jbd2: only print the debugging information for tid wraparound once
[deliverable/linux.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 /*
104 * Helper function used to manage commit timeouts
105 */
106
107 static void commit_timeout(unsigned long __data)
108 {
109 struct task_struct * p = (struct task_struct *) __data;
110
111 wake_up_process(p);
112 }
113
114 /*
115 * kjournald2: The main thread function used to manage a logging device
116 * journal.
117 *
118 * This kernel thread is responsible for two things:
119 *
120 * 1) COMMIT: Every so often we need to commit the current state of the
121 * filesystem to disk. The journal thread is responsible for writing
122 * all of the metadata buffers to disk.
123 *
124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125 * of the data in that part of the log has been rewritten elsewhere on
126 * the disk. Flushing these old buffers to reclaim space in the log is
127 * known as checkpointing, and this thread is responsible for that job.
128 */
129
130 static int kjournald2(void *arg)
131 {
132 journal_t *journal = arg;
133 transaction_t *transaction;
134
135 /*
136 * Set up an interval timer which can be used to trigger a commit wakeup
137 * after the commit interval expires
138 */
139 setup_timer(&journal->j_commit_timer, commit_timeout,
140 (unsigned long)current);
141
142 /* Record that the journal thread is running */
143 journal->j_task = current;
144 wake_up(&journal->j_wait_done_commit);
145
146 /*
147 * And now, wait forever for commit wakeup events.
148 */
149 write_lock(&journal->j_state_lock);
150
151 loop:
152 if (journal->j_flags & JBD2_UNMOUNT)
153 goto end_loop;
154
155 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156 journal->j_commit_sequence, journal->j_commit_request);
157
158 if (journal->j_commit_sequence != journal->j_commit_request) {
159 jbd_debug(1, "OK, requests differ\n");
160 write_unlock(&journal->j_state_lock);
161 del_timer_sync(&journal->j_commit_timer);
162 jbd2_journal_commit_transaction(journal);
163 write_lock(&journal->j_state_lock);
164 goto loop;
165 }
166
167 wake_up(&journal->j_wait_done_commit);
168 if (freezing(current)) {
169 /*
170 * The simpler the better. Flushing journal isn't a
171 * good idea, because that depends on threads that may
172 * be already stopped.
173 */
174 jbd_debug(1, "Now suspending kjournald2\n");
175 write_unlock(&journal->j_state_lock);
176 refrigerator();
177 write_lock(&journal->j_state_lock);
178 } else {
179 /*
180 * We assume on resume that commits are already there,
181 * so we don't sleep
182 */
183 DEFINE_WAIT(wait);
184 int should_sleep = 1;
185
186 prepare_to_wait(&journal->j_wait_commit, &wait,
187 TASK_INTERRUPTIBLE);
188 if (journal->j_commit_sequence != journal->j_commit_request)
189 should_sleep = 0;
190 transaction = journal->j_running_transaction;
191 if (transaction && time_after_eq(jiffies,
192 transaction->t_expires))
193 should_sleep = 0;
194 if (journal->j_flags & JBD2_UNMOUNT)
195 should_sleep = 0;
196 if (should_sleep) {
197 write_unlock(&journal->j_state_lock);
198 schedule();
199 write_lock(&journal->j_state_lock);
200 }
201 finish_wait(&journal->j_wait_commit, &wait);
202 }
203
204 jbd_debug(1, "kjournald2 wakes\n");
205
206 /*
207 * Were we woken up by a commit wakeup event?
208 */
209 transaction = journal->j_running_transaction;
210 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211 journal->j_commit_request = transaction->t_tid;
212 jbd_debug(1, "woke because of timeout\n");
213 }
214 goto loop;
215
216 end_loop:
217 write_unlock(&journal->j_state_lock);
218 del_timer_sync(&journal->j_commit_timer);
219 journal->j_task = NULL;
220 wake_up(&journal->j_wait_done_commit);
221 jbd_debug(1, "Journal thread exiting.\n");
222 return 0;
223 }
224
225 static int jbd2_journal_start_thread(journal_t *journal)
226 {
227 struct task_struct *t;
228
229 t = kthread_run(kjournald2, journal, "jbd2/%s",
230 journal->j_devname);
231 if (IS_ERR(t))
232 return PTR_ERR(t);
233
234 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235 return 0;
236 }
237
238 static void journal_kill_thread(journal_t *journal)
239 {
240 write_lock(&journal->j_state_lock);
241 journal->j_flags |= JBD2_UNMOUNT;
242
243 while (journal->j_task) {
244 wake_up(&journal->j_wait_commit);
245 write_unlock(&journal->j_state_lock);
246 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247 write_lock(&journal->j_state_lock);
248 }
249 write_unlock(&journal->j_state_lock);
250 }
251
252 /*
253 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254 *
255 * Writes a metadata buffer to a given disk block. The actual IO is not
256 * performed but a new buffer_head is constructed which labels the data
257 * to be written with the correct destination disk block.
258 *
259 * Any magic-number escaping which needs to be done will cause a
260 * copy-out here. If the buffer happens to start with the
261 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262 * magic number is only written to the log for descripter blocks. In
263 * this case, we copy the data and replace the first word with 0, and we
264 * return a result code which indicates that this buffer needs to be
265 * marked as an escaped buffer in the corresponding log descriptor
266 * block. The missing word can then be restored when the block is read
267 * during recovery.
268 *
269 * If the source buffer has already been modified by a new transaction
270 * since we took the last commit snapshot, we use the frozen copy of
271 * that data for IO. If we end up using the existing buffer_head's data
272 * for the write, then we *have* to lock the buffer to prevent anyone
273 * else from using and possibly modifying it while the IO is in
274 * progress.
275 *
276 * The function returns a pointer to the buffer_heads to be used for IO.
277 *
278 * We assume that the journal has already been locked in this function.
279 *
280 * Return value:
281 * <0: Error
282 * >=0: Finished OK
283 *
284 * On success:
285 * Bit 0 set == escape performed on the data
286 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
287 */
288
289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290 struct journal_head *jh_in,
291 struct journal_head **jh_out,
292 unsigned long long blocknr)
293 {
294 int need_copy_out = 0;
295 int done_copy_out = 0;
296 int do_escape = 0;
297 char *mapped_data;
298 struct buffer_head *new_bh;
299 struct journal_head *new_jh;
300 struct page *new_page;
301 unsigned int new_offset;
302 struct buffer_head *bh_in = jh2bh(jh_in);
303 journal_t *journal = transaction->t_journal;
304
305 /*
306 * The buffer really shouldn't be locked: only the current committing
307 * transaction is allowed to write it, so nobody else is allowed
308 * to do any IO.
309 *
310 * akpm: except if we're journalling data, and write() output is
311 * also part of a shared mapping, and another thread has
312 * decided to launch a writepage() against this buffer.
313 */
314 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
315
316 retry_alloc:
317 new_bh = alloc_buffer_head(GFP_NOFS);
318 if (!new_bh) {
319 /*
320 * Failure is not an option, but __GFP_NOFAIL is going
321 * away; so we retry ourselves here.
322 */
323 congestion_wait(BLK_RW_ASYNC, HZ/50);
324 goto retry_alloc;
325 }
326
327 /* keep subsequent assertions sane */
328 new_bh->b_state = 0;
329 init_buffer(new_bh, NULL, NULL);
330 atomic_set(&new_bh->b_count, 1);
331 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
332
333 /*
334 * If a new transaction has already done a buffer copy-out, then
335 * we use that version of the data for the commit.
336 */
337 jbd_lock_bh_state(bh_in);
338 repeat:
339 if (jh_in->b_frozen_data) {
340 done_copy_out = 1;
341 new_page = virt_to_page(jh_in->b_frozen_data);
342 new_offset = offset_in_page(jh_in->b_frozen_data);
343 } else {
344 new_page = jh2bh(jh_in)->b_page;
345 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
346 }
347
348 mapped_data = kmap_atomic(new_page, KM_USER0);
349 /*
350 * Fire data frozen trigger if data already wasn't frozen. Do this
351 * before checking for escaping, as the trigger may modify the magic
352 * offset. If a copy-out happens afterwards, it will have the correct
353 * data in the buffer.
354 */
355 if (!done_copy_out)
356 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357 jh_in->b_triggers);
358
359 /*
360 * Check for escaping
361 */
362 if (*((__be32 *)(mapped_data + new_offset)) ==
363 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364 need_copy_out = 1;
365 do_escape = 1;
366 }
367 kunmap_atomic(mapped_data, KM_USER0);
368
369 /*
370 * Do we need to do a data copy?
371 */
372 if (need_copy_out && !done_copy_out) {
373 char *tmp;
374
375 jbd_unlock_bh_state(bh_in);
376 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377 if (!tmp) {
378 jbd2_journal_put_journal_head(new_jh);
379 return -ENOMEM;
380 }
381 jbd_lock_bh_state(bh_in);
382 if (jh_in->b_frozen_data) {
383 jbd2_free(tmp, bh_in->b_size);
384 goto repeat;
385 }
386
387 jh_in->b_frozen_data = tmp;
388 mapped_data = kmap_atomic(new_page, KM_USER0);
389 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390 kunmap_atomic(mapped_data, KM_USER0);
391
392 new_page = virt_to_page(tmp);
393 new_offset = offset_in_page(tmp);
394 done_copy_out = 1;
395
396 /*
397 * This isn't strictly necessary, as we're using frozen
398 * data for the escaping, but it keeps consistency with
399 * b_frozen_data usage.
