Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits,
93 atomic_read(&journal->j_reserved_credits));
94 atomic_set(&transaction->t_handle_count, 0);
95 INIT_LIST_HEAD(&transaction->t_inode_list);
96 INIT_LIST_HEAD(&transaction->t_private_list);
97
98 /* Set up the commit timer for the new transaction. */
99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 add_timer(&journal->j_commit_timer);
101
102 J_ASSERT(journal->j_running_transaction == NULL);
103 journal->j_running_transaction = transaction;
104 transaction->t_max_wait = 0;
105 transaction->t_start = jiffies;
106 transaction->t_requested = 0;
107
108 return transaction;
109 }
110
111 /*
112 * Handle management.
113 *
114 * A handle_t is an object which represents a single atomic update to a
115 * filesystem, and which tracks all of the modifications which form part
116 * of that one update.
117 */
118
119 /*
120 * Update transaction's maximum wait time, if debugging is enabled.
121 *
122 * In order for t_max_wait to be reliable, it must be protected by a
123 * lock. But doing so will mean that start_this_handle() can not be
124 * run in parallel on SMP systems, which limits our scalability. So
125 * unless debugging is enabled, we no longer update t_max_wait, which
126 * means that maximum wait time reported by the jbd2_run_stats
127 * tracepoint will always be zero.
128 */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 if (jbd2_journal_enable_debug &&
134 time_after(transaction->t_start, ts)) {
135 ts = jbd2_time_diff(ts, transaction->t_start);
136 spin_lock(&transaction->t_handle_lock);
137 if (ts > transaction->t_max_wait)
138 transaction->t_max_wait = ts;
139 spin_unlock(&transaction->t_handle_lock);
140 }
141 #endif
142 }
143
144 /*
145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
146 * if needed. The function expects running transaction to exist and releases
147 * j_state_lock.
148 */
149 static void wait_transaction_locked(journal_t *journal)
150 __releases(journal->j_state_lock)
151 {
152 DEFINE_WAIT(wait);
153 int need_to_start;
154 tid_t tid = journal->j_running_transaction->t_tid;
155
156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 TASK_UNINTERRUPTIBLE);
158 need_to_start = !tid_geq(journal->j_commit_request, tid);
159 read_unlock(&journal->j_state_lock);
160 if (need_to_start)
161 jbd2_log_start_commit(journal, tid);
162 schedule();
163 finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 atomic_sub(blocks, &journal->j_reserved_credits);
169 wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173 * Wait until we can add credits for handle to the running transaction. Called
174 * with j_state_lock held for reading. Returns 0 if handle joined the running
175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176 * caller must retry.
177 */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 int rsv_blocks)
180 {
181 transaction_t *t = journal->j_running_transaction;
182 int needed;
183 int total = blocks + rsv_blocks;
184
185 /*
186 * If the current transaction is locked down for commit, wait
187 * for the lock to be released.
188 */
189 if (t->t_state == T_LOCKED) {
190 wait_transaction_locked(journal);
191 return 1;
192 }
193
194 /*
195 * If there is not enough space left in the log to write all
196 * potential buffers requested by this operation, we need to
197 * stall pending a log checkpoint to free some more log space.
198 */
199 needed = atomic_add_return(total, &t->t_outstanding_credits);
200 if (needed > journal->j_max_transaction_buffers) {
201 /*
202 * If the current transaction is already too large,
203 * then start to commit it: we can then go back and
204 * attach this handle to a new transaction.
205 */
206 atomic_sub(total, &t->t_outstanding_credits);
207
208 /*
209 * Is the number of reserved credits in the current transaction too
210 * big to fit this handle? Wait until reserved credits are freed.
211 */
212 if (atomic_read(&journal->j_reserved_credits) + total >
213 journal->j_max_transaction_buffers) {
214 read_unlock(&journal->j_state_lock);
215 wait_event(journal->j_wait_reserved,
216 atomic_read(&journal->j_reserved_credits) + total <=
217 journal->j_max_transaction_buffers);
218 return 1;
219 }
220
221 wait_transaction_locked(journal);
222 return 1;
223 }
224
225 /*
226 * The commit code assumes that it can get enough log space
227 * without forcing a checkpoint. This is *critical* for
228 * correctness: a checkpoint of a buffer which is also
229 * associated with a committing transaction creates a deadlock,
230 * so commit simply cannot force through checkpoints.
231 *
232 * We must therefore ensure the necessary space in the journal
233 * *before* starting to dirty potentially checkpointed buffers
234 * in the new transaction.
235 */
236 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 atomic_sub(total, &t->t_outstanding_credits);
238 read_unlock(&journal->j_state_lock);
239 write_lock(&journal->j_state_lock);
240 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241 __jbd2_log_wait_for_space(journal);
242 write_unlock(&journal->j_state_lock);
243 return 1;
244 }
245
246 /* No reservation? We are done... */
247 if (!rsv_blocks)
248 return 0;
249
250 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251 /* We allow at most half of a transaction to be reserved */
252 if (needed > journal->j_max_transaction_buffers / 2) {
253 sub_reserved_credits(journal, rsv_blocks);
254 atomic_sub(total, &t->t_outstanding_credits);
255 read_unlock(&journal->j_state_lock);
256 wait_event(journal->j_wait_reserved,
257 atomic_read(&journal->j_reserved_credits) + rsv_blocks
258 <= journal->j_max_transaction_buffers / 2);
259 return 1;
260 }
261 return 0;
262 }
263
264 /*
265 * start_this_handle: Given a handle, deal with any locking or stalling
266 * needed to make sure that there is enough journal space for the handle
267 * to begin. Attach the handle to a transaction and set up the
268 * transaction's buffer credits.
269 */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272 gfp_t gfp_mask)
273 {
274 transaction_t *transaction, *new_transaction = NULL;
275 int blocks = handle->h_buffer_credits;
276 int rsv_blocks = 0;
277 unsigned long ts = jiffies;
278
279 if (handle->h_rsv_handle)
280 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282 /*
283 * Limit the number of reserved credits to 1/2 of maximum transaction
284 * size and limit the number of total credits to not exceed maximum
285 * transaction size per operation.
286 */
287 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289 printk(KERN_ERR "JBD2: %s wants too many credits "
290 "credits:%d rsv_credits:%d max:%d\n",
291 current->comm, blocks, rsv_blocks,
292 journal->j_max_transaction_buffers);
293 WARN_ON(1);
294 return -ENOSPC;
295 }
296
297 alloc_transaction:
298 if (!journal->j_running_transaction) {
299 /*
300 * If __GFP_FS is not present, then we may be being called from
301 * inside the fs writeback layer, so we MUST NOT fail.
302 */
303 if ((gfp_mask & __GFP_FS) == 0)
304 gfp_mask |= __GFP_NOFAIL;
305 new_transaction = kmem_cache_zalloc(transaction_cache,
306 gfp_mask);
307 if (!new_transaction)
308 return -ENOMEM;
309 }
310
311 jbd_debug(3, "New handle %p going live.\n", handle);
312
313 /*
314 * We need to hold j_state_lock until t_updates has been incremented,
315 * for proper journal barrier handling
316 */
317 repeat:
318 read_lock(&journal->j_state_lock);
319 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320 if (is_journal_aborted(journal) ||
321 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322 read_unlock(&journal->j_state_lock);
323 jbd2_journal_free_transaction(new_transaction);
324 return -EROFS;
325 }
326
327 /*
328 * Wait on the journal's transaction barrier if necessary. Specifically
329 * we allow reserved handles to proceed because otherwise commit could
330 * deadlock on page writeback not being able to complete.
331 */
332 if (!handle->h_reserved && journal->j_barrier_count) {
333 read_unlock(&journal->j_state_lock);
334 wait_event(journal->j_wait_transaction_locked,
335 journal->j_barrier_count == 0);
336 goto repeat;
337 }
338
339 if (!journal->j_running_transaction) {
340 read_unlock(&journal->j_state_lock);
341 if (!new_transaction)
342 goto alloc_transaction;
343 write_lock(&journal->j_state_lock);
344 if (!journal->j_running_transaction &&
345 (handle->h_reserved || !journal->j_barrier_count)) {
346 jbd2_get_transaction(journal, new_transaction);
347 new_transaction = NULL;
348 }
349 write_unlock(&journal->j_state_lock);
350 goto repeat;
351 }
352
353 transaction = journal->j_running_transaction;
354
355 if (!handle->h_reserved) {
356 /* We may have dropped j_state_lock - restart in that case */
357 if (add_transaction_credits(journal, blocks, rsv_blocks))
358 goto repeat;
359 } else {
360 /*
361 * We have handle reserved so we are allowed to join T_LOCKED
362 * transaction and we don't have to check for transaction size
363 * and journal space.
364 */
365 sub_reserved_credits(journal, blocks);
366 handle->h_reserved = 0;
367 }
368
369 /* OK, account for the buffers that this operation expects to
370 * use and add the handle to the running transaction.
371 */
372 update_t_max_wait(transaction, ts);
373 handle->h_transaction = transaction;
374 handle->h_requested_credits = blocks;
375 handle->h_start_jiffies = jiffies;
376 atomic_inc(&transaction->t_updates);
377 atomic_inc(&transaction->t_handle_count);
378 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379 handle, blocks,
380 atomic_read(&transaction->t_outstanding_credits),
381 jbd2_log_space_left(journal));
382 read_unlock(&journal->j_state_lock);
383 current->journal_info = handle;
384
385 lock_map_acquire(&handle->h_lockdep_map);
386 jbd2_journal_free_transaction(new_transaction);
387 return 0;
388 }
389
390 static struct lock_class_key jbd2_handle_key;
391
392 /* Allocate a new handle. This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396 if (!handle)
397 return NULL;
398 handle->h_buffer_credits = nblocks;
399 handle->h_ref = 1;
400
401 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402 &jbd2_handle_key, 0);
403
404 return handle;
405 }
406
407 /**
408 * handle_t *jbd2_journal_start() - Obtain a new handle.
409 * @journal: Journal to start transaction on.
410 * @nblocks: number of block buffer we might modify
411 *
412 * We make sure that the transaction can guarantee at least nblocks of
413 * modified buffers in the log. We block until the log can guarantee
414 * that much space. Additionally, if rsv_blocks > 0, we also create another
415 * handle with rsv_blocks reserved blocks in the journal. This handle is
416 * is stored in h_rsv_handle. It is not attached to any particular transaction
417 * and thus doesn't block transaction commit. If the caller uses this reserved
418 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419 * on the parent handle will dispose the reserved one. Reserved handle has to
420 * be converted to a normal handle using jbd2_journal_start_reserved() before
421 * it can be used.
