Merge tag 'trace-fixes-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[deliverable/linux.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits,
93 atomic_read(&journal->j_reserved_credits));
94 atomic_set(&transaction->t_handle_count, 0);
95 INIT_LIST_HEAD(&transaction->t_inode_list);
96 INIT_LIST_HEAD(&transaction->t_private_list);
97
98 /* Set up the commit timer for the new transaction. */
99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 add_timer(&journal->j_commit_timer);
101
102 J_ASSERT(journal->j_running_transaction == NULL);
103 journal->j_running_transaction = transaction;
104 transaction->t_max_wait = 0;
105 transaction->t_start = jiffies;
106 transaction->t_requested = 0;
107
108 return transaction;
109 }
110
111 /*
112 * Handle management.
113 *
114 * A handle_t is an object which represents a single atomic update to a
115 * filesystem, and which tracks all of the modifications which form part
116 * of that one update.
117 */
118
119 /*
120 * Update transaction's maximum wait time, if debugging is enabled.
121 *
122 * In order for t_max_wait to be reliable, it must be protected by a
123 * lock. But doing so will mean that start_this_handle() can not be
124 * run in parallel on SMP systems, which limits our scalability. So
125 * unless debugging is enabled, we no longer update t_max_wait, which
126 * means that maximum wait time reported by the jbd2_run_stats
127 * tracepoint will always be zero.
128 */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 if (jbd2_journal_enable_debug &&
134 time_after(transaction->t_start, ts)) {
135 ts = jbd2_time_diff(ts, transaction->t_start);
136 spin_lock(&transaction->t_handle_lock);
137 if (ts > transaction->t_max_wait)
138 transaction->t_max_wait = ts;
139 spin_unlock(&transaction->t_handle_lock);
140 }
141 #endif
142 }
143
144 /*
145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
146 * if needed. The function expects running transaction to exist and releases
147 * j_state_lock.
148 */
149 static void wait_transaction_locked(journal_t *journal)
150 __releases(journal->j_state_lock)
151 {
152 DEFINE_WAIT(wait);
153 int need_to_start;
154 tid_t tid = journal->j_running_transaction->t_tid;
155
156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 TASK_UNINTERRUPTIBLE);
158 need_to_start = !tid_geq(journal->j_commit_request, tid);
159 read_unlock(&journal->j_state_lock);
160 if (need_to_start)
161 jbd2_log_start_commit(journal, tid);
162 schedule();
163 finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 atomic_sub(blocks, &journal->j_reserved_credits);
169 wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173 * Wait until we can add credits for handle to the running transaction. Called
174 * with j_state_lock held for reading. Returns 0 if handle joined the running
175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176 * caller must retry.
177 */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 int rsv_blocks)
180 {
181 transaction_t *t = journal->j_running_transaction;
182 int needed;
183 int total = blocks + rsv_blocks;
184
185 /*
186 * If the current transaction is locked down for commit, wait
187 * for the lock to be released.
188 */
189 if (t->t_state == T_LOCKED) {
190 wait_transaction_locked(journal);
191 return 1;
192 }
193
194 /*
195 * If there is not enough space left in the log to write all
196 * potential buffers requested by this operation, we need to
197 * stall pending a log checkpoint to free some more log space.
198 */
199 needed = atomic_add_return(total, &t->t_outstanding_credits);
200 if (needed > journal->j_max_transaction_buffers) {
201 /*
202 * If the current transaction is already too large,
203 * then start to commit it: we can then go back and
204 * attach this handle to a new transaction.
205 */
206 atomic_sub(total, &t->t_outstanding_credits);
207 wait_transaction_locked(journal);
208 return 1;
209 }
210
211 /*
212 * The commit code assumes that it can get enough log space
213 * without forcing a checkpoint. This is *critical* for
214 * correctness: a checkpoint of a buffer which is also
215 * associated with a committing transaction creates a deadlock,
216 * so commit simply cannot force through checkpoints.
217 *
218 * We must therefore ensure the necessary space in the journal
219 * *before* starting to dirty potentially checkpointed buffers
220 * in the new transaction.
221 */
222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223 atomic_sub(total, &t->t_outstanding_credits);
224 read_unlock(&journal->j_state_lock);
225 write_lock(&journal->j_state_lock);
226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227 __jbd2_log_wait_for_space(journal);
228 write_unlock(&journal->j_state_lock);
229 return 1;
230 }
231
232 /* No reservation? We are done... */
233 if (!rsv_blocks)
234 return 0;
235
236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237 /* We allow at most half of a transaction to be reserved */
238 if (needed > journal->j_max_transaction_buffers / 2) {
239 sub_reserved_credits(journal, rsv_blocks);
240 atomic_sub(total, &t->t_outstanding_credits);
241 read_unlock(&journal->j_state_lock);
242 wait_event(journal->j_wait_reserved,
243 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244 <= journal->j_max_transaction_buffers / 2);
245 return 1;
246 }
247 return 0;
248 }
249
250 /*
251 * start_this_handle: Given a handle, deal with any locking or stalling
252 * needed to make sure that there is enough journal space for the handle
253 * to begin. Attach the handle to a transaction and set up the
254 * transaction's buffer credits.
255 */
256
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258 gfp_t gfp_mask)
259 {
260 transaction_t *transaction, *new_transaction = NULL;
261 int blocks = handle->h_buffer_credits;
262 int rsv_blocks = 0;
263 unsigned long ts = jiffies;
264
265 /*
266 * 1/2 of transaction can be reserved so we can practically handle
267 * only 1/2 of maximum transaction size per operation
268 */
269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271 current->comm, blocks,
272 journal->j_max_transaction_buffers / 2);
273 return -ENOSPC;
274 }
275
276 if (handle->h_rsv_handle)
277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278
279 alloc_transaction:
280 if (!journal->j_running_transaction) {
281 /*
282 * If __GFP_FS is not present, then we may be being called from
283 * inside the fs writeback layer, so we MUST NOT fail.
284 */
285 if ((gfp_mask & __GFP_FS) == 0)
286 gfp_mask |= __GFP_NOFAIL;
287 new_transaction = kmem_cache_zalloc(transaction_cache,
288 gfp_mask);
289 if (!new_transaction)
290 return -ENOMEM;
291 }
292
293 jbd_debug(3, "New handle %p going live.\n", handle);
294
295 /*
296 * We need to hold j_state_lock until t_updates has been incremented,
297 * for proper journal barrier handling
298 */
299 repeat:
300 read_lock(&journal->j_state_lock);
301 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
302 if (is_journal_aborted(journal) ||
303 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
304 read_unlock(&journal->j_state_lock);
305 jbd2_journal_free_transaction(new_transaction);
306 return -EROFS;
307 }
308
309 /*
310 * Wait on the journal's transaction barrier if necessary. Specifically
311 * we allow reserved handles to proceed because otherwise commit could
312 * deadlock on page writeback not being able to complete.
313 */
314 if (!handle->h_reserved && journal->j_barrier_count) {
315 read_unlock(&journal->j_state_lock);
316 wait_event(journal->j_wait_transaction_locked,
317 journal->j_barrier_count == 0);
318 goto repeat;
319 }
320
321 if (!journal->j_running_transaction) {
322 read_unlock(&journal->j_state_lock);
323 if (!new_transaction)
324 goto alloc_transaction;
325 write_lock(&journal->j_state_lock);
326 if (!journal->j_running_transaction &&
327 (handle->h_reserved || !journal->j_barrier_count)) {
328 jbd2_get_transaction(journal, new_transaction);
329 new_transaction = NULL;
330 }
331 write_unlock(&journal->j_state_lock);
332 goto repeat;
333 }
334
335 transaction = journal->j_running_transaction;
336
337 if (!handle->h_reserved) {
338 /* We may have dropped j_state_lock - restart in that case */
339 if (add_transaction_credits(journal, blocks, rsv_blocks))
340 goto repeat;
341 } else {
342 /*
343 * We have handle reserved so we are allowed to join T_LOCKED
344 * transaction and we don't have to check for transaction size
345 * and journal space.
346 */
347 sub_reserved_credits(journal, blocks);
348 handle->h_reserved = 0;
349 }
350
351 /* OK, account for the buffers that this operation expects to
352 * use and add the handle to the running transaction.
353 */
354 update_t_max_wait(transaction, ts);
355 handle->h_transaction = transaction;
356 handle->h_requested_credits = blocks;
357 handle->h_start_jiffies = jiffies;
358 atomic_inc(&transaction->t_updates);
359 atomic_inc(&transaction->t_handle_count);
360 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
361 handle, blocks,
362 atomic_read(&transaction->t_outstanding_credits),
363 jbd2_log_space_left(journal));
364 read_unlock(&journal->j_state_lock);
365 current->journal_info = handle;
366
367 lock_map_acquire(&handle->h_lockdep_map);
368 jbd2_journal_free_transaction(new_transaction);
369 return 0;
370 }
371
372 static struct lock_class_key jbd2_handle_key;
373
374 /* Allocate a new handle. This should probably be in a slab... */
375 static handle_t *new_handle(int nblocks)
376 {
377 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
378 if (!handle)
379 return NULL;
380 handle->h_buffer_credits = nblocks;
381 handle->h_ref = 1;
382
383 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
384 &jbd2_handle_key, 0);
385
386 return handle;
387 }
388
389 /**
390 * handle_t *jbd2_journal_start() - Obtain a new handle.
391 * @journal: Journal to start transaction on.
392 * @nblocks: number of block buffer we might modify
393 *
394 * We make sure that the transaction can guarantee at least nblocks of
395 * modified buffers in the log. We block until the log can guarantee
396 * that much space. Additionally, if rsv_blocks > 0, we also create another
397 * handle with rsv_blocks reserved blocks in the journal. This handle is
398 * is stored in h_rsv_handle. It is not attached to any particular transaction
399 * and thus doesn't block transaction commit. If the caller uses this reserved
400 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
401 * on the parent handle will dispose the reserved one. Reserved handle has to
402 * be converted to a normal handle using jbd2_journal_start_reserved() before
403 * it can be used.
404 *
405 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
406 * on failure.