400 */
401 jh_in->b_frozen_triggers = jh_in->b_triggers;
402 }
403
404 /*
405 * Did we need to do an escaping? Now we've done all the
406 * copying, we can finally do so.
407 */
408 if (do_escape) {
409 mapped_data = kmap_atomic(new_page, KM_USER0);
410 *((unsigned int *)(mapped_data + new_offset)) = 0;
411 kunmap_atomic(mapped_data, KM_USER0);
412 }
413
414 set_bh_page(new_bh, new_page, new_offset);
415 new_jh->b_transaction = NULL;
416 new_bh->b_size = jh2bh(jh_in)->b_size;
417 new_bh->b_bdev = transaction->t_journal->j_dev;
418 new_bh->b_blocknr = blocknr;
419 set_buffer_mapped(new_bh);
420 set_buffer_dirty(new_bh);
421
422 *jh_out = new_jh;
423
424 /*
425 * The to-be-written buffer needs to get moved to the io queue,
426 * and the original buffer whose contents we are shadowing or
427 * copying is moved to the transaction's shadow queue.
428 */
429 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430 spin_lock(&journal->j_list_lock);
431 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432 spin_unlock(&journal->j_list_lock);
433 jbd_unlock_bh_state(bh_in);
434
435 JBUFFER_TRACE(new_jh, "file as BJ_IO");
436 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437
438 return do_escape | (done_copy_out << 1);
439 }
440
441 /*
442 * Allocation code for the journal file. Manage the space left in the
443 * journal, so that we can begin checkpointing when appropriate.
444 */
445
446 /*
447 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448 *
449 * Called with the journal already locked.
450 *
451 * Called under j_state_lock
452 */
453
454 int __jbd2_log_space_left(journal_t *journal)
455 {
456 int left = journal->j_free;
457
458 /* assert_spin_locked(&journal->j_state_lock); */
459
460 /*
461 * Be pessimistic here about the number of those free blocks which
462 * might be required for log descriptor control blocks.
463 */
464
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
466
467 left -= MIN_LOG_RESERVED_BLOCKS;
468
469 if (left <= 0)
470 return 0;
471 left -= (left >> 3);
472 return left;
473 }
474
475 /*
476 * Called with j_state_lock locked for writing.
477 * Returns true if a transaction commit was started.
478 */
479 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 {
481 /*
482 * The only transaction we can possibly wait upon is the
483 * currently running transaction (if it exists). Otherwise,
484 * the target tid must be an old one.
485 */
486 if (journal->j_running_transaction &&
487 journal->j_running_transaction->t_tid == target) {
488 /*
489 * We want a new commit: OK, mark the request and wakeup the
490 * commit thread. We do _not_ do the commit ourselves.
491 */
492
493 journal->j_commit_request = target;
494 jbd_debug(1, "JBD: requesting commit %d/%d\n",
495 journal->j_commit_request,
496 journal->j_commit_sequence);
497 wake_up(&journal->j_wait_commit);
498 return 1;
499 } else if (!tid_geq(journal->j_commit_request, target))
500 /* This should never happen, but if it does, preserve
501 the evidence before kjournald goes into a loop and
502 increments j_commit_sequence beyond all recognition. */
503 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence,
506 target, journal->j_running_transaction ?
507 journal->j_running_transaction->t_tid : 0);
508 return 0;
509 }
510
511 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
512 {
513 int ret;
514
515 write_lock(&journal->j_state_lock);
516 ret = __jbd2_log_start_commit(journal, tid);
517 write_unlock(&journal->j_state_lock);
518 return ret;
519 }
520
521 /*
522 * Force and wait upon a commit if the calling process is not within
523 * transaction. This is used for forcing out undo-protected data which contains
524 * bitmaps, when the fs is running out of space.
525 *
526 * We can only force the running transaction if we don't have an active handle;
527 * otherwise, we will deadlock.
528 *
529 * Returns true if a transaction was started.
530 */
531 int jbd2_journal_force_commit_nested(journal_t *journal)
532 {
533 transaction_t *transaction = NULL;
534 tid_t tid;
535 int need_to_start = 0;
536
537 read_lock(&journal->j_state_lock);
538 if (journal->j_running_transaction && !current->journal_info) {
539 transaction = journal->j_running_transaction;
540 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
541 need_to_start = 1;
542 } else if (journal->j_committing_transaction)
543 transaction = journal->j_committing_transaction;
544
545 if (!transaction) {
546 read_unlock(&journal->j_state_lock);
547 return 0; /* Nothing to retry */
548 }
549
550 tid = transaction->t_tid;
551 read_unlock(&journal->j_state_lock);
552 if (need_to_start)
553 jbd2_log_start_commit(journal, tid);
554 jbd2_log_wait_commit(journal, tid);
555 return 1;
556 }
557
558 /*
559 * Start a commit of the current running transaction (if any). Returns true
560 * if a transaction is going to be committed (or is currently already
561 * committing), and fills its tid in at *ptid
562 */
563 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
564 {
565 int ret = 0;
566
567 write_lock(&journal->j_state_lock);
568 if (journal->j_running_transaction) {
569 tid_t tid = journal->j_running_transaction->t_tid;
570
571 __jbd2_log_start_commit(journal, tid);
572 /* There's a running transaction and we've just made sure
573 * it's commit has been scheduled. */
574 if (ptid)
575 *ptid = tid;
576 ret = 1;
577 } else if (journal->j_committing_transaction) {
578 /*
579 * If ext3_write_super() recently started a commit, then we
580 * have to wait for completion of that transaction
581 */
582 if (ptid)
583 *ptid = journal->j_committing_transaction->t_tid;
584 ret = 1;
585 }
586 write_unlock(&journal->j_state_lock);
587 return ret;
588 }
589
590 /*
591 * Wait for a specified commit to complete.
592 * The caller may not hold the journal lock.
593 */
594 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
595 {
596 int err = 0;
597
598 read_lock(&journal->j_state_lock);
599 #ifdef CONFIG_JBD2_DEBUG
600 if (!tid_geq(journal->j_commit_request, tid)) {
601 printk(KERN_EMERG
602 "%s: error: j_commit_request=%d, tid=%d\n",
603 __func__, journal->j_commit_request, tid);
604 }
605 #endif
606 while (tid_gt(tid, journal->j_commit_sequence)) {
607 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
608 tid, journal->j_commit_sequence);
609 wake_up(&journal->j_wait_commit);
610 read_unlock(&journal->j_state_lock);
611 wait_event(journal->j_wait_done_commit,
612 !tid_gt(tid, journal->j_commit_sequence));
613 read_lock(&journal->j_state_lock);
614 }
615 read_unlock(&journal->j_state_lock);
616
617 if (unlikely(is_journal_aborted(journal))) {
618 printk(KERN_EMERG "journal commit I/O error\n");
619 err = -EIO;
620 }
621 return err;
622 }
623
624 /*
625 * Log buffer allocation routines:
626 */
627
628 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
629 {
630 unsigned long blocknr;
631
632 write_lock(&journal->j_state_lock);
633 J_ASSERT(journal->j_free > 1);
634
635 blocknr = journal->j_head;
636 journal->j_head++;
637 journal->j_free--;
638 if (journal->j_head == journal->j_last)
639 journal->j_head = journal->j_first;
640 write_unlock(&journal->j_state_lock);
641 return jbd2_journal_bmap(journal, blocknr, retp);
642 }
643
644 /*
645 * Conversion of logical to physical block numbers for the journal
646 *
647 * On external journals the journal blocks are identity-mapped, so
648 * this is a no-op. If needed, we can use j_blk_offset - everything is
649 * ready.
650 */
651 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
652 unsigned long long *retp)
653 {
654 int err = 0;
655 unsigned long long ret;
656
657 if (journal->j_inode) {
658 ret = bmap(journal->j_inode, blocknr);
659 if (ret)
660 *retp = ret;
661 else {
662 printk(KERN_ALERT "%s: journal block not found "
663 "at offset %lu on %s\n",
664 __func__, blocknr, journal->j_devname);
665 err = -EIO;
666 __journal_abort_soft(journal, err);
667 }
668 } else {
669 *retp = blocknr; /* +journal->j_blk_offset */
670 }
671 return err;
672 }
673
674 /*
675 * We play buffer_head aliasing tricks to write data/metadata blocks to
676 * the journal without copying their contents, but for journal
677 * descriptor blocks we do need to generate bona fide buffers.
678 *
679 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
680 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
681 * But we don't bother doing that, so there will be coherency problems with
682 * mmaps of blockdevs which hold live JBD-controlled filesystems.