422 *
423 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424 * on failure.
425 */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427 gfp_t gfp_mask, unsigned int type,
428 unsigned int line_no)
429 {
430 handle_t *handle = journal_current_handle();
431 int err;
432
433 if (!journal)
434 return ERR_PTR(-EROFS);
435
436 if (handle) {
437 J_ASSERT(handle->h_transaction->t_journal == journal);
438 handle->h_ref++;
439 return handle;
440 }
441
442 handle = new_handle(nblocks);
443 if (!handle)
444 return ERR_PTR(-ENOMEM);
445 if (rsv_blocks) {
446 handle_t *rsv_handle;
447
448 rsv_handle = new_handle(rsv_blocks);
449 if (!rsv_handle) {
450 jbd2_free_handle(handle);
451 return ERR_PTR(-ENOMEM);
452 }
453 rsv_handle->h_reserved = 1;
454 rsv_handle->h_journal = journal;
455 handle->h_rsv_handle = rsv_handle;
456 }
457
458 err = start_this_handle(journal, handle, gfp_mask);
459 if (err < 0) {
460 if (handle->h_rsv_handle)
461 jbd2_free_handle(handle->h_rsv_handle);
462 jbd2_free_handle(handle);
463 return ERR_PTR(err);
464 }
465 handle->h_type = type;
466 handle->h_line_no = line_no;
467 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468 handle->h_transaction->t_tid, type,
469 line_no, nblocks);
470 return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473
474
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483 journal_t *journal = handle->h_journal;
484
485 WARN_ON(!handle->h_reserved);
486 sub_reserved_credits(journal, handle->h_buffer_credits);
487 jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490
491 /**
492 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493 * @handle: handle to start
494 *
495 * Start handle that has been previously reserved with jbd2_journal_reserve().
496 * This attaches @handle to the running transaction (or creates one if there's
497 * not transaction running). Unlike jbd2_journal_start() this function cannot
498 * block on journal commit, checkpointing, or similar stuff. It can block on
499 * memory allocation or frozen journal though.
500 *
501 * Return 0 on success, non-zero on error - handle is freed in that case.
502 */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504 unsigned int line_no)
505 {
506 journal_t *journal = handle->h_journal;
507 int ret = -EIO;
508
509 if (WARN_ON(!handle->h_reserved)) {
510 /* Someone passed in normal handle? Just stop it. */
511 jbd2_journal_stop(handle);
512 return ret;
513 }
514 /*
515 * Usefulness of mixing of reserved and unreserved handles is
516 * questionable. So far nobody seems to need it so just error out.
517 */
518 if (WARN_ON(current->journal_info)) {
519 jbd2_journal_free_reserved(handle);
520 return ret;
521 }
522
523 handle->h_journal = NULL;
524 /*
525 * GFP_NOFS is here because callers are likely from writeback or
526 * similarly constrained call sites
527 */
528 ret = start_this_handle(journal, handle, GFP_NOFS);
529 if (ret < 0) {
530 jbd2_journal_free_reserved(handle);
531 return ret;
532 }
533 handle->h_type = type;
534 handle->h_line_no = line_no;
535 return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538
539 /**
540 * int jbd2_journal_extend() - extend buffer credits.
541 * @handle: handle to 'extend'
542 * @nblocks: nr blocks to try to extend by.
543 *
544 * Some transactions, such as large extends and truncates, can be done
545 * atomically all at once or in several stages. The operation requests
546 * a credit for a number of buffer modications in advance, but can
547 * extend its credit if it needs more.
548 *
549 * jbd2_journal_extend tries to give the running handle more buffer credits.
550 * It does not guarantee that allocation - this is a best-effort only.
551 * The calling process MUST be able to deal cleanly with a failure to
552 * extend here.
553 *
554 * Return 0 on success, non-zero on failure.
555 *
556 * return code < 0 implies an error
557 * return code > 0 implies normal transaction-full status.
558 */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561 transaction_t *transaction = handle->h_transaction;
562 journal_t *journal;
563 int result;
564 int wanted;
565
566 if (is_handle_aborted(handle))
567 return -EROFS;
568 journal = transaction->t_journal;
569
570 result = 1;
571
572 read_lock(&journal->j_state_lock);
573
574 /* Don't extend a locked-down transaction! */
575 if (transaction->t_state != T_RUNNING) {
576 jbd_debug(3, "denied handle %p %d blocks: "
577 "transaction not running\n", handle, nblocks);
578 goto error_out;
579 }
580
581 spin_lock(&transaction->t_handle_lock);
582 wanted = atomic_add_return(nblocks,
583 &transaction->t_outstanding_credits);
584
585 if (wanted > journal->j_max_transaction_buffers) {
586 jbd_debug(3, "denied handle %p %d blocks: "
587 "transaction too large\n", handle, nblocks);
588 atomic_sub(nblocks, &transaction->t_outstanding_credits);
589 goto unlock;
590 }
591
592 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593 jbd2_log_space_left(journal)) {
594 jbd_debug(3, "denied handle %p %d blocks: "
595 "insufficient log space\n", handle, nblocks);
596 atomic_sub(nblocks, &transaction->t_outstanding_credits);
597 goto unlock;
598 }
599
600 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601 transaction->t_tid,
602 handle->h_type, handle->h_line_no,
603 handle->h_buffer_credits,
604 nblocks);
605
606 handle->h_buffer_credits += nblocks;
607 handle->h_requested_credits += nblocks;
608 result = 0;
609
610 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612 spin_unlock(&transaction->t_handle_lock);
613 error_out:
614 read_unlock(&journal->j_state_lock);
615 return result;
616 }
617
618
619 /**
620 * int jbd2_journal_restart() - restart a handle .
621 * @handle: handle to restart
622 * @nblocks: nr credits requested
623 *
624 * Restart a handle for a multi-transaction filesystem
625 * operation.
626 *
627 * If the jbd2_journal_extend() call above fails to grant new buffer credits
628 * to a running handle, a call to jbd2_journal_restart will commit the
629 * handle's transaction so far and reattach the handle to a new
630 * transaction capabable of guaranteeing the requested number of
631 * credits. We preserve reserved handle if there's any attached to the
632 * passed in handle.
633 */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636 transaction_t *transaction = handle->h_transaction;
637 journal_t *journal;
638 tid_t tid;
639 int need_to_start, ret;
640
641 /* If we've had an abort of any type, don't even think about
642 * actually doing the restart! */
643 if (is_handle_aborted(handle))
644 return 0;
645 journal = transaction->t_journal;
646
647 /*
648 * First unlink the handle from its current transaction, and start the
649 * commit on that.
650 */
651 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652 J_ASSERT(journal_current_handle() == handle);
653
654 read_lock(&journal->j_state_lock);
655 spin_lock(&transaction->t_handle_lock);
656 atomic_sub(handle->h_buffer_credits,
657 &transaction->t_outstanding_credits);
658 if (handle->h_rsv_handle) {
659 sub_reserved_credits(journal,
660 handle->h_rsv_handle->h_buffer_credits);
661 }
662 if (atomic_dec_and_test(&transaction->t_updates))
663 wake_up(&journal->j_wait_updates);
664 tid = transaction->t_tid;
665 spin_unlock(&transaction->t_handle_lock);
666 handle->h_transaction = NULL;
667 current->journal_info = NULL;
668
669 jbd_debug(2, "restarting handle %p\n", handle);
670 need_to_start = !tid_geq(journal->j_commit_request, tid);
671 read_unlock(&journal->j_state_lock);
672 if (need_to_start)
673 jbd2_log_start_commit(journal, tid);
674
675 lock_map_release(&handle->h_lockdep_map);
676 handle->h_buffer_credits = nblocks;
677 ret = start_this_handle(journal, handle, gfp_mask);
678 return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681
682
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688
689 /**
690 * void jbd2_journal_lock_updates () - establish a transaction barrier.
691 * @journal: Journal to establish a barrier on.
692 *
693 * This locks out any further updates from being started, and blocks
694 * until all existing updates have completed, returning only once the
695 * journal is in a quiescent state with no updates running.
696 *
697 * The journal lock should not be held on entry.
698 */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701 DEFINE_WAIT(wait);
702
703 write_lock(&journal->j_state_lock);
704 ++journal->j_barrier_count;
705
706 /* Wait until there are no reserved handles */
707 if (atomic_read(&journal->j_reserved_credits)) {
708 write_unlock(&journal->j_state_lock);
709 wait_event(journal->j_wait_reserved,
710 atomic_read(&journal->j_reserved_credits) == 0);
711 write_lock(&journal->j_state_lock);
712 }
713
714 /* Wait until there are no running updates */
715 while (1) {
716 transaction_t *transaction = journal->j_running_transaction;
717
718 if (!transaction)
719 break;
720
721 spin_lock(&transaction->t_handle_lock);
722 prepare_to_wait(&journal->j_wait_updates, &wait,
723 TASK_UNINTERRUPTIBLE);
724 if (!atomic_read(&transaction->t_updates)) {
725 spin_unlock(&transaction->t_handle_lock);
726 finish_wait(&journal->j_wait_updates, &wait);
727 break;
728 }
729 spin_unlock(&transaction->t_handle_lock);
730 write_unlock(&journal->j_state_lock);
731 schedule();
732 finish_wait(&journal->j_wait_updates, &wait);
733 write_lock(&journal->j_state_lock);
734 }
735 write_unlock(&journal->j_state_lock);
736
737 /*
738 * We have now established a barrier against other normal updates, but
739 * we also need to barrier against other jbd2_journal_lock_updates() calls
740 * to make sure that we serialise special journal-locked operations
741 * too.
742 */
743 mutex_lock(&journal->j_barrier);
744 }
745
746 /**
747 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748 * @journal: Journal to release the barrier on.
749 *
750 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751 *
752 * Should be called without the journal lock held.
753 */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756 J_ASSERT(journal->j_barrier_count != 0);
757
758 mutex_unlock(&journal->j_barrier);
759 write_lock(&journal->j_state_lock);
760 --journal->j_barrier_count;
761 write_unlock(&journal->j_state_lock);
762 wake_up(&journal->j_wait_transaction_locked);
763 }
764
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767 printk(KERN_WARNING
768 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
769 "There's a risk of filesystem corruption in case of system "
770 "crash.\n",
771 bh->b_bdev, (unsigned long long)bh->b_blocknr);
772 }
773
774 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
775 static void jbd2_freeze_jh_data(struct journal_head *jh)
776 {
777 struct page *page;
778 int offset;
779 char *source;
780 struct buffer_head *bh = jh2bh(jh);
781
782 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
783 page = bh->b_page;
784 offset = offset_in_page(bh->b_data);
785 source = kmap_atomic(page);
786 /* Fire data frozen trigger just before we copy the data */
787 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
788 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
789 kunmap_atomic(source);
790
791 /*
792 * Now that the frozen data is saved off, we need to store any matching
793 * triggers.