407 */
408 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
409 gfp_t gfp_mask, unsigned int type,
410 unsigned int line_no)
411 {
412 handle_t *handle = journal_current_handle();
413 int err;
414
415 if (!journal)
416 return ERR_PTR(-EROFS);
417
418 if (handle) {
419 J_ASSERT(handle->h_transaction->t_journal == journal);
420 handle->h_ref++;
421 return handle;
422 }
423
424 handle = new_handle(nblocks);
425 if (!handle)
426 return ERR_PTR(-ENOMEM);
427 if (rsv_blocks) {
428 handle_t *rsv_handle;
429
430 rsv_handle = new_handle(rsv_blocks);
431 if (!rsv_handle) {
432 jbd2_free_handle(handle);
433 return ERR_PTR(-ENOMEM);
434 }
435 rsv_handle->h_reserved = 1;
436 rsv_handle->h_journal = journal;
437 handle->h_rsv_handle = rsv_handle;
438 }
439
440 err = start_this_handle(journal, handle, gfp_mask);
441 if (err < 0) {
442 if (handle->h_rsv_handle)
443 jbd2_free_handle(handle->h_rsv_handle);
444 jbd2_free_handle(handle);
445 return ERR_PTR(err);
446 }
447 handle->h_type = type;
448 handle->h_line_no = line_no;
449 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
450 handle->h_transaction->t_tid, type,
451 line_no, nblocks);
452 return handle;
453 }
454 EXPORT_SYMBOL(jbd2__journal_start);
455
456
457 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
458 {
459 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
460 }
461 EXPORT_SYMBOL(jbd2_journal_start);
462
463 void jbd2_journal_free_reserved(handle_t *handle)
464 {
465 journal_t *journal = handle->h_journal;
466
467 WARN_ON(!handle->h_reserved);
468 sub_reserved_credits(journal, handle->h_buffer_credits);
469 jbd2_free_handle(handle);
470 }
471 EXPORT_SYMBOL(jbd2_journal_free_reserved);
472
473 /**
474 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
475 * @handle: handle to start
476 *
477 * Start handle that has been previously reserved with jbd2_journal_reserve().
478 * This attaches @handle to the running transaction (or creates one if there's
479 * not transaction running). Unlike jbd2_journal_start() this function cannot
480 * block on journal commit, checkpointing, or similar stuff. It can block on
481 * memory allocation or frozen journal though.
482 *
483 * Return 0 on success, non-zero on error - handle is freed in that case.
484 */
485 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
486 unsigned int line_no)
487 {
488 journal_t *journal = handle->h_journal;
489 int ret = -EIO;
490
491 if (WARN_ON(!handle->h_reserved)) {
492 /* Someone passed in normal handle? Just stop it. */
493 jbd2_journal_stop(handle);
494 return ret;
495 }
496 /*
497 * Usefulness of mixing of reserved and unreserved handles is
498 * questionable. So far nobody seems to need it so just error out.
499 */
500 if (WARN_ON(current->journal_info)) {
501 jbd2_journal_free_reserved(handle);
502 return ret;
503 }
504
505 handle->h_journal = NULL;
506 /*
507 * GFP_NOFS is here because callers are likely from writeback or
508 * similarly constrained call sites
509 */
510 ret = start_this_handle(journal, handle, GFP_NOFS);
511 if (ret < 0) {
512 jbd2_journal_free_reserved(handle);
513 return ret;
514 }
515 handle->h_type = type;
516 handle->h_line_no = line_no;
517 return 0;
518 }
519 EXPORT_SYMBOL(jbd2_journal_start_reserved);
520
521 /**
522 * int jbd2_journal_extend() - extend buffer credits.
523 * @handle: handle to 'extend'
524 * @nblocks: nr blocks to try to extend by.
525 *
526 * Some transactions, such as large extends and truncates, can be done
527 * atomically all at once or in several stages. The operation requests
528 * a credit for a number of buffer modications in advance, but can
529 * extend its credit if it needs more.
530 *
531 * jbd2_journal_extend tries to give the running handle more buffer credits.
532 * It does not guarantee that allocation - this is a best-effort only.
533 * The calling process MUST be able to deal cleanly with a failure to
534 * extend here.
535 *
536 * Return 0 on success, non-zero on failure.
537 *
538 * return code < 0 implies an error
539 * return code > 0 implies normal transaction-full status.
540 */
541 int jbd2_journal_extend(handle_t *handle, int nblocks)
542 {
543 transaction_t *transaction = handle->h_transaction;
544 journal_t *journal;
545 int result;
546 int wanted;
547
548 if (is_handle_aborted(handle))
549 return -EROFS;
550 journal = transaction->t_journal;
551
552 result = 1;
553
554 read_lock(&journal->j_state_lock);
555
556 /* Don't extend a locked-down transaction! */
557 if (transaction->t_state != T_RUNNING) {
558 jbd_debug(3, "denied handle %p %d blocks: "
559 "transaction not running\n", handle, nblocks);
560 goto error_out;
561 }
562
563 spin_lock(&transaction->t_handle_lock);
564 wanted = atomic_add_return(nblocks,
565 &transaction->t_outstanding_credits);
566
567 if (wanted > journal->j_max_transaction_buffers) {
568 jbd_debug(3, "denied handle %p %d blocks: "
569 "transaction too large\n", handle, nblocks);
570 atomic_sub(nblocks, &transaction->t_outstanding_credits);
571 goto unlock;
572 }
573
574 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
575 jbd2_log_space_left(journal)) {
576 jbd_debug(3, "denied handle %p %d blocks: "
577 "insufficient log space\n", handle, nblocks);
578 atomic_sub(nblocks, &transaction->t_outstanding_credits);
579 goto unlock;
580 }
581
582 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
583 transaction->t_tid,
584 handle->h_type, handle->h_line_no,
585 handle->h_buffer_credits,
586 nblocks);
587
588 handle->h_buffer_credits += nblocks;
589 handle->h_requested_credits += nblocks;
590 result = 0;
591
592 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
593 unlock:
594 spin_unlock(&transaction->t_handle_lock);
595 error_out:
596 read_unlock(&journal->j_state_lock);
597 return result;
598 }
599
600
601 /**
602 * int jbd2_journal_restart() - restart a handle .
603 * @handle: handle to restart
604 * @nblocks: nr credits requested
605 *
606 * Restart a handle for a multi-transaction filesystem
607 * operation.
608 *
609 * If the jbd2_journal_extend() call above fails to grant new buffer credits
610 * to a running handle, a call to jbd2_journal_restart will commit the
611 * handle's transaction so far and reattach the handle to a new
612 * transaction capabable of guaranteeing the requested number of
613 * credits. We preserve reserved handle if there's any attached to the
614 * passed in handle.
615 */
616 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
617 {
618 transaction_t *transaction = handle->h_transaction;
619 journal_t *journal;
620 tid_t tid;
621 int need_to_start, ret;
622
623 /* If we've had an abort of any type, don't even think about
624 * actually doing the restart! */
625 if (is_handle_aborted(handle))
626 return 0;
627 journal = transaction->t_journal;
628
629 /*
630 * First unlink the handle from its current transaction, and start the
631 * commit on that.
632 */
633 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
634 J_ASSERT(journal_current_handle() == handle);
635
636 read_lock(&journal->j_state_lock);
637 spin_lock(&transaction->t_handle_lock);
638 atomic_sub(handle->h_buffer_credits,
639 &transaction->t_outstanding_credits);
640 if (handle->h_rsv_handle) {
641 sub_reserved_credits(journal,
642 handle->h_rsv_handle->h_buffer_credits);
643 }
644 if (atomic_dec_and_test(&transaction->t_updates))
645 wake_up(&journal->j_wait_updates);
646 tid = transaction->t_tid;
647 spin_unlock(&transaction->t_handle_lock);
648 handle->h_transaction = NULL;
649 current->journal_info = NULL;
650
651 jbd_debug(2, "restarting handle %p\n", handle);
652 need_to_start = !tid_geq(journal->j_commit_request, tid);
653 read_unlock(&journal->j_state_lock);
654 if (need_to_start)
655 jbd2_log_start_commit(journal, tid);
656
657 lock_map_release(&handle->h_lockdep_map);
658 handle->h_buffer_credits = nblocks;
659 ret = start_this_handle(journal, handle, gfp_mask);
660 return ret;
661 }
662 EXPORT_SYMBOL(jbd2__journal_restart);
663
664
665 int jbd2_journal_restart(handle_t *handle, int nblocks)
666 {
667 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
668 }
669 EXPORT_SYMBOL(jbd2_journal_restart);
670
671 /**
672 * void jbd2_journal_lock_updates () - establish a transaction barrier.
673 * @journal: Journal to establish a barrier on.
674 *
675 * This locks out any further updates from being started, and blocks
676 * until all existing updates have completed, returning only once the
677 * journal is in a quiescent state with no updates running.
678 *
679 * The journal lock should not be held on entry.
680 */
681 void jbd2_journal_lock_updates(journal_t *journal)
682 {
683 DEFINE_WAIT(wait);
684
685 write_lock(&journal->j_state_lock);
686 ++journal->j_barrier_count;
687
688 /* Wait until there are no reserved handles */
689 if (atomic_read(&journal->j_reserved_credits)) {
690 write_unlock(&journal->j_state_lock);
691 wait_event(journal->j_wait_reserved,
692 atomic_read(&journal->j_reserved_credits) == 0);
693 write_lock(&journal->j_state_lock);
694 }
695
696 /* Wait until there are no running updates */
697 while (1) {
698 transaction_t *transaction = journal->j_running_transaction;
699
700 if (!transaction)
701 break;
702
703 spin_lock(&transaction->t_handle_lock);
704 prepare_to_wait(&journal->j_wait_updates, &wait,
705 TASK_UNINTERRUPTIBLE);
706 if (!atomic_read(&transaction->t_updates)) {
707 spin_unlock(&transaction->t_handle_lock);
708 finish_wait(&journal->j_wait_updates, &wait);
709 break;
710 }
711 spin_unlock(&transaction->t_handle_lock);
712 write_unlock(&journal->j_state_lock);
713 schedule();
714 finish_wait(&journal->j_wait_updates, &wait);
715 write_lock(&journal->j_state_lock);
716 }
717 write_unlock(&journal->j_state_lock);
718
719 /*
720 * We have now established a barrier against other normal updates, but
721 * we also need to barrier against other jbd2_journal_lock_updates() calls
722 * to make sure that we serialise special journal-locked operations
723 * too.
724 */
725 mutex_lock(&journal->j_barrier);
726 }
727
728 /**
729 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
730 * @journal: Journal to release the barrier on.
731 *
732 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
733 *
734 * Should be called without the journal lock held.