683 */
684 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
685 {
686 struct buffer_head *bh;
687 unsigned long long blocknr;
688 int err;
689
690 err = jbd2_journal_next_log_block(journal, &blocknr);
691
692 if (err)
693 return NULL;
694
695 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
696 if (!bh)
697 return NULL;
698 lock_buffer(bh);
699 memset(bh->b_data, 0, journal->j_blocksize);
700 set_buffer_uptodate(bh);
701 unlock_buffer(bh);
702 BUFFER_TRACE(bh, "return this buffer");
703 return jbd2_journal_add_journal_head(bh);
704 }
705
706 struct jbd2_stats_proc_session {
707 journal_t *journal;
708 struct transaction_stats_s *stats;
709 int start;
710 int max;
711 };
712
713 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
714 {
715 return *pos ? NULL : SEQ_START_TOKEN;
716 }
717
718 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
719 {
720 return NULL;
721 }
722
723 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
724 {
725 struct jbd2_stats_proc_session *s = seq->private;
726
727 if (v != SEQ_START_TOKEN)
728 return 0;
729 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
730 s->stats->ts_tid,
731 s->journal->j_max_transaction_buffers);
732 if (s->stats->ts_tid == 0)
733 return 0;
734 seq_printf(seq, "average: \n %ums waiting for transaction\n",
735 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
736 seq_printf(seq, " %ums running transaction\n",
737 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
738 seq_printf(seq, " %ums transaction was being locked\n",
739 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
740 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
741 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
742 seq_printf(seq, " %ums logging transaction\n",
743 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
744 seq_printf(seq, " %lluus average transaction commit time\n",
745 div_u64(s->journal->j_average_commit_time, 1000));
746 seq_printf(seq, " %lu handles per transaction\n",
747 s->stats->run.rs_handle_count / s->stats->ts_tid);
748 seq_printf(seq, " %lu blocks per transaction\n",
749 s->stats->run.rs_blocks / s->stats->ts_tid);
750 seq_printf(seq, " %lu logged blocks per transaction\n",
751 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
752 return 0;
753 }
754
755 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
756 {
757 }
758
759 static const struct seq_operations jbd2_seq_info_ops = {
760 .start = jbd2_seq_info_start,
761 .next = jbd2_seq_info_next,
762 .stop = jbd2_seq_info_stop,
763 .show = jbd2_seq_info_show,
764 };
765
766 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
767 {
768 journal_t *journal = PDE(inode)->data;
769 struct jbd2_stats_proc_session *s;
770 int rc, size;
771
772 s = kmalloc(sizeof(*s), GFP_KERNEL);
773 if (s == NULL)
774 return -ENOMEM;
775 size = sizeof(struct transaction_stats_s);
776 s->stats = kmalloc(size, GFP_KERNEL);
777 if (s->stats == NULL) {
778 kfree(s);
779 return -ENOMEM;
780 }
781 spin_lock(&journal->j_history_lock);
782 memcpy(s->stats, &journal->j_stats, size);
783 s->journal = journal;
784 spin_unlock(&journal->j_history_lock);
785
786 rc = seq_open(file, &jbd2_seq_info_ops);
787 if (rc == 0) {
788 struct seq_file *m = file->private_data;
789 m->private = s;
790 } else {
791 kfree(s->stats);
792 kfree(s);
793 }
794 return rc;
795
796 }
797
798 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
799 {
800 struct seq_file *seq = file->private_data;
801 struct jbd2_stats_proc_session *s = seq->private;
802 kfree(s->stats);
803 kfree(s);
804 return seq_release(inode, file);
805 }
806
807 static const struct file_operations jbd2_seq_info_fops = {
808 .owner = THIS_MODULE,
809 .open = jbd2_seq_info_open,
810 .read = seq_read,
811 .llseek = seq_lseek,
812 .release = jbd2_seq_info_release,
813 };
814
815 static struct proc_dir_entry *proc_jbd2_stats;
816
817 static void jbd2_stats_proc_init(journal_t *journal)
818 {
819 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
820 if (journal->j_proc_entry) {
821 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
822 &jbd2_seq_info_fops, journal);
823 }
824 }
825
826 static void jbd2_stats_proc_exit(journal_t *journal)
827 {
828 remove_proc_entry("info", journal->j_proc_entry);
829 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
830 }
831
832 /*
833 * Management for journal control blocks: functions to create and
834 * destroy journal_t structures, and to initialise and read existing
835 * journal blocks from disk. */
836
837 /* First: create and setup a journal_t object in memory. We initialise
838 * very few fields yet: that has to wait until we have created the
839 * journal structures from from scratch, or loaded them from disk. */
840
841 static journal_t * journal_init_common (void)
842 {
843 journal_t *journal;
844 int err;
845
846 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
847 if (!journal)
848 return NULL;
849
850 init_waitqueue_head(&journal->j_wait_transaction_locked);
851 init_waitqueue_head(&journal->j_wait_logspace);
852 init_waitqueue_head(&journal->j_wait_done_commit);
853 init_waitqueue_head(&journal->j_wait_checkpoint);
854 init_waitqueue_head(&journal->j_wait_commit);
855 init_waitqueue_head(&journal->j_wait_updates);
856 mutex_init(&journal->j_barrier);
857 mutex_init(&journal->j_checkpoint_mutex);
858 spin_lock_init(&journal->j_revoke_lock);
859 spin_lock_init(&journal->j_list_lock);
860 rwlock_init(&journal->j_state_lock);
861
862 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
863 journal->j_min_batch_time = 0;
864 journal->j_max_batch_time = 15000; /* 15ms */
865
866 /* The journal is marked for error until we succeed with recovery! */
867 journal->j_flags = JBD2_ABORT;
868
869 /* Set up a default-sized revoke table for the new mount. */
870 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
871 if (err) {
872 kfree(journal);
873 return NULL;
874 }
875
876 spin_lock_init(&journal->j_history_lock);
877
878 return journal;
879 }
880
881 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
882 *
883 * Create a journal structure assigned some fixed set of disk blocks to
884 * the journal. We don't actually touch those disk blocks yet, but we
885 * need to set up all of the mapping information to tell the journaling
886 * system where the journal blocks are.
887 *
888 */
889
890 /**
891 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
892 * @bdev: Block device on which to create the journal
893 * @fs_dev: Device which hold journalled filesystem for this journal.
894 * @start: Block nr Start of journal.
895 * @len: Length of the journal in blocks.
896 * @blocksize: blocksize of journalling device
897 *
898 * Returns: a newly created journal_t *
899 *
900 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
901 * range of blocks on an arbitrary block device.
902 *
903 */
904 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
905 struct block_device *fs_dev,
906 unsigned long long start, int len, int blocksize)
907 {
908 journal_t *journal = journal_init_common();
909 struct buffer_head *bh;
910 char *p;
911 int n;
912
913 if (!journal)
914 return NULL;
915
916 /* journal descriptor can store up to n blocks -bzzz */
917 journal->j_blocksize = blocksize;
918 journal->j_dev = bdev;
919 journal->j_fs_dev = fs_dev;
920 journal->j_blk_offset = start;
921 journal->j_maxlen = len;
922 bdevname(journal->j_dev, journal->j_devname);
923 p = journal->j_devname;
924 while ((p = strchr(p, '/')))
925 *p = '!';
926 jbd2_stats_proc_init(journal);
927 n = journal->j_blocksize / sizeof(journal_block_tag_t);
928 journal->j_wbufsize = n;
929 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
930 if (!journal->j_wbuf) {
931 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
932 __func__);
933 goto out_err;
934 }
935
936 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
937 if (!bh) {
938 printk(KERN_ERR
939 "%s: Cannot get buffer for journal superblock\n",
940 __func__);
941 goto out_err;
942 }
943 journal->j_sb_buffer = bh;
944 journal->j_superblock = (journal_superblock_t *)bh->b_data;
945
946 return journal;
947 out_err:
948 kfree(journal->j_wbuf);
949 jbd2_stats_proc_exit(journal);
950 kfree(journal);
951 return NULL;
952 }
953
954 /**
955 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
956 * @inode: An inode to create the journal in
957 *
958 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
959 * the journal. The inode must exist already, must support bmap() and
960 * must have all data blocks preallocated.
961 */
962 journal_t * jbd2_journal_init_inode (struct inode *inode)
963 {
964 struct buffer_head *bh;
965 journal_t *journal = journal_init_common();
966 char *p;
967 int err;
968 int n;
969 unsigned long long blocknr;
970
971 if (!journal)
972 return NULL;
973
974 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
975 journal->j_inode = inode;
976 bdevname(journal->j_dev, journal->j_devname);
977 p = journal->j_devname;
978 while ((p = strchr(p, '/')))
979 *p = '!';
980 p = journal->j_devname + strlen(journal->j_devname);
981 sprintf(p, "-%lu", journal->j_inode->i_ino);
982 jbd_debug(1,
983 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
984 journal, inode->i_sb->s_id, inode->i_ino,
985 (long long) inode->i_size,
986 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
987
988 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
989 journal->j_blocksize = inode->i_sb->s_blocksize;
990 jbd2_stats_proc_init(journal);
991
992 /* journal descriptor can store up to n blocks -bzzz */
993 n = journal->j_blocksize / sizeof(journal_block_tag_t);
994 journal->j_wbufsize = n;
995 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
996 if (!journal->j_wbuf) {
997 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
998 __func__);
999 goto out_err;
1000 }
1001
1002 err = jbd2_journal_bmap(journal, 0, &blocknr);
1003 /* If that failed, give up */
1004 if (err) {
1005 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1006 __func__);
1007 goto out_err;
1008 }
1009
1010 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1011 if (!bh) {
1012 printk(KERN_ERR
1013 "%s: Cannot get buffer for journal superblock\n",
1014 __func__);
1015 goto out_err;
1016 }
1017 journal->j_sb_buffer = bh;
1018 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1019
1020 return journal;
1021 out_err:
1022 kfree(journal->j_wbuf);
1023 jbd2_stats_proc_exit(journal);
1024 kfree(journal);
1025 return NULL;
1026 }
1027
1028 /*
1029 * If the journal init or create aborts, we need to mark the journal
1030 * superblock as being NULL to prevent the journal destroy from writing
1031 * back a bogus superblock.