794 */
795 jh->b_frozen_triggers = jh->b_triggers;
796 }
797
798 /*
799 * If the buffer is already part of the current transaction, then there
800 * is nothing we need to do. If it is already part of a prior
801 * transaction which we are still committing to disk, then we need to
802 * make sure that we do not overwrite the old copy: we do copy-out to
803 * preserve the copy going to disk. We also account the buffer against
804 * the handle's metadata buffer credits (unless the buffer is already
805 * part of the transaction, that is).
806 *
807 */
808 static int
809 do_get_write_access(handle_t *handle, struct journal_head *jh,
810 int force_copy)
811 {
812 struct buffer_head *bh;
813 transaction_t *transaction = handle->h_transaction;
814 journal_t *journal;
815 int error;
816 char *frozen_buffer = NULL;
817 unsigned long start_lock, time_lock;
818
819 if (is_handle_aborted(handle))
820 return -EROFS;
821 journal = transaction->t_journal;
822
823 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
824
825 JBUFFER_TRACE(jh, "entry");
826 repeat:
827 bh = jh2bh(jh);
828
829 /* @@@ Need to check for errors here at some point. */
830
831 start_lock = jiffies;
832 lock_buffer(bh);
833 jbd_lock_bh_state(bh);
834
835 /* If it takes too long to lock the buffer, trace it */
836 time_lock = jbd2_time_diff(start_lock, jiffies);
837 if (time_lock > HZ/10)
838 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
839 jiffies_to_msecs(time_lock));
840
841 /* We now hold the buffer lock so it is safe to query the buffer
842 * state. Is the buffer dirty?
843 *
844 * If so, there are two possibilities. The buffer may be
845 * non-journaled, and undergoing a quite legitimate writeback.
846 * Otherwise, it is journaled, and we don't expect dirty buffers
847 * in that state (the buffers should be marked JBD_Dirty
848 * instead.) So either the IO is being done under our own
849 * control and this is a bug, or it's a third party IO such as
850 * dump(8) (which may leave the buffer scheduled for read ---
851 * ie. locked but not dirty) or tune2fs (which may actually have
852 * the buffer dirtied, ugh.) */
853
854 if (buffer_dirty(bh)) {
855 /*
856 * First question: is this buffer already part of the current
857 * transaction or the existing committing transaction?
858 */
859 if (jh->b_transaction) {
860 J_ASSERT_JH(jh,
861 jh->b_transaction == transaction ||
862 jh->b_transaction ==
863 journal->j_committing_transaction);
864 if (jh->b_next_transaction)
865 J_ASSERT_JH(jh, jh->b_next_transaction ==
866 transaction);
867 warn_dirty_buffer(bh);
868 }
869 /*
870 * In any case we need to clean the dirty flag and we must
871 * do it under the buffer lock to be sure we don't race
872 * with running write-out.
873 */
874 JBUFFER_TRACE(jh, "Journalling dirty buffer");
875 clear_buffer_dirty(bh);
876 set_buffer_jbddirty(bh);
877 }
878
879 unlock_buffer(bh);
880
881 error = -EROFS;
882 if (is_handle_aborted(handle)) {
883 jbd_unlock_bh_state(bh);
884 goto out;
885 }
886 error = 0;
887
888 /*
889 * The buffer is already part of this transaction if b_transaction or
890 * b_next_transaction points to it
891 */
892 if (jh->b_transaction == transaction ||
893 jh->b_next_transaction == transaction)
894 goto done;
895
896 /*
897 * this is the first time this transaction is touching this buffer,
898 * reset the modified flag
899 */
900 jh->b_modified = 0;
901
902 /*
903 * If the buffer is not journaled right now, we need to make sure it
904 * doesn't get written to disk before the caller actually commits the
905 * new data
906 */
907 if (!jh->b_transaction) {
908 JBUFFER_TRACE(jh, "no transaction");
909 J_ASSERT_JH(jh, !jh->b_next_transaction);
910 JBUFFER_TRACE(jh, "file as BJ_Reserved");
911 /*
912 * Make sure all stores to jh (b_modified, b_frozen_data) are
913 * visible before attaching it to the running transaction.
914 * Paired with barrier in jbd2_write_access_granted()
915 */
916 smp_wmb();
917 spin_lock(&journal->j_list_lock);
918 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
919 spin_unlock(&journal->j_list_lock);
920 goto done;
921 }
922 /*
923 * If there is already a copy-out version of this buffer, then we don't
924 * need to make another one
925 */
926 if (jh->b_frozen_data) {
927 JBUFFER_TRACE(jh, "has frozen data");
928 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
929 goto attach_next;
930 }
931
932 JBUFFER_TRACE(jh, "owned by older transaction");
933 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
934 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
935
936 /*
937 * There is one case we have to be very careful about. If the
938 * committing transaction is currently writing this buffer out to disk
939 * and has NOT made a copy-out, then we cannot modify the buffer
940 * contents at all right now. The essence of copy-out is that it is
941 * the extra copy, not the primary copy, which gets journaled. If the
942 * primary copy is already going to disk then we cannot do copy-out
943 * here.
944 */
945 if (buffer_shadow(bh)) {
946 JBUFFER_TRACE(jh, "on shadow: sleep");
947 jbd_unlock_bh_state(bh);
948 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
949 goto repeat;
950 }
951
952 /*
953 * Only do the copy if the currently-owning transaction still needs it.
954 * If buffer isn't on BJ_Metadata list, the committing transaction is
955 * past that stage (here we use the fact that BH_Shadow is set under
956 * bh_state lock together with refiling to BJ_Shadow list and at this
957 * point we know the buffer doesn't have BH_Shadow set).
958 *
959 * Subtle point, though: if this is a get_undo_access, then we will be
960 * relying on the frozen_data to contain the new value of the
961 * committed_data record after the transaction, so we HAVE to force the
962 * frozen_data copy in that case.
963 */
964 if (jh->b_jlist == BJ_Metadata || force_copy) {
965 JBUFFER_TRACE(jh, "generate frozen data");
966 if (!frozen_buffer) {
967 JBUFFER_TRACE(jh, "allocate memory for buffer");
968 jbd_unlock_bh_state(bh);
969 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
970 if (!frozen_buffer) {
971 printk(KERN_ERR "%s: OOM for frozen_buffer\n",
972 __func__);
973 JBUFFER_TRACE(jh, "oom!");
974 error = -ENOMEM;
975 goto out;
976 }
977 goto repeat;
978 }
979 jh->b_frozen_data = frozen_buffer;
980 frozen_buffer = NULL;
981 jbd2_freeze_jh_data(jh);
982 }
983 attach_next:
984 /*
985 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
986 * before attaching it to the running transaction. Paired with barrier
987 * in jbd2_write_access_granted()
988 */
989 smp_wmb();
990 jh->b_next_transaction = transaction;
991
992 done:
993 jbd_unlock_bh_state(bh);
994
995 /*
996 * If we are about to journal a buffer, then any revoke pending on it is
997 * no longer valid
998 */
999 jbd2_journal_cancel_revoke(handle, jh);
1000
1001 out:
1002 if (unlikely(frozen_buffer)) /* It's usually NULL */
1003 jbd2_free(frozen_buffer, bh->b_size);
1004
1005 JBUFFER_TRACE(jh, "exit");
1006 return error;
1007 }
1008
1009 /* Fast check whether buffer is already attached to the required transaction */
1010 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1011 bool undo)
1012 {
1013 struct journal_head *jh;
1014 bool ret = false;
1015
1016 /* Dirty buffers require special handling... */
1017 if (buffer_dirty(bh))
1018 return false;
1019
1020 /*
1021 * RCU protects us from dereferencing freed pages. So the checks we do
1022 * are guaranteed not to oops. However the jh slab object can get freed
1023 * & reallocated while we work with it. So we have to be careful. When
1024 * we see jh attached to the running transaction, we know it must stay
1025 * so until the transaction is committed. Thus jh won't be freed and
1026 * will be attached to the same bh while we run. However it can
1027 * happen jh gets freed, reallocated, and attached to the transaction
1028 * just after we get pointer to it from bh. So we have to be careful
1029 * and recheck jh still belongs to our bh before we return success.
1030 */
1031 rcu_read_lock();
1032 if (!buffer_jbd(bh))
1033 goto out;
1034 /* This should be bh2jh() but that doesn't work with inline functions */
1035 jh = READ_ONCE(bh->b_private);
1036 if (!jh)
1037 goto out;
1038 /* For undo access buffer must have data copied */
1039 if (undo && !jh->b_committed_data)
1040 goto out;
1041 if (jh->b_transaction != handle->h_transaction &&
1042 jh->b_next_transaction != handle->h_transaction)
1043 goto out;
1044 /*
1045 * There are two reasons for the barrier here:
1046 * 1) Make sure to fetch b_bh after we did previous checks so that we
1047 * detect when jh went through free, realloc, attach to transaction
1048 * while we were checking. Paired with implicit barrier in that path.
1049 * 2) So that access to bh done after jbd2_write_access_granted()
1050 * doesn't get reordered and see inconsistent state of concurrent
1051 * do_get_write_access().
1052 */
1053 smp_mb();
1054 if (unlikely(jh->b_bh != bh))
1055 goto out;
1056 ret = true;
1057 out:
1058 rcu_read_unlock();
1059 return ret;
1060 }
1061
1062 /**
1063 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1064 * @handle: transaction to add buffer modifications to
1065 * @bh: bh to be used for metadata writes
1066 *
1067 * Returns an error code or 0 on success.
1068 *
1069 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1070 * because we're write()ing a buffer which is also part of a shared mapping.
