feature as present on the
1807 * superblock.
1808 */
1809 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1810 unsigned long ro, unsigned long incompat)
1811 {
1812 journal_superblock_t *sb;
1813
1814 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1815 compat, ro, incompat);
1816
1817 sb = journal->j_superblock;
1818
1819 sb->s_feature_compat &= ~cpu_to_be32(compat);
1820 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1821 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1822 }
1823 EXPORT_SYMBOL(jbd2_journal_clear_features);
1824
1825 /**
1826 * int jbd2_journal_flush () - Flush journal
1827 * @journal: Journal to act on.
1828 *
1829 * Flush all data for a given journal to disk and empty the journal.
1830 * Filesystems can use this when remounting readonly to ensure that
1831 * recovery does not need to happen on remount.
1832 */
1833
1834 int jbd2_journal_flush(journal_t *journal)
1835 {
1836 int err = 0;
1837 transaction_t *transaction = NULL;
1838
1839 write_lock(&journal->j_state_lock);
1840
1841 /* Force everything buffered to the log... */
1842 if (journal->j_running_transaction) {
1843 transaction = journal->j_running_transaction;
1844 __jbd2_log_start_commit(journal, transaction->t_tid);
1845 } else if (journal->j_committing_transaction)
1846 transaction = journal->j_committing_transaction;
1847
1848 /* Wait for the log commit to complete... */
1849 if (transaction) {
1850 tid_t tid = transaction->t_tid;
1851
1852 write_unlock(&journal->j_state_lock);
1853 jbd2_log_wait_commit(journal, tid);
1854 } else {
1855 write_unlock(&journal->j_state_lock);
1856 }
1857
1858 /* ...and flush everything in the log out to disk. */
1859 spin_lock(&journal->j_list_lock);
1860 while (!err && journal->j_checkpoint_transactions != NULL) {
1861 spin_unlock(&journal->j_list_lock);
1862 mutex_lock(&journal->j_checkpoint_mutex);
1863 err = jbd2_log_do_checkpoint(journal);
1864 mutex_unlock(&journal->j_checkpoint_mutex);
1865 spin_lock(&journal->j_list_lock);
1866 }
1867 spin_unlock(&journal->j_list_lock);
1868
1869 if (is_journal_aborted(journal))
1870 return -EIO;
1871
1872 mutex_lock(&journal->j_checkpoint_mutex);
1873 jbd2_cleanup_journal_tail(journal);
1874
1875 /* Finally, mark the journal as really needing no recovery.
1876 * This sets s_start==0 in the underlying superblock, which is
1877 * the magic code for a fully-recovered superblock. Any future
1878 * commits of data to the journal will restore the current
1879 * s_start value. */
1880 jbd2_mark_journal_empty(journal);
1881 mutex_unlock(&journal->j_checkpoint_mutex);
1882 write_lock(&journal->j_state_lock);
1883 J_ASSERT(!journal->j_running_transaction);
1884 J_ASSERT(!journal->j_committing_transaction);
1885 J_ASSERT(!journal->j_checkpoint_transactions);
1886 J_ASSERT(journal->j_head == journal->j_tail);
1887 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1888 write_unlock(&journal->j_state_lock);
1889 return 0;
1890 }
1891
1892 /**
1893 * int jbd2_journal_wipe() - Wipe journal contents
1894 * @journal: Journal to act on.
1895 * @write: flag (see below)
1896 *
1897 * Wipe out all of the contents of a journal, safely. This will produce
1898 * a warning if the journal contains any valid recovery information.
1899 * Must be called between journal_init_*() and jbd2_journal_load().
1900 *
1901 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1902 * we merely suppress recovery.
1903 */
1904
1905 int jbd2_journal_wipe(journal_t *journal, int write)
1906 {
1907 int err = 0;
1908
1909 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1910
1911 err = load_superblock(journal);
1912 if (err)
1913 return err;
1914
1915 if (!journal->j_tail)
1916 goto no_recovery;
1917
1918 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1919 write ? "Clearing" : "Ignoring");
1920
1921 err = jbd2_journal_skip_recovery(journal);
1922 if (write) {
1923 /* Lock to make assertions happy... */
1924 mutex_lock(&journal->j_checkpoint_mutex);
1925 jbd2_mark_journal_empty(journal);
1926 mutex_unlock(&journal->j_checkpoint_mutex);
1927 }
1928
1929 no_recovery:
1930 return err;
1931 }
1932
1933 /*
1934 * Journal abort has very specific semantics, which we describe
1935 * for journal abort.