1032 */
1033 static void journal_fail_superblock (journal_t *journal)
1034 {
1035 struct buffer_head *bh = journal->j_sb_buffer;
1036 brelse(bh);
1037 journal->j_sb_buffer = NULL;
1038 }
1039
1040 /*
1041 * Given a journal_t structure, initialise the various fields for
1042 * startup of a new journaling session. We use this both when creating
1043 * a journal, and after recovering an old journal to reset it for
1044 * subsequent use.
1045 */
1046
1047 static int journal_reset(journal_t *journal)
1048 {
1049 journal_superblock_t *sb = journal->j_superblock;
1050 unsigned long long first, last;
1051
1052 first = be32_to_cpu(sb->s_first);
1053 last = be32_to_cpu(sb->s_maxlen);
1054 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1055 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1056 first, last);
1057 journal_fail_superblock(journal);
1058 return -EINVAL;
1059 }
1060
1061 journal->j_first = first;
1062 journal->j_last = last;
1063
1064 journal->j_head = first;
1065 journal->j_tail = first;
1066 journal->j_free = last - first;
1067
1068 journal->j_tail_sequence = journal->j_transaction_sequence;
1069 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1070 journal->j_commit_request = journal->j_commit_sequence;
1071
1072 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1073
1074 /* Add the dynamic fields and write it to disk. */
1075 jbd2_journal_update_superblock(journal, 1);
1076 return jbd2_journal_start_thread(journal);
1077 }
1078
1079 /**
1080 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1081 * @journal: The journal to update.
1082 * @wait: Set to '0' if you don't want to wait for IO completion.
1083 *
1084 * Update a journal's dynamic superblock fields and write it to disk,
1085 * optionally waiting for the IO to complete.
1086 */
1087 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1088 {
1089 journal_superblock_t *sb = journal->j_superblock;
1090 struct buffer_head *bh = journal->j_sb_buffer;
1091
1092 /*
1093 * As a special case, if the on-disk copy is already marked as needing
1094 * no recovery (s_start == 0) and there are no outstanding transactions
1095 * in the filesystem, then we can safely defer the superblock update
1096 * until the next commit by setting JBD2_FLUSHED. This avoids
1097 * attempting a write to a potential-readonly device.
1098 */
1099 if (sb->s_start == 0 && journal->j_tail_sequence ==
1100 journal->j_transaction_sequence) {
1101 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1102 "(start %ld, seq %d, errno %d)\n",
1103 journal->j_tail, journal->j_tail_sequence,
1104 journal->j_errno);
1105 goto out;
1106 }
1107
1108 if (buffer_write_io_error(bh)) {
1109 /*
1110 * Oh, dear. A previous attempt to write the journal
1111 * superblock failed. This could happen because the
1112 * USB device was yanked out. Or it could happen to
1113 * be a transient write error and maybe the block will
1114 * be remapped. Nothing we can do but to retry the
1115 * write and hope for the best.
1116 */
1117 printk(KERN_ERR "JBD2: previous I/O error detected "
1118 "for journal superblock update for %s.\n",
1119 journal->j_devname);
1120 clear_buffer_write_io_error(bh);
1121 set_buffer_uptodate(bh);
1122 }
1123
1124 read_lock(&journal->j_state_lock);
1125 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1126 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1127
1128 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1129 sb->s_start = cpu_to_be32(journal->j_tail);
1130 sb->s_errno = cpu_to_be32(journal->j_errno);
1131 read_unlock(&journal->j_state_lock);
1132
1133 BUFFER_TRACE(bh, "marking dirty");
1134 mark_buffer_dirty(bh);
1135 if (wait) {
1136 sync_dirty_buffer(bh);
1137 if (buffer_write_io_error(bh)) {
1138 printk(KERN_ERR "JBD2: I/O error detected "
1139 "when updating journal superblock for %s.\n",
1140 journal->j_devname);
1141 clear_buffer_write_io_error(bh);
1142 set_buffer_uptodate(bh);
1143 }
1144 } else
1145 write_dirty_buffer(bh, WRITE);
1146
1147 out:
1148 /* If we have just flushed the log (by marking s_start==0), then
1149 * any future commit will have to be careful to update the
1150 * superblock again to re-record the true start of the log. */
1151
1152 write_lock(&journal->j_state_lock);
1153 if (sb->s_start)
1154 journal->j_flags &= ~JBD2_FLUSHED;
1155 else
1156 journal->j_flags |= JBD2_FLUSHED;
1157 write_unlock(&journal->j_state_lock);
1158 }
1159
1160 /*
1161 * Read the superblock for a given journal, performing initial
1162 * validation of the format.
1163 */
1164
1165 static int journal_get_superblock(journal_t *journal)
1166 {
1167 struct buffer_head *bh;
1168 journal_superblock_t *sb;
1169 int err = -EIO;
1170
1171 bh = journal->j_sb_buffer;
1172
1173 J_ASSERT(bh != NULL);
1174 if (!buffer_uptodate(bh)) {
1175 ll_rw_block(READ, 1, &bh);
1176 wait_on_buffer(bh);
1177 if (!buffer_uptodate(bh)) {
1178 printk (KERN_ERR
1179 "JBD: IO error reading journal superblock\n");
1180 goto out;
1181 }
1182 }
1183
1184 sb = journal->j_superblock;
1185
1186 err = -EINVAL;
1187
1188 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1189 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1190 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1191 goto out;
1192 }
1193
1194 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1195 case JBD2_SUPERBLOCK_V1:
1196 journal->j_format_version = 1;
1197 break;
1198 case JBD2_SUPERBLOCK_V2:
1199 journal->j_format_version = 2;
1200 break;
1201 default:
1202 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1203 goto out;
1204 }
1205
1206 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1207 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1208 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1209 printk (KERN_WARNING "JBD: journal file too short\n");
1210 goto out;
1211 }
1212
1213 return 0;
1214
1215 out:
1216 journal_fail_superblock(journal);
1217 return err;
1218 }
1219
1220 /*
1221 * Load the on-disk journal superblock and read the key fields into the
1222 * journal_t.
1223 */
1224
1225 static int load_superblock(journal_t *journal)
1226 {
1227 int err;
1228 journal_superblock_t *sb;
1229
1230 err = journal_get_superblock(journal);
1231 if (err)
1232 return err;
1233
1234 sb = journal->j_superblock;
1235
1236 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1237 journal->j_tail = be32_to_cpu(sb->s_start);
1238 journal->j_first = be32_to_cpu(sb->s_first);
1239 journal->j_last = be32_to_cpu(sb->s_maxlen);
1240 journal->j_errno = be32_to_cpu(sb->s_errno);
1241
1242 return 0;
1243 }
1244
1245
1246 /**
1247 * int jbd2_journal_load() - Read journal from disk.
1248 * @journal: Journal to act on.
1249 *
1250 * Given a journal_t structure which tells us which disk blocks contain
1251 * a journal, read the journal from disk to initialise the in-memory
1252 * structures.
1253 */
1254 int jbd2_journal_load(journal_t *journal)
1255 {
1256 int err;
1257 journal_superblock_t *sb;
1258
1259 err = load_superblock(journal);
1260 if (err)
1261 return err;
1262
1263 sb = journal->j_superblock;
1264 /* If this is a V2 superblock, then we have to check the
1265 * features flags on it. */
1266
1267 if (journal->j_format_version >= 2) {
1268 if ((sb->s_feature_ro_compat &
1269 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1270 (sb->s_feature_incompat &
1271 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1272 printk (KERN_WARNING
1273 "JBD: Unrecognised features on journal\n");
1274 return -EINVAL;
1275 }
1276 }
1277
1278 /*
1279 * Create a slab for this blocksize
1280 */
1281 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1282 if (err)
1283 return err;
1284
1285 /* Let the recovery code check whether it needs to recover any
1286 * data from the journal. */
1287 if (jbd2_journal_recover(journal))
1288 goto recovery_error;
1289
1290 if (journal->j_failed_commit) {
1291 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1292 "is corrupt.\n", journal->j_failed_commit,
1293 journal->j_devname);
1294 return -EIO;
1295 }
1296
1297 /* OK, we've finished with the dynamic journal bits:
1298 * reinitialise the dynamic contents of the superblock in memory
1299 * and reset them on disk. */
1300 if (journal_reset(journal))
1301 goto recovery_error;
1302
1303 journal->j_flags &= ~JBD2_ABORT;
1304 journal->j_flags |= JBD2_LOADED;
1305 return 0;
1306
1307 recovery_error:
1308 printk (KERN_WARNING "JBD: recovery failed\n");
1309 return -EIO;
1310 }
1311
1312 /**
1313 * void jbd2_journal_destroy() - Release a journal_t structure.