1071 */
1072
1073 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1074 {
1075 struct journal_head *jh;
1076 int rc;
1077
1078 if (jbd2_write_access_granted(handle, bh, false))
1079 return 0;
1080
1081 jh = jbd2_journal_add_journal_head(bh);
1082 /* We do not want to get caught playing with fields which the
1083 * log thread also manipulates. Make sure that the buffer
1084 * completes any outstanding IO before proceeding. */
1085 rc = do_get_write_access(handle, jh, 0);
1086 jbd2_journal_put_journal_head(jh);
1087 return rc;
1088 }
1089
1090
1091 /*
1092 * When the user wants to journal a newly created buffer_head
1093 * (ie. getblk() returned a new buffer and we are going to populate it
1094 * manually rather than reading off disk), then we need to keep the
1095 * buffer_head locked until it has been completely filled with new
1096 * data. In this case, we should be able to make the assertion that
1097 * the bh is not already part of an existing transaction.
1098 *
1099 * The buffer should already be locked by the caller by this point.
1100 * There is no lock ranking violation: it was a newly created,
1101 * unlocked buffer beforehand. */
1102
1103 /**
1104 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1105 * @handle: transaction to new buffer to
1106 * @bh: new buffer.
1107 *
1108 * Call this if you create a new bh.
1109 */
1110 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1111 {
1112 transaction_t *transaction = handle->h_transaction;
1113 journal_t *journal;
1114 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1115 int err;
1116
1117 jbd_debug(5, "journal_head %p\n", jh);
1118 err = -EROFS;
1119 if (is_handle_aborted(handle))
1120 goto out;
1121 journal = transaction->t_journal;
1122 err = 0;
1123
1124 JBUFFER_TRACE(jh, "entry");
1125 /*
1126 * The buffer may already belong to this transaction due to pre-zeroing
1127 * in the filesystem's new_block code. It may also be on the previous,
1128 * committing transaction's lists, but it HAS to be in Forget state in
1129 * that case: the transaction must have deleted the buffer for it to be
1130 * reused here.
1131 */
1132 jbd_lock_bh_state(bh);
1133 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1134 jh->b_transaction == NULL ||
1135 (jh->b_transaction == journal->j_committing_transaction &&
1136 jh->b_jlist == BJ_Forget)));
1137
1138 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1139 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1140
1141 if (jh->b_transaction == NULL) {
1142 /*
1143 * Previous jbd2_journal_forget() could have left the buffer
1144 * with jbddirty bit set because it was being committed. When
1145 * the commit finished, we've filed the buffer for
1146 * checkpointing and marked it dirty. Now we are reallocating
1147 * the buffer so the transaction freeing it must have
1148 * committed and so it's safe to clear the dirty bit.
1149 */
1150 clear_buffer_dirty(jh2bh(jh));
1151 /* first access by this transaction */
1152 jh->b_modified = 0;
1153
1154 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1155 spin_lock(&journal->j_list_lock);
1156 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1157 } else if (jh->b_transaction == journal->j_committing_transaction) {
1158 /* first access by this transaction */
1159 jh->b_modified = 0;
1160
1161 JBUFFER_TRACE(jh, "set next transaction");
1162 spin_lock(&journal->j_list_lock);
1163 jh->b_next_transaction = transaction;
1164 }
1165 spin_unlock(&journal->j_list_lock);
1166 jbd_unlock_bh_state(bh);
1167
1168 /*
1169 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1170 * blocks which contain freed but then revoked metadata. We need
1171 * to cancel the revoke in case we end up freeing it yet again
1172 * and the reallocating as data - this would cause a second revoke,
1173 * which hits an assertion error.
1174 */
1175 JBUFFER_TRACE(jh, "cancelling revoke");
1176 jbd2_journal_cancel_revoke(handle, jh);
1177 out:
1178 jbd2_journal_put_journal_head(jh);
1179 return err;
1180 }
1181
1182 /**
1183 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1184 * non-rewindable consequences
1185 * @handle: transaction
1186 * @bh: buffer to undo
1187 *
1188 * Sometimes there is a need to distinguish between metadata which has
1189 * been committed to disk and that which has not. The ext3fs code uses
1190 * this for freeing and allocating space, we have to make sure that we
1191 * do not reuse freed space until the deallocation has been committed,
1192 * since if we overwrote that space we would make the delete
1193 * un-rewindable in case of a crash.
1194 *
1195 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1196 * buffer for parts of non-rewindable operations such as delete
1197 * operations on the bitmaps. The journaling code must keep a copy of
1198 * the buffer's contents prior to the undo_access call until such time
1199 * as we know that the buffer has definitely been committed to disk.
1200 *
1201 * We never need to know which transaction the committed data is part
1202 * of, buffers touched here are guaranteed to be dirtied later and so
1203 * will be committed to a new transaction in due course, at which point
1204 * we can discard the old committed data pointer.
1205 *
1206 * Returns error number or 0 on success.
1207 */
1208 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1209 {
1210 int err;
1211 struct journal_head *jh;
1212 char *committed_data = NULL;
1213
1214 JBUFFER_TRACE(jh, "entry");
1215 if (jbd2_write_access_granted(handle, bh, true))
1216 return 0;
1217
1218 jh = jbd2_journal_add_journal_head(bh);
1219 /*
1220 * Do this first --- it can drop the journal lock, so we want to
1221 * make sure that obtaining the committed_data is done
1222 * atomically wrt. completion of any outstanding commits.
1223 */
1224 err = do_get_write_access(handle, jh, 1);
1225 if (err)
1226 goto out;
1227
1228 repeat:
1229 if (!jh->b_committed_data) {
1230 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1231 if (!committed_data) {
1232 printk(KERN_ERR "%s: No memory for committed data\n",
1233 __func__);
1234 err = -ENOMEM;
1235 goto out;
1236 }
1237 }
1238
1239 jbd_lock_bh_state(bh);
1240 if (!jh->b_committed_data) {
1241 /* Copy out the current buffer contents into the
1242 * preserved, committed copy. */
1243 JBUFFER_TRACE(jh, "generate b_committed data");
1244 if (!committed_data) {
1245 jbd_unlock_bh_state(bh);
1246 goto repeat;
1247 }
1248
1249 jh->b_committed_data = committed_data;
1250 committed_data = NULL;
1251 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1252 }
1253 jbd_unlock_bh_state(bh);
1254 out:
1255 jbd2_journal_put_journal_head(jh);
1256 if (unlikely(committed_data))
1257 jbd2_free(committed_data, bh->b_size);
1258 return err;
1259 }
1260
1261 /**
1262 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1263 * @bh: buffer to trigger on
1264 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1265 *
1266 * Set any triggers on this journal_head. This is always safe, because
1267 * triggers for a committing buffer will be saved off, and triggers for
1268 * a running transaction will match the buffer in that transaction.
1269 *
1270 * Call with NULL to clear the triggers.
1271 */
1272 void jbd2_journal_set_triggers(struct buffer_head *bh,
1273 struct jbd2_buffer_trigger_type *type)
1274 {
1275 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1276
1277 if (WARN_ON(!jh))
1278 return;
1279 jh->b_triggers = type;
1280 jbd2_journal_put_journal_head(jh);
1281 }
1282
1283 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1284 struct jbd2_buffer_trigger_type *triggers)
1285 {
1286 struct buffer_head *bh = jh2bh(jh);
1287
1288 if (!triggers || !triggers->t_frozen)
1289 return;
1290
1291 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1292 }
1293
1294 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1295 struct jbd2_buffer_trigger_type *triggers)
1296 {
1297 if (!triggers || !triggers->t_abort)
1298 return;
1299
1300 triggers->t_abort(triggers, jh2bh(jh));
1301 }
1302
1303 /**
1304 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1305 * @handle: transaction to add buffer to.
1306 * @bh: buffer to mark
1307 *
1308 * mark dirty metadata which needs to be journaled as part of the current
1309 * transaction.
1310 *
1311 * The buffer must have previously had jbd2_journal_get_write_access()
1312 * called so that it has a valid journal_head attached to the buffer
1313 * head.
1314 *
1315 * The buffer is placed on the transaction's metadata list and is marked
1316 * as belonging to the transaction.
1317 *
1318 * Returns error number or 0 on success.
1319 *
1320 * Special care needs to be taken if the buffer already belongs to the
1321 * current committing transaction (in which case we should have frozen
1322 * data present for that commit). In that case, we don't relink the
1323 * buffer: that only gets done when the old transaction finally
1324 * completes its commit.
1325 */
1326 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1327 {
1328 transaction_t *transaction = handle->h_transaction;
1329 journal_t *journal;
1330 struct journal_head *jh;
1331 int ret = 0;
1332
1333 if (is_handle_aborted(handle))
1334 return -EROFS;
1335 if (!buffer_jbd(bh)) {
1336 ret = -EUCLEAN;
1337 goto out;
1338 }
1339 /*
1340 * We don't grab jh reference here since the buffer must be part
1341 * of the running transaction.
1342 */
1343 jh = bh2jh(bh);
1344 /*
1345 * This and the following assertions are unreliable since we may see jh
1346 * in inconsistent state unless we grab bh_state lock. But this is
1347 * crucial to catch bugs so let's do a reliable check until the
1348 * lockless handling is fully proven.
1349 */
1350 if (jh->b_transaction != transaction &&
1351 jh->b_next_transaction != transaction) {
1352 jbd_lock_bh_state(bh);
1353 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1354 jh->b_next_transaction == transaction);
1355 jbd_unlock_bh_state(bh);
1356 }
1357 if (jh->b_modified == 1) {
1358 /* If it's in our transaction it must be in BJ_Metadata list. */
1359 if (jh->b_transaction == transaction &&
1360 jh->b_jlist != BJ_Metadata) {
1361 jbd_lock_bh_state(bh);
1362 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1363 jh->b_jlist == BJ_Metadata);
1364 jbd_unlock_bh_state(bh);
1365 }
1366 goto out;
1367 }
1368
1369 journal = transaction->t_journal;
1370 jbd_debug(5, "journal_head %p\n", jh);
1371 JBUFFER_TRACE(jh, "entry");
1372
1373 jbd_lock_bh_state(bh);
1374
1375 if (jh->b_modified == 0) {
1376 /*
1377 * This buffer's got modified and becoming part
1378 * of the transaction. This needs to be done
1379 * once a transaction -bzzz
1380 */
1381 jh->b_modified = 1;
1382 if (handle->h_buffer_credits <= 0) {
1383 ret = -ENOSPC;
1384 goto out_unlock_bh;
1385 }
1386 handle->h_buffer_credits--;
1387 }
1388
1389 /*
1390 * fastpath, to avoid expensive locking. If this buffer is already
1391 * on the running transaction's metadata list there is nothing to do.
1392 * Nobody can take it off again because there is a handle open.
1393 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1394 * result in this test being false, so we go in and take the locks.