1936 *
1937 * Two internal functions, which provide abort to the jbd layer
1938 * itself are here.
1939 */
1940
1941 /*
1942 * Quick version for internal journal use (doesn't lock the journal).
1943 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1944 * and don't attempt to make any other journal updates.
1945 */
1946 void __jbd2_journal_abort_hard(journal_t *journal)
1947 {
1948 transaction_t *transaction;
1949
1950 if (journal->j_flags & JBD2_ABORT)
1951 return;
1952
1953 printk(KERN_ERR "Aborting journal on device %s.\n",
1954 journal->j_devname);
1955
1956 write_lock(&journal->j_state_lock);
1957 journal->j_flags |= JBD2_ABORT;
1958 transaction = journal->j_running_transaction;
1959 if (transaction)
1960 __jbd2_log_start_commit(journal, transaction->t_tid);
1961 write_unlock(&journal->j_state_lock);
1962 }
1963
1964 /* Soft abort: record the abort error status in the journal superblock,
1965 * but don't do any other IO. */
1966 static void __journal_abort_soft (journal_t *journal, int errno)
1967 {
1968 if (journal->j_flags & JBD2_ABORT)
1969 return;
1970
1971 if (!journal->j_errno)
1972 journal->j_errno = errno;
1973
1974 __jbd2_journal_abort_hard(journal);
1975
1976 if (errno)
1977 jbd2_journal_update_sb_errno(journal);
1978 }
1979
1980 /**
1981 * void jbd2_journal_abort () - Shutdown the journal immediately.
1982 * @journal: the journal to shutdown.
1983 * @errno: an error number to record in the journal indicating
1984 * the reason for the shutdown.
1985 *
1986 * Perform a complete, immediate shutdown of the ENTIRE
1987 * journal (not of a single transaction). This operation cannot be
1988 * undone without closing and reopening the journal.
1989 *
1990 * The jbd2_journal_abort function is intended to support higher level error
1991 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1992 * mode.
1993 *
1994 * Journal abort has very specific semantics. Any existing dirty,
1995 * unjournaled buffers in the main filesystem will still be written to
1996 * disk by bdflush, but the journaling mechanism will be suspended
1997 * immediately and no further transaction commits will be honoured.
1998 *
1999 * Any dirty, journaled buffers will be written back to disk without
2000 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2001 * filesystem, but we _do_ attempt to leave as much data as possible
2002 * behind for fsck to use for cleanup.
2003 *
2004 * Any attempt to get a new transaction handle on a journal which is in
2005 * ABORT state will just result in an -EROFS error return. A
2006 * jbd2_journal_stop on an existing handle will return -EIO if we have
2007 * entered abort state during the update.
2008 *
2009 * Recursive transactions are not disturbed by journal abort until the
2010 * final jbd2_journal_stop, which will receive the -EIO error.
2011 *
2012 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2013 * which will be recorded (if possible) in the journal superblock. This
2014 * allows a client to record failure conditions in the middle of a
2015 * transaction without having to complete the transaction to record the
2016 * failure to disk. ext3_error, for example, now uses this
2017 * functionality.
2018 *
2019 * Errors which originate from within the journaling layer will NOT
2020 * supply an errno; a null errno implies that absolutely no further
2021 * writes are done to the journal (unless there are any already in
2022 * progress).
2023 *
2024 */
2025
2026 void jbd2_journal_abort(journal_t *journal, int errno)
2027 {
2028 __journal_abort_soft(journal, errno);
2029 }
2030
2031 /**
2032 * int jbd2_journal_errno () - returns the journal's error state.
2033 * @journal: journal to examine.
2034 *
2035 * This is the errno number set with jbd2_journal_abort(), the last
2036 * time the journal was mounted - if the journal was stopped
2037 * without calling abort this will be 0.
2038 *
2039 * If the journal has been aborted on this mount time -EROFS will
2040 * be returned.
2041 */
2042 int jbd2_journal_errno(journal_t *journal)
2043 {
2044 int err;
2045
2046 read_lock(&journal->j_state_lock);
2047 if (journal->j_flags & JBD2_ABORT)
2048 err = -EROFS;
2049 else
2050 err = journal->j_errno;
2051 read_unlock(&journal->j_state_lock);
2052 return err;
2053 }
2054
2055 /**
2056 * int jbd2_journal_clear_err () - clears the journal's error state
2057 * @journal: journal to act on.
