jbd2: cleanup needed free block estimates when starting a transaction
[deliverable/linux.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits, 0);
93 atomic_set(&transaction->t_handle_count, 0);
94 INIT_LIST_HEAD(&transaction->t_inode_list);
95 INIT_LIST_HEAD(&transaction->t_private_list);
96
97 /* Set up the commit timer for the new transaction. */
98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 add_timer(&journal->j_commit_timer);
100
101 J_ASSERT(journal->j_running_transaction == NULL);
102 journal->j_running_transaction = transaction;
103 transaction->t_max_wait = 0;
104 transaction->t_start = jiffies;
105 transaction->t_requested = 0;
106
107 return transaction;
108 }
109
110 /*
111 * Handle management.
112 *
113 * A handle_t is an object which represents a single atomic update to a
114 * filesystem, and which tracks all of the modifications which form part
115 * of that one update.
116 */
117
118 /*
119 * Update transaction's maximum wait time, if debugging is enabled.
120 *
121 * In order for t_max_wait to be reliable, it must be protected by a
122 * lock. But doing so will mean that start_this_handle() can not be
123 * run in parallel on SMP systems, which limits our scalability. So
124 * unless debugging is enabled, we no longer update t_max_wait, which
125 * means that maximum wait time reported by the jbd2_run_stats
126 * tracepoint will always be zero.
127 */
128 static inline void update_t_max_wait(transaction_t *transaction,
129 unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132 if (jbd2_journal_enable_debug &&
133 time_after(transaction->t_start, ts)) {
134 ts = jbd2_time_diff(ts, transaction->t_start);
135 spin_lock(&transaction->t_handle_lock);
136 if (ts > transaction->t_max_wait)
137 transaction->t_max_wait = ts;
138 spin_unlock(&transaction->t_handle_lock);
139 }
140 #endif
141 }
142
143 /*
144 * start_this_handle: Given a handle, deal with any locking or stalling
145 * needed to make sure that there is enough journal space for the handle
146 * to begin. Attach the handle to a transaction and set up the
147 * transaction's buffer credits.
148 */
149
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151 gfp_t gfp_mask)
152 {
153 transaction_t *transaction, *new_transaction = NULL;
154 tid_t tid;
155 int needed, need_to_start;
156 int nblocks = handle->h_buffer_credits;
157 unsigned long ts = jiffies;
158
159 if (nblocks > journal->j_max_transaction_buffers) {
160 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161 current->comm, nblocks,
162 journal->j_max_transaction_buffers);
163 return -ENOSPC;
164 }
165
166 alloc_transaction:
167 if (!journal->j_running_transaction) {
168 new_transaction = kmem_cache_zalloc(transaction_cache,
169 gfp_mask);
170 if (!new_transaction) {
171 /*
172 * If __GFP_FS is not present, then we may be
173 * being called from inside the fs writeback
174 * layer, so we MUST NOT fail. Since
175 * __GFP_NOFAIL is going away, we will arrange
176 * to retry the allocation ourselves.
177 */
178 if ((gfp_mask & __GFP_FS) == 0) {
179 congestion_wait(BLK_RW_ASYNC, HZ/50);
180 goto alloc_transaction;
181 }
182 return -ENOMEM;
183 }
184 }
185
186 jbd_debug(3, "New handle %p going live.\n", handle);
187
188 /*
189 * We need to hold j_state_lock until t_updates has been incremented,
190 * for proper journal barrier handling
191 */
192 repeat:
193 read_lock(&journal->j_state_lock);
194 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195 if (is_journal_aborted(journal) ||
196 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197 read_unlock(&journal->j_state_lock);
198 jbd2_journal_free_transaction(new_transaction);
199 return -EROFS;
200 }
201
202 /* Wait on the journal's transaction barrier if necessary */
203 if (journal->j_barrier_count) {
204 read_unlock(&journal->j_state_lock);
205 wait_event(journal->j_wait_transaction_locked,
206 journal->j_barrier_count == 0);
207 goto repeat;
208 }
209
210 if (!journal->j_running_transaction) {
211 read_unlock(&journal->j_state_lock);
212 if (!new_transaction)
213 goto alloc_transaction;
214 write_lock(&journal->j_state_lock);
215 if (!journal->j_running_transaction &&
216 !journal->j_barrier_count) {
217 jbd2_get_transaction(journal, new_transaction);
218 new_transaction = NULL;
219 }
220 write_unlock(&journal->j_state_lock);
221 goto repeat;
222 }
223
224 transaction = journal->j_running_transaction;
225
226 /*
227 * If the current transaction is locked down for commit, wait for the
228 * lock to be released.
229 */
230 if (transaction->t_state == T_LOCKED) {
231 DEFINE_WAIT(wait);
232
233 prepare_to_wait(&journal->j_wait_transaction_locked,
234 &wait, TASK_UNINTERRUPTIBLE);
235 read_unlock(&journal->j_state_lock);
236 schedule();
237 finish_wait(&journal->j_wait_transaction_locked, &wait);
238 goto repeat;
239 }
240
241 /*
242 * If there is not enough space left in the log to write all potential
243 * buffers requested by this operation, we need to stall pending a log
244 * checkpoint to free some more log space.
245 */
246 needed = atomic_add_return(nblocks,
247 &transaction->t_outstanding_credits);
248
249 if (needed > journal->j_max_transaction_buffers) {
250 /*
251 * If the current transaction is already too large, then start
252 * to commit it: we can then go back and attach this handle to
253 * a new transaction.
254 */
255 DEFINE_WAIT(wait);
256
257 jbd_debug(2, "Handle %p starting new commit...\n", handle);
258 atomic_sub(nblocks, &transaction->t_outstanding_credits);
259 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260 TASK_UNINTERRUPTIBLE);
261 tid = transaction->t_tid;
262 need_to_start = !tid_geq(journal->j_commit_request, tid);
263 read_unlock(&journal->j_state_lock);
264 if (need_to_start)
265 jbd2_log_start_commit(journal, tid);
266 schedule();
267 finish_wait(&journal->j_wait_transaction_locked, &wait);
268 goto repeat;
269 }
270
271 /*
272 * The commit code assumes that it can get enough log space
273 * without forcing a checkpoint. This is *critical* for
274 * correctness: a checkpoint of a buffer which is also
275 * associated with a committing transaction creates a deadlock,
276 * so commit simply cannot force through checkpoints.
277 *
278 * We must therefore ensure the necessary space in the journal
279 * *before* starting to dirty potentially checkpointed buffers
280 * in the new transaction.
281 *
282 * The worst part is, any transaction currently committing can
283 * reduce the free space arbitrarily. Be careful to account for
284 * those buffers when checkpointing.
285 */
286 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
287 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
288 atomic_sub(nblocks, &transaction->t_outstanding_credits);
289 read_unlock(&journal->j_state_lock);
290 write_lock(&journal->j_state_lock);
291 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
292 __jbd2_log_wait_for_space(journal);
293 write_unlock(&journal->j_state_lock);
294 goto repeat;
295 }
296
297 /* OK, account for the buffers that this operation expects to
298 * use and add the handle to the running transaction.
299 */
300 update_t_max_wait(transaction, ts);
301 handle->h_transaction = transaction;
302 handle->h_requested_credits = nblocks;
303 handle->h_start_jiffies = jiffies;
304 atomic_inc(&transaction->t_updates);
305 atomic_inc(&transaction->t_handle_count);
306 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
307 handle, nblocks,
308 atomic_read(&transaction->t_outstanding_credits),
309 jbd2_log_space_left(journal));
310 read_unlock(&journal->j_state_lock);
311
312 lock_map_acquire(&handle->h_lockdep_map);
313 jbd2_journal_free_transaction(new_transaction);
314 return 0;
315 }
316
317 static struct lock_class_key jbd2_handle_key;
318
319 /* Allocate a new handle. This should probably be in a slab... */
320 static handle_t *new_handle(int nblocks)
321 {
322 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
323 if (!handle)
324 return NULL;
325 handle->h_buffer_credits = nblocks;
326 handle->h_ref = 1;
327
328 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
329 &jbd2_handle_key, 0);
330
331 return handle;
332 }
333
334 /**
335 * handle_t *jbd2_journal_start() - Obtain a new handle.
336 * @journal: Journal to start transaction on.
337 * @nblocks: number of block buffer we might modify
338 *
339 * We make sure that the transaction can guarantee at least nblocks of
340 * modified buffers in the log. We block until the log can guarantee
341 * that much space.
342 *
343 * This function is visible to journal users (like ext3fs), so is not
344 * called with the journal already locked.
345 *
346 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
347 * on failure.
348 */
349 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
350 unsigned int type, unsigned int line_no)
351 {
352 handle_t *handle = journal_current_handle();
353 int err;
354
355 if (!journal)
356 return ERR_PTR(-EROFS);
357
358 if (handle) {
359 J_ASSERT(handle->h_transaction->t_journal == journal);
360 handle->h_ref++;
361 return handle;
362 }
363
364 handle = new_handle(nblocks);
365 if (!handle)
366 return ERR_PTR(-ENOMEM);
367
368 current->journal_info = handle;
369
370 err = start_this_handle(journal, handle, gfp_mask);
371 if (err < 0) {
372 jbd2_free_handle(handle);
373 current->journal_info = NULL;
374 return ERR_PTR(err);
375 }
376 handle->h_type = type;
377 handle->h_line_no = line_no;
378 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
379 handle->h_transaction->t_tid, type,
380 line_no, nblocks);
381 return handle;
382 }
383 EXPORT_SYMBOL(jbd2__journal_start);
384
385
386 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
387 {
388 return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
389 }
390 EXPORT_SYMBOL(jbd2_journal_start);
391
392
393 /**
394 * int jbd2_journal_extend() - extend buffer credits.