1395 */
1396 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1397 JBUFFER_TRACE(jh, "fastpath");
1398 if (unlikely(jh->b_transaction !=
1399 journal->j_running_transaction)) {
1400 printk(KERN_ERR "JBD2: %s: "
1401 "jh->b_transaction (%llu, %p, %u) != "
1402 "journal->j_running_transaction (%p, %u)\n",
1403 journal->j_devname,
1404 (unsigned long long) bh->b_blocknr,
1405 jh->b_transaction,
1406 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1407 journal->j_running_transaction,
1408 journal->j_running_transaction ?
1409 journal->j_running_transaction->t_tid : 0);
1410 ret = -EINVAL;
1411 }
1412 goto out_unlock_bh;
1413 }
1414
1415 set_buffer_jbddirty(bh);
1416
1417 /*
1418 * Metadata already on the current transaction list doesn't
1419 * need to be filed. Metadata on another transaction's list must
1420 * be committing, and will be refiled once the commit completes:
1421 * leave it alone for now.
1422 */
1423 if (jh->b_transaction != transaction) {
1424 JBUFFER_TRACE(jh, "already on other transaction");
1425 if (unlikely(((jh->b_transaction !=
1426 journal->j_committing_transaction)) ||
1427 (jh->b_next_transaction != transaction))) {
1428 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1429 "bad jh for block %llu: "
1430 "transaction (%p, %u), "
1431 "jh->b_transaction (%p, %u), "
1432 "jh->b_next_transaction (%p, %u), jlist %u\n",
1433 journal->j_devname,
1434 (unsigned long long) bh->b_blocknr,
1435 transaction, transaction->t_tid,
1436 jh->b_transaction,
1437 jh->b_transaction ?
1438 jh->b_transaction->t_tid : 0,
1439 jh->b_next_transaction,
1440 jh->b_next_transaction ?
1441 jh->b_next_transaction->t_tid : 0,
1442 jh->b_jlist);
1443 WARN_ON(1);
1444 ret = -EINVAL;
1445 }
1446 /* And this case is illegal: we can't reuse another
1447 * transaction's data buffer, ever. */
1448 goto out_unlock_bh;
1449 }
1450
1451 /* That test should have eliminated the following case: */
1452 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1453
1454 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1455 spin_lock(&journal->j_list_lock);
1456 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1457 spin_unlock(&journal->j_list_lock);
1458 out_unlock_bh:
1459 jbd_unlock_bh_state(bh);
1460 out:
1461 JBUFFER_TRACE(jh, "exit");
1462 return ret;
1463 }
1464
1465 /**
1466 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1467 * @handle: transaction handle
1468 * @bh: bh to 'forget'
1469 *
1470 * We can only do the bforget if there are no commits pending against the
1471 * buffer. If the buffer is dirty in the current running transaction we
1472 * can safely unlink it.
1473 *
1474 * bh may not be a journalled buffer at all - it may be a non-JBD
1475 * buffer which came off the hashtable. Check for this.
1476 *
1477 * Decrements bh->b_count by one.
1478 *
1479 * Allow this call even if the handle has aborted --- it may be part of
1480 * the caller's cleanup after an abort.
1481 */
1482 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1483 {
1484 transaction_t *transaction = handle->h_transaction;
1485 journal_t *journal;
1486 struct journal_head *jh;
1487 int drop_reserve = 0;
1488 int err = 0;
1489 int was_modified = 0;
1490
1491 if (is_handle_aborted(handle))
1492 return -EROFS;
1493 journal = transaction->t_journal;
1494
1495 BUFFER_TRACE(bh, "entry");
1496
1497 jbd_lock_bh_state(bh);
1498
1499 if (!buffer_jbd(bh))
1500 goto not_jbd;
1501 jh = bh2jh(bh);
1502
1503 /* Critical error: attempting to delete a bitmap buffer, maybe?
1504 * Don't do any jbd operations, and return an error. */
1505 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1506 "inconsistent data on disk")) {
1507 err = -EIO;
1508 goto not_jbd;
1509 }
1510
1511 /* keep track of whether or not this transaction modified us */
1512 was_modified = jh->b_modified;
1513
1514 /*
1515 * The buffer's going from the transaction, we must drop
1516 * all references -bzzz
1517 */
1518 jh->b_modified = 0;
1519
1520 if (jh->b_transaction == transaction) {
1521 J_ASSERT_JH(jh, !jh->b_frozen_data);
1522
1523 /* If we are forgetting a buffer which is already part
1524 * of this transaction, then we can just drop it from
1525 * the transaction immediately. */
1526 clear_buffer_dirty(bh);
1527 clear_buffer_jbddirty(bh);
1528
1529 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1530
1531 /*
1532 * we only want to drop a reference if this transaction
1533 * modified the buffer
1534 */
1535 if (was_modified)
1536 drop_reserve = 1;
1537
1538 /*
1539 * We are no longer going to journal this buffer.
1540 * However, the commit of this transaction is still
1541 * important to the buffer: the delete that we are now
1542 * processing might obsolete an old log entry, so by
1543 * committing, we can satisfy the buffer's checkpoint.
1544 *
1545 * So, if we have a checkpoint on the buffer, we should
1546 * now refile the buffer on our BJ_Forget list so that
1547 * we know to remove the checkpoint after we commit.
1548 */
1549
1550 spin_lock(&journal->j_list_lock);
1551 if (jh->b_cp_transaction) {
1552 __jbd2_journal_temp_unlink_buffer(jh);
1553 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1554 } else {
1555 __jbd2_journal_unfile_buffer(jh);
1556 if (!buffer_jbd(bh)) {
1557 spin_unlock(&journal->j_list_lock);
1558 jbd_unlock_bh_state(bh);
1559 __bforget(bh);
1560 goto drop;
1561 }
1562 }
1563 spin_unlock(&journal->j_list_lock);
1564 } else if (jh->b_transaction) {
1565 J_ASSERT_JH(jh, (jh->b_transaction ==
1566 journal->j_committing_transaction));
1567 /* However, if the buffer is still owned by a prior
1568 * (committing) transaction, we can't drop it yet... */
1569 JBUFFER_TRACE(jh, "belongs to older transaction");
1570 /* ... but we CAN drop it from the new transaction if we
1571 * have also modified it since the original commit. */
1572
1573 if (jh->b_next_transaction) {
1574 J_ASSERT(jh->b_next_transaction == transaction);
1575 spin_lock(&journal->j_list_lock);
1576 jh->b_next_transaction = NULL;
1577 spin_unlock(&journal->j_list_lock);
1578
1579 /*
1580 * only drop a reference if this transaction modified
1581 * the buffer
1582 */
1583 if (was_modified)
1584 drop_reserve = 1;
1585 }
1586 }
1587
1588 not_jbd:
1589 jbd_unlock_bh_state(bh);
1590 __brelse(bh);
1591 drop:
1592 if (drop_reserve) {
1593 /* no need to reserve log space for this block -bzzz */
1594 handle->h_buffer_credits++;
1595 }
1596 return err;
1597 }
1598
1599 /**
1600 * int jbd2_journal_stop() - complete a transaction
1601 * @handle: tranaction to complete.
1602 *
1603 * All done for a particular handle.
1604 *
1605 * There is not much action needed here. We just return any remaining
1606 * buffer credits to the transaction and remove the handle. The only
1607 * complication is that we need to start a commit operation if the
1608 * filesystem is marked for synchronous update.
1609 *
1610 * jbd2_journal_stop itself will not usually return an error, but it may
1611 * do so in unusual circumstances. In particular, expect it to
1612 * return -EIO if a jbd2_journal_abort has been executed since the
1613 * transaction began.
1614 */
1615 int jbd2_journal_stop(handle_t *handle)
1616 {
1617 transaction_t *transaction = handle->h_transaction;
1618 journal_t *journal;
1619 int err = 0, wait_for_commit = 0;
1620 tid_t tid;
1621 pid_t pid;
1622
1623 if (!transaction) {
1624 /*
1625 * Handle is already detached from the transaction so
1626 * there is nothing to do other than decrease a refcount,
1627 * or free the handle if refcount drops to zero
1628 */
1629 if (--handle->h_ref > 0) {
1630 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1631 handle->h_ref);
1632 return err;
1633 } else {
1634 if (handle->h_rsv_handle)
1635 jbd2_free_handle(handle->h_rsv_handle);
1636 goto free_and_exit;
1637 }
1638 }
1639 journal = transaction->t_journal;
1640
1641 J_ASSERT(journal_current_handle() == handle);
1642
1643 if (is_handle_aborted(handle))
1644 err = -EIO;
1645 else
1646 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1647
1648 if (--handle->h_ref > 0) {
1649 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1650 handle->h_ref);
1651 return err;
1652 }
1653
1654 jbd_debug(4, "Handle %p going down\n", handle);
1655 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1656 transaction->t_tid,
1657 handle->h_type, handle->h_line_no,
1658 jiffies - handle->h_start_jiffies,
1659 handle->h_sync, handle->h_requested_credits,
1660 (handle->h_requested_credits -
1661 handle->h_buffer_credits));
1662
1663 /*
1664 * Implement synchronous transaction batching. If the handle
1665 * was synchronous, don't force a commit immediately. Let's
1666 * yield and let another thread piggyback onto this
1667 * transaction. Keep doing that while new threads continue to
1668 * arrive. It doesn't cost much - we're about to run a commit
1669 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1670 * operations by 30x or more...
1671 *
1672 * We try and optimize the sleep time against what the
1673 * underlying disk can do, instead of having a static sleep
1674 * time. This is useful for the case where our storage is so
1675 * fast that it is more optimal to go ahead and force a flush
1676 * and wait for the transaction to be committed than it is to
1677 * wait for an arbitrary amount of time for new writers to
1678 * join the transaction. We achieve this by measuring how
1679 * long it takes to commit a transaction, and compare it with
1680 * how long this transaction has been running, and if run time
1681 * < commit time then we sleep for the delta and commit. This
1682 * greatly helps super fast disks that would see slowdowns as
1683 * more threads started doing fsyncs.
1684 *
1685 * But don't do this if this process was the most recent one
1686 * to perform a synchronous write. We do this to detect the
1687 * case where a single process is doing a stream of sync
1688 * writes. No point in waiting for joiners in that case.
1689 *
1690 * Setting max_batch_time to 0 disables this completely.