735 */
736 void jbd2_journal_unlock_updates (journal_t *journal)
737 {
738 J_ASSERT(journal->j_barrier_count != 0);
739
740 mutex_unlock(&journal->j_barrier);
741 write_lock(&journal->j_state_lock);
742 --journal->j_barrier_count;
743 write_unlock(&journal->j_state_lock);
744 wake_up(&journal->j_wait_transaction_locked);
745 }
746
747 static void warn_dirty_buffer(struct buffer_head *bh)
748 {
749 char b[BDEVNAME_SIZE];
750
751 printk(KERN_WARNING
752 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
753 "There's a risk of filesystem corruption in case of system "
754 "crash.\n",
755 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
756 }
757
758 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
759 static void jbd2_freeze_jh_data(struct journal_head *jh)
760 {
761 struct page *page;
762 int offset;
763 char *source;
764 struct buffer_head *bh = jh2bh(jh);
765
766 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
767 page = bh->b_page;
768 offset = offset_in_page(bh->b_data);
769 source = kmap_atomic(page);
770 /* Fire data frozen trigger just before we copy the data */
771 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
772 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
773 kunmap_atomic(source);
774
775 /*
776 * Now that the frozen data is saved off, we need to store any matching
777 * triggers.
778 */
779 jh->b_frozen_triggers = jh->b_triggers;
780 }
781
782 /*
783 * If the buffer is already part of the current transaction, then there
784 * is nothing we need to do. If it is already part of a prior
785 * transaction which we are still committing to disk, then we need to
786 * make sure that we do not overwrite the old copy: we do copy-out to
787 * preserve the copy going to disk. We also account the buffer against
788 * the handle's metadata buffer credits (unless the buffer is already
789 * part of the transaction, that is).
790 *
791 */
792 static int
793 do_get_write_access(handle_t *handle, struct journal_head *jh,
794 int force_copy)
795 {
796 struct buffer_head *bh;
797 transaction_t *transaction = handle->h_transaction;
798 journal_t *journal;
799 int error;
800 char *frozen_buffer = NULL;
801 unsigned long start_lock, time_lock;
802
803 if (is_handle_aborted(handle))
804 return -EROFS;
805 journal = transaction->t_journal;
806
807 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
808
809 JBUFFER_TRACE(jh, "entry");
810 repeat:
811 bh = jh2bh(jh);
812
813 /* @@@ Need to check for errors here at some point. */
814
815 start_lock = jiffies;
816 lock_buffer(bh);
817 jbd_lock_bh_state(bh);
818
819 /* If it takes too long to lock the buffer, trace it */
820 time_lock = jbd2_time_diff(start_lock, jiffies);
821 if (time_lock > HZ/10)
822 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
823 jiffies_to_msecs(time_lock));
824
825 /* We now hold the buffer lock so it is safe to query the buffer
826 * state. Is the buffer dirty?
827 *
828 * If so, there are two possibilities. The buffer may be
829 * non-journaled, and undergoing a quite legitimate writeback.
830 * Otherwise, it is journaled, and we don't expect dirty buffers
831 * in that state (the buffers should be marked JBD_Dirty
832 * instead.) So either the IO is being done under our own
833 * control and this is a bug, or it's a third party IO such as
834 * dump(8) (which may leave the buffer scheduled for read ---
835 * ie. locked but not dirty) or tune2fs (which may actually have
836 * the buffer dirtied, ugh.) */
837
838 if (buffer_dirty(bh)) {
839 /*
840 * First question: is this buffer already part of the current
841 * transaction or the existing committing transaction?
842 */
843 if (jh->b_transaction) {
844 J_ASSERT_JH(jh,
845 jh->b_transaction == transaction ||
846 jh->b_transaction ==
847 journal->j_committing_transaction);
848 if (jh->b_next_transaction)
849 J_ASSERT_JH(jh, jh->b_next_transaction ==
850 transaction);
851 warn_dirty_buffer(bh);
852 }
853 /*
854 * In any case we need to clean the dirty flag and we must
855 * do it under the buffer lock to be sure we don't race
856 * with running write-out.
857 */
858 JBUFFER_TRACE(jh, "Journalling dirty buffer");
859 clear_buffer_dirty(bh);
860 set_buffer_jbddirty(bh);
861 }
862
863 unlock_buffer(bh);
864
865 error = -EROFS;
866 if (is_handle_aborted(handle)) {
867 jbd_unlock_bh_state(bh);
868 goto out;
869 }
870 error = 0;
871
872 /*
873 * The buffer is already part of this transaction if b_transaction or
874 * b_next_transaction points to it
875 */
876 if (jh->b_transaction == transaction ||
877 jh->b_next_transaction == transaction)
878 goto done;
879
880 /*
881 * this is the first time this transaction is touching this buffer,
882 * reset the modified flag
883 */
884 jh->b_modified = 0;
885
886 /*
887 * If the buffer is not journaled right now, we need to make sure it
888 * doesn't get written to disk before the caller actually commits the
889 * new data
890 */
891 if (!jh->b_transaction) {
892 JBUFFER_TRACE(jh, "no transaction");
893 J_ASSERT_JH(jh, !jh->b_next_transaction);
894 JBUFFER_TRACE(jh, "file as BJ_Reserved");
895 /*
896 * Make sure all stores to jh (b_modified, b_frozen_data) are
897 * visible before attaching it to the running transaction.
898 * Paired with barrier in jbd2_write_access_granted()
899 */
900 smp_wmb();
901 spin_lock(&journal->j_list_lock);
902 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
903 spin_unlock(&journal->j_list_lock);
904 goto done;
905 }
906 /*
907 * If there is already a copy-out version of this buffer, then we don't
908 * need to make another one
909 */
910 if (jh->b_frozen_data) {
911 JBUFFER_TRACE(jh, "has frozen data");
912 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
913 goto attach_next;
914 }
915
916 JBUFFER_TRACE(jh, "owned by older transaction");
917 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
918 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
919
920 /*
921 * There is one case we have to be very careful about. If the
922 * committing transaction is currently writing this buffer out to disk
923 * and has NOT made a copy-out, then we cannot modify the buffer
924 * contents at all right now. The essence of copy-out is that it is
925 * the extra copy, not the primary copy, which gets journaled. If the
926 * primary copy is already going to disk then we cannot do copy-out
927 * here.
928 */
929 if (buffer_shadow(bh)) {
930 JBUFFER_TRACE(jh, "on shadow: sleep");
931 jbd_unlock_bh_state(bh);
932 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
933 goto repeat;
934 }
935
936 /*
937 * Only do the copy if the currently-owning transaction still needs it.
938 * If buffer isn't on BJ_Metadata list, the committing transaction is
939 * past that stage (here we use the fact that BH_Shadow is set under
940 * bh_state lock together with refiling to BJ_Shadow list and at this
941 * point we know the buffer doesn't have BH_Shadow set).
942 *
943 * Subtle point, though: if this is a get_undo_access, then we will be
944 * relying on the frozen_data to contain the new value of the
945 * committed_data record after the transaction, so we HAVE to force the
946 * frozen_data copy in that case.
947 */
948 if (jh->b_jlist == BJ_Metadata || force_copy) {
949 JBUFFER_TRACE(jh, "generate frozen data");
950 if (!frozen_buffer) {
951 JBUFFER_TRACE(jh, "allocate memory for buffer");
952 jbd_unlock_bh_state(bh);
953 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
954 if (!frozen_buffer) {
955 printk(KERN_ERR "%s: OOM for frozen_buffer\n",
956 __func__);
957 JBUFFER_TRACE(jh, "oom!");
958 error = -ENOMEM;
959 goto out;
960 }
961 goto repeat;
962 }
963 jh->b_frozen_data = frozen_buffer;
964 frozen_buffer = NULL;
965 jbd2_freeze_jh_data(jh);
966 }
967 attach_next:
968 /*
969 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
970 * before attaching it to the running transaction. Paired with barrier
971 * in jbd2_write_access_granted()
972 */
973 smp_wmb();
974 jh->b_next_transaction = transaction;
975
976 done:
977 jbd_unlock_bh_state(bh);
978
979 /*
980 * If we are about to journal a buffer, then any revoke pending on it is
981 * no longer valid
982 */
983 jbd2_journal_cancel_revoke(handle, jh);
984
985 out:
986 if (unlikely(frozen_buffer)) /* It's usually NULL */
987 jbd2_free(frozen_buffer, bh->b_size);
988
989 JBUFFER_TRACE(jh, "exit");
990 return error;
991 }
992
993 /* Fast check whether buffer is already attached to the required transaction */
994 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh)
995 {
996 struct journal_head *jh;
997 bool ret = false;
998
999 /* Dirty buffers require special handling... */
1000 if (buffer_dirty(bh))
1001 return false;
1002
1003 /*
1004 * RCU protects us from dereferencing freed pages. So the checks we do
1005 * are guaranteed not to oops. However the jh slab object can get freed
1006 * & reallocated while we work with it. So we have to be careful. When
1007 * we see jh attached to the running transaction, we know it must stay
1008 * so until the transaction is committed. Thus jh won't be freed and
1009 * will be attached to the same bh while we run. However it can
1010 * happen jh gets freed, reallocated, and attached to the transaction
1011 * just after we get pointer to it from bh. So we have to be careful
1012 * and recheck jh still belongs to our bh before we return success.
1013 */
1014 rcu_read_lock();
1015 if (!buffer_jbd(bh))
1016 goto out;
1017 /* This should be bh2jh() but that doesn't work with inline functions */
1018 jh = READ_ONCE(bh->b_private);
1019 if (!jh)
1020 goto out;
1021 if (jh->b_transaction != handle->h_transaction &&
1022 jh->b_next_transaction != handle->h_transaction)
1023 goto out;
1024 /*
1025 * There are two reasons for the barrier here:
1026 * 1) Make sure to fetch b_bh after we did previous checks so that we
1027 * detect when jh went through free, realloc, attach to transaction
1028 * while we were checking. Paired with implicit barrier in that path.
1029 * 2) So that access to bh done after jbd2_write_access_granted()
1030 * doesn't get reordered and see inconsistent state of concurrent
1031 * do_get_write_access().
1032 */
1033 smp_mb();
1034 if (unlikely(jh->b_bh != bh))
1035 goto out;
1036 ret = true;
1037 out:
1038 rcu_read_unlock();
1039 return ret;
1040 }
1041
1042 /**
1043 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1044 * @handle: transaction to add buffer modifications to
1045 * @bh: bh to be used for metadata writes
1046 *
1047 * Returns an error code or 0 on success.
1048 *
1049 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1050 * because we're write()ing a buffer which is also part of a shared mapping.