395 * @handle: handle to 'extend'
396 * @nblocks: nr blocks to try to extend by.
397 *
398 * Some transactions, such as large extends and truncates, can be done
399 * atomically all at once or in several stages. The operation requests
400 * a credit for a number of buffer modications in advance, but can
401 * extend its credit if it needs more.
402 *
403 * jbd2_journal_extend tries to give the running handle more buffer credits.
404 * It does not guarantee that allocation - this is a best-effort only.
405 * The calling process MUST be able to deal cleanly with a failure to
406 * extend here.
407 *
408 * Return 0 on success, non-zero on failure.
409 *
410 * return code < 0 implies an error
411 * return code > 0 implies normal transaction-full status.
412 */
413 int jbd2_journal_extend(handle_t *handle, int nblocks)
414 {
415 transaction_t *transaction = handle->h_transaction;
416 journal_t *journal = transaction->t_journal;
417 int result;
418 int wanted;
419
420 result = -EIO;
421 if (is_handle_aborted(handle))
422 goto out;
423
424 result = 1;
425
426 read_lock(&journal->j_state_lock);
427
428 /* Don't extend a locked-down transaction! */
429 if (handle->h_transaction->t_state != T_RUNNING) {
430 jbd_debug(3, "denied handle %p %d blocks: "
431 "transaction not running\n", handle, nblocks);
432 goto error_out;
433 }
434
435 spin_lock(&transaction->t_handle_lock);
436 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
437
438 if (wanted > journal->j_max_transaction_buffers) {
439 jbd_debug(3, "denied handle %p %d blocks: "
440 "transaction too large\n", handle, nblocks);
441 goto unlock;
442 }
443
444 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
445 jbd2_log_space_left(journal)) {
446 jbd_debug(3, "denied handle %p %d blocks: "
447 "insufficient log space\n", handle, nblocks);
448 goto unlock;
449 }
450
451 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
452 handle->h_transaction->t_tid,
453 handle->h_type, handle->h_line_no,
454 handle->h_buffer_credits,
455 nblocks);
456
457 handle->h_buffer_credits += nblocks;
458 handle->h_requested_credits += nblocks;
459 atomic_add(nblocks, &transaction->t_outstanding_credits);
460 result = 0;
461
462 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
463 unlock:
464 spin_unlock(&transaction->t_handle_lock);
465 error_out:
466 read_unlock(&journal->j_state_lock);
467 out:
468 return result;
469 }
470
471
472 /**
473 * int jbd2_journal_restart() - restart a handle .
474 * @handle: handle to restart
475 * @nblocks: nr credits requested
476 *
477 * Restart a handle for a multi-transaction filesystem
478 * operation.
479 *
480 * If the jbd2_journal_extend() call above fails to grant new buffer credits
481 * to a running handle, a call to jbd2_journal_restart will commit the
482 * handle's transaction so far and reattach the handle to a new
483 * transaction capabable of guaranteeing the requested number of
484 * credits.
485 */
486 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
487 {
488 transaction_t *transaction = handle->h_transaction;
489 journal_t *journal = transaction->t_journal;
490 tid_t tid;
491 int need_to_start, ret;
492
493 /* If we've had an abort of any type, don't even think about
494 * actually doing the restart! */
495 if (is_handle_aborted(handle))
496 return 0;
497
498 /*
499 * First unlink the handle from its current transaction, and start the
500 * commit on that.
501 */
502 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
503 J_ASSERT(journal_current_handle() == handle);
504
505 read_lock(&journal->j_state_lock);
506 spin_lock(&transaction->t_handle_lock);
507 atomic_sub(handle->h_buffer_credits,
508 &transaction->t_outstanding_credits);
509 if (atomic_dec_and_test(&transaction->t_updates))
510 wake_up(&journal->j_wait_updates);
511 spin_unlock(&transaction->t_handle_lock);
512
513 jbd_debug(2, "restarting handle %p\n", handle);
514 tid = transaction->t_tid;
515 need_to_start = !tid_geq(journal->j_commit_request, tid);
516 read_unlock(&journal->j_state_lock);
517 if (need_to_start)
518 jbd2_log_start_commit(journal, tid);
519
520 lock_map_release(&handle->h_lockdep_map);
521 handle->h_buffer_credits = nblocks;
522 ret = start_this_handle(journal, handle, gfp_mask);
523 return ret;
524 }
525 EXPORT_SYMBOL(jbd2__journal_restart);
526
527
528 int jbd2_journal_restart(handle_t *handle, int nblocks)
529 {
530 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
531 }
532 EXPORT_SYMBOL(jbd2_journal_restart);
533
534 /**
535 * void jbd2_journal_lock_updates () - establish a transaction barrier.
536 * @journal: Journal to establish a barrier on.
537 *
538 * This locks out any further updates from being started, and blocks
539 * until all existing updates have completed, returning only once the
540 * journal is in a quiescent state with no updates running.
541 *
542 * The journal lock should not be held on entry.
543 */
544 void jbd2_journal_lock_updates(journal_t *journal)
545 {
546 DEFINE_WAIT(wait);
547
548 write_lock(&journal->j_state_lock);
549 ++journal->j_barrier_count;
550
551 /* Wait until there are no running updates */
552 while (1) {
553 transaction_t *transaction = journal->j_running_transaction;
554
555 if (!transaction)
556 break;
557
558 spin_lock(&transaction->t_handle_lock);
559 prepare_to_wait(&journal->j_wait_updates, &wait,
560 TASK_UNINTERRUPTIBLE);
561 if (!atomic_read(&transaction->t_updates)) {
562 spin_unlock(&transaction->t_handle_lock);
563 finish_wait(&journal->j_wait_updates, &wait);
564 break;
565 }
566 spin_unlock(&transaction->t_handle_lock);
567 write_unlock(&journal->j_state_lock);
568 schedule();
569 finish_wait(&journal->j_wait_updates, &wait);
570 write_lock(&journal->j_state_lock);
571 }
572 write_unlock(&journal->j_state_lock);
573
574 /*
575 * We have now established a barrier against other normal updates, but
576 * we also need to barrier against other jbd2_journal_lock_updates() calls
577 * to make sure that we serialise special journal-locked operations
578 * too.
579 */
580 mutex_lock(&journal->j_barrier);
581 }
582
583 /**
584 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
585 * @journal: Journal to release the barrier on.
586 *
587 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
588 *
589 * Should be called without the journal lock held.
590 */
591 void jbd2_journal_unlock_updates (journal_t *journal)
592 {
593 J_ASSERT(journal->j_barrier_count != 0);
594
595 mutex_unlock(&journal->j_barrier);
596 write_lock(&journal->j_state_lock);
597 --journal->j_barrier_count;
598 write_unlock(&journal->j_state_lock);
599 wake_up(&journal->j_wait_transaction_locked);
600 }
601
602 static void warn_dirty_buffer(struct buffer_head *bh)
603 {
604 char b[BDEVNAME_SIZE];
605
606 printk(KERN_WARNING
607 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
608 "There's a risk of filesystem corruption in case of system "
609 "crash.\n",
610 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
611 }
612
613 static int sleep_on_shadow_bh(void *word)
614 {
615 io_schedule();
616 return 0;
617 }
618
619 /*
620 * If the buffer is already part of the current transaction, then there
621 * is nothing we need to do. If it is already part of a prior
622 * transaction which we are still committing to disk, then we need to
623 * make sure that we do not overwrite the old copy: we do copy-out to
624 * preserve the copy going to disk. We also account the buffer against
625 * the handle's metadata buffer credits (unless the buffer is already
626 * part of the transaction, that is).
627 *
628 */
629 static int
630 do_get_write_access(handle_t *handle, struct journal_head *jh,
631 int force_copy)
632 {
633 struct buffer_head *bh;
634 transaction_t *transaction;
635 journal_t *journal;
636 int error;
637 char *frozen_buffer = NULL;
638 int need_copy = 0;
639 unsigned long start_lock, time_lock;
640
641 if (is_handle_aborted(handle))
642 return -EROFS;
643
644 transaction = handle->h_transaction;
645 journal = transaction->t_journal;
646
647 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
648
649 JBUFFER_TRACE(jh, "entry");
650 repeat:
651 bh = jh2bh(jh);
652
653 /* @@@ Need to check for errors here at some point. */
654
655 start_lock = jiffies;
656 lock_buffer(bh);
657 jbd_lock_bh_state(bh);
658
659 /* If it takes too long to lock the buffer, trace it */
660 time_lock = jbd2_time_diff(start_lock, jiffies);
661 if (time_lock > HZ/10)
662 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
663 jiffies_to_msecs(time_lock));
664
665 /* We now hold the buffer lock so it is safe to query the buffer
666 * state. Is the buffer dirty?
667 *
668 * If so, there are two possibilities. The buffer may be
669 * non-journaled, and undergoing a quite legitimate writeback.
670 * Otherwise, it is journaled, and we don't expect dirty buffers
671 * in that state (the buffers should be marked JBD_Dirty
672 * instead.) So either the IO is being done under our own
673 * control and this is a bug, or it's a third party IO such as
674 * dump(8) (which may leave the buffer scheduled for read ---
675 * ie. locked but not dirty) or tune2fs (which may actually have
676 * the buffer dirtied, ugh.) */
677
678 if (buffer_dirty(bh)) {
679 /*
680 * First question: is this buffer already part of the current
681 * transaction or the existing committing transaction?