1691 */
1692 pid = current->pid;
1693 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1694 journal->j_max_batch_time) {
1695 u64 commit_time, trans_time;
1696
1697 journal->j_last_sync_writer = pid;
1698
1699 read_lock(&journal->j_state_lock);
1700 commit_time = journal->j_average_commit_time;
1701 read_unlock(&journal->j_state_lock);
1702
1703 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1704 transaction->t_start_time));
1705
1706 commit_time = max_t(u64, commit_time,
1707 1000*journal->j_min_batch_time);
1708 commit_time = min_t(u64, commit_time,
1709 1000*journal->j_max_batch_time);
1710
1711 if (trans_time < commit_time) {
1712 ktime_t expires = ktime_add_ns(ktime_get(),
1713 commit_time);
1714 set_current_state(TASK_UNINTERRUPTIBLE);
1715 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1716 }
1717 }
1718
1719 if (handle->h_sync)
1720 transaction->t_synchronous_commit = 1;
1721 current->journal_info = NULL;
1722 atomic_sub(handle->h_buffer_credits,
1723 &transaction->t_outstanding_credits);
1724
1725 /*
1726 * If the handle is marked SYNC, we need to set another commit
1727 * going! We also want to force a commit if the current
1728 * transaction is occupying too much of the log, or if the
1729 * transaction is too old now.
1730 */
1731 if (handle->h_sync ||
1732 (atomic_read(&transaction->t_outstanding_credits) >
1733 journal->j_max_transaction_buffers) ||
1734 time_after_eq(jiffies, transaction->t_expires)) {
1735 /* Do this even for aborted journals: an abort still
1736 * completes the commit thread, it just doesn't write
1737 * anything to disk. */
1738
1739 jbd_debug(2, "transaction too old, requesting commit for "
1740 "handle %p\n", handle);
1741 /* This is non-blocking */
1742 jbd2_log_start_commit(journal, transaction->t_tid);
1743
1744 /*
1745 * Special case: JBD2_SYNC synchronous updates require us
1746 * to wait for the commit to complete.
1747 */
1748 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1749 wait_for_commit = 1;
1750 }
1751
1752 /*
1753 * Once we drop t_updates, if it goes to zero the transaction
1754 * could start committing on us and eventually disappear. So
1755 * once we do this, we must not dereference transaction
1756 * pointer again.
1757 */
1758 tid = transaction->t_tid;
1759 if (atomic_dec_and_test(&transaction->t_updates)) {
1760 wake_up(&journal->j_wait_updates);
1761 if (journal->j_barrier_count)
1762 wake_up(&journal->j_wait_transaction_locked);
1763 }
1764
1765 if (wait_for_commit)
1766 err = jbd2_log_wait_commit(journal, tid);
1767
1768 lock_map_release(&handle->h_lockdep_map);
1769
1770 if (handle->h_rsv_handle)
1771 jbd2_journal_free_reserved(handle->h_rsv_handle);
1772 free_and_exit:
1773 jbd2_free_handle(handle);
1774 return err;
1775 }
1776
1777 /*
1778 *
1779 * List management code snippets: various functions for manipulating the
1780 * transaction buffer lists.
1781 *
1782 */
1783
1784 /*
1785 * Append a buffer to a transaction list, given the transaction's list head
1786 * pointer.
1787 *
1788 * j_list_lock is held.
1789 *
1790 * jbd_lock_bh_state(jh2bh(jh)) is held.
1791 */
1792
1793 static inline void
1794 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1795 {
1796 if (!*list) {
1797 jh->b_tnext = jh->b_tprev = jh;
1798 *list = jh;
1799 } else {
1800 /* Insert at the tail of the list to preserve order */
1801 struct journal_head *first = *list, *last = first->b_tprev;
1802 jh->b_tprev = last;
1803 jh->b_tnext = first;
1804 last->b_tnext = first->b_tprev = jh;
1805 }
1806 }
1807
1808 /*
1809 * Remove a buffer from a transaction list, given the transaction's list
1810 * head pointer.
1811 *
1812 * Called with j_list_lock held, and the journal may not be locked.
1813 *
1814 * jbd_lock_bh_state(jh2bh(jh)) is held.
1815 */
1816
1817 static inline void
1818 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1819 {
1820 if (*list == jh) {
1821 *list = jh->b_tnext;
1822 if (*list == jh)
1823 *list = NULL;
1824 }
1825 jh->b_tprev->b_tnext = jh->b_tnext;
1826 jh->b_tnext->b_tprev = jh->b_tprev;
1827 }
1828
1829 /*
1830 * Remove a buffer from the appropriate transaction list.
1831 *
1832 * Note that this function can *change* the value of
1833 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1834 * t_reserved_list. If the caller is holding onto a copy of one of these
1835 * pointers, it could go bad. Generally the caller needs to re-read the
1836 * pointer from the transaction_t.
1837 *
1838 * Called under j_list_lock.
1839 */
1840 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1841 {
1842 struct journal_head **list = NULL;
1843 transaction_t *transaction;
1844 struct buffer_head *bh = jh2bh(jh);
1845
1846 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1847 transaction = jh->b_transaction;
1848 if (transaction)
1849 assert_spin_locked(&transaction->t_journal->j_list_lock);
1850
1851 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1852 if (jh->b_jlist != BJ_None)
1853 J_ASSERT_JH(jh, transaction != NULL);
1854
1855 switch (jh->b_jlist) {
1856 case BJ_None:
1857 return;
1858 case BJ_Metadata:
1859 transaction->t_nr_buffers--;
1860 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1861 list = &transaction->t_buffers;
1862 break;
1863 case BJ_Forget:
1864 list = &transaction->t_forget;
1865 break;
1866 case BJ_Shadow:
1867 list = &transaction->t_shadow_list;
1868 break;
1869 case BJ_Reserved:
1870 list = &transaction->t_reserved_list;
1871 break;
1872 }
1873
1874 __blist_del_buffer(list, jh);
1875 jh->b_jlist = BJ_None;
1876 if (test_clear_buffer_jbddirty(bh))
1877 mark_buffer_dirty(bh); /* Expose it to the VM */
1878 }
1879
1880 /*
1881 * Remove buffer from all transactions.
1882 *
1883 * Called with bh_state lock and j_list_lock
1884 *
1885 * jh and bh may be already freed when this function returns.
1886 */
1887 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1888 {
1889 __jbd2_journal_temp_unlink_buffer(jh);
1890 jh->b_transaction = NULL;
1891 jbd2_journal_put_journal_head(jh);
1892 }
1893
1894 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1895 {
1896 struct buffer_head *bh = jh2bh(jh);
1897
1898 /* Get reference so that buffer cannot be freed before we unlock it */
1899 get_bh(bh);
1900 jbd_lock_bh_state(bh);
1901 spin_lock(&journal->j_list_lock);
1902 __jbd2_journal_unfile_buffer(jh);
1903 spin_unlock(&journal->j_list_lock);
1904 jbd_unlock_bh_state(bh);
1905 __brelse(bh);
1906 }
1907
1908 /*
1909 * Called from jbd2_journal_try_to_free_buffers().
1910 *
1911 * Called under jbd_lock_bh_state(bh)
1912 */
1913 static void
1914 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1915 {
1916 struct journal_head *jh;
1917
1918 jh = bh2jh(bh);
1919
1920 if (buffer_locked(bh) || buffer_dirty(bh))
1921 goto out;
1922
1923 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1924 goto out;
1925
1926 spin_lock(&journal->j_list_lock);
1927 if (jh->b_cp_transaction != NULL) {
1928 /* written-back checkpointed metadata buffer */
1929 JBUFFER_TRACE(jh, "remove from checkpoint list");
1930 __jbd2_journal_remove_checkpoint(jh);
1931 }
1932 spin_unlock(&journal->j_list_lock);
1933 out:
1934 return;
1935 }
1936
1937 /**
1938 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1939 * @journal: journal for operation
1940 * @page: to try and free
1941 * @gfp_mask: we use the mask to detect how hard should we try to release
1942 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1943 * code to release the buffers.
1944 *
1945 *
1946 * For all the buffers on this page,
1947 * if they are fully written out ordered data, move them onto BUF_CLEAN
1948 * so try_to_free_buffers() can reap them.
1949 *
1950 * This function returns non-zero if we wish try_to_free_buffers()
1951 * to be called. We do this if the page is releasable by try_to_free_buffers().
1952 * We also do it if the page has locked or dirty buffers and the caller wants
1953 * us to perform sync or async writeout.
1954 *
1955 * This complicates JBD locking somewhat. We aren't protected by the
1956 * BKL here. We wish to remove the buffer from its committing or
1957 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1958 *
1959 * This may *change* the value of transaction_t->t_datalist, so anyone
1960 * who looks at t_datalist needs to lock against this function.
1961 *
1962 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1963 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1964 * will come out of the lock with the buffer dirty, which makes it
1965 * ineligible for release here.
1966 *
1967 * Who else is affected by this? hmm... Really the only contender
1968 * is do_get_write_access() - it could be looking at the buffer while
1969 * journal_try_to_free_buffer() is changing its state. But that
1970 * cannot happen because we never reallocate freed data as metadata
1971 * while the data is part of a transaction. Yes?
1972 *
1973 * Return 0 on failure, 1 on success
1974 */
1975 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1976 struct page *page, gfp_t gfp_mask)
1977 {
1978 struct buffer_head *head;
1979 struct buffer_head *bh;
1980 int ret = 0;
1981
1982 J_ASSERT(PageLocked(page));
1983
1984 head = page_buffers(page);
1985 bh = head;
1986 do {
1987 struct journal_head *jh;
1988
1989 /*
1990 * We take our own ref against the journal_head here to avoid
1991 * having to add tons of locking around each instance of
1992 * jbd2_journal_put_journal_head().
1993 */
1994 jh = jbd2_journal_grab_journal_head(bh);
1995 if (!jh)
1996 continue;
1997
1998 jbd_lock_bh_state(bh);
1999 __journal_try_to_free_buffer(journal, bh);
2000 jbd2_journal_put_journal_head(jh);
2001 jbd_unlock_bh_state(bh);
2002 if (buffer_jbd(bh))
2003 goto busy;
2004 } while ((bh = bh->b_this_page) != head);
2005
2006 ret = try_to_free_buffers(page);
2007
2008 busy:
2009 return ret;
2010 }
2011
2012 /*
2013 * This buffer is no longer needed. If it is on an older transaction's
2014 * checkpoint list we need to record it on this transaction's forget list
2015 * to pin this buffer (and hence its checkpointing transaction) down until
2016 * this transaction commits. If the buffer isn't on a checkpoint list, we
2017 * release it.