2058 *
2059 * An error must be cleared or acked to take a FS out of readonly
2060 * mode.
2061 */
2062 int jbd2_journal_clear_err(journal_t *journal)
2063 {
2064 int err = 0;
2065
2066 write_lock(&journal->j_state_lock);
2067 if (journal->j_flags & JBD2_ABORT)
2068 err = -EROFS;
2069 else
2070 journal->j_errno = 0;
2071 write_unlock(&journal->j_state_lock);
2072 return err;
2073 }
2074
2075 /**
2076 * void jbd2_journal_ack_err() - Ack journal err.
2077 * @journal: journal to act on.
2078 *
2079 * An error must be cleared or acked to take a FS out of readonly
2080 * mode.
2081 */
2082 void jbd2_journal_ack_err(journal_t *journal)
2083 {
2084 write_lock(&journal->j_state_lock);
2085 if (journal->j_errno)
2086 journal->j_flags |= JBD2_ACK_ERR;
2087 write_unlock(&journal->j_state_lock);
2088 }
2089
2090 int jbd2_journal_blocks_per_page(struct inode *inode)
2091 {
2092 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2093 }
2094
2095 /*
2096 * helper functions to deal with 32 or 64bit block numbers.
2097 */
2098 size_t journal_tag_bytes(journal_t *journal)
2099 {
2100 journal_block_tag_t tag;
2101 size_t x = 0;
2102
2103 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2104 x += sizeof(tag.t_checksum);
2105
2106 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2107 return x + JBD2_TAG_SIZE64;
2108 else
2109 return x + JBD2_TAG_SIZE32;
2110 }
2111
2112 /*
2113 * JBD memory management
2114 *
2115 * These functions are used to allocate block-sized chunks of memory
2116 * used for making copies of buffer_head data. Very often it will be
2117 * page-sized chunks of data, but sometimes it will be in
2118 * sub-page-size chunks. (For example, 16k pages on Power systems
2119 * with a 4k block file system.) For blocks smaller than a page, we
2120 * use a SLAB allocator. There are slab caches for each block size,
2121 * which are allocated at mount time, if necessary, and we only free
2122 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2123 * this reason we don't need to a mutex to protect access to
2124 * jbd2_slab[] allocating or releasing memory; only in
2125 * jbd2_journal_create_slab().
2126 */
2127 #define JBD2_MAX_SLABS 8
2128 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2129
2130 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2131 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2132 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2133 };
2134
2135
2136 static void jbd2_journal_destroy_slabs(void)
2137 {
2138 int i;
2139
2140 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2141 if (jbd2_slab[i])
2142 kmem_cache_destroy(jbd2_slab[i]);
2143 jbd2_slab[i] = NULL;
2144 }
2145 }
2146
2147 static int jbd2_journal_create_slab(size_t size)
2148 {
2149 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2150 int i = order_base_2(size) - 10;
2151 size_t slab_size;
2152
2153 if (size == PAGE_SIZE)
2154 return 0;
2155
2156 if (i >= JBD2_MAX_SLABS)
2157 return -EINVAL;
2158
2159 if (unlikely(i < 0))
2160 i = 0;
2161 mutex_lock(&jbd2_slab_create_mutex);
2162 if (jbd2_slab[i]) {
2163 mutex_unlock(&jbd2_slab_create_mutex);
2164 return 0; /* Already created */
2165 }
2166
2167 slab_size = 1 << (i+10);
2168 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2169 slab_size, 0, NULL);
2170 mutex_unlock(&jbd2_slab_create_mutex);
2171 if (!jbd2_slab[i]) {
2172 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2173 return -ENOMEM;
2174 }
2175 return 0;
2176 }
2177
2178 static struct kmem_cache *get_slab(size_t size)
2179 {
2180 int i = order_base_2(size) - 10;
2181
2182 BUG_ON(i >= JBD2_MAX_SLABS);
2183 if (unlikely(i < 0))
2184 i = 0;
2185 BUG_ON(jbd2_slab[i] == NULL);
2186 return jbd2_slab[i];
2187 }
2188
2189 void *jbd2_alloc(size_t size, gfp_t flags)
2190 {
2191 void *ptr;
2192
2193 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2194
2195 flags |= __GFP_REPEAT;
2196 if (size == PAGE_SIZE)
2197 ptr = (void *)__get_free_pages(flags, 0);
2198 else if (size > PAGE_SIZE) {
2199 int order = get_order(size);
2200
2201 if (order < 3)