682 */
683 if (jh->b_transaction) {
684 J_ASSERT_JH(jh,
685 jh->b_transaction == transaction ||
686 jh->b_transaction ==
687 journal->j_committing_transaction);
688 if (jh->b_next_transaction)
689 J_ASSERT_JH(jh, jh->b_next_transaction ==
690 transaction);
691 warn_dirty_buffer(bh);
692 }
693 /*
694 * In any case we need to clean the dirty flag and we must
695 * do it under the buffer lock to be sure we don't race
696 * with running write-out.
697 */
698 JBUFFER_TRACE(jh, "Journalling dirty buffer");
699 clear_buffer_dirty(bh);
700 set_buffer_jbddirty(bh);
701 }
702
703 unlock_buffer(bh);
704
705 error = -EROFS;
706 if (is_handle_aborted(handle)) {
707 jbd_unlock_bh_state(bh);
708 goto out;
709 }
710 error = 0;
711
712 /*
713 * The buffer is already part of this transaction if b_transaction or
714 * b_next_transaction points to it
715 */
716 if (jh->b_transaction == transaction ||
717 jh->b_next_transaction == transaction)
718 goto done;
719
720 /*
721 * this is the first time this transaction is touching this buffer,
722 * reset the modified flag
723 */
724 jh->b_modified = 0;
725
726 /*
727 * If there is already a copy-out version of this buffer, then we don't
728 * need to make another one
729 */
730 if (jh->b_frozen_data) {
731 JBUFFER_TRACE(jh, "has frozen data");
732 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
733 jh->b_next_transaction = transaction;
734 goto done;
735 }
736
737 /* Is there data here we need to preserve? */
738
739 if (jh->b_transaction && jh->b_transaction != transaction) {
740 JBUFFER_TRACE(jh, "owned by older transaction");
741 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
742 J_ASSERT_JH(jh, jh->b_transaction ==
743 journal->j_committing_transaction);
744
745 /* There is one case we have to be very careful about.
746 * If the committing transaction is currently writing
747 * this buffer out to disk and has NOT made a copy-out,
748 * then we cannot modify the buffer contents at all
749 * right now. The essence of copy-out is that it is the
750 * extra copy, not the primary copy, which gets
751 * journaled. If the primary copy is already going to
752 * disk then we cannot do copy-out here. */
753
754 if (buffer_shadow(bh)) {
755 JBUFFER_TRACE(jh, "on shadow: sleep");
756 jbd_unlock_bh_state(bh);
757 wait_on_bit(&bh->b_state, BH_Shadow,
758 sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
759 goto repeat;
760 }
761
762 /*
763 * Only do the copy if the currently-owning transaction still
764 * needs it. If buffer isn't on BJ_Metadata list, the
765 * committing transaction is past that stage (here we use the
766 * fact that BH_Shadow is set under bh_state lock together with
767 * refiling to BJ_Shadow list and at this point we know the
768 * buffer doesn't have BH_Shadow set).
769 *
770 * Subtle point, though: if this is a get_undo_access,
771 * then we will be relying on the frozen_data to contain
772 * the new value of the committed_data record after the
773 * transaction, so we HAVE to force the frozen_data copy
774 * in that case.
775 */
776 if (jh->b_jlist == BJ_Metadata || force_copy) {
777 JBUFFER_TRACE(jh, "generate frozen data");
778 if (!frozen_buffer) {
779 JBUFFER_TRACE(jh, "allocate memory for buffer");
780 jbd_unlock_bh_state(bh);
781 frozen_buffer =
782 jbd2_alloc(jh2bh(jh)->b_size,
783 GFP_NOFS);
784 if (!frozen_buffer) {
785 printk(KERN_EMERG
786 "%s: OOM for frozen_buffer\n",
787 __func__);
788 JBUFFER_TRACE(jh, "oom!");
789 error = -ENOMEM;
790 jbd_lock_bh_state(bh);
791 goto done;
792 }
793 goto repeat;
794 }
795 jh->b_frozen_data = frozen_buffer;
796 frozen_buffer = NULL;
797 need_copy = 1;
798 }
799 jh->b_next_transaction = transaction;
800 }
801
802
803 /*
804 * Finally, if the buffer is not journaled right now, we need to make
805 * sure it doesn't get written to disk before the caller actually
806 * commits the new data
807 */
808 if (!jh->b_transaction) {
809 JBUFFER_TRACE(jh, "no transaction");
810 J_ASSERT_JH(jh, !jh->b_next_transaction);
811 JBUFFER_TRACE(jh, "file as BJ_Reserved");
812 spin_lock(&journal->j_list_lock);
813 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
814 spin_unlock(&journal->j_list_lock);
815 }
816
817 done:
818 if (need_copy) {
819 struct page *page;
820 int offset;
821 char *source;
822
823 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
824 "Possible IO failure.\n");
825 page = jh2bh(jh)->b_page;
826 offset = offset_in_page(jh2bh(jh)->b_data);
827 source = kmap_atomic(page);
828 /* Fire data frozen trigger just before we copy the data */
829 jbd2_buffer_frozen_trigger(jh, source + offset,
830 jh->b_triggers);
831 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
832 kunmap_atomic(source);
833
834 /*
835 * Now that the frozen data is saved off, we need to store
836 * any matching triggers.
837 */
838 jh->b_frozen_triggers = jh->b_triggers;
839 }
840 jbd_unlock_bh_state(bh);
841
842 /*
843 * If we are about to journal a buffer, then any revoke pending on it is
844 * no longer valid
845 */
846 jbd2_journal_cancel_revoke(handle, jh);
847
848 out:
849 if (unlikely(frozen_buffer)) /* It's usually NULL */
850 jbd2_free(frozen_buffer, bh->b_size);
851
852 JBUFFER_TRACE(jh, "exit");
853 return error;
854 }
855
856 /**
857 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
858 * @handle: transaction to add buffer modifications to
859 * @bh: bh to be used for metadata writes
860 *
861 * Returns an error code or 0 on success.
862 *
863 * In full data journalling mode the buffer may be of type BJ_AsyncData,
864 * because we're write()ing a buffer which is also part of a shared mapping.
865 */
866
867 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
868 {
869 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
870 int rc;
871
872 /* We do not want to get caught playing with fields which the
873 * log thread also manipulates. Make sure that the buffer
874 * completes any outstanding IO before proceeding. */
875 rc = do_get_write_access(handle, jh, 0);
876 jbd2_journal_put_journal_head(jh);
877 return rc;
878 }
879
880
881 /*
882 * When the user wants to journal a newly created buffer_head
883 * (ie. getblk() returned a new buffer and we are going to populate it
884 * manually rather than reading off disk), then we need to keep the
885 * buffer_head locked until it has been completely filled with new
886 * data. In this case, we should be able to make the assertion that
887 * the bh is not already part of an existing transaction.
888 *
889 * The buffer should already be locked by the caller by this point.
890 * There is no lock ranking violation: it was a newly created,
891 * unlocked buffer beforehand. */
892
893 /**
894 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
895 * @handle: transaction to new buffer to
896 * @bh: new buffer.
897 *
898 * Call this if you create a new bh.
899 */
900 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
901 {
902 transaction_t *transaction = handle->h_transaction;
903 journal_t *journal = transaction->t_journal;
904 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
905 int err;
906
907 jbd_debug(5, "journal_head %p\n", jh);
908 err = -EROFS;
909 if (is_handle_aborted(handle))
910 goto out;
911 err = 0;
912
913 JBUFFER_TRACE(jh, "entry");
914 /*
915 * The buffer may already belong to this transaction due to pre-zeroing
916 * in the filesystem's new_block code. It may also be on the previous,
917 * committing transaction's lists, but it HAS to be in Forget state in
918 * that case: the transaction must have deleted the buffer for it to be
919 * reused here.
920 */
921 jbd_lock_bh_state(bh);
922 spin_lock(&journal->j_list_lock);
923 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
924 jh->b_transaction == NULL ||
925 (jh->b_transaction == journal->j_committing_transaction &&
926 jh->b_jlist == BJ_Forget)));
927
928 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
929 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
930
931 if (jh->b_transaction == NULL) {
932 /*
933 * Previous jbd2_journal_forget() could have left the buffer
934 * with jbddirty bit set because it was being committed. When
935 * the commit finished, we've filed the buffer for
936 * checkpointing and marked it dirty. Now we are reallocating
937 * the buffer so the transaction freeing it must have
938 * committed and so it's safe to clear the dirty bit.
939 */
940 clear_buffer_dirty(jh2bh(jh));
941 /* first access by this transaction */
942 jh->b_modified = 0;
943
944 JBUFFER_TRACE(jh, "file as BJ_Reserved");
945 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
946 } else if (jh->b_transaction == journal->j_committing_transaction) {
947 /* first access by this transaction */
948 jh->b_modified = 0;
949
950 JBUFFER_TRACE(jh, "set next transaction");
951 jh->b_next_transaction = transaction;
952 }
953 spin_unlock(&journal->j_list_lock);
954 jbd_unlock_bh_state(bh);
955
956 /*
957 * akpm: I added this. ext3_alloc_branch can pick up new indirect
958 * blocks which contain freed but then revoked metadata. We need
959 * to cancel the revoke in case we end up freeing it yet again
960 * and the reallocating as data - this would cause a second revoke,
961 * which hits an assertion error.