1314 * @journal: Journal to act on.
1315 *
1316 * Release a journal_t structure once it is no longer in use by the
1317 * journaled object.
1318 * Return <0 if we couldn't clean up the journal.
1319 */
1320 int jbd2_journal_destroy(journal_t *journal)
1321 {
1322 int err = 0;
1323
1324 /* Wait for the commit thread to wake up and die. */
1325 journal_kill_thread(journal);
1326
1327 /* Force a final log commit */
1328 if (journal->j_running_transaction)
1329 jbd2_journal_commit_transaction(journal);
1330
1331 /* Force any old transactions to disk */
1332
1333 /* Totally anal locking here... */
1334 spin_lock(&journal->j_list_lock);
1335 while (journal->j_checkpoint_transactions != NULL) {
1336 spin_unlock(&journal->j_list_lock);
1337 mutex_lock(&journal->j_checkpoint_mutex);
1338 jbd2_log_do_checkpoint(journal);
1339 mutex_unlock(&journal->j_checkpoint_mutex);
1340 spin_lock(&journal->j_list_lock);
1341 }
1342
1343 J_ASSERT(journal->j_running_transaction == NULL);
1344 J_ASSERT(journal->j_committing_transaction == NULL);
1345 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1346 spin_unlock(&journal->j_list_lock);
1347
1348 if (journal->j_sb_buffer) {
1349 if (!is_journal_aborted(journal)) {
1350 /* We can now mark the journal as empty. */
1351 journal->j_tail = 0;
1352 journal->j_tail_sequence =
1353 ++journal->j_transaction_sequence;
1354 jbd2_journal_update_superblock(journal, 1);
1355 } else {
1356 err = -EIO;
1357 }
1358 brelse(journal->j_sb_buffer);
1359 }
1360
1361 if (journal->j_proc_entry)
1362 jbd2_stats_proc_exit(journal);
1363 if (journal->j_inode)
1364 iput(journal->j_inode);
1365 if (journal->j_revoke)
1366 jbd2_journal_destroy_revoke(journal);
1367 kfree(journal->j_wbuf);
1368 kfree(journal);
1369
1370 return err;
1371 }
1372
1373
1374 /**
1375 *int jbd2_journal_check_used_features () - Check if features specified are used.
1376 * @journal: Journal to check.
1377 * @compat: bitmask of compatible features
1378 * @ro: bitmask of features that force read-only mount
1379 * @incompat: bitmask of incompatible features
1380 *
1381 * Check whether the journal uses all of a given set of
1382 * features. Return true (non-zero) if it does.
1383 **/
1384
1385 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1386 unsigned long ro, unsigned long incompat)
1387 {
1388 journal_superblock_t *sb;
1389
1390 if (!compat && !ro && !incompat)
1391 return 1;
1392 /* Load journal superblock if it is not loaded yet. */
1393 if (journal->j_format_version == 0 &&
1394 journal_get_superblock(journal) != 0)
1395 return 0;
1396 if (journal->j_format_version == 1)
1397 return 0;
1398
1399 sb = journal->j_superblock;
1400
1401 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1402 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1403 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1404 return 1;
1405
1406 return 0;
1407 }
1408
1409 /**
1410 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1411 * @journal: Journal to check.
1412 * @compat: bitmask of compatible features
1413 * @ro: bitmask of features that force read-only mount
1414 * @incompat: bitmask of incompatible features
1415 *
1416 * Check whether the journaling code supports the use of
1417 * all of a given set of features on this journal. Return true
1418 * (non-zero) if it can. */
1419
1420 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1421 unsigned long ro, unsigned long incompat)
1422 {
1423 if (!compat && !ro && !incompat)
1424 return 1;
1425
1426 /* We can support any known requested features iff the
1427 * superblock is in version 2. Otherwise we fail to support any
1428 * extended sb features. */
1429
1430 if (journal->j_format_version != 2)
1431 return 0;
1432
1433 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1434 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1435 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1436 return 1;
1437
1438 return 0;
1439 }
1440
1441 /**
1442 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1443 * @journal: Journal to act on.
1444 * @compat: bitmask of compatible features
1445 * @ro: bitmask of features that force read-only mount
1446 * @incompat: bitmask of incompatible features
1447 *
1448 * Mark a given journal feature as present on the
1449 * superblock. Returns true if the requested features could be set.
1450 *
1451 */
1452
1453 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1454 unsigned long ro, unsigned long incompat)
1455 {
1456 journal_superblock_t *sb;
1457
1458 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1459 return 1;
1460
1461 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1462 return 0;
1463
1464 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1465 compat, ro, incompat);
1466
1467 sb = journal->j_superblock;
1468
1469 sb->s_feature_compat |= cpu_to_be32(compat);
1470 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1471 sb->s_feature_incompat |= cpu_to_be32(incompat);
1472
1473 return 1;
1474 }
1475
1476 /*
1477 * jbd2_journal_clear_features () - Clear a given journal feature in the
1478 * superblock
1479 * @journal: Journal to act on.
1480 * @compat: bitmask of compatible features
1481 * @ro: bitmask of features that force read-only mount
1482 * @incompat: bitmask of incompatible features
1483 *
1484 * Clear a given journal feature as present on the
1485 * superblock.
1486 */
1487 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1488 unsigned long ro, unsigned long incompat)
1489 {
1490 journal_superblock_t *sb;
1491
1492 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1493 compat, ro, incompat);
1494
1495 sb = journal->j_superblock;
1496
1497 sb->s_feature_compat &= ~cpu_to_be32(compat);
1498 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1499 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1500 }
1501 EXPORT_SYMBOL(jbd2_journal_clear_features);
1502
1503 /**
1504 * int jbd2_journal_update_format () - Update on-disk journal structure.
1505 * @journal: Journal to act on.
1506 *
1507 * Given an initialised but unloaded journal struct, poke about in the
1508 * on-disk structure to update it to the most recent supported version.
1509 */
1510 int jbd2_journal_update_format (journal_t *journal)
1511 {
1512 journal_superblock_t *sb;
1513 int err;
1514
1515 err = journal_get_superblock(journal);
1516 if (err)
1517 return err;
1518
1519 sb = journal->j_superblock;
1520
1521 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1522 case JBD2_SUPERBLOCK_V2:
1523 return 0;
1524 case JBD2_SUPERBLOCK_V1:
1525 return journal_convert_superblock_v1(journal, sb);
1526 default:
1527 break;
1528 }
1529 return -EINVAL;
1530 }
1531
1532 static int journal_convert_superblock_v1(journal_t *journal,
1533 journal_superblock_t *sb)
1534 {
1535 int offset, blocksize;
1536 struct buffer_head *bh;
1537
1538 printk(KERN_WARNING
1539 "JBD: Converting superblock from version 1 to 2.\n");
1540
1541 /* Pre-initialise new fields to zero */
1542 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1543 blocksize = be32_to_cpu(sb->s_blocksize);
1544 memset(&sb->s_feature_compat, 0, blocksize-offset);
1545
1546 sb->s_nr_users = cpu_to_be32(1);
1547 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1548 journal->j_format_version = 2;
1549
1550 bh = journal->j_sb_buffer;
1551 BUFFER_TRACE(bh, "marking dirty");
1552 mark_buffer_dirty(bh);
1553 sync_dirty_buffer(bh);
1554 return 0;
1555 }
1556
1557
1558 /**
1559 * int jbd2_journal_flush () - Flush journal
1560 * @journal: Journal to act on.
1561 *
1562 * Flush all data for a given journal to disk and empty the journal.
1563 * Filesystems can use this when remounting readonly to ensure that
1564 * recovery does not need to happen on remount.
1565 */
1566
1567 int jbd2_journal_flush(journal_t *journal)
1568 {
1569 int err = 0;
1570 transaction_t *transaction = NULL;
1571 unsigned long old_tail;
1572
1573 write_lock(&journal->j_state_lock);
1574
1575 /* Force everything buffered to the log... */
1576 if (journal->j_running_transaction) {
1577 transaction = journal->j_running_transaction;
1578 __jbd2_log_start_commit(journal, transaction->t_tid);
1579 } else if (journal->j_committing_transaction)
1580 transaction = journal->j_committing_transaction;
1581
1582 /* Wait for the log commit to complete... */
1583 if (transaction) {
1584 tid_t tid = transaction->t_tid;
1585
1586 write_unlock(&journal->j_state_lock);
1587 jbd2_log_wait_commit(journal, tid);
1588 } else {
1589 write_unlock(&journal->j_state_lock);
1590 }
1591
1592 /* ...and flush everything in the log out to disk. */
1593 spin_lock(&journal->j_list_lock);
1594 while (!err && journal->j_checkpoint_transactions != NULL) {
1595 spin_unlock(&journal->j_list_lock);
1596 mutex_lock(&journal->j_checkpoint_mutex);
1597 err = jbd2_log_do_checkpoint(journal);
1598 mutex_unlock(&journal->j_checkpoint_mutex);
1599 spin_lock(&journal->j_list_lock);
1600 }
1601 spin_unlock(&journal->j_list_lock);
1602
1603 if (is_journal_aborted(journal))
1604 return -EIO;
1605
1606 jbd2_cleanup_journal_tail(journal);
1607
1608 /* Finally, mark the journal as really needing no recovery.