1051 */
1052
1053 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1054 {
1055 struct journal_head *jh;
1056 int rc;
1057
1058 if (jbd2_write_access_granted(handle, bh))
1059 return 0;
1060
1061 jh = jbd2_journal_add_journal_head(bh);
1062 /* We do not want to get caught playing with fields which the
1063 * log thread also manipulates. Make sure that the buffer
1064 * completes any outstanding IO before proceeding. */
1065 rc = do_get_write_access(handle, jh, 0);
1066 jbd2_journal_put_journal_head(jh);
1067 return rc;
1068 }
1069
1070
1071 /*
1072 * When the user wants to journal a newly created buffer_head
1073 * (ie. getblk() returned a new buffer and we are going to populate it
1074 * manually rather than reading off disk), then we need to keep the
1075 * buffer_head locked until it has been completely filled with new
1076 * data. In this case, we should be able to make the assertion that
1077 * the bh is not already part of an existing transaction.
1078 *
1079 * The buffer should already be locked by the caller by this point.
1080 * There is no lock ranking violation: it was a newly created,
1081 * unlocked buffer beforehand. */
1082
1083 /**
1084 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1085 * @handle: transaction to new buffer to
1086 * @bh: new buffer.
1087 *
1088 * Call this if you create a new bh.
1089 */
1090 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1091 {
1092 transaction_t *transaction = handle->h_transaction;
1093 journal_t *journal;
1094 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1095 int err;
1096
1097 jbd_debug(5, "journal_head %p\n", jh);
1098 err = -EROFS;
1099 if (is_handle_aborted(handle))
1100 goto out;
1101 journal = transaction->t_journal;
1102 err = 0;
1103
1104 JBUFFER_TRACE(jh, "entry");
1105 /*
1106 * The buffer may already belong to this transaction due to pre-zeroing
1107 * in the filesystem's new_block code. It may also be on the previous,
1108 * committing transaction's lists, but it HAS to be in Forget state in
1109 * that case: the transaction must have deleted the buffer for it to be
1110 * reused here.
1111 */
1112 jbd_lock_bh_state(bh);
1113 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1114 jh->b_transaction == NULL ||
1115 (jh->b_transaction == journal->j_committing_transaction &&
1116 jh->b_jlist == BJ_Forget)));
1117
1118 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1119 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1120
1121 if (jh->b_transaction == NULL) {
1122 /*
1123 * Previous jbd2_journal_forget() could have left the buffer
1124 * with jbddirty bit set because it was being committed. When
1125 * the commit finished, we've filed the buffer for
1126 * checkpointing and marked it dirty. Now we are reallocating
1127 * the buffer so the transaction freeing it must have
1128 * committed and so it's safe to clear the dirty bit.
1129 */
1130 clear_buffer_dirty(jh2bh(jh));
1131 /* first access by this transaction */
1132 jh->b_modified = 0;
1133
1134 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1135 spin_lock(&journal->j_list_lock);
1136 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1137 } else if (jh->b_transaction == journal->j_committing_transaction) {
1138 /* first access by this transaction */
1139 jh->b_modified = 0;
1140
1141 JBUFFER_TRACE(jh, "set next transaction");
1142 spin_lock(&journal->j_list_lock);
1143 jh->b_next_transaction = transaction;
1144 }
1145 spin_unlock(&journal->j_list_lock);
1146 jbd_unlock_bh_state(bh);
1147
1148 /*
1149 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1150 * blocks which contain freed but then revoked metadata. We need
1151 * to cancel the revoke in case we end up freeing it yet again
1152 * and the reallocating as data - this would cause a second revoke,
1153 * which hits an assertion error.
1154 */
1155 JBUFFER_TRACE(jh, "cancelling revoke");
1156 jbd2_journal_cancel_revoke(handle, jh);
1157 out:
1158 jbd2_journal_put_journal_head(jh);
1159 return err;
1160 }
1161
1162 /**
1163 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1164 * non-rewindable consequences
1165 * @handle: transaction
1166 * @bh: buffer to undo
1167 *
1168 * Sometimes there is a need to distinguish between metadata which has
1169 * been committed to disk and that which has not. The ext3fs code uses
1170 * this for freeing and allocating space, we have to make sure that we
1171 * do not reuse freed space until the deallocation has been committed,
1172 * since if we overwrote that space we would make the delete
1173 * un-rewindable in case of a crash.
1174 *
1175 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1176 * buffer for parts of non-rewindable operations such as delete
1177 * operations on the bitmaps. The journaling code must keep a copy of
1178 * the buffer's contents prior to the undo_access call until such time
1179 * as we know that the buffer has definitely been committed to disk.
1180 *
1181 * We never need to know which transaction the committed data is part
1182 * of, buffers touched here are guaranteed to be dirtied later and so
1183 * will be committed to a new transaction in due course, at which point
1184 * we can discard the old committed data pointer.
1185 *
1186 * Returns error number or 0 on success.
1187 */
1188 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1189 {
1190 int err;
1191 struct journal_head *jh;
1192 char *committed_data = NULL;
1193
1194 JBUFFER_TRACE(jh, "entry");
1195 if (jbd2_write_access_granted(handle, bh))
1196 return 0;
1197
1198 jh = jbd2_journal_add_journal_head(bh);
1199 /*
1200 * Do this first --- it can drop the journal lock, so we want to
1201 * make sure that obtaining the committed_data is done
1202 * atomically wrt. completion of any outstanding commits.
1203 */
1204 err = do_get_write_access(handle, jh, 1);
1205 if (err)
1206 goto out;
1207
1208 repeat:
1209 if (!jh->b_committed_data) {
1210 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1211 if (!committed_data) {
1212 printk(KERN_ERR "%s: No memory for committed data\n",
1213 __func__);
1214 err = -ENOMEM;
1215 goto out;
1216 }
1217 }
1218
1219 jbd_lock_bh_state(bh);
1220 if (!jh->b_committed_data) {
1221 /* Copy out the current buffer contents into the
1222 * preserved, committed copy. */
1223 JBUFFER_TRACE(jh, "generate b_committed data");
1224 if (!committed_data) {
1225 jbd_unlock_bh_state(bh);
1226 goto repeat;
1227 }
1228
1229 jh->b_committed_data = committed_data;
1230 committed_data = NULL;
1231 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1232 }
1233 jbd_unlock_bh_state(bh);
1234 out:
1235 jbd2_journal_put_journal_head(jh);
1236 if (unlikely(committed_data))
1237 jbd2_free(committed_data, bh->b_size);
1238 return err;
1239 }
1240
1241 /**
1242 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1243 * @bh: buffer to trigger on
1244 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1245 *
1246 * Set any triggers on this journal_head. This is always safe, because
1247 * triggers for a committing buffer will be saved off, and triggers for
1248 * a running transaction will match the buffer in that transaction.
1249 *
1250 * Call with NULL to clear the triggers.
1251 */
1252 void jbd2_journal_set_triggers(struct buffer_head *bh,
1253 struct jbd2_buffer_trigger_type *type)
1254 {
1255 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1256
1257 if (WARN_ON(!jh))
1258 return;
1259 jh->b_triggers = type;
1260 jbd2_journal_put_journal_head(jh);
1261 }
1262
1263 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1264 struct jbd2_buffer_trigger_type *triggers)
1265 {
1266 struct buffer_head *bh = jh2bh(jh);
1267
1268 if (!triggers || !triggers->t_frozen)
1269 return;
1270
1271 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1272 }
1273
1274 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1275 struct jbd2_buffer_trigger_type *triggers)
1276 {
1277 if (!triggers || !triggers->t_abort)
1278 return;
1279
1280 triggers->t_abort(triggers, jh2bh(jh));
1281 }
1282
1283 /**
1284 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1285 * @handle: transaction to add buffer to.
1286 * @bh: buffer to mark
1287 *
1288 * mark dirty metadata which needs to be journaled as part of the current
1289 * transaction.
1290 *
1291 * The buffer must have previously had jbd2_journal_get_write_access()
1292 * called so that it has a valid journal_head attached to the buffer
1293 * head.
1294 *
1295 * The buffer is placed on the transaction's metadata list and is marked
1296 * as belonging to the transaction.
1297 *
1298 * Returns error number or 0 on success.
1299 *
1300 * Special care needs to be taken if the buffer already belongs to the
1301 * current committing transaction (in which case we should have frozen
1302 * data present for that commit). In that case, we don't relink the
1303 * buffer: that only gets done when the old transaction finally
1304 * completes its commit.
1305 */
1306 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1307 {
1308 transaction_t *transaction = handle->h_transaction;
1309 journal_t *journal;
1310 struct journal_head *jh;
1311 int ret = 0;
1312
1313 if (is_handle_aborted(handle))
1314 return -EROFS;
1315 if (!buffer_jbd(bh)) {
1316 ret = -EUCLEAN;
1317 goto out;
1318 }
1319 /*
1320 * We don't grab jh reference here since the buffer must be part
1321 * of the running transaction.
1322 */
1323 jh = bh2jh(bh);
1324 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1325 jh->b_next_transaction == transaction);
1326 if (jh->b_modified == 1) {
1327 /*
1328 * If it's in our transaction it must be in BJ_Metadata list.
1329 * The assertion is unreliable since we may see jh in
1330 * inconsistent state unless we grab bh_state lock. But this
1331 * is crutial to catch bugs so let's do a reliable check until
1332 * the lockless handling is fully proven.
1333 */
1334 if (jh->b_transaction == transaction &&
1335 jh->b_jlist != BJ_Metadata) {
1336 jbd_lock_bh_state(bh);
1337 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1338 jh->b_jlist == BJ_Metadata);
1339 jbd_unlock_bh_state(bh);
1340 }
1341 goto out;
1342 }
1343
1344 journal = transaction->t_journal;
1345 jbd_debug(5, "journal_head %p\n", jh);
1346 JBUFFER_TRACE(jh, "entry");
1347
1348 jbd_lock_bh_state(bh);
1349
1350 if (jh->b_modified == 0) {
1351 /*
1352 * This buffer's got modified and becoming part
1353 * of the transaction. This needs to be done
1354 * once a transaction -bzzz
1355 */
1356 jh->b_modified = 1;
1357 if (handle->h_buffer_credits <= 0) {
1358 ret = -ENOSPC;
1359 goto out_unlock_bh;
1360 }
1361 handle->h_buffer_credits--;
1362 }
1363
1364 /*
1365 * fastpath, to avoid expensive locking. If this buffer is already
1366 * on the running transaction's metadata list there is nothing to do.