962 */
963 JBUFFER_TRACE(jh, "cancelling revoke");
964 jbd2_journal_cancel_revoke(handle, jh);
965 out:
966 jbd2_journal_put_journal_head(jh);
967 return err;
968 }
969
970 /**
971 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
972 * non-rewindable consequences
973 * @handle: transaction
974 * @bh: buffer to undo
975 *
976 * Sometimes there is a need to distinguish between metadata which has
977 * been committed to disk and that which has not. The ext3fs code uses
978 * this for freeing and allocating space, we have to make sure that we
979 * do not reuse freed space until the deallocation has been committed,
980 * since if we overwrote that space we would make the delete
981 * un-rewindable in case of a crash.
982 *
983 * To deal with that, jbd2_journal_get_undo_access requests write access to a
984 * buffer for parts of non-rewindable operations such as delete
985 * operations on the bitmaps. The journaling code must keep a copy of
986 * the buffer's contents prior to the undo_access call until such time
987 * as we know that the buffer has definitely been committed to disk.
988 *
989 * We never need to know which transaction the committed data is part
990 * of, buffers touched here are guaranteed to be dirtied later and so
991 * will be committed to a new transaction in due course, at which point
992 * we can discard the old committed data pointer.
993 *
994 * Returns error number or 0 on success.
995 */
996 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
997 {
998 int err;
999 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1000 char *committed_data = NULL;
1001
1002 JBUFFER_TRACE(jh, "entry");
1003
1004 /*
1005 * Do this first --- it can drop the journal lock, so we want to
1006 * make sure that obtaining the committed_data is done
1007 * atomically wrt. completion of any outstanding commits.
1008 */
1009 err = do_get_write_access(handle, jh, 1);
1010 if (err)
1011 goto out;
1012
1013 repeat:
1014 if (!jh->b_committed_data) {
1015 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1016 if (!committed_data) {
1017 printk(KERN_EMERG "%s: No memory for committed data\n",
1018 __func__);
1019 err = -ENOMEM;
1020 goto out;
1021 }
1022 }
1023
1024 jbd_lock_bh_state(bh);
1025 if (!jh->b_committed_data) {
1026 /* Copy out the current buffer contents into the
1027 * preserved, committed copy. */
1028 JBUFFER_TRACE(jh, "generate b_committed data");
1029 if (!committed_data) {
1030 jbd_unlock_bh_state(bh);
1031 goto repeat;
1032 }
1033
1034 jh->b_committed_data = committed_data;
1035 committed_data = NULL;
1036 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1037 }
1038 jbd_unlock_bh_state(bh);
1039 out:
1040 jbd2_journal_put_journal_head(jh);
1041 if (unlikely(committed_data))
1042 jbd2_free(committed_data, bh->b_size);
1043 return err;
1044 }
1045
1046 /**
1047 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1048 * @bh: buffer to trigger on
1049 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1050 *
1051 * Set any triggers on this journal_head. This is always safe, because
1052 * triggers for a committing buffer will be saved off, and triggers for
1053 * a running transaction will match the buffer in that transaction.
1054 *
1055 * Call with NULL to clear the triggers.
1056 */
1057 void jbd2_journal_set_triggers(struct buffer_head *bh,
1058 struct jbd2_buffer_trigger_type *type)
1059 {
1060 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1061
1062 if (WARN_ON(!jh))
1063 return;
1064 jh->b_triggers = type;
1065 jbd2_journal_put_journal_head(jh);
1066 }
1067
1068 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1069 struct jbd2_buffer_trigger_type *triggers)
1070 {
1071 struct buffer_head *bh = jh2bh(jh);
1072
1073 if (!triggers || !triggers->t_frozen)
1074 return;
1075
1076 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1077 }
1078
1079 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1080 struct jbd2_buffer_trigger_type *triggers)
1081 {
1082 if (!triggers || !triggers->t_abort)
1083 return;
1084
1085 triggers->t_abort(triggers, jh2bh(jh));
1086 }
1087
1088
1089
1090 /**
1091 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1092 * @handle: transaction to add buffer to.
1093 * @bh: buffer to mark
1094 *
1095 * mark dirty metadata which needs to be journaled as part of the current
1096 * transaction.
1097 *
1098 * The buffer must have previously had jbd2_journal_get_write_access()
1099 * called so that it has a valid journal_head attached to the buffer
1100 * head.
1101 *
1102 * The buffer is placed on the transaction's metadata list and is marked
1103 * as belonging to the transaction.
1104 *
1105 * Returns error number or 0 on success.
1106 *
1107 * Special care needs to be taken if the buffer already belongs to the
1108 * current committing transaction (in which case we should have frozen
1109 * data present for that commit). In that case, we don't relink the
1110 * buffer: that only gets done when the old transaction finally
1111 * completes its commit.
1112 */
1113 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1114 {
1115 transaction_t *transaction = handle->h_transaction;
1116 journal_t *journal = transaction->t_journal;
1117 struct journal_head *jh;
1118 int ret = 0;
1119
1120 if (is_handle_aborted(handle))
1121 goto out;
1122 jh = jbd2_journal_grab_journal_head(bh);
1123 if (!jh) {
1124 ret = -EUCLEAN;
1125 goto out;
1126 }
1127 jbd_debug(5, "journal_head %p\n", jh);
1128 JBUFFER_TRACE(jh, "entry");
1129
1130 jbd_lock_bh_state(bh);
1131
1132 if (jh->b_modified == 0) {
1133 /*
1134 * This buffer's got modified and becoming part
1135 * of the transaction. This needs to be done
1136 * once a transaction -bzzz
1137 */
1138 jh->b_modified = 1;
1139 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1140 handle->h_buffer_credits--;
1141 }
1142
1143 /*
1144 * fastpath, to avoid expensive locking. If this buffer is already
1145 * on the running transaction's metadata list there is nothing to do.
1146 * Nobody can take it off again because there is a handle open.
1147 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1148 * result in this test being false, so we go in and take the locks.
1149 */
1150 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1151 JBUFFER_TRACE(jh, "fastpath");
1152 if (unlikely(jh->b_transaction !=
1153 journal->j_running_transaction)) {
1154 printk(KERN_EMERG "JBD: %s: "
1155 "jh->b_transaction (%llu, %p, %u) != "
1156 "journal->j_running_transaction (%p, %u)",
1157 journal->j_devname,
1158 (unsigned long long) bh->b_blocknr,
1159 jh->b_transaction,
1160 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1161 journal->j_running_transaction,
1162 journal->j_running_transaction ?
1163 journal->j_running_transaction->t_tid : 0);
1164 ret = -EINVAL;
1165 }
1166 goto out_unlock_bh;
1167 }
1168
1169 set_buffer_jbddirty(bh);
1170
1171 /*
1172 * Metadata already on the current transaction list doesn't
1173 * need to be filed. Metadata on another transaction's list must
1174 * be committing, and will be refiled once the commit completes:
1175 * leave it alone for now.
1176 */
1177 if (jh->b_transaction != transaction) {
1178 JBUFFER_TRACE(jh, "already on other transaction");
1179 if (unlikely(jh->b_transaction !=
1180 journal->j_committing_transaction)) {
1181 printk(KERN_EMERG "JBD: %s: "
1182 "jh->b_transaction (%llu, %p, %u) != "
1183 "journal->j_committing_transaction (%p, %u)",
1184 journal->j_devname,
1185 (unsigned long long) bh->b_blocknr,
1186 jh->b_transaction,
1187 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1188 journal->j_committing_transaction,
1189 journal->j_committing_transaction ?
1190 journal->j_committing_transaction->t_tid : 0);
1191 ret = -EINVAL;
1192 }
1193 if (unlikely(jh->b_next_transaction != transaction)) {
1194 printk(KERN_EMERG "JBD: %s: "
1195 "jh->b_next_transaction (%llu, %p, %u) != "
1196 "transaction (%p, %u)",
1197 journal->j_devname,
1198 (unsigned long long) bh->b_blocknr,
1199 jh->b_next_transaction,
1200 jh->b_next_transaction ?
1201 jh->b_next_transaction->t_tid : 0,
1202 transaction, transaction->t_tid);
1203 ret = -EINVAL;
1204 }
1205 /* And this case is illegal: we can't reuse another
1206 * transaction's data buffer, ever. */
1207 goto out_unlock_bh;
1208 }
1209
1210 /* That test should have eliminated the following case: */
1211 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1212
1213 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1214 spin_lock(&journal->j_list_lock);
1215 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1216 spin_unlock(&journal->j_list_lock);
1217 out_unlock_bh:
1218 jbd_unlock_bh_state(bh);
1219 jbd2_journal_put_journal_head(jh);
1220 out:
1221 JBUFFER_TRACE(jh, "exit");
1222 WARN_ON(ret); /* All errors are bugs, so dump the stack */
1223 return ret;
1224 }
1225
1226 /**
1227 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1228 * @handle: transaction handle
1229 * @bh: bh to 'forget'
1230 *
1231 * We can only do the bforget if there are no commits pending against the
1232 * buffer. If the buffer is dirty in the current running transaction we
1233 * can safely unlink it.
1234 *
1235 * bh may not be a journalled buffer at all - it may be a non-JBD
1236 * buffer which came off the hashtable. Check for this.
1237 *
1238 * Decrements bh->b_count by one.
1239 *
1240 * Allow this call even if the handle has aborted --- it may be part of
1241 * the caller's cleanup after an abort.
1242 */
1243 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1244 {
1245 transaction_t *transaction = handle->h_transaction;
1246 journal_t *journal = transaction->t_journal;
1247 struct journal_head *jh;
1248 int drop_reserve = 0;
1249 int err = 0;
1250 int was_modified = 0;
1251
1252 BUFFER_TRACE(bh, "entry");
1253
1254 jbd_lock_bh_state(bh);
1255 spin_lock(&journal->j_list_lock);
1256
1257 if (!buffer_jbd(bh))
1258 goto not_jbd;
1259 jh = bh2jh(bh);
1260
1261 /* Critical error: attempting to delete a bitmap buffer, maybe?