2018 * Returns non-zero if JBD no longer has an interest in the buffer.
2019 *
2020 * Called under j_list_lock.
2021 *
2022 * Called under jbd_lock_bh_state(bh).
2023 */
2024 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2025 {
2026 int may_free = 1;
2027 struct buffer_head *bh = jh2bh(jh);
2028
2029 if (jh->b_cp_transaction) {
2030 JBUFFER_TRACE(jh, "on running+cp transaction");
2031 __jbd2_journal_temp_unlink_buffer(jh);
2032 /*
2033 * We don't want to write the buffer anymore, clear the
2034 * bit so that we don't confuse checks in
2035 * __journal_file_buffer
2036 */
2037 clear_buffer_dirty(bh);
2038 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2039 may_free = 0;
2040 } else {
2041 JBUFFER_TRACE(jh, "on running transaction");
2042 __jbd2_journal_unfile_buffer(jh);
2043 }
2044 return may_free;
2045 }
2046
2047 /*
2048 * jbd2_journal_invalidatepage
2049 *
2050 * This code is tricky. It has a number of cases to deal with.
2051 *
2052 * There are two invariants which this code relies on:
2053 *
2054 * i_size must be updated on disk before we start calling invalidatepage on the
2055 * data.
2056 *
2057 * This is done in ext3 by defining an ext3_setattr method which
2058 * updates i_size before truncate gets going. By maintaining this
2059 * invariant, we can be sure that it is safe to throw away any buffers
2060 * attached to the current transaction: once the transaction commits,
2061 * we know that the data will not be needed.
2062 *
2063 * Note however that we can *not* throw away data belonging to the
2064 * previous, committing transaction!
2065 *
2066 * Any disk blocks which *are* part of the previous, committing
2067 * transaction (and which therefore cannot be discarded immediately) are
2068 * not going to be reused in the new running transaction
2069 *
2070 * The bitmap committed_data images guarantee this: any block which is
2071 * allocated in one transaction and removed in the next will be marked
2072 * as in-use in the committed_data bitmap, so cannot be reused until
2073 * the next transaction to delete the block commits. This means that
2074 * leaving committing buffers dirty is quite safe: the disk blocks
2075 * cannot be reallocated to a different file and so buffer aliasing is
2076 * not possible.
2077 *
2078 *
2079 * The above applies mainly to ordered data mode. In writeback mode we
2080 * don't make guarantees about the order in which data hits disk --- in
2081 * particular we don't guarantee that new dirty data is flushed before
2082 * transaction commit --- so it is always safe just to discard data
2083 * immediately in that mode. --sct
2084 */
2085
2086 /*
2087 * The journal_unmap_buffer helper function returns zero if the buffer
2088 * concerned remains pinned as an anonymous buffer belonging to an older
2089 * transaction.
2090 *
2091 * We're outside-transaction here. Either or both of j_running_transaction
2092 * and j_committing_transaction may be NULL.
2093 */
2094 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2095 int partial_page)
2096 {
2097 transaction_t *transaction;
2098 struct journal_head *jh;
2099 int may_free = 1;
2100
2101 BUFFER_TRACE(bh, "entry");
2102
2103 /*
2104 * It is safe to proceed here without the j_list_lock because the
2105 * buffers cannot be stolen by try_to_free_buffers as long as we are
2106 * holding the page lock. --sct
2107 */
2108
2109 if (!buffer_jbd(bh))
2110 goto zap_buffer_unlocked;
2111
2112 /* OK, we have data buffer in journaled mode */
2113 write_lock(&journal->j_state_lock);
2114 jbd_lock_bh_state(bh);
2115 spin_lock(&journal->j_list_lock);
2116
2117 jh = jbd2_journal_grab_journal_head(bh);
2118 if (!jh)
2119 goto zap_buffer_no_jh;
2120
2121 /*
2122 * We cannot remove the buffer from checkpoint lists until the
2123 * transaction adding inode to orphan list (let's call it T)
2124 * is committed. Otherwise if the transaction changing the
2125 * buffer would be cleaned from the journal before T is
2126 * committed, a crash will cause that the correct contents of
2127 * the buffer will be lost. On the other hand we have to
2128 * clear the buffer dirty bit at latest at the moment when the
2129 * transaction marking the buffer as freed in the filesystem
2130 * structures is committed because from that moment on the
2131 * block can be reallocated and used by a different page.
2132 * Since the block hasn't been freed yet but the inode has
2133 * already been added to orphan list, it is safe for us to add
2134 * the buffer to BJ_Forget list of the newest transaction.
2135 *
2136 * Also we have to clear buffer_mapped flag of a truncated buffer
2137 * because the buffer_head may be attached to the page straddling
2138 * i_size (can happen only when blocksize < pagesize) and thus the
2139 * buffer_head can be reused when the file is extended again. So we end
2140 * up keeping around invalidated buffers attached to transactions'
2141 * BJ_Forget list just to stop checkpointing code from cleaning up
2142 * the transaction this buffer was modified in.
2143 */
2144 transaction = jh->b_transaction;
2145 if (transaction == NULL) {
2146 /* First case: not on any transaction. If it
2147 * has no checkpoint link, then we can zap it:
2148 * it's a writeback-mode buffer so we don't care
2149 * if it hits disk safely. */
2150 if (!jh->b_cp_transaction) {
2151 JBUFFER_TRACE(jh, "not on any transaction: zap");
2152 goto zap_buffer;
2153 }
2154
2155 if (!buffer_dirty(bh)) {
2156 /* bdflush has written it. We can drop it now */
2157 __jbd2_journal_remove_checkpoint(jh);
2158 goto zap_buffer;
2159 }
2160
2161 /* OK, it must be in the journal but still not
2162 * written fully to disk: it's metadata or
2163 * journaled data... */
2164
2165 if (journal->j_running_transaction) {
2166 /* ... and once the current transaction has
2167 * committed, the buffer won't be needed any
2168 * longer. */
2169 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2170 may_free = __dispose_buffer(jh,
2171 journal->j_running_transaction);
2172 goto zap_buffer;
2173 } else {
2174 /* There is no currently-running transaction. So the
2175 * orphan record which we wrote for this file must have
2176 * passed into commit. We must attach this buffer to
2177 * the committing transaction, if it exists. */
2178 if (journal->j_committing_transaction) {
2179 JBUFFER_TRACE(jh, "give to committing trans");
2180 may_free = __dispose_buffer(jh,
2181 journal->j_committing_transaction);
2182 goto zap_buffer;
2183 } else {
2184 /* The orphan record's transaction has
2185 * committed. We can cleanse this buffer */
2186 clear_buffer_jbddirty(bh);
2187 __jbd2_journal_remove_checkpoint(jh);
2188 goto zap_buffer;
2189 }
2190 }
2191 } else if (transaction == journal->j_committing_transaction) {
2192 JBUFFER_TRACE(jh, "on committing transaction");
2193 /*
2194 * The buffer is committing, we simply cannot touch
2195 * it. If the page is straddling i_size we have to wait
2196 * for commit and try again.
2197 */
2198 if (partial_page) {
2199 jbd2_journal_put_journal_head(jh);
2200 spin_unlock(&journal->j_list_lock);
2201 jbd_unlock_bh_state(bh);
2202 write_unlock(&journal->j_state_lock);
2203 return -EBUSY;
2204 }
2205 /*
2206 * OK, buffer won't be reachable after truncate. We just set
2207 * j_next_transaction to the running transaction (if there is
2208 * one) and mark buffer as freed so that commit code knows it
2209 * should clear dirty bits when it is done with the buffer.
2210 */
2211 set_buffer_freed(bh);
2212 if (journal->j_running_transaction && buffer_jbddirty(bh))
2213 jh->b_next_transaction = journal->j_running_transaction;
2214 jbd2_journal_put_journal_head(jh);
2215 spin_unlock(&journal->j_list_lock);
2216 jbd_unlock_bh_state(bh);
2217 write_unlock(&journal->j_state_lock);
2218 return 0;
2219 } else {
2220 /* Good, the buffer belongs to the running transaction.
2221 * We are writing our own transaction's data, not any
2222 * previous one's, so it is safe to throw it away
2223 * (remember that we expect the filesystem to have set
2224 * i_size already for this truncate so recovery will not
2225 * expose the disk blocks we are discarding here.) */
2226 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2227 JBUFFER_TRACE(jh, "on running transaction");
2228 may_free = __dispose_buffer(jh, transaction);
2229 }
2230
2231 zap_buffer:
2232 /*
2233 * This is tricky. Although the buffer is truncated, it may be reused
2234 * if blocksize < pagesize and it is attached to the page straddling
2235 * EOF. Since the buffer might have been added to BJ_Forget list of the
2236 * running transaction, journal_get_write_access() won't clear
2237 * b_modified and credit accounting gets confused. So clear b_modified
2238 * here.
2239 */
2240 jh->b_modified = 0;
2241 jbd2_journal_put_journal_head(jh);
2242 zap_buffer_no_jh:
2243 spin_unlock(&journal->j_list_lock);
2244 jbd_unlock_bh_state(bh);
2245 write_unlock(&journal->j_state_lock);
2246 zap_buffer_unlocked:
2247 clear_buffer_dirty(bh);
2248 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2249 clear_buffer_mapped(bh);
2250 clear_buffer_req(bh);
2251 clear_buffer_new(bh);
2252 clear_buffer_delay(bh);
2253 clear_buffer_unwritten(bh);
2254 bh->b_bdev = NULL;
2255 return may_free;
2256 }
2257
2258 /**
2259 * void jbd2_journal_invalidatepage()
2260 * @journal: journal to use for flush...
2261 * @page: page to flush
2262 * @offset: start of the range to invalidate
2263 * @length: length of the range to invalidate
2264 *
2265 * Reap page buffers containing data after in the specified range in page.
2266 * Can return -EBUSY if buffers are part of the committing transaction and
2267 * the page is straddling i_size. Caller then has to wait for current commit
2268 * and try again.