1367 * Nobody can take it off again because there is a handle open.
1368 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1369 * result in this test being false, so we go in and take the locks.
1370 */
1371 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1372 JBUFFER_TRACE(jh, "fastpath");
1373 if (unlikely(jh->b_transaction !=
1374 journal->j_running_transaction)) {
1375 printk(KERN_ERR "JBD2: %s: "
1376 "jh->b_transaction (%llu, %p, %u) != "
1377 "journal->j_running_transaction (%p, %u)\n",
1378 journal->j_devname,
1379 (unsigned long long) bh->b_blocknr,
1380 jh->b_transaction,
1381 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1382 journal->j_running_transaction,
1383 journal->j_running_transaction ?
1384 journal->j_running_transaction->t_tid : 0);
1385 ret = -EINVAL;
1386 }
1387 goto out_unlock_bh;
1388 }
1389
1390 set_buffer_jbddirty(bh);
1391
1392 /*
1393 * Metadata already on the current transaction list doesn't
1394 * need to be filed. Metadata on another transaction's list must
1395 * be committing, and will be refiled once the commit completes:
1396 * leave it alone for now.
1397 */
1398 if (jh->b_transaction != transaction) {
1399 JBUFFER_TRACE(jh, "already on other transaction");
1400 if (unlikely(((jh->b_transaction !=
1401 journal->j_committing_transaction)) ||
1402 (jh->b_next_transaction != transaction))) {
1403 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1404 "bad jh for block %llu: "
1405 "transaction (%p, %u), "
1406 "jh->b_transaction (%p, %u), "
1407 "jh->b_next_transaction (%p, %u), jlist %u\n",
1408 journal->j_devname,
1409 (unsigned long long) bh->b_blocknr,
1410 transaction, transaction->t_tid,
1411 jh->b_transaction,
1412 jh->b_transaction ?
1413 jh->b_transaction->t_tid : 0,
1414 jh->b_next_transaction,
1415 jh->b_next_transaction ?
1416 jh->b_next_transaction->t_tid : 0,
1417 jh->b_jlist);
1418 WARN_ON(1);
1419 ret = -EINVAL;
1420 }
1421 /* And this case is illegal: we can't reuse another
1422 * transaction's data buffer, ever. */
1423 goto out_unlock_bh;
1424 }
1425
1426 /* That test should have eliminated the following case: */
1427 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1428
1429 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1430 spin_lock(&journal->j_list_lock);
1431 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1432 spin_unlock(&journal->j_list_lock);
1433 out_unlock_bh:
1434 jbd_unlock_bh_state(bh);
1435 out:
1436 JBUFFER_TRACE(jh, "exit");
1437 return ret;
1438 }
1439
1440 /**
1441 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1442 * @handle: transaction handle
1443 * @bh: bh to 'forget'
1444 *
1445 * We can only do the bforget if there are no commits pending against the
1446 * buffer. If the buffer is dirty in the current running transaction we
1447 * can safely unlink it.
1448 *
1449 * bh may not be a journalled buffer at all - it may be a non-JBD
1450 * buffer which came off the hashtable. Check for this.
1451 *
1452 * Decrements bh->b_count by one.
1453 *
1454 * Allow this call even if the handle has aborted --- it may be part of
1455 * the caller's cleanup after an abort.
1456 */
1457 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1458 {
1459 transaction_t *transaction = handle->h_transaction;
1460 journal_t *journal;
1461 struct journal_head *jh;
1462 int drop_reserve = 0;
1463 int err = 0;
1464 int was_modified = 0;
1465
1466 if (is_handle_aborted(handle))
1467 return -EROFS;
1468 journal = transaction->t_journal;
1469
1470 BUFFER_TRACE(bh, "entry");
1471
1472 jbd_lock_bh_state(bh);
1473
1474 if (!buffer_jbd(bh))
1475 goto not_jbd;
1476 jh = bh2jh(bh);
1477
1478 /* Critical error: attempting to delete a bitmap buffer, maybe?
1479 * Don't do any jbd operations, and return an error. */
1480 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1481 "inconsistent data on disk")) {
1482 err = -EIO;
1483 goto not_jbd;
1484 }
1485
1486 /* keep track of whether or not this transaction modified us */
1487 was_modified = jh->b_modified;
1488
1489 /*
1490 * The buffer's going from the transaction, we must drop
1491 * all references -bzzz
1492 */
1493 jh->b_modified = 0;
1494
1495 if (jh->b_transaction == transaction) {
1496 J_ASSERT_JH(jh, !jh->b_frozen_data);
1497
1498 /* If we are forgetting a buffer which is already part
1499 * of this transaction, then we can just drop it from
1500 * the transaction immediately. */
1501 clear_buffer_dirty(bh);
1502 clear_buffer_jbddirty(bh);
1503
1504 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1505
1506 /*
1507 * we only want to drop a reference if this transaction
1508 * modified the buffer
1509 */
1510 if (was_modified)
1511 drop_reserve = 1;
1512
1513 /*
1514 * We are no longer going to journal this buffer.
1515 * However, the commit of this transaction is still
1516 * important to the buffer: the delete that we are now
1517 * processing might obsolete an old log entry, so by
1518 * committing, we can satisfy the buffer's checkpoint.
1519 *
1520 * So, if we have a checkpoint on the buffer, we should
1521 * now refile the buffer on our BJ_Forget list so that
1522 * we know to remove the checkpoint after we commit.
1523 */
1524
1525 spin_lock(&journal->j_list_lock);
1526 if (jh->b_cp_transaction) {
1527 __jbd2_journal_temp_unlink_buffer(jh);
1528 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1529 } else {
1530 __jbd2_journal_unfile_buffer(jh);
1531 if (!buffer_jbd(bh)) {
1532 spin_unlock(&journal->j_list_lock);
1533 jbd_unlock_bh_state(bh);
1534 __bforget(bh);
1535 goto drop;
1536 }
1537 }
1538 spin_unlock(&journal->j_list_lock);
1539 } else if (jh->b_transaction) {
1540 J_ASSERT_JH(jh, (jh->b_transaction ==
1541 journal->j_committing_transaction));
1542 /* However, if the buffer is still owned by a prior
1543 * (committing) transaction, we can't drop it yet... */
1544 JBUFFER_TRACE(jh, "belongs to older transaction");
1545 /* ... but we CAN drop it from the new transaction if we
1546 * have also modified it since the original commit. */
1547
1548 if (jh->b_next_transaction) {
1549 J_ASSERT(jh->b_next_transaction == transaction);
1550 spin_lock(&journal->j_list_lock);
1551 jh->b_next_transaction = NULL;
1552 spin_unlock(&journal->j_list_lock);
1553
1554 /*
1555 * only drop a reference if this transaction modified
1556 * the buffer
1557 */
1558 if (was_modified)
1559 drop_reserve = 1;
1560 }
1561 }
1562
1563 not_jbd:
1564 jbd_unlock_bh_state(bh);
1565 __brelse(bh);
1566 drop:
1567 if (drop_reserve) {
1568 /* no need to reserve log space for this block -bzzz */
1569 handle->h_buffer_credits++;
1570 }
1571 return err;
1572 }
1573
1574 /**
1575 * int jbd2_journal_stop() - complete a transaction
1576 * @handle: tranaction to complete.
1577 *
1578 * All done for a particular handle.
1579 *
1580 * There is not much action needed here. We just return any remaining
1581 * buffer credits to the transaction and remove the handle. The only
1582 * complication is that we need to start a commit operation if the
1583 * filesystem is marked for synchronous update.
1584 *
1585 * jbd2_journal_stop itself will not usually return an error, but it may
1586 * do so in unusual circumstances. In particular, expect it to
1587 * return -EIO if a jbd2_journal_abort has been executed since the
1588 * transaction began.
1589 */
1590 int jbd2_journal_stop(handle_t *handle)
1591 {
1592 transaction_t *transaction = handle->h_transaction;
1593 journal_t *journal;
1594 int err = 0, wait_for_commit = 0;
1595 tid_t tid;
1596 pid_t pid;
1597
1598 if (!transaction) {
1599 /*
1600 * Handle is already detached from the transaction so
1601 * there is nothing to do other than decrease a refcount,
1602 * or free the handle if refcount drops to zero
1603 */
1604 if (--handle->h_ref > 0) {
1605 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1606 handle->h_ref);
1607 return err;
1608 } else {
1609 if (handle->h_rsv_handle)
1610 jbd2_free_handle(handle->h_rsv_handle);
1611 goto free_and_exit;
1612 }
1613 }
1614 journal = transaction->t_journal;
1615
1616 J_ASSERT(journal_current_handle() == handle);
1617
1618 if (is_handle_aborted(handle))
1619 err = -EIO;
1620 else
1621 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1622
1623 if (--handle->h_ref > 0) {
1624 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1625 handle->h_ref);
1626 return err;
1627 }
1628
1629 jbd_debug(4, "Handle %p going down\n", handle);
1630 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1631 transaction->t_tid,
1632 handle->h_type, handle->h_line_no,
1633 jiffies - handle->h_start_jiffies,
1634 handle->h_sync, handle->h_requested_credits,
1635 (handle->h_requested_credits -
1636 handle->h_buffer_credits));
1637
1638 /*
1639 * Implement synchronous transaction batching. If the handle
1640 * was synchronous, don't force a commit immediately. Let's
1641 * yield and let another thread piggyback onto this
1642 * transaction. Keep doing that while new threads continue to
1643 * arrive. It doesn't cost much - we're about to run a commit
1644 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1645 * operations by 30x or more...
1646 *
1647 * We try and optimize the sleep time against what the
1648 * underlying disk can do, instead of having a static sleep
1649 * time. This is useful for the case where our storage is so
1650 * fast that it is more optimal to go ahead and force a flush
1651 * and wait for the transaction to be committed than it is to
1652 * wait for an arbitrary amount of time for new writers to
1653 * join the transaction. We achieve this by measuring how
1654 * long it takes to commit a transaction, and compare it with
1655 * how long this transaction has been running, and if run time
1656 * < commit time then we sleep for the delta and commit. This
1657 * greatly helps super fast disks that would see slowdowns as
1658 * more threads started doing fsyncs.
1659 *
1660 * But don't do this if this process was the most recent one
1661 * to perform a synchronous write. We do this to detect the
1662 * case where a single process is doing a stream of sync
1663 * writes. No point in waiting for joiners in that case.
1664 *
1665 * Setting max_batch_time to 0 disables this completely.