1262 * Don't do any jbd operations, and return an error. */
1263 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1264 "inconsistent data on disk")) {
1265 err = -EIO;
1266 goto not_jbd;
1267 }
1268
1269 /* keep track of whether or not this transaction modified us */
1270 was_modified = jh->b_modified;
1271
1272 /*
1273 * The buffer's going from the transaction, we must drop
1274 * all references -bzzz
1275 */
1276 jh->b_modified = 0;
1277
1278 if (jh->b_transaction == handle->h_transaction) {
1279 J_ASSERT_JH(jh, !jh->b_frozen_data);
1280
1281 /* If we are forgetting a buffer which is already part
1282 * of this transaction, then we can just drop it from
1283 * the transaction immediately. */
1284 clear_buffer_dirty(bh);
1285 clear_buffer_jbddirty(bh);
1286
1287 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1288
1289 /*
1290 * we only want to drop a reference if this transaction
1291 * modified the buffer
1292 */
1293 if (was_modified)
1294 drop_reserve = 1;
1295
1296 /*
1297 * We are no longer going to journal this buffer.
1298 * However, the commit of this transaction is still
1299 * important to the buffer: the delete that we are now
1300 * processing might obsolete an old log entry, so by
1301 * committing, we can satisfy the buffer's checkpoint.
1302 *
1303 * So, if we have a checkpoint on the buffer, we should
1304 * now refile the buffer on our BJ_Forget list so that
1305 * we know to remove the checkpoint after we commit.
1306 */
1307
1308 if (jh->b_cp_transaction) {
1309 __jbd2_journal_temp_unlink_buffer(jh);
1310 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1311 } else {
1312 __jbd2_journal_unfile_buffer(jh);
1313 if (!buffer_jbd(bh)) {
1314 spin_unlock(&journal->j_list_lock);
1315 jbd_unlock_bh_state(bh);
1316 __bforget(bh);
1317 goto drop;
1318 }
1319 }
1320 } else if (jh->b_transaction) {
1321 J_ASSERT_JH(jh, (jh->b_transaction ==
1322 journal->j_committing_transaction));
1323 /* However, if the buffer is still owned by a prior
1324 * (committing) transaction, we can't drop it yet... */
1325 JBUFFER_TRACE(jh, "belongs to older transaction");
1326 /* ... but we CAN drop it from the new transaction if we
1327 * have also modified it since the original commit. */
1328
1329 if (jh->b_next_transaction) {
1330 J_ASSERT(jh->b_next_transaction == transaction);
1331 jh->b_next_transaction = NULL;
1332
1333 /*
1334 * only drop a reference if this transaction modified
1335 * the buffer
1336 */
1337 if (was_modified)
1338 drop_reserve = 1;
1339 }
1340 }
1341
1342 not_jbd:
1343 spin_unlock(&journal->j_list_lock);
1344 jbd_unlock_bh_state(bh);
1345 __brelse(bh);
1346 drop:
1347 if (drop_reserve) {
1348 /* no need to reserve log space for this block -bzzz */
1349 handle->h_buffer_credits++;
1350 }
1351 return err;
1352 }
1353
1354 /**
1355 * int jbd2_journal_stop() - complete a transaction
1356 * @handle: tranaction to complete.
1357 *
1358 * All done for a particular handle.
1359 *
1360 * There is not much action needed here. We just return any remaining
1361 * buffer credits to the transaction and remove the handle. The only
1362 * complication is that we need to start a commit operation if the
1363 * filesystem is marked for synchronous update.
1364 *
1365 * jbd2_journal_stop itself will not usually return an error, but it may
1366 * do so in unusual circumstances. In particular, expect it to
1367 * return -EIO if a jbd2_journal_abort has been executed since the
1368 * transaction began.
1369 */
1370 int jbd2_journal_stop(handle_t *handle)
1371 {
1372 transaction_t *transaction = handle->h_transaction;
1373 journal_t *journal = transaction->t_journal;
1374 int err, wait_for_commit = 0;
1375 tid_t tid;
1376 pid_t pid;
1377
1378 J_ASSERT(journal_current_handle() == handle);
1379
1380 if (is_handle_aborted(handle))
1381 err = -EIO;
1382 else {
1383 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1384 err = 0;
1385 }
1386
1387 if (--handle->h_ref > 0) {
1388 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1389 handle->h_ref);
1390 return err;
1391 }
1392
1393 jbd_debug(4, "Handle %p going down\n", handle);
1394 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1395 handle->h_transaction->t_tid,
1396 handle->h_type, handle->h_line_no,
1397 jiffies - handle->h_start_jiffies,
1398 handle->h_sync, handle->h_requested_credits,
1399 (handle->h_requested_credits -
1400 handle->h_buffer_credits));
1401
1402 /*
1403 * Implement synchronous transaction batching. If the handle
1404 * was synchronous, don't force a commit immediately. Let's
1405 * yield and let another thread piggyback onto this
1406 * transaction. Keep doing that while new threads continue to
1407 * arrive. It doesn't cost much - we're about to run a commit
1408 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1409 * operations by 30x or more...
1410 *
1411 * We try and optimize the sleep time against what the
1412 * underlying disk can do, instead of having a static sleep
1413 * time. This is useful for the case where our storage is so
1414 * fast that it is more optimal to go ahead and force a flush
1415 * and wait for the transaction to be committed than it is to
1416 * wait for an arbitrary amount of time for new writers to
1417 * join the transaction. We achieve this by measuring how
1418 * long it takes to commit a transaction, and compare it with
1419 * how long this transaction has been running, and if run time
1420 * < commit time then we sleep for the delta and commit. This
1421 * greatly helps super fast disks that would see slowdowns as
1422 * more threads started doing fsyncs.
1423 *
1424 * But don't do this if this process was the most recent one
1425 * to perform a synchronous write. We do this to detect the
1426 * case where a single process is doing a stream of sync
1427 * writes. No point in waiting for joiners in that case.
1428 */
1429 pid = current->pid;
1430 if (handle->h_sync && journal->j_last_sync_writer != pid) {
1431 u64 commit_time, trans_time;
1432
1433 journal->j_last_sync_writer = pid;
1434
1435 read_lock(&journal->j_state_lock);
1436 commit_time = journal->j_average_commit_time;
1437 read_unlock(&journal->j_state_lock);
1438
1439 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1440 transaction->t_start_time));
1441
1442 commit_time = max_t(u64, commit_time,
1443 1000*journal->j_min_batch_time);
1444 commit_time = min_t(u64, commit_time,
1445 1000*journal->j_max_batch_time);
1446
1447 if (trans_time < commit_time) {
1448 ktime_t expires = ktime_add_ns(ktime_get(),
1449 commit_time);
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1452 }
1453 }
1454
1455 if (handle->h_sync)
1456 transaction->t_synchronous_commit = 1;
1457 current->journal_info = NULL;
1458 atomic_sub(handle->h_buffer_credits,
1459 &transaction->t_outstanding_credits);
1460
1461 /*
1462 * If the handle is marked SYNC, we need to set another commit
1463 * going! We also want to force a commit if the current
1464 * transaction is occupying too much of the log, or if the
1465 * transaction is too old now.
1466 */
1467 if (handle->h_sync ||
1468 (atomic_read(&transaction->t_outstanding_credits) >
1469 journal->j_max_transaction_buffers) ||
1470 time_after_eq(jiffies, transaction->t_expires)) {
1471 /* Do this even for aborted journals: an abort still
1472 * completes the commit thread, it just doesn't write
1473 * anything to disk. */
1474
1475 jbd_debug(2, "transaction too old, requesting commit for "
1476 "handle %p\n", handle);
1477 /* This is non-blocking */
1478 jbd2_log_start_commit(journal, transaction->t_tid);
1479
1480 /*
1481 * Special case: JBD2_SYNC synchronous updates require us
1482 * to wait for the commit to complete.
1483 */
1484 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1485 wait_for_commit = 1;
1486 }
1487
1488 /*
1489 * Once we drop t_updates, if it goes to zero the transaction
1490 * could start committing on us and eventually disappear. So
1491 * once we do this, we must not dereference transaction
1492 * pointer again.
1493 */
1494 tid = transaction->t_tid;
1495 if (atomic_dec_and_test(&transaction->t_updates)) {
1496 wake_up(&journal->j_wait_updates);
1497 if (journal->j_barrier_count)
1498 wake_up(&journal->j_wait_transaction_locked);
1499 }
1500
1501 if (wait_for_commit)
1502 err = jbd2_log_wait_commit(journal, tid);
1503
1504 lock_map_release(&handle->h_lockdep_map);
1505
1506 jbd2_free_handle(handle);
1507 return err;
1508 }
1509
1510 /**
1511 * int jbd2_journal_force_commit() - force any uncommitted transactions
1512 * @journal: journal to force
1513 *
1514 * For synchronous operations: force any uncommitted transactions
1515 * to disk. May seem kludgy, but it reuses all the handle batching
1516 * code in a very simple manner.
1517 */
1518 int jbd2_journal_force_commit(journal_t *journal)
1519 {
1520 handle_t *handle;
1521 int ret;
1522
1523 handle = jbd2_journal_start(journal, 1);
1524 if (IS_ERR(handle)) {
1525 ret = PTR_ERR(handle);
1526 } else {
1527 handle->h_sync = 1;
1528 ret = jbd2_journal_stop(handle);
1529 }
1530 return ret;
1531 }
1532
1533 /*
1534 *
1535 * List management code snippets: various functions for manipulating the
1536 * transaction buffer lists.