2202 ptr = (void *)__get_free_pages(flags, order);
2203 else
2204 ptr = vmalloc(size);
2205 } else
2206 ptr = kmem_cache_alloc(get_slab(size), flags);
2207
2208 /* Check alignment; SLUB has gotten this wrong in the past,
2209 * and this can lead to user data corruption! */
2210 BUG_ON(((unsigned long) ptr) & (size-1));
2211
2212 return ptr;
2213 }
2214
2215 void jbd2_free(void *ptr, size_t size)
2216 {
2217 if (size == PAGE_SIZE) {
2218 free_pages((unsigned long)ptr, 0);
2219 return;
2220 }
2221 if (size > PAGE_SIZE) {
2222 int order = get_order(size);
2223
2224 if (order < 3)
2225 free_pages((unsigned long)ptr, order);
2226 else
2227 vfree(ptr);
2228 return;
2229 }
2230 kmem_cache_free(get_slab(size), ptr);
2231 };
2232
2233 /*
2234 * Journal_head storage management
2235 */
2236 static struct kmem_cache *jbd2_journal_head_cache;
2237 #ifdef CONFIG_JBD2_DEBUG
2238 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2239 #endif
2240
2241 static int jbd2_journal_init_journal_head_cache(void)
2242 {
2243 int retval;
2244
2245 J_ASSERT(jbd2_journal_head_cache == NULL);
2246 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2247 sizeof(struct journal_head),
2248 0, /* offset */
2249 SLAB_TEMPORARY, /* flags */
2250 NULL); /* ctor */
2251 retval = 0;
2252 if (!jbd2_journal_head_cache) {
2253 retval = -ENOMEM;
2254 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2255 }
2256 return retval;
2257 }
2258
2259 static void jbd2_journal_destroy_journal_head_cache(void)
2260 {
2261 if (jbd2_journal_head_cache) {
2262 kmem_cache_destroy(jbd2_journal_head_cache);
2263 jbd2_journal_head_cache = NULL;
2264 }
2265 }
2266
2267 /*
2268 * journal_head splicing and dicing
2269 */
2270 static struct journal_head *journal_alloc_journal_head(void)
2271 {
2272 struct journal_head *ret;
2273
2274 #ifdef CONFIG_JBD2_DEBUG
2275 atomic_inc(&nr_journal_heads);
2276 #endif
2277 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2278 if (!ret) {
2279 jbd_debug(1, "out of memory for journal_head\n");
2280 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2281 while (!ret) {
2282 yield();
2283 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2284 }
2285 }
2286 return ret;
2287 }
2288
2289 static void journal_free_journal_head(struct journal_head *jh)
2290 {
2291 #ifdef CONFIG_JBD2_DEBUG
2292 atomic_dec(&nr_journal_heads);
2293 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2294 #endif
2295 kmem_cache_free(jbd2_journal_head_cache, jh);
2296 }
2297
2298 /*
2299 * A journal_head is attached to a buffer_head whenever JBD has an
2300 * interest in the buffer.
2301 *
2302 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2303 * is set. This bit is tested in core kernel code where we need to take
2304 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2305 * there.
2306 *
2307 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2308 *
2309 * When a buffer has its BH_JBD bit set it is immune from being released by
2310 * core kernel code, mainly via ->b_count.
2311 *
2312 * A journal_head is detached from its buffer_head when the journal_head's
2313 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2314 * transaction (b_cp_transaction) hold their references to b_jcount.
2315 *
2316 * Various places in the kernel want to attach a journal_head to a buffer_head
2317 * _before_ attaching the journal_head to a transaction. To protect the
2318 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2319 * journal_head's b_jcount refcount by one. The caller must call
2320 * jbd2_journal_put_journal_head() to undo this.
2321 *
2322 * So the typical usage would be:
2323 *
2324 * (Attach a journal_head if needed. Increments b_jcount)
2325 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2326 * ...
2327 * (Get another reference for transaction)
2328 * jbd2_journal_grab_journal_head(bh);
2329 * jh->b_transaction = xxx;
2330 * (Put original reference)
2331 * jbd2_journal_put_journal_head(jh);
2332 */
2333
2334 /*
2335 * Give a buffer_head a journal_head.
2336 *
2337 * May sleep.