1666 */
1667 pid = current->pid;
1668 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1669 journal->j_max_batch_time) {
1670 u64 commit_time, trans_time;
1671
1672 journal->j_last_sync_writer = pid;
1673
1674 read_lock(&journal->j_state_lock);
1675 commit_time = journal->j_average_commit_time;
1676 read_unlock(&journal->j_state_lock);
1677
1678 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1679 transaction->t_start_time));
1680
1681 commit_time = max_t(u64, commit_time,
1682 1000*journal->j_min_batch_time);
1683 commit_time = min_t(u64, commit_time,
1684 1000*journal->j_max_batch_time);
1685
1686 if (trans_time < commit_time) {
1687 ktime_t expires = ktime_add_ns(ktime_get(),
1688 commit_time);
1689 set_current_state(TASK_UNINTERRUPTIBLE);
1690 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1691 }
1692 }
1693
1694 if (handle->h_sync)
1695 transaction->t_synchronous_commit = 1;
1696 current->journal_info = NULL;
1697 atomic_sub(handle->h_buffer_credits,
1698 &transaction->t_outstanding_credits);
1699
1700 /*
1701 * If the handle is marked SYNC, we need to set another commit
1702 * going! We also want to force a commit if the current
1703 * transaction is occupying too much of the log, or if the
1704 * transaction is too old now.
1705 */
1706 if (handle->h_sync ||
1707 (atomic_read(&transaction->t_outstanding_credits) >
1708 journal->j_max_transaction_buffers) ||
1709 time_after_eq(jiffies, transaction->t_expires)) {
1710 /* Do this even for aborted journals: an abort still
1711 * completes the commit thread, it just doesn't write
1712 * anything to disk. */
1713
1714 jbd_debug(2, "transaction too old, requesting commit for "
1715 "handle %p\n", handle);
1716 /* This is non-blocking */
1717 jbd2_log_start_commit(journal, transaction->t_tid);
1718
1719 /*
1720 * Special case: JBD2_SYNC synchronous updates require us
1721 * to wait for the commit to complete.
1722 */
1723 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1724 wait_for_commit = 1;
1725 }
1726
1727 /*
1728 * Once we drop t_updates, if it goes to zero the transaction
1729 * could start committing on us and eventually disappear. So
1730 * once we do this, we must not dereference transaction
1731 * pointer again.
1732 */
1733 tid = transaction->t_tid;
1734 if (atomic_dec_and_test(&transaction->t_updates)) {
1735 wake_up(&journal->j_wait_updates);
1736 if (journal->j_barrier_count)
1737 wake_up(&journal->j_wait_transaction_locked);
1738 }
1739
1740 if (wait_for_commit)
1741 err = jbd2_log_wait_commit(journal, tid);
1742
1743 lock_map_release(&handle->h_lockdep_map);
1744
1745 if (handle->h_rsv_handle)
1746 jbd2_journal_free_reserved(handle->h_rsv_handle);
1747 free_and_exit:
1748 jbd2_free_handle(handle);
1749 return err;
1750 }
1751
1752 /*
1753 *
1754 * List management code snippets: various functions for manipulating the
1755 * transaction buffer lists.
1756 *
1757 */
1758
1759 /*
1760 * Append a buffer to a transaction list, given the transaction's list head
1761 * pointer.
1762 *
1763 * j_list_lock is held.
1764 *
1765 * jbd_lock_bh_state(jh2bh(jh)) is held.
1766 */
1767
1768 static inline void
1769 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1770 {
1771 if (!*list) {
1772 jh->b_tnext = jh->b_tprev = jh;
1773 *list = jh;
1774 } else {
1775 /* Insert at the tail of the list to preserve order */
1776 struct journal_head *first = *list, *last = first->b_tprev;
1777 jh->b_tprev = last;
1778 jh->b_tnext = first;
1779 last->b_tnext = first->b_tprev = jh;
1780 }
1781 }
1782
1783 /*
1784 * Remove a buffer from a transaction list, given the transaction's list
1785 * head pointer.
1786 *
1787 * Called with j_list_lock held, and the journal may not be locked.
1788 *
1789 * jbd_lock_bh_state(jh2bh(jh)) is held.
1790 */
1791
1792 static inline void
1793 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1794 {
1795 if (*list == jh) {
1796 *list = jh->b_tnext;
1797 if (*list == jh)
1798 *list = NULL;
1799 }
1800 jh->b_tprev->b_tnext = jh->b_tnext;
1801 jh->b_tnext->b_tprev = jh->b_tprev;
1802 }
1803
1804 /*
1805 * Remove a buffer from the appropriate transaction list.
1806 *
1807 * Note that this function can *change* the value of
1808 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1809 * t_reserved_list. If the caller is holding onto a copy of one of these
1810 * pointers, it could go bad. Generally the caller needs to re-read the
1811 * pointer from the transaction_t.
1812 *
1813 * Called under j_list_lock.
1814 */
1815 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1816 {
1817 struct journal_head **list = NULL;
1818 transaction_t *transaction;
1819 struct buffer_head *bh = jh2bh(jh);
1820
1821 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1822 transaction = jh->b_transaction;
1823 if (transaction)
1824 assert_spin_locked(&transaction->t_journal->j_list_lock);
1825
1826 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1827 if (jh->b_jlist != BJ_None)
1828 J_ASSERT_JH(jh, transaction != NULL);
1829
1830 switch (jh->b_jlist) {
1831 case BJ_None:
1832 return;
1833 case BJ_Metadata:
1834 transaction->t_nr_buffers--;
1835 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1836 list = &transaction->t_buffers;
1837 break;
1838 case BJ_Forget:
1839 list = &transaction->t_forget;
1840 break;
1841 case BJ_Shadow:
1842 list = &transaction->t_shadow_list;
1843 break;
1844 case BJ_Reserved:
1845 list = &transaction->t_reserved_list;
1846 break;
1847 }
1848
1849 __blist_del_buffer(list, jh);
1850 jh->b_jlist = BJ_None;
1851 if (test_clear_buffer_jbddirty(bh))
1852 mark_buffer_dirty(bh); /* Expose it to the VM */
1853 }
1854
1855 /*
1856 * Remove buffer from all transactions.
1857 *
1858 * Called with bh_state lock and j_list_lock
1859 *
1860 * jh and bh may be already freed when this function returns.
1861 */
1862 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1863 {
1864 __jbd2_journal_temp_unlink_buffer(jh);
1865 jh->b_transaction = NULL;
1866 jbd2_journal_put_journal_head(jh);
1867 }
1868
1869 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1870 {
1871 struct buffer_head *bh = jh2bh(jh);
1872
1873 /* Get reference so that buffer cannot be freed before we unlock it */
1874 get_bh(bh);
1875 jbd_lock_bh_state(bh);
1876 spin_lock(&journal->j_list_lock);
1877 __jbd2_journal_unfile_buffer(jh);
1878 spin_unlock(&journal->j_list_lock);
1879 jbd_unlock_bh_state(bh);
1880 __brelse(bh);
1881 }
1882
1883 /*
1884 * Called from jbd2_journal_try_to_free_buffers().
1885 *
1886 * Called under jbd_lock_bh_state(bh)
1887 */
1888 static void
1889 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1890 {
1891 struct journal_head *jh;
1892
1893 jh = bh2jh(bh);
1894
1895 if (buffer_locked(bh) || buffer_dirty(bh))
1896 goto out;
1897
1898 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1899 goto out;
1900
1901 spin_lock(&journal->j_list_lock);
1902 if (jh->b_cp_transaction != NULL) {
1903 /* written-back checkpointed metadata buffer */
1904 JBUFFER_TRACE(jh, "remove from checkpoint list");
1905 __jbd2_journal_remove_checkpoint(jh);
1906 }
1907 spin_unlock(&journal->j_list_lock);
1908 out:
1909 return;
1910 }
1911
1912 /**
1913 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1914 * @journal: journal for operation
1915 * @page: to try and free
1916 * @gfp_mask: we use the mask to detect how hard should we try to release
1917 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1918 * release the buffers.
1919 *
1920 *
1921 * For all the buffers on this page,
1922 * if they are fully written out ordered data, move them onto BUF_CLEAN
1923 * so try_to_free_buffers() can reap them.
1924 *
1925 * This function returns non-zero if we wish try_to_free_buffers()
1926 * to be called. We do this if the page is releasable by try_to_free_buffers().
1927 * We also do it if the page has locked or dirty buffers and the caller wants
1928 * us to perform sync or async writeout.
1929 *
1930 * This complicates JBD locking somewhat. We aren't protected by the
1931 * BKL here. We wish to remove the buffer from its committing or
1932 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1933 *
1934 * This may *change* the value of transaction_t->t_datalist, so anyone
1935 * who looks at t_datalist needs to lock against this function.
1936 *
1937 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1938 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1939 * will come out of the lock with the buffer dirty, which makes it
1940 * ineligible for release here.
1941 *
1942 * Who else is affected by this? hmm... Really the only contender
1943 * is do_get_write_access() - it could be looking at the buffer while
1944 * journal_try_to_free_buffer() is changing its state. But that
1945 * cannot happen because we never reallocate freed data as metadata
1946 * while the data is part of a transaction. Yes?
1947 *
1948 * Return 0 on failure, 1 on success
1949 */
1950 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1951 struct page *page, gfp_t gfp_mask)
1952 {
1953 struct buffer_head *head;
1954 struct buffer_head *bh;
1955 int ret = 0;
1956
1957 J_ASSERT(PageLocked(page));
1958
1959 head = page_buffers(page);
1960 bh = head;
1961 do {
1962 struct journal_head *jh;
1963
1964 /*
1965 * We take our own ref against the journal_head here to avoid
1966 * having to add tons of locking around each instance of
1967 * jbd2_journal_put_journal_head().
1968 */
1969 jh = jbd2_journal_grab_journal_head(bh);
1970 if (!jh)
1971 continue;
1972
1973 jbd_lock_bh_state(bh);
1974 __journal_try_to_free_buffer(journal, bh);
1975 jbd2_journal_put_journal_head(jh);
1976 jbd_unlock_bh_state(bh);
1977 if (buffer_jbd(bh))
1978 goto busy;
1979 } while ((bh = bh->b_this_page) != head);
1980
1981 ret = try_to_free_buffers(page);
1982
1983 busy:
1984 return ret;
1985 }
1986
1987 /*
1988 * This buffer is no longer needed. If it is on an older transaction's
1989 * checkpoint list we need to record it on this transaction's forget list
1990 * to pin this buffer (and hence its checkpointing transaction) down until
1991 * this transaction commits. If the buffer isn't on a checkpoint list, we
1992 * release it.