1537 *
1538 */
1539
1540 /*
1541 * Append a buffer to a transaction list, given the transaction's list head
1542 * pointer.
1543 *
1544 * j_list_lock is held.
1545 *
1546 * jbd_lock_bh_state(jh2bh(jh)) is held.
1547 */
1548
1549 static inline void
1550 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1551 {
1552 if (!*list) {
1553 jh->b_tnext = jh->b_tprev = jh;
1554 *list = jh;
1555 } else {
1556 /* Insert at the tail of the list to preserve order */
1557 struct journal_head *first = *list, *last = first->b_tprev;
1558 jh->b_tprev = last;
1559 jh->b_tnext = first;
1560 last->b_tnext = first->b_tprev = jh;
1561 }
1562 }
1563
1564 /*
1565 * Remove a buffer from a transaction list, given the transaction's list
1566 * head pointer.
1567 *
1568 * Called with j_list_lock held, and the journal may not be locked.
1569 *
1570 * jbd_lock_bh_state(jh2bh(jh)) is held.
1571 */
1572
1573 static inline void
1574 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1575 {
1576 if (*list == jh) {
1577 *list = jh->b_tnext;
1578 if (*list == jh)
1579 *list = NULL;
1580 }
1581 jh->b_tprev->b_tnext = jh->b_tnext;
1582 jh->b_tnext->b_tprev = jh->b_tprev;
1583 }
1584
1585 /*
1586 * Remove a buffer from the appropriate transaction list.
1587 *
1588 * Note that this function can *change* the value of
1589 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1590 * t_reserved_list. If the caller is holding onto a copy of one of these
1591 * pointers, it could go bad. Generally the caller needs to re-read the
1592 * pointer from the transaction_t.
1593 *
1594 * Called under j_list_lock.
1595 */
1596 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1597 {
1598 struct journal_head **list = NULL;
1599 transaction_t *transaction;
1600 struct buffer_head *bh = jh2bh(jh);
1601
1602 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1603 transaction = jh->b_transaction;
1604 if (transaction)
1605 assert_spin_locked(&transaction->t_journal->j_list_lock);
1606
1607 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1608 if (jh->b_jlist != BJ_None)
1609 J_ASSERT_JH(jh, transaction != NULL);
1610
1611 switch (jh->b_jlist) {
1612 case BJ_None:
1613 return;
1614 case BJ_Metadata:
1615 transaction->t_nr_buffers--;
1616 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1617 list = &transaction->t_buffers;
1618 break;
1619 case BJ_Forget:
1620 list = &transaction->t_forget;
1621 break;
1622 case BJ_Shadow:
1623 list = &transaction->t_shadow_list;
1624 break;
1625 case BJ_Reserved:
1626 list = &transaction->t_reserved_list;
1627 break;
1628 }
1629
1630 __blist_del_buffer(list, jh);
1631 jh->b_jlist = BJ_None;
1632 if (test_clear_buffer_jbddirty(bh))
1633 mark_buffer_dirty(bh); /* Expose it to the VM */
1634 }
1635
1636 /*
1637 * Remove buffer from all transactions.
1638 *
1639 * Called with bh_state lock and j_list_lock
1640 *
1641 * jh and bh may be already freed when this function returns.
1642 */
1643 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1644 {
1645 __jbd2_journal_temp_unlink_buffer(jh);
1646 jh->b_transaction = NULL;
1647 jbd2_journal_put_journal_head(jh);
1648 }
1649
1650 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1651 {
1652 struct buffer_head *bh = jh2bh(jh);
1653
1654 /* Get reference so that buffer cannot be freed before we unlock it */
1655 get_bh(bh);
1656 jbd_lock_bh_state(bh);
1657 spin_lock(&journal->j_list_lock);
1658 __jbd2_journal_unfile_buffer(jh);
1659 spin_unlock(&journal->j_list_lock);
1660 jbd_unlock_bh_state(bh);
1661 __brelse(bh);
1662 }
1663
1664 /*
1665 * Called from jbd2_journal_try_to_free_buffers().
1666 *
1667 * Called under jbd_lock_bh_state(bh)
1668 */
1669 static void
1670 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1671 {
1672 struct journal_head *jh;
1673
1674 jh = bh2jh(bh);
1675
1676 if (buffer_locked(bh) || buffer_dirty(bh))
1677 goto out;
1678
1679 if (jh->b_next_transaction != NULL)
1680 goto out;
1681
1682 spin_lock(&journal->j_list_lock);
1683 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1684 /* written-back checkpointed metadata buffer */
1685 JBUFFER_TRACE(jh, "remove from checkpoint list");
1686 __jbd2_journal_remove_checkpoint(jh);
1687 }
1688 spin_unlock(&journal->j_list_lock);
1689 out:
1690 return;
1691 }
1692
1693 /**
1694 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1695 * @journal: journal for operation
1696 * @page: to try and free
1697 * @gfp_mask: we use the mask to detect how hard should we try to release
1698 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1699 * release the buffers.
1700 *
1701 *
1702 * For all the buffers on this page,
1703 * if they are fully written out ordered data, move them onto BUF_CLEAN
1704 * so try_to_free_buffers() can reap them.
1705 *
1706 * This function returns non-zero if we wish try_to_free_buffers()
1707 * to be called. We do this if the page is releasable by try_to_free_buffers().
1708 * We also do it if the page has locked or dirty buffers and the caller wants
1709 * us to perform sync or async writeout.
1710 *
1711 * This complicates JBD locking somewhat. We aren't protected by the
1712 * BKL here. We wish to remove the buffer from its committing or
1713 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1714 *
1715 * This may *change* the value of transaction_t->t_datalist, so anyone
1716 * who looks at t_datalist needs to lock against this function.
1717 *
1718 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1719 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1720 * will come out of the lock with the buffer dirty, which makes it
1721 * ineligible for release here.
1722 *
1723 * Who else is affected by this? hmm... Really the only contender
1724 * is do_get_write_access() - it could be looking at the buffer while
1725 * journal_try_to_free_buffer() is changing its state. But that
1726 * cannot happen because we never reallocate freed data as metadata
1727 * while the data is part of a transaction. Yes?
1728 *
1729 * Return 0 on failure, 1 on success
1730 */
1731 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1732 struct page *page, gfp_t gfp_mask)
1733 {
1734 struct buffer_head *head;
1735 struct buffer_head *bh;
1736 int ret = 0;
1737
1738 J_ASSERT(PageLocked(page));
1739
1740 head = page_buffers(page);
1741 bh = head;
1742 do {
1743 struct journal_head *jh;
1744
1745 /*
1746 * We take our own ref against the journal_head here to avoid
1747 * having to add tons of locking around each instance of
1748 * jbd2_journal_put_journal_head().
1749 */
1750 jh = jbd2_journal_grab_journal_head(bh);
1751 if (!jh)
1752 continue;
1753
1754 jbd_lock_bh_state(bh);
1755 __journal_try_to_free_buffer(journal, bh);
1756 jbd2_journal_put_journal_head(jh);
1757 jbd_unlock_bh_state(bh);
1758 if (buffer_jbd(bh))
1759 goto busy;
1760 } while ((bh = bh->b_this_page) != head);
1761
1762 ret = try_to_free_buffers(page);
1763
1764 busy:
1765 return ret;
1766 }
1767
1768 /*
1769 * This buffer is no longer needed. If it is on an older transaction's
1770 * checkpoint list we need to record it on this transaction's forget list
1771 * to pin this buffer (and hence its checkpointing transaction) down until
1772 * this transaction commits. If the buffer isn't on a checkpoint list, we
1773 * release it.
1774 * Returns non-zero if JBD no longer has an interest in the buffer.
1775 *
1776 * Called under j_list_lock.
1777 *
1778 * Called under jbd_lock_bh_state(bh).
1779 */
1780 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1781 {
1782 int may_free = 1;
1783 struct buffer_head *bh = jh2bh(jh);
1784
1785 if (jh->b_cp_transaction) {
1786 JBUFFER_TRACE(jh, "on running+cp transaction");
1787 __jbd2_journal_temp_unlink_buffer(jh);
1788 /*
1789 * We don't want to write the buffer anymore, clear the
1790 * bit so that we don't confuse checks in
1791 * __journal_file_buffer
1792 */
1793 clear_buffer_dirty(bh);
1794 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1795 may_free = 0;
1796 } else {
1797 JBUFFER_TRACE(jh, "on running transaction");
1798 __jbd2_journal_unfile_buffer(jh);
1799 }
1800 return may_free;
1801 }
1802
1803 /*
1804 * jbd2_journal_invalidatepage
1805 *
1806 * This code is tricky. It has a number of cases to deal with.
1807 *
1808 * There are two invariants which this code relies on:
1809 *
1810 * i_size must be updated on disk before we start calling invalidatepage on the
1811 * data.
1812 *
1813 * This is done in ext3 by defining an ext3_setattr method which
1814 * updates i_size before truncate gets going. By maintaining this
1815 * invariant, we can be sure that it is safe to throw away any buffers
1816 * attached to the current transaction: once the transaction commits,
1817 * we know that the data will not be needed.
1818 *
1819 * Note however that we can *not* throw away data belonging to the
1820 * previous, committing transaction!