2269 */
2270 int jbd2_journal_invalidatepage(journal_t *journal,
2271 struct page *page,
2272 unsigned int offset,
2273 unsigned int length)
2274 {
2275 struct buffer_head *head, *bh, *next;
2276 unsigned int stop = offset + length;
2277 unsigned int curr_off = 0;
2278 int partial_page = (offset || length < PAGE_CACHE_SIZE);
2279 int may_free = 1;
2280 int ret = 0;
2281
2282 if (!PageLocked(page))
2283 BUG();
2284 if (!page_has_buffers(page))
2285 return 0;
2286
2287 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2288
2289 /* We will potentially be playing with lists other than just the
2290 * data lists (especially for journaled data mode), so be
2291 * cautious in our locking. */
2292
2293 head = bh = page_buffers(page);
2294 do {
2295 unsigned int next_off = curr_off + bh->b_size;
2296 next = bh->b_this_page;
2297
2298 if (next_off > stop)
2299 return 0;
2300
2301 if (offset <= curr_off) {
2302 /* This block is wholly outside the truncation point */
2303 lock_buffer(bh);
2304 ret = journal_unmap_buffer(journal, bh, partial_page);
2305 unlock_buffer(bh);
2306 if (ret < 0)
2307 return ret;
2308 may_free &= ret;
2309 }
2310 curr_off = next_off;
2311 bh = next;
2312
2313 } while (bh != head);
2314
2315 if (!partial_page) {
2316 if (may_free && try_to_free_buffers(page))
2317 J_ASSERT(!page_has_buffers(page));
2318 }
2319 return 0;
2320 }
2321
2322 /*
2323 * File a buffer on the given transaction list.
2324 */
2325 void __jbd2_journal_file_buffer(struct journal_head *jh,
2326 transaction_t *transaction, int jlist)
2327 {
2328 struct journal_head **list = NULL;
2329 int was_dirty = 0;
2330 struct buffer_head *bh = jh2bh(jh);
2331
2332 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2333 assert_spin_locked(&transaction->t_journal->j_list_lock);
2334
2335 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2336 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2337 jh->b_transaction == NULL);
2338
2339 if (jh->b_transaction && jh->b_jlist == jlist)
2340 return;
2341
2342 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2343 jlist == BJ_Shadow || jlist == BJ_Forget) {
2344 /*
2345 * For metadata buffers, we track dirty bit in buffer_jbddirty
2346 * instead of buffer_dirty. We should not see a dirty bit set
2347 * here because we clear it in do_get_write_access but e.g.
2348 * tune2fs can modify the sb and set the dirty bit at any time
2349 * so we try to gracefully handle that.
2350 */
2351 if (buffer_dirty(bh))
2352 warn_dirty_buffer(bh);
2353 if (test_clear_buffer_dirty(bh) ||
2354 test_clear_buffer_jbddirty(bh))
2355 was_dirty = 1;
2356 }
2357
2358 if (jh->b_transaction)
2359 __jbd2_journal_temp_unlink_buffer(jh);
2360 else
2361 jbd2_journal_grab_journal_head(bh);
2362 jh->b_transaction = transaction;
2363
2364 switch (jlist) {
2365 case BJ_None:
2366 J_ASSERT_JH(jh, !jh->b_committed_data);
2367 J_ASSERT_JH(jh, !jh->b_frozen_data);
2368 return;
2369 case BJ_Metadata:
2370 transaction->t_nr_buffers++;
2371 list = &transaction->t_buffers;
2372 break;
2373 case BJ_Forget:
2374 list = &transaction->t_forget;
2375 break;
2376 case BJ_Shadow:
2377 list = &transaction->t_shadow_list;
2378 break;
2379 case BJ_Reserved:
2380 list = &transaction->t_reserved_list;
2381 break;
2382 }
2383
2384 __blist_add_buffer(list, jh);
2385 jh->b_jlist = jlist;
2386
2387 if (was_dirty)
2388 set_buffer_jbddirty(bh);
2389 }
2390
2391 void jbd2_journal_file_buffer(struct journal_head *jh,
2392 transaction_t *transaction, int jlist)
2393 {
2394 jbd_lock_bh_state(jh2bh(jh));
2395 spin_lock(&transaction->t_journal->j_list_lock);
2396 __jbd2_journal_file_buffer(jh, transaction, jlist);
2397 spin_unlock(&transaction->t_journal->j_list_lock);
2398 jbd_unlock_bh_state(jh2bh(jh));
2399 }
2400
2401 /*
2402 * Remove a buffer from its current buffer list in preparation for
2403 * dropping it from its current transaction entirely. If the buffer has
2404 * already started to be used by a subsequent transaction, refile the
2405 * buffer on that transaction's metadata list.
2406 *
2407 * Called under j_list_lock
2408 * Called under jbd_lock_bh_state(jh2bh(jh))
2409 *
2410 * jh and bh may be already free when this function returns
2411 */
2412 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2413 {
2414 int was_dirty, jlist;
2415 struct buffer_head *bh = jh2bh(jh);
2416
2417 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2418 if (jh->b_transaction)
2419 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2420
2421 /* If the buffer is now unused, just drop it. */
2422 if (jh->b_next_transaction == NULL) {
2423 __jbd2_journal_unfile_buffer(jh);
2424 return;
2425 }
2426
2427 /*
2428 * It has been modified by a later transaction: add it to the new
2429 * transaction's metadata list.
2430 */
2431
2432 was_dirty = test_clear_buffer_jbddirty(bh);
2433 __jbd2_journal_temp_unlink_buffer(jh);
2434 /*
2435 * We set b_transaction here because b_next_transaction will inherit
2436 * our jh reference and thus __jbd2_journal_file_buffer() must not
2437 * take a new one.
2438 */
2439 jh->b_transaction = jh->b_next_transaction;
2440 jh->b_next_transaction = NULL;
2441 if (buffer_freed(bh))
2442 jlist = BJ_Forget;
2443 else if (jh->b_modified)
2444 jlist = BJ_Metadata;
2445 else
2446 jlist = BJ_Reserved;
2447 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2448 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2449
2450 if (was_dirty)
2451 set_buffer_jbddirty(bh);
2452 }
2453
2454 /*
2455 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2456 * bh reference so that we can safely unlock bh.
2457 *
2458 * The jh and bh may be freed by this call.
2459 */
2460 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2461 {
2462 struct buffer_head *bh = jh2bh(jh);
2463
2464 /* Get reference so that buffer cannot be freed before we unlock it */
2465 get_bh(bh);
2466 jbd_lock_bh_state(bh);
2467 spin_lock(&journal->j_list_lock);
2468 __jbd2_journal_refile_buffer(jh);
2469 jbd_unlock_bh_state(bh);
2470 spin_unlock(&journal->j_list_lock);
2471 __brelse(bh);
2472 }
2473
2474 /*
2475 * File inode in the inode list of the handle's transaction
2476 */
2477 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2478 {
2479 transaction_t *transaction = handle->h_transaction;
2480 journal_t *journal;
2481
2482 if (is_handle_aborted(handle))
2483 return -EROFS;
2484 journal = transaction->t_journal;
2485
2486 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2487 transaction->t_tid);
2488
2489 /*
2490 * First check whether inode isn't already on the transaction's
2491 * lists without taking the lock. Note that this check is safe
2492 * without the lock as we cannot race with somebody removing inode
2493 * from the transaction. The reason is that we remove inode from the
2494 * transaction only in journal_release_jbd_inode() and when we commit
2495 * the transaction. We are guarded from the first case by holding
2496 * a reference to the inode. We are safe against the second case
2497 * because if jinode->i_transaction == transaction, commit code
2498 * cannot touch the transaction because we hold reference to it,
2499 * and if jinode->i_next_transaction == transaction, commit code
2500 * will only file the inode where we want it.
2501 */
2502 if (jinode->i_transaction == transaction ||
2503 jinode->i_next_transaction == transaction)
2504 return 0;
2505
2506 spin_lock(&journal->j_list_lock);
2507
2508 if (jinode->i_transaction == transaction ||
2509 jinode->i_next_transaction == transaction)
2510 goto done;
2511
2512 /*
2513 * We only ever set this variable to 1 so the test is safe. Since
2514 * t_need_data_flush is likely to be set, we do the test to save some
2515 * cacheline bouncing
2516 */
2517 if (!transaction->t_need_data_flush)
2518 transaction->t_need_data_flush = 1;
2519 /* On some different transaction's list - should be
2520 * the committing one */
2521 if (jinode->i_transaction) {
2522 J_ASSERT(jinode->i_next_transaction == NULL);
2523 J_ASSERT(jinode->i_transaction ==
2524 journal->j_committing_transaction);
2525 jinode->i_next_transaction = transaction;
2526 goto done;
2527 }
2528 /* Not on any transaction list... */
2529 J_ASSERT(!jinode->i_next_transaction);
2530 jinode->i_transaction = transaction;
2531 list_add(&jinode->i_list, &transaction->t_inode_list);
2532 done:
2533 spin_unlock(&journal->j_list_lock);
2534
2535 return 0;
2536 }
2537
2538 /*
2539 * File truncate and transaction commit interact with each other in a
2540 * non-trivial way. If a transaction writing data block A is
2541 * committing, we cannot discard the data by truncate until we have
2542 * written them. Otherwise if we crashed after the transaction with
2543 * write has committed but before the transaction with truncate has
2544 * committed, we could see stale data in block A. This function is a
2545 * helper to solve this problem. It starts writeout of the truncated
2546 * part in case it is in the committing transaction.
2547 *
2548 * Filesystem code must call this function when inode is journaled in
2549 * ordered mode before truncation happens and after the inode has been
2550 * placed on orphan list with the new inode size. The second condition
2551 * avoids the race that someone writes new data and we start
2552 * committing the transaction after this function has been called but
2553 * before a transaction for truncate is started (and furthermore it
2554 * allows us to optimize the case where the addition to orphan list
2555 * happens in the same transaction as write --- we don't have to write
2556 * any data in such case).
2557 */
2558 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2559 struct jbd2_inode *jinode,
2560 loff_t new_size)
2561 {
2562 transaction_t *inode_trans, *commit_trans;
2563 int ret = 0;
2564
2565 /* This is a quick check to avoid locking if not necessary */
2566 if (!jinode->i_transaction)
2567 goto out;
2568 /* Locks are here just to force reading of recent values, it is
2569 * enough that the transaction was not committing before we started
2570 * a transaction adding the inode to orphan list */
2571 read_lock(&journal->j_state_lock);
2572 commit_trans = journal->j_committing_transaction;
2573 read_unlock(&journal->j_state_lock);
2574 spin_lock(&journal->j_list_lock);
2575 inode_trans = jinode->i_transaction;
2576 spin_unlock(&journal->j_list_lock);
2577 if (inode_trans == commit_trans) {
2578 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2579 new_size, LLONG_MAX);
2580 if (ret)
2581 jbd2_journal_abort(journal, ret);
2582 }
2583 out:
2584 return ret;
2585 }
This page took 0.09644 seconds and 5 git commands to generate.