1993 * Returns non-zero if JBD no longer has an interest in the buffer.
1994 *
1995 * Called under j_list_lock.
1996 *
1997 * Called under jbd_lock_bh_state(bh).
1998 */
1999 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2000 {
2001 int may_free = 1;
2002 struct buffer_head *bh = jh2bh(jh);
2003
2004 if (jh->b_cp_transaction) {
2005 JBUFFER_TRACE(jh, "on running+cp transaction");
2006 __jbd2_journal_temp_unlink_buffer(jh);
2007 /*
2008 * We don't want to write the buffer anymore, clear the
2009 * bit so that we don't confuse checks in
2010 * __journal_file_buffer
2011 */
2012 clear_buffer_dirty(bh);
2013 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2014 may_free = 0;
2015 } else {
2016 JBUFFER_TRACE(jh, "on running transaction");
2017 __jbd2_journal_unfile_buffer(jh);
2018 }
2019 return may_free;
2020 }
2021
2022 /*
2023 * jbd2_journal_invalidatepage
2024 *
2025 * This code is tricky. It has a number of cases to deal with.
2026 *
2027 * There are two invariants which this code relies on:
2028 *
2029 * i_size must be updated on disk before we start calling invalidatepage on the
2030 * data.
2031 *
2032 * This is done in ext3 by defining an ext3_setattr method which
2033 * updates i_size before truncate gets going. By maintaining this
2034 * invariant, we can be sure that it is safe to throw away any buffers
2035 * attached to the current transaction: once the transaction commits,
2036 * we know that the data will not be needed.
2037 *
2038 * Note however that we can *not* throw away data belonging to the
2039 * previous, committing transaction!
2040 *
2041 * Any disk blocks which *are* part of the previous, committing
2042 * transaction (and which therefore cannot be discarded immediately) are
2043 * not going to be reused in the new running transaction
2044 *
2045 * The bitmap committed_data images guarantee this: any block which is
2046 * allocated in one transaction and removed in the next will be marked
2047 * as in-use in the committed_data bitmap, so cannot be reused until
2048 * the next transaction to delete the block commits. This means that
2049 * leaving committing buffers dirty is quite safe: the disk blocks
2050 * cannot be reallocated to a different file and so buffer aliasing is
2051 * not possible.
2052 *
2053 *
2054 * The above applies mainly to ordered data mode. In writeback mode we
2055 * don't make guarantees about the order in which data hits disk --- in
2056 * particular we don't guarantee that new dirty data is flushed before
2057 * transaction commit --- so it is always safe just to discard data
2058 * immediately in that mode. --sct
2059 */
2060
2061 /*
2062 * The journal_unmap_buffer helper function returns zero if the buffer
2063 * concerned remains pinned as an anonymous buffer belonging to an older
2064 * transaction.
2065 *
2066 * We're outside-transaction here. Either or both of j_running_transaction
2067 * and j_committing_transaction may be NULL.
2068 */
2069 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2070 int partial_page)
2071 {
2072 transaction_t *transaction;
2073 struct journal_head *jh;
2074 int may_free = 1;
2075
2076 BUFFER_TRACE(bh, "entry");
2077
2078 /*
2079 * It is safe to proceed here without the j_list_lock because the
2080 * buffers cannot be stolen by try_to_free_buffers as long as we are
2081 * holding the page lock. --sct
2082 */
2083
2084 if (!buffer_jbd(bh))
2085 goto zap_buffer_unlocked;
2086
2087 /* OK, we have data buffer in journaled mode */
2088 write_lock(&journal->j_state_lock);
2089 jbd_lock_bh_state(bh);
2090 spin_lock(&journal->j_list_lock);
2091
2092 jh = jbd2_journal_grab_journal_head(bh);
2093 if (!jh)
2094 goto zap_buffer_no_jh;
2095
2096 /*
2097 * We cannot remove the buffer from checkpoint lists until the
2098 * transaction adding inode to orphan list (let's call it T)
2099 * is committed. Otherwise if the transaction changing the
2100 * buffer would be cleaned from the journal before T is
2101 * committed, a crash will cause that the correct contents of
2102 * the buffer will be lost. On the other hand we have to
2103 * clear the buffer dirty bit at latest at the moment when the
2104 * transaction marking the buffer as freed in the filesystem
2105 * structures is committed because from that moment on the
2106 * block can be reallocated and used by a different page.
2107 * Since the block hasn't been freed yet but the inode has
2108 * already been added to orphan list, it is safe for us to add
2109 * the buffer to BJ_Forget list of the newest transaction.
2110 *
2111 * Also we have to clear buffer_mapped flag of a truncated buffer
2112 * because the buffer_head may be attached to the page straddling
2113 * i_size (can happen only when blocksize < pagesize) and thus the
2114 * buffer_head can be reused when the file is extended again. So we end
2115 * up keeping around invalidated buffers attached to transactions'
2116 * BJ_Forget list just to stop checkpointing code from cleaning up
2117 * the transaction this buffer was modified in.
2118 */
2119 transaction = jh->b_transaction;
2120 if (transaction == NULL) {
2121 /* First case: not on any transaction. If it
2122 * has no checkpoint link, then we can zap it:
2123 * it's a writeback-mode buffer so we don't care
2124 * if it hits disk safely. */
2125 if (!jh->b_cp_transaction) {
2126 JBUFFER_TRACE(jh, "not on any transaction: zap");
2127 goto zap_buffer;
2128 }
2129
2130 if (!buffer_dirty(bh)) {
2131 /* bdflush has written it. We can drop it now */
2132 goto zap_buffer;
2133 }
2134
2135 /* OK, it must be in the journal but still not
2136 * written fully to disk: it's metadata or
2137 * journaled data... */
2138
2139 if (journal->j_running_transaction) {
2140 /* ... and once the current transaction has
2141 * committed, the buffer won't be needed any
2142 * longer. */
2143 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2144 may_free = __dispose_buffer(jh,
2145 journal->j_running_transaction);
2146 goto zap_buffer;
2147 } else {
2148 /* There is no currently-running transaction. So the
2149 * orphan record which we wrote for this file must have
2150 * passed into commit. We must attach this buffer to
2151 * the committing transaction, if it exists. */
2152 if (journal->j_committing_transaction) {
2153 JBUFFER_TRACE(jh, "give to committing trans");
2154 may_free = __dispose_buffer(jh,
2155 journal->j_committing_transaction);
2156 goto zap_buffer;
2157 } else {
2158 /* The orphan record's transaction has
2159 * committed. We can cleanse this buffer */
2160 clear_buffer_jbddirty(bh);
2161 goto zap_buffer;
2162 }
2163 }
2164 } else if (transaction == journal->j_committing_transaction) {
2165 JBUFFER_TRACE(jh, "on committing transaction");
2166 /*
2167 * The buffer is committing, we simply cannot touch
2168 * it. If the page is straddling i_size we have to wait
2169 * for commit and try again.
2170 */
2171 if (partial_page) {
2172 jbd2_journal_put_journal_head(jh);
2173 spin_unlock(&journal->j_list_lock);
2174 jbd_unlock_bh_state(bh);
2175 write_unlock(&journal->j_state_lock);
2176 return -EBUSY;
2177 }
2178 /*
2179 * OK, buffer won't be reachable after truncate. We just set
2180 * j_next_transaction to the running transaction (if there is
2181 * one) and mark buffer as freed so that commit code knows it
2182 * should clear dirty bits when it is done with the buffer.
2183 */
2184 set_buffer_freed(bh);
2185 if (journal->j_running_transaction && buffer_jbddirty(bh))
2186 jh->b_next_transaction = journal->j_running_transaction;
2187 jbd2_journal_put_journal_head(jh);
2188 spin_unlock(&journal->j_list_lock);
2189 jbd_unlock_bh_state(bh);
2190 write_unlock(&journal->j_state_lock);
2191 return 0;
2192 } else {
2193 /* Good, the buffer belongs to the running transaction.
2194 * We are writing our own transaction's data, not any
2195 * previous one's, so it is safe to throw it away
2196 * (remember that we expect the filesystem to have set
2197 * i_size already for this truncate so recovery will not
2198 * expose the disk blocks we are discarding here.) */
2199 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2200 JBUFFER_TRACE(jh, "on running transaction");
2201 may_free = __dispose_buffer(jh, transaction);
2202 }
2203
2204 zap_buffer:
2205 /*
2206 * This is tricky. Although the buffer is truncated, it may be reused
2207 * if blocksize < pagesize and it is attached to the page straddling
2208 * EOF. Since the buffer might have been added to BJ_Forget list of the
2209 * running transaction, journal_get_write_access() won't clear
2210 * b_modified and credit accounting gets confused. So clear b_modified
2211 * here.
2212 */
2213 jh->b_modified = 0;
2214 jbd2_journal_put_journal_head(jh);
2215 zap_buffer_no_jh:
2216 spin_unlock(&journal->j_list_lock);
2217 jbd_unlock_bh_state(bh);
2218 write_unlock(&journal->j_state_lock);
2219 zap_buffer_unlocked:
2220 clear_buffer_dirty(bh);
2221 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2222 clear_buffer_mapped(bh);
2223 clear_buffer_req(bh);
2224 clear_buffer_new(bh);
2225 clear_buffer_delay(bh);
2226 clear_buffer_unwritten(bh);
2227 bh->b_bdev = NULL;
2228 return may_free;
2229 }
2230
2231 /**
2232 * void jbd2_journal_invalidatepage()
2233 * @journal: journal to use for flush...
2234 * @page: page to flush
2235 * @offset: start of the range to invalidate
2236 * @length: length of the range to invalidate
2237 *
2238 * Reap page buffers containing data after in the specified range in page.
2239 * Can return -EBUSY if buffers are part of the committing transaction and
2240 * the page is straddling i_size. Caller then has to wait for current commit
2241 * and try again.