1609 * This sets s_start==0 in the underlying superblock, which is
1610 * the magic code for a fully-recovered superblock. Any future
1611 * commits of data to the journal will restore the current
1612 * s_start value. */
1613 write_lock(&journal->j_state_lock);
1614 old_tail = journal->j_tail;
1615 journal->j_tail = 0;
1616 write_unlock(&journal->j_state_lock);
1617 jbd2_journal_update_superblock(journal, 1);
1618 write_lock(&journal->j_state_lock);
1619 journal->j_tail = old_tail;
1620
1621 J_ASSERT(!journal->j_running_transaction);
1622 J_ASSERT(!journal->j_committing_transaction);
1623 J_ASSERT(!journal->j_checkpoint_transactions);
1624 J_ASSERT(journal->j_head == journal->j_tail);
1625 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1626 write_unlock(&journal->j_state_lock);
1627 return 0;
1628 }
1629
1630 /**
1631 * int jbd2_journal_wipe() - Wipe journal contents
1632 * @journal: Journal to act on.
1633 * @write: flag (see below)
1634 *
1635 * Wipe out all of the contents of a journal, safely. This will produce
1636 * a warning if the journal contains any valid recovery information.
1637 * Must be called between journal_init_*() and jbd2_journal_load().
1638 *
1639 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1640 * we merely suppress recovery.
1641 */
1642
1643 int jbd2_journal_wipe(journal_t *journal, int write)
1644 {
1645 int err = 0;
1646
1647 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1648
1649 err = load_superblock(journal);
1650 if (err)
1651 return err;
1652
1653 if (!journal->j_tail)
1654 goto no_recovery;
1655
1656 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1657 write ? "Clearing" : "Ignoring");
1658
1659 err = jbd2_journal_skip_recovery(journal);
1660 if (write)
1661 jbd2_journal_update_superblock(journal, 1);
1662
1663 no_recovery:
1664 return err;
1665 }
1666
1667 /*
1668 * Journal abort has very specific semantics, which we describe
1669 * for journal abort.
1670 *
1671 * Two internal functions, which provide abort to the jbd layer
1672 * itself are here.
1673 */
1674
1675 /*
1676 * Quick version for internal journal use (doesn't lock the journal).
1677 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1678 * and don't attempt to make any other journal updates.
1679 */
1680 void __jbd2_journal_abort_hard(journal_t *journal)
1681 {
1682 transaction_t *transaction;
1683
1684 if (journal->j_flags & JBD2_ABORT)
1685 return;
1686
1687 printk(KERN_ERR "Aborting journal on device %s.\n",
1688 journal->j_devname);
1689
1690 write_lock(&journal->j_state_lock);
1691 journal->j_flags |= JBD2_ABORT;
1692 transaction = journal->j_running_transaction;
1693 if (transaction)
1694 __jbd2_log_start_commit(journal, transaction->t_tid);
1695 write_unlock(&journal->j_state_lock);
1696 }
1697
1698 /* Soft abort: record the abort error status in the journal superblock,
1699 * but don't do any other IO. */
1700 static void __journal_abort_soft (journal_t *journal, int errno)
1701 {
1702 if (journal->j_flags & JBD2_ABORT)
1703 return;
1704
1705 if (!journal->j_errno)
1706 journal->j_errno = errno;
1707
1708 __jbd2_journal_abort_hard(journal);
1709
1710 if (errno)
1711 jbd2_journal_update_superblock(journal, 1);
1712 }
1713
1714 /**
1715 * void jbd2_journal_abort () - Shutdown the journal immediately.
1716 * @journal: the journal to shutdown.
1717 * @errno: an error number to record in the journal indicating
1718 * the reason for the shutdown.
1719 *
1720 * Perform a complete, immediate shutdown of the ENTIRE
1721 * journal (not of a single transaction). This operation cannot be
1722 * undone without closing and reopening the journal.
1723 *
1724 * The jbd2_journal_abort function is intended to support higher level error
1725 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1726 * mode.
1727 *
1728 * Journal abort has very specific semantics. Any existing dirty,
1729 * unjournaled buffers in the main filesystem will still be written to
1730 * disk by bdflush, but the journaling mechanism will be suspended
1731 * immediately and no further transaction commits will be honoured.
1732 *
1733 * Any dirty, journaled buffers will be written back to disk without
1734 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1735 * filesystem, but we _do_ attempt to leave as much data as possible
1736 * behind for fsck to use for cleanup.
1737 *
1738 * Any attempt to get a new transaction handle on a journal which is in
1739 * ABORT state will just result in an -EROFS error return. A
1740 * jbd2_journal_stop on an existing handle will return -EIO if we have
1741 * entered abort state during the update.
1742 *
1743 * Recursive transactions are not disturbed by journal abort until the
1744 * final jbd2_journal_stop, which will receive the -EIO error.
1745 *
1746 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1747 * which will be recorded (if possible) in the journal superblock. This
1748 * allows a client to record failure conditions in the middle of a
1749 * transaction without having to complete the transaction to record the
1750 * failure to disk. ext3_error, for example, now uses this
1751 * functionality.
1752 *
1753 * Errors which originate from within the journaling layer will NOT
1754 * supply an errno; a null errno implies that absolutely no further
1755 * writes are done to the journal (unless there are any already in
1756 * progress).
1757 *
1758 */
1759
1760 void jbd2_journal_abort(journal_t *journal, int errno)
1761 {
1762 __journal_abort_soft(journal, errno);
1763 }
1764
1765 /**
1766 * int jbd2_journal_errno () - returns the journal's error state.
1767 * @journal: journal to examine.
1768 *
1769 * This is the errno number set with jbd2_journal_abort(), the last
1770 * time the journal was mounted - if the journal was stopped
1771 * without calling abort this will be 0.
1772 *
1773 * If the journal has been aborted on this mount time -EROFS will
1774 * be returned.
1775 */
1776 int jbd2_journal_errno(journal_t *journal)
1777 {
1778 int err;
1779
1780 read_lock(&journal->j_state_lock);
1781 if (journal->j_flags & JBD2_ABORT)
1782 err = -EROFS;
1783 else
1784 err = journal->j_errno;
1785 read_unlock(&journal->j_state_lock);
1786 return err;
1787 }
1788
1789 /**
1790 * int jbd2_journal_clear_err () - clears the journal's error state
1791 * @journal: journal to act on.
1792 *
1793 * An error must be cleared or acked to take a FS out of readonly
1794 * mode.
1795 */
1796 int jbd2_journal_clear_err(journal_t *journal)
1797 {
1798 int err = 0;
1799
1800 write_lock(&journal->j_state_lock);
1801 if (journal->j_flags & JBD2_ABORT)
1802 err = -EROFS;
1803 else
1804 journal->j_errno = 0;
1805 write_unlock(&journal->j_state_lock);
1806 return err;
1807 }
1808
1809 /**
1810 * void jbd2_journal_ack_err() - Ack journal err.
1811 * @journal: journal to act on.
1812 *
1813 * An error must be cleared or acked to take a FS out of readonly
1814 * mode.
1815 */
1816 void jbd2_journal_ack_err(journal_t *journal)
1817 {
1818 write_lock(&journal->j_state_lock);
1819 if (journal->j_errno)
1820 journal->j_flags |= JBD2_ACK_ERR;
1821 write_unlock(&journal->j_state_lock);
1822 }
1823
1824 int jbd2_journal_blocks_per_page(struct inode *inode)
1825 {
1826 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1827 }
1828
1829 /*
1830 * helper functions to deal with 32 or 64bit block numbers.
1831 */
1832 size_t journal_tag_bytes(journal_t *journal)
1833 {
1834 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1835 return JBD2_TAG_SIZE64;
1836 else
1837 return JBD2_TAG_SIZE32;
1838 }
1839
1840 /*
1841 * JBD memory management
1842 *
1843 * These functions are used to allocate block-sized chunks of memory
1844 * used for making copies of buffer_head data. Very often it will be
1845 * page-sized chunks of data, but sometimes it will be in
1846 * sub-page-size chunks. (For example, 16k pages on Power systems
1847 * with a 4k block file system.) For blocks smaller than a page, we
1848 * use a SLAB allocator. There are slab caches for each block size,
1849 * which are allocated at mount time, if necessary, and we only free
1850 * (all of) the slab caches when/if the jbd2 module is unloaded. For
1851 * this reason we don't need to a mutex to protect access to
1852 * jbd2_slab[] allocating or releasing memory; only in
1853 * jbd2_journal_create_slab().