2338 */
2339 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2340 {
2341 struct journal_head *jh;
2342 struct journal_head *new_jh = NULL;
2343
2344 repeat:
2345 if (!buffer_jbd(bh)) {
2346 new_jh = journal_alloc_journal_head();
2347 memset(new_jh, 0, sizeof(*new_jh));
2348 }
2349
2350 jbd_lock_bh_journal_head(bh);
2351 if (buffer_jbd(bh)) {
2352 jh = bh2jh(bh);
2353 } else {
2354 J_ASSERT_BH(bh,
2355 (atomic_read(&bh->b_count) > 0) ||
2356 (bh->b_page && bh->b_page->mapping));
2357
2358 if (!new_jh) {
2359 jbd_unlock_bh_journal_head(bh);
2360 goto repeat;
2361 }
2362
2363 jh = new_jh;
2364 new_jh = NULL; /* We consumed it */
2365 set_buffer_jbd(bh);
2366 bh->b_private = jh;
2367 jh->b_bh = bh;
2368 get_bh(bh);
2369 BUFFER_TRACE(bh, "added journal_head");
2370 }
2371 jh->b_jcount++;
2372 jbd_unlock_bh_journal_head(bh);
2373 if (new_jh)
2374 journal_free_journal_head(new_jh);
2375 return bh->b_private;
2376 }
2377
2378 /*
2379 * Grab a ref against this buffer_head's journal_head. If it ended up not
2380 * having a journal_head, return NULL
2381 */
2382 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2383 {
2384 struct journal_head *jh = NULL;
2385
2386 jbd_lock_bh_journal_head(bh);
2387 if (buffer_jbd(bh)) {
2388 jh = bh2jh(bh);
2389 jh->b_jcount++;
2390 }
2391 jbd_unlock_bh_journal_head(bh);
2392 return jh;
2393 }
2394
2395 static void __journal_remove_journal_head(struct buffer_head *bh)
2396 {
2397 struct journal_head *jh = bh2jh(bh);
2398
2399 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2400 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2401 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2402 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2403 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2404 J_ASSERT_BH(bh, buffer_jbd(bh));
2405 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2406 BUFFER_TRACE(bh, "remove journal_head");
2407 if (jh->b_frozen_data) {
2408 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2409 jbd2_free(jh->b_frozen_data, bh->b_size);
2410 }
2411 if (jh->b_committed_data) {
2412 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2413 jbd2_free(jh->b_committed_data, bh->b_size);
2414 }
2415 bh->b_private = NULL;
2416 jh->b_bh = NULL; /* debug, really */
2417 clear_buffer_jbd(bh);
2418 journal_free_journal_head(jh);
2419 }
2420
2421 /*
2422 * Drop a reference on the passed journal_head. If it fell to zero then
2423 * release the journal_head from the buffer_head.
2424 */
2425 void jbd2_journal_put_journal_head(struct journal_head *jh)
2426 {
2427 struct buffer_head *bh = jh2bh(jh);
2428
2429 jbd_lock_bh_journal_head(bh);
2430 J_ASSERT_JH(jh, jh->b_jcount > 0);
2431 --jh->b_jcount;
2432 if (!jh->b_jcount) {
2433 __journal_remove_journal_head(bh);
2434 jbd_unlock_bh_journal_head(bh);
2435 __brelse(bh);
2436 } else
2437 jbd_unlock_bh_journal_head(bh);
2438 }
2439
2440 /*
2441 * Initialize jbd inode head
2442 */
2443 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2444 {
2445 jinode->i_transaction = NULL;
2446 jinode->i_next_transaction = NULL;
2447 jinode->i_vfs_inode = inode;
2448 jinode->i_flags = 0;
2449 INIT_LIST_HEAD(&jinode->i_list);
2450 }
2451
2452 /*
2453 * Function to be called before we start removing inode from memory (i.e.,
2454 * clear_inode() is a fine place to be called from). It removes inode from
2455 * transaction's lists.