1821 *
1822 * Any disk blocks which *are* part of the previous, committing
1823 * transaction (and which therefore cannot be discarded immediately) are
1824 * not going to be reused in the new running transaction
1825 *
1826 * The bitmap committed_data images guarantee this: any block which is
1827 * allocated in one transaction and removed in the next will be marked
1828 * as in-use in the committed_data bitmap, so cannot be reused until
1829 * the next transaction to delete the block commits. This means that
1830 * leaving committing buffers dirty is quite safe: the disk blocks
1831 * cannot be reallocated to a different file and so buffer aliasing is
1832 * not possible.
1833 *
1834 *
1835 * The above applies mainly to ordered data mode. In writeback mode we
1836 * don't make guarantees about the order in which data hits disk --- in
1837 * particular we don't guarantee that new dirty data is flushed before
1838 * transaction commit --- so it is always safe just to discard data
1839 * immediately in that mode. --sct
1840 */
1841
1842 /*
1843 * The journal_unmap_buffer helper function returns zero if the buffer
1844 * concerned remains pinned as an anonymous buffer belonging to an older
1845 * transaction.
1846 *
1847 * We're outside-transaction here. Either or both of j_running_transaction
1848 * and j_committing_transaction may be NULL.
1849 */
1850 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1851 int partial_page)
1852 {
1853 transaction_t *transaction;
1854 struct journal_head *jh;
1855 int may_free = 1;
1856
1857 BUFFER_TRACE(bh, "entry");
1858
1859 /*
1860 * It is safe to proceed here without the j_list_lock because the
1861 * buffers cannot be stolen by try_to_free_buffers as long as we are
1862 * holding the page lock. --sct
1863 */
1864
1865 if (!buffer_jbd(bh))
1866 goto zap_buffer_unlocked;
1867
1868 /* OK, we have data buffer in journaled mode */
1869 write_lock(&journal->j_state_lock);
1870 jbd_lock_bh_state(bh);
1871 spin_lock(&journal->j_list_lock);
1872
1873 jh = jbd2_journal_grab_journal_head(bh);
1874 if (!jh)
1875 goto zap_buffer_no_jh;
1876
1877 /*
1878 * We cannot remove the buffer from checkpoint lists until the
1879 * transaction adding inode to orphan list (let's call it T)
1880 * is committed. Otherwise if the transaction changing the
1881 * buffer would be cleaned from the journal before T is
1882 * committed, a crash will cause that the correct contents of
1883 * the buffer will be lost. On the other hand we have to
1884 * clear the buffer dirty bit at latest at the moment when the
1885 * transaction marking the buffer as freed in the filesystem
1886 * structures is committed because from that moment on the
1887 * block can be reallocated and used by a different page.
1888 * Since the block hasn't been freed yet but the inode has
1889 * already been added to orphan list, it is safe for us to add
1890 * the buffer to BJ_Forget list of the newest transaction.
1891 *
1892 * Also we have to clear buffer_mapped flag of a truncated buffer
1893 * because the buffer_head may be attached to the page straddling
1894 * i_size (can happen only when blocksize < pagesize) and thus the
1895 * buffer_head can be reused when the file is extended again. So we end
1896 * up keeping around invalidated buffers attached to transactions'
1897 * BJ_Forget list just to stop checkpointing code from cleaning up
1898 * the transaction this buffer was modified in.
1899 */
1900 transaction = jh->b_transaction;
1901 if (transaction == NULL) {
1902 /* First case: not on any transaction. If it
1903 * has no checkpoint link, then we can zap it:
1904 * it's a writeback-mode buffer so we don't care
1905 * if it hits disk safely. */
1906 if (!jh->b_cp_transaction) {
1907 JBUFFER_TRACE(jh, "not on any transaction: zap");
1908 goto zap_buffer;
1909 }
1910
1911 if (!buffer_dirty(bh)) {
1912 /* bdflush has written it. We can drop it now */
1913 goto zap_buffer;
1914 }
1915
1916 /* OK, it must be in the journal but still not
1917 * written fully to disk: it's metadata or
1918 * journaled data... */
1919
1920 if (journal->j_running_transaction) {
1921 /* ... and once the current transaction has
1922 * committed, the buffer won't be needed any
1923 * longer. */
1924 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1925 may_free = __dispose_buffer(jh,
1926 journal->j_running_transaction);
1927 goto zap_buffer;
1928 } else {
1929 /* There is no currently-running transaction. So the
1930 * orphan record which we wrote for this file must have
1931 * passed into commit. We must attach this buffer to
1932 * the committing transaction, if it exists. */
1933 if (journal->j_committing_transaction) {
1934 JBUFFER_TRACE(jh, "give to committing trans");
1935 may_free = __dispose_buffer(jh,
1936 journal->j_committing_transaction);
1937 goto zap_buffer;
1938 } else {
1939 /* The orphan record's transaction has
1940 * committed. We can cleanse this buffer */
1941 clear_buffer_jbddirty(bh);
1942 goto zap_buffer;
1943 }
1944 }
1945 } else if (transaction == journal->j_committing_transaction) {
1946 JBUFFER_TRACE(jh, "on committing transaction");
1947 /*
1948 * The buffer is committing, we simply cannot touch
1949 * it. If the page is straddling i_size we have to wait
1950 * for commit and try again.
1951 */
1952 if (partial_page) {
1953 jbd2_journal_put_journal_head(jh);
1954 spin_unlock(&journal->j_list_lock);
1955 jbd_unlock_bh_state(bh);
1956 write_unlock(&journal->j_state_lock);
1957 return -EBUSY;
1958 }
1959 /*
1960 * OK, buffer won't be reachable after truncate. We just set
1961 * j_next_transaction to the running transaction (if there is
1962 * one) and mark buffer as freed so that commit code knows it
1963 * should clear dirty bits when it is done with the buffer.
1964 */
1965 set_buffer_freed(bh);
1966 if (journal->j_running_transaction && buffer_jbddirty(bh))
1967 jh->b_next_transaction = journal->j_running_transaction;
1968 jbd2_journal_put_journal_head(jh);
1969 spin_unlock(&journal->j_list_lock);
1970 jbd_unlock_bh_state(bh);
1971 write_unlock(&journal->j_state_lock);
1972 return 0;
1973 } else {
1974 /* Good, the buffer belongs to the running transaction.
1975 * We are writing our own transaction's data, not any
1976 * previous one's, so it is safe to throw it away
1977 * (remember that we expect the filesystem to have set
1978 * i_size already for this truncate so recovery will not
1979 * expose the disk blocks we are discarding here.) */
1980 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1981 JBUFFER_TRACE(jh, "on running transaction");
1982 may_free = __dispose_buffer(jh, transaction);
1983 }
1984
1985 zap_buffer:
1986 /*
1987 * This is tricky. Although the buffer is truncated, it may be reused
1988 * if blocksize < pagesize and it is attached to the page straddling
1989 * EOF. Since the buffer might have been added to BJ_Forget list of the
1990 * running transaction, journal_get_write_access() won't clear
1991 * b_modified and credit accounting gets confused. So clear b_modified
1992 * here.
1993 */
1994 jh->b_modified = 0;
1995 jbd2_journal_put_journal_head(jh);
1996 zap_buffer_no_jh:
1997 spin_unlock(&journal->j_list_lock);
1998 jbd_unlock_bh_state(bh);
1999 write_unlock(&journal->j_state_lock);
2000 zap_buffer_unlocked:
2001 clear_buffer_dirty(bh);
2002 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2003 clear_buffer_mapped(bh);
2004 clear_buffer_req(bh);
2005 clear_buffer_new(bh);
2006 clear_buffer_delay(bh);
2007 clear_buffer_unwritten(bh);
2008 bh->b_bdev = NULL;
2009 return may_free;
2010 }
2011
2012 /**
2013 * void jbd2_journal_invalidatepage()
2014 * @journal: journal to use for flush...
2015 * @page: page to flush
2016 * @offset: start of the range to invalidate
2017 * @length: length of the range to invalidate
2018 *
2019 * Reap page buffers containing data after in the specified range in page.
2020 * Can return -EBUSY if buffers are part of the committing transaction and
2021 * the page is straddling i_size. Caller then has to wait for current commit
2022 * and try again.
2023 */
2024 int jbd2_journal_invalidatepage(journal_t *journal,
2025 struct page *page,
2026 unsigned int offset,
2027 unsigned int length)
2028 {
2029 struct buffer_head *head, *bh, *next;
2030 unsigned int stop = offset + length;
2031 unsigned int curr_off = 0;
2032 int partial_page = (offset || length < PAGE_CACHE_SIZE);
2033 int may_free = 1;
2034 int ret = 0;
2035
2036 if (!PageLocked(page))
2037 BUG();
2038 if (!page_has_buffers(page))
2039 return 0;
2040
2041 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2042
2043 /* We will potentially be playing with lists other than just the
2044 * data lists (especially for journaled data mode), so be
2045 * cautious in our locking. */
2046
2047 head = bh = page_buffers(page);
2048 do {
2049 unsigned int next_off = curr_off + bh->b_size;
2050 next = bh->b_this_page;
2051
2052 if (next_off > stop)
2053 return 0;
2054
2055 if (offset <= curr_off) {
2056 /* This block is wholly outside the truncation point */
2057 lock_buffer(bh);
2058 ret = journal_unmap_buffer(journal, bh, partial_page);
2059 unlock_buffer(bh);
2060 if (ret < 0)
2061 return ret;
2062 may_free &= ret;
2063 }
2064 curr_off = next_off;
2065 bh = next;
2066
2067 } while (bh != head);
2068
2069 if (!partial_page) {
2070 if (may_free && try_to_free_buffers(page))
2071 J_ASSERT(!page_has_buffers(page));
2072 }
2073 return 0;
2074 }
2075
2076 /*
2077 * File a buffer on the given transaction list.