1854 */
1855 #define JBD2_MAX_SLABS 8
1856 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1857
1858 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1859 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1860 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1861 };
1862
1863
1864 static void jbd2_journal_destroy_slabs(void)
1865 {
1866 int i;
1867
1868 for (i = 0; i < JBD2_MAX_SLABS; i++) {
1869 if (jbd2_slab[i])
1870 kmem_cache_destroy(jbd2_slab[i]);
1871 jbd2_slab[i] = NULL;
1872 }
1873 }
1874
1875 static int jbd2_journal_create_slab(size_t size)
1876 {
1877 static DEFINE_MUTEX(jbd2_slab_create_mutex);
1878 int i = order_base_2(size) - 10;
1879 size_t slab_size;
1880
1881 if (size == PAGE_SIZE)
1882 return 0;
1883
1884 if (i >= JBD2_MAX_SLABS)
1885 return -EINVAL;
1886
1887 if (unlikely(i < 0))
1888 i = 0;
1889 mutex_lock(&jbd2_slab_create_mutex);
1890 if (jbd2_slab[i]) {
1891 mutex_unlock(&jbd2_slab_create_mutex);
1892 return 0; /* Already created */
1893 }
1894
1895 slab_size = 1 << (i+10);
1896 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1897 slab_size, 0, NULL);
1898 mutex_unlock(&jbd2_slab_create_mutex);
1899 if (!jbd2_slab[i]) {
1900 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1901 return -ENOMEM;
1902 }
1903 return 0;
1904 }
1905
1906 static struct kmem_cache *get_slab(size_t size)
1907 {
1908 int i = order_base_2(size) - 10;
1909
1910 BUG_ON(i >= JBD2_MAX_SLABS);
1911 if (unlikely(i < 0))
1912 i = 0;
1913 BUG_ON(jbd2_slab[i] == NULL);
1914 return jbd2_slab[i];
1915 }
1916
1917 void *jbd2_alloc(size_t size, gfp_t flags)
1918 {
1919 void *ptr;
1920
1921 BUG_ON(size & (size-1)); /* Must be a power of 2 */
1922
1923 flags |= __GFP_REPEAT;
1924 if (size == PAGE_SIZE)
1925 ptr = (void *)__get_free_pages(flags, 0);
1926 else if (size > PAGE_SIZE) {
1927 int order = get_order(size);
1928
1929 if (order < 3)
1930 ptr = (void *)__get_free_pages(flags, order);
1931 else
1932 ptr = vmalloc(size);
1933 } else
1934 ptr = kmem_cache_alloc(get_slab(size), flags);
1935
1936 /* Check alignment; SLUB has gotten this wrong in the past,
1937 * and this can lead to user data corruption! */
1938 BUG_ON(((unsigned long) ptr) & (size-1));
1939
1940 return ptr;
1941 }
1942
1943 void jbd2_free(void *ptr, size_t size)
1944 {
1945 if (size == PAGE_SIZE) {
1946 free_pages((unsigned long)ptr, 0);
1947 return;
1948 }
1949 if (size > PAGE_SIZE) {
1950 int order = get_order(size);
1951
1952 if (order < 3)
1953 free_pages((unsigned long)ptr, order);
1954 else
1955 vfree(ptr);
1956 return;
1957 }
1958 kmem_cache_free(get_slab(size), ptr);
1959 };
1960
1961 /*
1962 * Journal_head storage management
1963 */
1964 static struct kmem_cache *jbd2_journal_head_cache;
1965 #ifdef CONFIG_JBD2_DEBUG
1966 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1967 #endif
1968
1969 static int journal_init_jbd2_journal_head_cache(void)
1970 {
1971 int retval;
1972
1973 J_ASSERT(jbd2_journal_head_cache == NULL);
1974 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1975 sizeof(struct journal_head),
1976 0, /* offset */
1977 SLAB_TEMPORARY, /* flags */
1978 NULL); /* ctor */
1979 retval = 0;
1980 if (!jbd2_journal_head_cache) {
1981 retval = -ENOMEM;
1982 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1983 }
1984 return retval;
1985 }
1986
1987 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1988 {
1989 if (jbd2_journal_head_cache) {
1990 kmem_cache_destroy(jbd2_journal_head_cache);
1991 jbd2_journal_head_cache = NULL;
1992 }
1993 }
1994
1995 /*
1996 * journal_head splicing and dicing
1997 */
1998 static struct journal_head *journal_alloc_journal_head(void)
1999 {
2000 struct journal_head *ret;
2001
2002 #ifdef CONFIG_JBD2_DEBUG
2003 atomic_inc(&nr_journal_heads);
2004 #endif
2005 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2006 if (!ret) {
2007 jbd_debug(1, "out of memory for journal_head\n");
2008 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2009 while (!ret) {
2010 yield();
2011 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2012 }
2013 }
2014 return ret;
2015 }
2016
2017 static void journal_free_journal_head(struct journal_head *jh)
2018 {
2019 #ifdef CONFIG_JBD2_DEBUG
2020 atomic_dec(&nr_journal_heads);
2021 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2022 #endif
2023 kmem_cache_free(jbd2_journal_head_cache, jh);
2024 }
2025
2026 /*
2027 * A journal_head is attached to a buffer_head whenever JBD has an
2028 * interest in the buffer.
2029 *
2030 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2031 * is set. This bit is tested in core kernel code where we need to take
2032 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2033 * there.
2034 *
2035 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2036 *
2037 * When a buffer has its BH_JBD bit set it is immune from being released by
2038 * core kernel code, mainly via ->b_count.
2039 *
2040 * A journal_head may be detached from its buffer_head when the journal_head's
2041 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2042 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2043 * journal_head can be dropped if needed.
2044 *
2045 * Various places in the kernel want to attach a journal_head to a buffer_head
2046 * _before_ attaching the journal_head to a transaction. To protect the
2047 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2048 * journal_head's b_jcount refcount by one. The caller must call
2049 * jbd2_journal_put_journal_head() to undo this.
2050 *
2051 * So the typical usage would be:
2052 *
2053 * (Attach a journal_head if needed. Increments b_jcount)
2054 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2055 * ...
2056 * jh->b_transaction = xxx;
2057 * jbd2_journal_put_journal_head(jh);
2058 *
2059 * Now, the journal_head's b_jcount is zero, but it is safe from being released
2060 * because it has a non-zero b_transaction.
2061 */
2062
2063 /*
2064 * Give a buffer_head a journal_head.
2065 *
2066 * Doesn't need the journal lock.
2067 * May sleep.
2068 */
2069 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2070 {
2071 struct journal_head *jh;
2072 struct journal_head *new_jh = NULL;
2073
2074 repeat:
2075 if (!buffer_jbd(bh)) {
2076 new_jh = journal_alloc_journal_head();
2077 memset(new_jh, 0, sizeof(*new_jh));
2078 }
2079
2080 jbd_lock_bh_journal_head(bh);
2081 if (buffer_jbd(bh)) {
2082 jh = bh2jh(bh);
2083 } else {
2084 J_ASSERT_BH(bh,
2085 (atomic_read(&bh->b_count) > 0) ||
2086 (bh->b_page && bh->b_page->mapping));
2087
2088 if (!new_jh) {
2089 jbd_unlock_bh_journal_head(bh);
2090 goto repeat;
2091 }
2092
2093 jh = new_jh;
2094 new_jh = NULL; /* We consumed it */
2095 set_buffer_jbd(bh);
2096 bh->b_private = jh;
2097 jh->b_bh = bh;
2098 get_bh(bh);
2099 BUFFER_TRACE(bh, "added journal_head");
2100 }
2101 jh->b_jcount++;
2102 jbd_unlock_bh_journal_head(bh);
2103 if (new_jh)
2104 journal_free_journal_head(new_jh);
2105 return bh->b_private;
2106 }
2107
2108 /*
2109 * Grab a ref against this buffer_head's journal_head. If it ended up not
2110 * having a journal_head, return NULL
2111 */
2112 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2113 {
2114 struct journal_head *jh = NULL;
2115
2116 jbd_lock_bh_journal_head(bh);
2117 if (buffer_jbd(bh)) {
2118 jh = bh2jh(bh);
2119 jh->b_jcount++;
2120 }
2121 jbd_unlock_bh_journal_head(bh);
2122 return jh;
2123 }
2124
2125 static void __journal_remove_journal_head(struct buffer_head *bh)
2126 {
2127 struct journal_head *jh = bh2jh(bh);
2128
2129 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2130
2131 get_bh(bh);
2132 if (jh->b_jcount == 0) {
2133 if (jh->b_transaction == NULL &&
2134 jh->b_next_transaction == NULL &&
2135 jh->b_cp_transaction == NULL) {
2136 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2137 J_ASSERT_BH(bh, buffer_jbd(bh));
2138 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2139 BUFFER_TRACE(bh, "remove journal_head");
2140 if (jh->b_frozen_data) {
2141 printk(KERN_WARNING "%s: freeing "
2142 "b_frozen_data\n",
2143 __func__);
2144 jbd2_free(jh->b_frozen_data, bh->b_size);
2145 }
2146 if (jh->b_committed_data) {
2147 printk(KERN_WARNING "%s: freeing "
2148 "b_committed_data\n",
2149 __func__);
2150 jbd2_free(jh->b_committed_data, bh->b_size);
2151 }
2152 bh->b_private = NULL;
2153 jh->b_bh = NULL; /* debug, really */
2154 clear_buffer_jbd(bh);
2155 __brelse(bh);
2156 journal_free_journal_head(jh);
2157 } else {
2158 BUFFER_TRACE(bh, "journal_head was locked");
2159 }
2160 }
2161 }
2162
2163 /*
2164 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2165 * and has a zero b_jcount then remove and release its journal_head. If we did
2166 * see that the buffer is not used by any transaction we also "logically"
2167 * decrement ->b_count.