2242 */
2243 int jbd2_journal_invalidatepage(journal_t *journal,
2244 struct page *page,
2245 unsigned int offset,
2246 unsigned int length)
2247 {
2248 struct buffer_head *head, *bh, *next;
2249 unsigned int stop = offset + length;
2250 unsigned int curr_off = 0;
2251 int partial_page = (offset || length < PAGE_CACHE_SIZE);
2252 int may_free = 1;
2253 int ret = 0;
2254
2255 if (!PageLocked(page))
2256 BUG();
2257 if (!page_has_buffers(page))
2258 return 0;
2259
2260 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2261
2262 /* We will potentially be playing with lists other than just the
2263 * data lists (especially for journaled data mode), so be
2264 * cautious in our locking. */
2265
2266 head = bh = page_buffers(page);
2267 do {
2268 unsigned int next_off = curr_off + bh->b_size;
2269 next = bh->b_this_page;
2270
2271 if (next_off > stop)
2272 return 0;
2273
2274 if (offset <= curr_off) {
2275 /* This block is wholly outside the truncation point */
2276 lock_buffer(bh);
2277 ret = journal_unmap_buffer(journal, bh, partial_page);
2278 unlock_buffer(bh);
2279 if (ret < 0)
2280 return ret;
2281 may_free &= ret;
2282 }
2283 curr_off = next_off;
2284 bh = next;
2285
2286 } while (bh != head);
2287
2288 if (!partial_page) {
2289 if (may_free && try_to_free_buffers(page))
2290 J_ASSERT(!page_has_buffers(page));
2291 }
2292 return 0;
2293 }
2294
2295 /*
2296 * File a buffer on the given transaction list.
2297 */
2298 void __jbd2_journal_file_buffer(struct journal_head *jh,
2299 transaction_t *transaction, int jlist)
2300 {
2301 struct journal_head **list = NULL;
2302 int was_dirty = 0;
2303 struct buffer_head *bh = jh2bh(jh);
2304
2305 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2306 assert_spin_locked(&transaction->t_journal->j_list_lock);
2307
2308 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2309 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2310 jh->b_transaction == NULL);
2311
2312 if (jh->b_transaction && jh->b_jlist == jlist)
2313 return;
2314
2315 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2316 jlist == BJ_Shadow || jlist == BJ_Forget) {
2317 /*
2318 * For metadata buffers, we track dirty bit in buffer_jbddirty
2319 * instead of buffer_dirty. We should not see a dirty bit set
2320 * here because we clear it in do_get_write_access but e.g.
2321 * tune2fs can modify the sb and set the dirty bit at any time
2322 * so we try to gracefully handle that.
2323 */
2324 if (buffer_dirty(bh))
2325 warn_dirty_buffer(bh);
2326 if (test_clear_buffer_dirty(bh) ||
2327 test_clear_buffer_jbddirty(bh))
2328 was_dirty = 1;
2329 }
2330
2331 if (jh->b_transaction)
2332 __jbd2_journal_temp_unlink_buffer(jh);
2333 else
2334 jbd2_journal_grab_journal_head(bh);
2335 jh->b_transaction = transaction;
2336
2337 switch (jlist) {
2338 case BJ_None:
2339 J_ASSERT_JH(jh, !jh->b_committed_data);
2340 J_ASSERT_JH(jh, !jh->b_frozen_data);
2341 return;
2342 case BJ_Metadata:
2343 transaction->t_nr_buffers++;
2344 list = &transaction->t_buffers;
2345 break;
2346 case BJ_Forget:
2347 list = &transaction->t_forget;
2348 break;
2349 case BJ_Shadow:
2350 list = &transaction->t_shadow_list;
2351 break;
2352 case BJ_Reserved:
2353 list = &transaction->t_reserved_list;
2354 break;
2355 }
2356
2357 __blist_add_buffer(list, jh);
2358 jh->b_jlist = jlist;
2359
2360 if (was_dirty)
2361 set_buffer_jbddirty(bh);
2362 }
2363
2364 void jbd2_journal_file_buffer(struct journal_head *jh,
2365 transaction_t *transaction, int jlist)
2366 {
2367 jbd_lock_bh_state(jh2bh(jh));
2368 spin_lock(&transaction->t_journal->j_list_lock);
2369 __jbd2_journal_file_buffer(jh, transaction, jlist);
2370 spin_unlock(&transaction->t_journal->j_list_lock);
2371 jbd_unlock_bh_state(jh2bh(jh));
2372 }
2373
2374 /*
2375 * Remove a buffer from its current buffer list in preparation for
2376 * dropping it from its current transaction entirely. If the buffer has
2377 * already started to be used by a subsequent transaction, refile the
2378 * buffer on that transaction's metadata list.
2379 *
2380 * Called under j_list_lock
2381 * Called under jbd_lock_bh_state(jh2bh(jh))
2382 *
2383 * jh and bh may be already free when this function returns
2384 */
2385 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2386 {
2387 int was_dirty, jlist;
2388 struct buffer_head *bh = jh2bh(jh);
2389
2390 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2391 if (jh->b_transaction)
2392 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2393
2394 /* If the buffer is now unused, just drop it. */
2395 if (jh->b_next_transaction == NULL) {
2396 __jbd2_journal_unfile_buffer(jh);
2397 return;
2398 }
2399
2400 /*
2401 * It has been modified by a later transaction: add it to the new
2402 * transaction's metadata list.
2403 */
2404
2405 was_dirty = test_clear_buffer_jbddirty(bh);
2406 __jbd2_journal_temp_unlink_buffer(jh);
2407 /*
2408 * We set b_transaction here because b_next_transaction will inherit
2409 * our jh reference and thus __jbd2_journal_file_buffer() must not
2410 * take a new one.
2411 */
2412 jh->b_transaction = jh->b_next_transaction;
2413 jh->b_next_transaction = NULL;
2414 if (buffer_freed(bh))
2415 jlist = BJ_Forget;
2416 else if (jh->b_modified)
2417 jlist = BJ_Metadata;
2418 else
2419 jlist = BJ_Reserved;
2420 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2421 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2422
2423 if (was_dirty)
2424 set_buffer_jbddirty(bh);
2425 }
2426
2427 /*
2428 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2429 * bh reference so that we can safely unlock bh.
2430 *
2431 * The jh and bh may be freed by this call.
2432 */
2433 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2434 {
2435 struct buffer_head *bh = jh2bh(jh);
2436
2437 /* Get reference so that buffer cannot be freed before we unlock it */
2438 get_bh(bh);
2439 jbd_lock_bh_state(bh);
2440 spin_lock(&journal->j_list_lock);
2441 __jbd2_journal_refile_buffer(jh);
2442 jbd_unlock_bh_state(bh);
2443 spin_unlock(&journal->j_list_lock);
2444 __brelse(bh);
2445 }
2446
2447 /*
2448 * File inode in the inode list of the handle's transaction
2449 */
2450 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2451 {
2452 transaction_t *transaction = handle->h_transaction;
2453 journal_t *journal;
2454
2455 if (is_handle_aborted(handle))
2456 return -EROFS;
2457 journal = transaction->t_journal;
2458
2459 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2460 transaction->t_tid);
2461
2462 /*
2463 * First check whether inode isn't already on the transaction's
2464 * lists without taking the lock. Note that this check is safe
2465 * without the lock as we cannot race with somebody removing inode
2466 * from the transaction. The reason is that we remove inode from the
2467 * transaction only in journal_release_jbd_inode() and when we commit
2468 * the transaction. We are guarded from the first case by holding
2469 * a reference to the inode. We are safe against the second case
2470 * because if jinode->i_transaction == transaction, commit code
2471 * cannot touch the transaction because we hold reference to it,
2472 * and if jinode->i_next_transaction == transaction, commit code
2473 * will only file the inode where we want it.
2474 */
2475 if (jinode->i_transaction == transaction ||
2476 jinode->i_next_transaction == transaction)
2477 return 0;
2478
2479 spin_lock(&journal->j_list_lock);
2480
2481 if (jinode->i_transaction == transaction ||
2482 jinode->i_next_transaction == transaction)
2483 goto done;
2484
2485 /*
2486 * We only ever set this variable to 1 so the test is safe. Since
2487 * t_need_data_flush is likely to be set, we do the test to save some
2488 * cacheline bouncing
2489 */
2490 if (!transaction->t_need_data_flush)
2491 transaction->t_need_data_flush = 1;
2492 /* On some different transaction's list - should be
2493 * the committing one */
2494 if (jinode->i_transaction) {
2495 J_ASSERT(jinode->i_next_transaction == NULL);
2496 J_ASSERT(jinode->i_transaction ==
2497 journal->j_committing_transaction);
2498 jinode->i_next_transaction = transaction;
2499 goto done;
2500 }
2501 /* Not on any transaction list... */
2502 J_ASSERT(!jinode->i_next_transaction);
2503 jinode->i_transaction = transaction;
2504 list_add(&jinode->i_list, &transaction->t_inode_list);
2505 done:
2506 spin_unlock(&journal->j_list_lock);
2507
2508 return 0;
2509 }
2510
2511 /*
2512 * File truncate and transaction commit interact with each other in a
2513 * non-trivial way. If a transaction writing data block A is
2514 * committing, we cannot discard the data by truncate until we have
2515 * written them. Otherwise if we crashed after the transaction with
2516 * write has committed but before the transaction with truncate has
2517 * committed, we could see stale data in block A. This function is a
2518 * helper to solve this problem. It starts writeout of the truncated
2519 * part in case it is in the committing transaction.
2520 *
2521 * Filesystem code must call this function when inode is journaled in
2522 * ordered mode before truncation happens and after the inode has been
2523 * placed on orphan list with the new inode size. The second condition
2524 * avoids the race that someone writes new data and we start
2525 * committing the transaction after this function has been called but
2526 * before a transaction for truncate is started (and furthermore it
2527 * allows us to optimize the case where the addition to orphan list
2528 * happens in the same transaction as write --- we don't have to write
2529 * any data in such case).
2530 */
2531 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2532 struct jbd2_inode *jinode,
2533 loff_t new_size)
2534 {
2535 transaction_t *inode_trans, *commit_trans;
2536 int ret = 0;
2537
2538 /* This is a quick check to avoid locking if not necessary */
2539 if (!jinode->i_transaction)
2540 goto out;
2541 /* Locks are here just to force reading of recent values, it is
2542 * enough that the transaction was not committing before we started
2543 * a transaction adding the inode to orphan list */
2544 read_lock(&journal->j_state_lock);
2545 commit_trans = journal->j_committing_transaction;
2546 read_unlock(&journal->j_state_lock);
2547 spin_lock(&journal->j_list_lock);
2548 inode_trans = jinode->i_transaction;
2549 spin_unlock(&journal->j_list_lock);
2550 if (inode_trans == commit_trans) {
2551 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2552 new_size, LLONG_MAX);
2553 if (ret)
2554 jbd2_journal_abort(journal, ret);
2555 }
2556 out:
2557 return ret;
2558 }
This page took 0.115243 seconds and 5 git commands to generate.