2456 */
2457 void jbd2_journal_release_jbd_inode(journal_t *journal,
2458 struct jbd2_inode *jinode)
2459 {
2460 if (!journal)
2461 return;
2462 restart:
2463 spin_lock(&journal->j_list_lock);
2464 /* Is commit writing out inode - we have to wait */
2465 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2466 wait_queue_head_t *wq;
2467 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2468 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2469 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2470 spin_unlock(&journal->j_list_lock);
2471 schedule();
2472 finish_wait(wq, &wait.wait);
2473 goto restart;
2474 }
2475
2476 if (jinode->i_transaction) {
2477 list_del(&jinode->i_list);
2478 jinode->i_transaction = NULL;
2479 }
2480 spin_unlock(&journal->j_list_lock);
2481 }
2482
2483 /*
2484 * debugfs tunables
2485 */
2486 #ifdef CONFIG_JBD2_DEBUG
2487 u8 jbd2_journal_enable_debug __read_mostly;
2488 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2489
2490 #define JBD2_DEBUG_NAME "jbd2-debug"
2491
2492 static struct dentry *jbd2_debugfs_dir;
2493 static struct dentry *jbd2_debug;
2494
2495 static void __init jbd2_create_debugfs_entry(void)
2496 {
2497 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2498 if (jbd2_debugfs_dir)
2499 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2500 S_IRUGO | S_IWUSR,
2501 jbd2_debugfs_dir,
2502 &jbd2_journal_enable_debug);
2503 }
2504
2505 static void __exit jbd2_remove_debugfs_entry(void)
2506 {
2507 debugfs_remove(jbd2_debug);
2508 debugfs_remove(jbd2_debugfs_dir);
2509 }
2510
2511 #else
2512
2513 static void __init jbd2_create_debugfs_entry(void)
2514 {
2515 }
2516
2517 static void __exit jbd2_remove_debugfs_entry(void)
2518 {
2519 }
2520
2521 #endif
2522
2523 #ifdef CONFIG_PROC_FS
2524
2525 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2526
2527 static void __init jbd2_create_jbd_stats_proc_entry(void)
2528 {
2529 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2530 }
2531
2532 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2533 {
2534 if (proc_jbd2_stats)
2535 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2536 }
2537
2538 #else
2539
2540 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2541 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2542
2543 #endif
2544
2545 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2546
2547 static int __init jbd2_journal_init_handle_cache(void)
2548 {
2549 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2550 if (jbd2_handle_cache == NULL) {
2551 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2552 return -ENOMEM;
2553 }
2554 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2555 if (jbd2_inode_cache == NULL) {
2556 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2557 kmem_cache_destroy(jbd2_handle_cache);
2558 return -ENOMEM;
2559 }
2560 return 0;
2561 }
2562
2563 static void jbd2_journal_destroy_handle_cache(void)
2564 {
2565 if (jbd2_handle_cache)
2566 kmem_cache_destroy(jbd2_handle_cache);
2567 if (jbd2_inode_cache)
2568 kmem_cache_destroy(jbd2_inode_cache);
2569
2570 }
2571
2572 /*
2573 * Module startup and shutdown
2574 */
2575
2576 static int __init journal_init_caches(void)
2577 {
2578 int ret;
2579
2580 ret = jbd2_journal_init_revoke_caches();
2581 if (ret == 0)
2582 ret = jbd2_journal_init_journal_head_cache();
2583 if (ret == 0)
2584 ret = jbd2_journal_init_handle_cache();
2585 if (ret == 0)
2586 ret = jbd2_journal_init_transaction_cache();
2587 return ret;
2588 }
2589
2590 static void jbd2_journal_destroy_caches(void)
2591 {
2592 jbd2_journal_destroy_revoke_caches();
2593 jbd2_journal_destroy_journal_head_cache();
2594 jbd2_journal_destroy_handle_cache();
2595 jbd2_journal_destroy_transaction_cache();
2596 jbd2_journal_destroy_slabs();
2597 }
2598
2599 static int __init journal_init(void)
2600 {
2601 int ret;
2602
2603 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2604
2605 ret = journal_init_caches();
2606 if (ret == 0) {
2607 jbd2_create_debugfs_entry();
2608 jbd2_create_jbd_stats_proc_entry();
2609 } else {
2610 jbd2_journal_destroy_caches();
2611 }
2612 return ret;
2613 }
2614
2615 static void __exit journal_exit(void)
2616 {
2617 #ifdef CONFIG_JBD2_DEBUG
2618 int n = atomic_read(&nr_journal_heads);
2619 if (n)
2620 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2621 #endif
2622 jbd2_remove_debugfs_entry();
2623 jbd2_remove_jbd_stats_proc_entry();
2624 jbd2_journal_destroy_caches();
2625 }
2626
2627 MODULE_LICENSE("GPL");
2628 module_init(journal_init);
2629 module_exit(journal_exit);
2630
This page took 0.095332 seconds and 5 git commands to generate.