2168 *
2169 * We in fact take an additional increment on ->b_count as a convenience,
2170 * because the caller usually wants to do additional things with the bh
2171 * after calling here.
2172 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2173 * time. Once the caller has run __brelse(), the buffer is eligible for
2174 * reaping by try_to_free_buffers().
2175 */
2176 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2177 {
2178 jbd_lock_bh_journal_head(bh);
2179 __journal_remove_journal_head(bh);
2180 jbd_unlock_bh_journal_head(bh);
2181 }
2182
2183 /*
2184 * Drop a reference on the passed journal_head. If it fell to zero then try to
2185 * release the journal_head from the buffer_head.
2186 */
2187 void jbd2_journal_put_journal_head(struct journal_head *jh)
2188 {
2189 struct buffer_head *bh = jh2bh(jh);
2190
2191 jbd_lock_bh_journal_head(bh);
2192 J_ASSERT_JH(jh, jh->b_jcount > 0);
2193 --jh->b_jcount;
2194 if (!jh->b_jcount && !jh->b_transaction) {
2195 __journal_remove_journal_head(bh);
2196 __brelse(bh);
2197 }
2198 jbd_unlock_bh_journal_head(bh);
2199 }
2200
2201 /*
2202 * Initialize jbd inode head
2203 */
2204 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2205 {
2206 jinode->i_transaction = NULL;
2207 jinode->i_next_transaction = NULL;
2208 jinode->i_vfs_inode = inode;
2209 jinode->i_flags = 0;
2210 INIT_LIST_HEAD(&jinode->i_list);
2211 }
2212
2213 /*
2214 * Function to be called before we start removing inode from memory (i.e.,
2215 * clear_inode() is a fine place to be called from). It removes inode from
2216 * transaction's lists.
2217 */
2218 void jbd2_journal_release_jbd_inode(journal_t *journal,
2219 struct jbd2_inode *jinode)
2220 {
2221 if (!journal)
2222 return;
2223 restart:
2224 spin_lock(&journal->j_list_lock);
2225 /* Is commit writing out inode - we have to wait */
2226 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2227 wait_queue_head_t *wq;
2228 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2229 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2230 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2231 spin_unlock(&journal->j_list_lock);
2232 schedule();
2233 finish_wait(wq, &wait.wait);
2234 goto restart;
2235 }
2236
2237 if (jinode->i_transaction) {
2238 list_del(&jinode->i_list);
2239 jinode->i_transaction = NULL;
2240 }
2241 spin_unlock(&journal->j_list_lock);
2242 }
2243
2244 /*
2245 * debugfs tunables
2246 */
2247 #ifdef CONFIG_JBD2_DEBUG
2248 u8 jbd2_journal_enable_debug __read_mostly;
2249 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2250
2251 #define JBD2_DEBUG_NAME "jbd2-debug"
2252
2253 static struct dentry *jbd2_debugfs_dir;
2254 static struct dentry *jbd2_debug;
2255
2256 static void __init jbd2_create_debugfs_entry(void)
2257 {
2258 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2259 if (jbd2_debugfs_dir)
2260 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2261 S_IRUGO | S_IWUSR,
2262 jbd2_debugfs_dir,
2263 &jbd2_journal_enable_debug);
2264 }
2265
2266 static void __exit jbd2_remove_debugfs_entry(void)
2267 {
2268 debugfs_remove(jbd2_debug);
2269 debugfs_remove(jbd2_debugfs_dir);
2270 }
2271
2272 #else
2273
2274 static void __init jbd2_create_debugfs_entry(void)
2275 {
2276 }
2277
2278 static void __exit jbd2_remove_debugfs_entry(void)
2279 {
2280 }
2281
2282 #endif
2283
2284 #ifdef CONFIG_PROC_FS
2285
2286 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2287
2288 static void __init jbd2_create_jbd_stats_proc_entry(void)
2289 {
2290 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2291 }
2292
2293 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2294 {
2295 if (proc_jbd2_stats)
2296 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2297 }
2298
2299 #else
2300
2301 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2302 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2303
2304 #endif
2305
2306 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2307
2308 static int __init journal_init_handle_cache(void)
2309 {
2310 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2311 if (jbd2_handle_cache == NULL) {
2312 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2313 return -ENOMEM;
2314 }
2315 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2316 if (jbd2_inode_cache == NULL) {
2317 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2318 kmem_cache_destroy(jbd2_handle_cache);
2319 return -ENOMEM;
2320 }
2321 return 0;
2322 }
2323
2324 static void jbd2_journal_destroy_handle_cache(void)
2325 {
2326 if (jbd2_handle_cache)
2327 kmem_cache_destroy(jbd2_handle_cache);
2328 if (jbd2_inode_cache)
2329 kmem_cache_destroy(jbd2_inode_cache);
2330
2331 }
2332
2333 /*
2334 * Module startup and shutdown
2335 */
2336
2337 static int __init journal_init_caches(void)
2338 {
2339 int ret;
2340
2341 ret = jbd2_journal_init_revoke_caches();
2342 if (ret == 0)
2343 ret = journal_init_jbd2_journal_head_cache();
2344 if (ret == 0)
2345 ret = journal_init_handle_cache();
2346 return ret;
2347 }
2348
2349 static void jbd2_journal_destroy_caches(void)
2350 {
2351 jbd2_journal_destroy_revoke_caches();
2352 jbd2_journal_destroy_jbd2_journal_head_cache();
2353 jbd2_journal_destroy_handle_cache();
2354 jbd2_journal_destroy_slabs();
2355 }
2356
2357 static int __init journal_init(void)
2358 {
2359 int ret;
2360
2361 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2362
2363 ret = journal_init_caches();
2364 if (ret == 0) {
2365 jbd2_create_debugfs_entry();
2366 jbd2_create_jbd_stats_proc_entry();
2367 } else {
2368 jbd2_journal_destroy_caches();
2369 }
2370 return ret;
2371 }
2372
2373 static void __exit journal_exit(void)
2374 {
2375 #ifdef CONFIG_JBD2_DEBUG
2376 int n = atomic_read(&nr_journal_heads);
2377 if (n)
2378 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2379 #endif
2380 jbd2_remove_debugfs_entry();
2381 jbd2_remove_jbd_stats_proc_entry();
2382 jbd2_journal_destroy_caches();
2383 }
2384
2385 /*
2386 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2387 * tracing infrastructure to map a dev_t to a device name.
2388 *
2389 * The caller should use rcu_read_lock() in order to make sure the
2390 * device name stays valid until its done with it. We use
2391 * rcu_read_lock() as well to make sure we're safe in case the caller
2392 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2393 * nested.
2394 */
2395 struct devname_cache {
2396 struct rcu_head rcu;
2397 dev_t device;
2398 char devname[BDEVNAME_SIZE];
2399 };
2400 #define CACHE_SIZE_BITS 6
2401 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2402 static DEFINE_SPINLOCK(devname_cache_lock);
2403
2404 static void free_devcache(struct rcu_head *rcu)
2405 {
2406 kfree(rcu);
2407 }
2408
2409 const char *jbd2_dev_to_name(dev_t device)
2410 {
2411 int i = hash_32(device, CACHE_SIZE_BITS);
2412 char *ret;
2413 struct block_device *bd;
2414 static struct devname_cache *new_dev;
2415
2416 rcu_read_lock();
2417 if (devcache[i] && devcache[i]->device == device) {
2418 ret = devcache[i]->devname;
2419 rcu_read_unlock();
2420 return ret;
2421 }
2422 rcu_read_unlock();
2423
2424 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2425 if (!new_dev)
2426 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2427 bd = bdget(device);
2428 spin_lock(&devname_cache_lock);
2429 if (devcache[i]) {
2430 if (devcache[i]->device == device) {
2431 kfree(new_dev);
2432 bdput(bd);
2433 ret = devcache[i]->devname;
2434 spin_unlock(&devname_cache_lock);
2435 return ret;
2436 }
2437 call_rcu(&devcache[i]->rcu, free_devcache);
2438 }
2439 devcache[i] = new_dev;
2440 devcache[i]->device = device;
2441 if (bd) {
2442 bdevname(bd, devcache[i]->devname);
2443 bdput(bd);
2444 } else
2445 __bdevname(device, devcache[i]->devname);
2446 ret = devcache[i]->devname;
2447 spin_unlock(&devname_cache_lock);
2448 return ret;
2449 }
2450 EXPORT_SYMBOL(jbd2_dev_to_name);
2451
2452 MODULE_LICENSE("GPL");
2453 module_init(journal_init);
2454 module_exit(journal_exit);
2455
This page took 0.08051 seconds and 6 git commands to generate.