2078 */
2079 void __jbd2_journal_file_buffer(struct journal_head *jh,
2080 transaction_t *transaction, int jlist)
2081 {
2082 struct journal_head **list = NULL;
2083 int was_dirty = 0;
2084 struct buffer_head *bh = jh2bh(jh);
2085
2086 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2087 assert_spin_locked(&transaction->t_journal->j_list_lock);
2088
2089 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2090 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2091 jh->b_transaction == NULL);
2092
2093 if (jh->b_transaction && jh->b_jlist == jlist)
2094 return;
2095
2096 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2097 jlist == BJ_Shadow || jlist == BJ_Forget) {
2098 /*
2099 * For metadata buffers, we track dirty bit in buffer_jbddirty
2100 * instead of buffer_dirty. We should not see a dirty bit set
2101 * here because we clear it in do_get_write_access but e.g.
2102 * tune2fs can modify the sb and set the dirty bit at any time
2103 * so we try to gracefully handle that.
2104 */
2105 if (buffer_dirty(bh))
2106 warn_dirty_buffer(bh);
2107 if (test_clear_buffer_dirty(bh) ||
2108 test_clear_buffer_jbddirty(bh))
2109 was_dirty = 1;
2110 }
2111
2112 if (jh->b_transaction)
2113 __jbd2_journal_temp_unlink_buffer(jh);
2114 else
2115 jbd2_journal_grab_journal_head(bh);
2116 jh->b_transaction = transaction;
2117
2118 switch (jlist) {
2119 case BJ_None:
2120 J_ASSERT_JH(jh, !jh->b_committed_data);
2121 J_ASSERT_JH(jh, !jh->b_frozen_data);
2122 return;
2123 case BJ_Metadata:
2124 transaction->t_nr_buffers++;
2125 list = &transaction->t_buffers;
2126 break;
2127 case BJ_Forget:
2128 list = &transaction->t_forget;
2129 break;
2130 case BJ_Shadow:
2131 list = &transaction->t_shadow_list;
2132 break;
2133 case BJ_Reserved:
2134 list = &transaction->t_reserved_list;
2135 break;
2136 }
2137
2138 __blist_add_buffer(list, jh);
2139 jh->b_jlist = jlist;
2140
2141 if (was_dirty)
2142 set_buffer_jbddirty(bh);
2143 }
2144
2145 void jbd2_journal_file_buffer(struct journal_head *jh,
2146 transaction_t *transaction, int jlist)
2147 {
2148 jbd_lock_bh_state(jh2bh(jh));
2149 spin_lock(&transaction->t_journal->j_list_lock);
2150 __jbd2_journal_file_buffer(jh, transaction, jlist);
2151 spin_unlock(&transaction->t_journal->j_list_lock);
2152 jbd_unlock_bh_state(jh2bh(jh));
2153 }
2154
2155 /*
2156 * Remove a buffer from its current buffer list in preparation for
2157 * dropping it from its current transaction entirely. If the buffer has
2158 * already started to be used by a subsequent transaction, refile the
2159 * buffer on that transaction's metadata list.
2160 *
2161 * Called under j_list_lock
2162 * Called under jbd_lock_bh_state(jh2bh(jh))
2163 *
2164 * jh and bh may be already free when this function returns
2165 */
2166 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2167 {
2168 int was_dirty, jlist;
2169 struct buffer_head *bh = jh2bh(jh);
2170
2171 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2172 if (jh->b_transaction)
2173 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2174
2175 /* If the buffer is now unused, just drop it. */
2176 if (jh->b_next_transaction == NULL) {
2177 __jbd2_journal_unfile_buffer(jh);
2178 return;
2179 }
2180
2181 /*
2182 * It has been modified by a later transaction: add it to the new
2183 * transaction's metadata list.
2184 */
2185
2186 was_dirty = test_clear_buffer_jbddirty(bh);
2187 __jbd2_journal_temp_unlink_buffer(jh);
2188 /*
2189 * We set b_transaction here because b_next_transaction will inherit
2190 * our jh reference and thus __jbd2_journal_file_buffer() must not
2191 * take a new one.
2192 */
2193 jh->b_transaction = jh->b_next_transaction;
2194 jh->b_next_transaction = NULL;
2195 if (buffer_freed(bh))
2196 jlist = BJ_Forget;
2197 else if (jh->b_modified)
2198 jlist = BJ_Metadata;
2199 else
2200 jlist = BJ_Reserved;
2201 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2202 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2203
2204 if (was_dirty)
2205 set_buffer_jbddirty(bh);
2206 }
2207
2208 /*
2209 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2210 * bh reference so that we can safely unlock bh.
2211 *
2212 * The jh and bh may be freed by this call.
2213 */
2214 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2215 {
2216 struct buffer_head *bh = jh2bh(jh);
2217
2218 /* Get reference so that buffer cannot be freed before we unlock it */
2219 get_bh(bh);
2220 jbd_lock_bh_state(bh);
2221 spin_lock(&journal->j_list_lock);
2222 __jbd2_journal_refile_buffer(jh);
2223 jbd_unlock_bh_state(bh);
2224 spin_unlock(&journal->j_list_lock);
2225 __brelse(bh);
2226 }
2227
2228 /*
2229 * File inode in the inode list of the handle's transaction
2230 */
2231 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2232 {
2233 transaction_t *transaction = handle->h_transaction;
2234 journal_t *journal = transaction->t_journal;
2235
2236 if (is_handle_aborted(handle))
2237 return -EIO;
2238
2239 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2240 transaction->t_tid);
2241
2242 /*
2243 * First check whether inode isn't already on the transaction's
2244 * lists without taking the lock. Note that this check is safe
2245 * without the lock as we cannot race with somebody removing inode
2246 * from the transaction. The reason is that we remove inode from the
2247 * transaction only in journal_release_jbd_inode() and when we commit
2248 * the transaction. We are guarded from the first case by holding
2249 * a reference to the inode. We are safe against the second case
2250 * because if jinode->i_transaction == transaction, commit code
2251 * cannot touch the transaction because we hold reference to it,
2252 * and if jinode->i_next_transaction == transaction, commit code
2253 * will only file the inode where we want it.
2254 */
2255 if (jinode->i_transaction == transaction ||
2256 jinode->i_next_transaction == transaction)
2257 return 0;
2258
2259 spin_lock(&journal->j_list_lock);
2260
2261 if (jinode->i_transaction == transaction ||
2262 jinode->i_next_transaction == transaction)
2263 goto done;
2264
2265 /*
2266 * We only ever set this variable to 1 so the test is safe. Since
2267 * t_need_data_flush is likely to be set, we do the test to save some
2268 * cacheline bouncing
2269 */
2270 if (!transaction->t_need_data_flush)
2271 transaction->t_need_data_flush = 1;
2272 /* On some different transaction's list - should be
2273 * the committing one */
2274 if (jinode->i_transaction) {
2275 J_ASSERT(jinode->i_next_transaction == NULL);
2276 J_ASSERT(jinode->i_transaction ==
2277 journal->j_committing_transaction);
2278 jinode->i_next_transaction = transaction;
2279 goto done;
2280 }
2281 /* Not on any transaction list... */
2282 J_ASSERT(!jinode->i_next_transaction);
2283 jinode->i_transaction = transaction;
2284 list_add(&jinode->i_list, &transaction->t_inode_list);
2285 done:
2286 spin_unlock(&journal->j_list_lock);
2287
2288 return 0;
2289 }
2290
2291 /*
2292 * File truncate and transaction commit interact with each other in a
2293 * non-trivial way. If a transaction writing data block A is
2294 * committing, we cannot discard the data by truncate until we have
2295 * written them. Otherwise if we crashed after the transaction with
2296 * write has committed but before the transaction with truncate has
2297 * committed, we could see stale data in block A. This function is a
2298 * helper to solve this problem. It starts writeout of the truncated
2299 * part in case it is in the committing transaction.
2300 *
2301 * Filesystem code must call this function when inode is journaled in
2302 * ordered mode before truncation happens and after the inode has been
2303 * placed on orphan list with the new inode size. The second condition
2304 * avoids the race that someone writes new data and we start
2305 * committing the transaction after this function has been called but
2306 * before a transaction for truncate is started (and furthermore it
2307 * allows us to optimize the case where the addition to orphan list
2308 * happens in the same transaction as write --- we don't have to write
2309 * any data in such case).
2310 */
2311 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2312 struct jbd2_inode *jinode,
2313 loff_t new_size)
2314 {
2315 transaction_t *inode_trans, *commit_trans;
2316 int ret = 0;
2317
2318 /* This is a quick check to avoid locking if not necessary */
2319 if (!jinode->i_transaction)
2320 goto out;
2321 /* Locks are here just to force reading of recent values, it is
2322 * enough that the transaction was not committing before we started
2323 * a transaction adding the inode to orphan list */
2324 read_lock(&journal->j_state_lock);
2325 commit_trans = journal->j_committing_transaction;
2326 read_unlock(&journal->j_state_lock);
2327 spin_lock(&journal->j_list_lock);
2328 inode_trans = jinode->i_transaction;
2329 spin_unlock(&journal->j_list_lock);
2330 if (inode_trans == commit_trans) {
2331 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2332 new_size, LLONG_MAX);
2333 if (ret)
2334 jbd2_journal_abort(journal, ret);
2335 }
2336 out:
2337 return ret;
2338 }
This page took 0.304348 seconds and 6 git commands to generate.