jbd2: transaction reservation support
[deliverable/linux.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits,
93 atomic_read(&journal->j_reserved_credits));
94 atomic_set(&transaction->t_handle_count, 0);
95 INIT_LIST_HEAD(&transaction->t_inode_list);
96 INIT_LIST_HEAD(&transaction->t_private_list);
97
98 /* Set up the commit timer for the new transaction. */
99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 add_timer(&journal->j_commit_timer);
101
102 J_ASSERT(journal->j_running_transaction == NULL);
103 journal->j_running_transaction = transaction;
104 transaction->t_max_wait = 0;
105 transaction->t_start = jiffies;
106 transaction->t_requested = 0;
107
108 return transaction;
109 }
110
111 /*
112 * Handle management.
113 *
114 * A handle_t is an object which represents a single atomic update to a
115 * filesystem, and which tracks all of the modifications which form part
116 * of that one update.
117 */
118
119 /*
120 * Update transaction's maximum wait time, if debugging is enabled.
121 *
122 * In order for t_max_wait to be reliable, it must be protected by a
123 * lock. But doing so will mean that start_this_handle() can not be
124 * run in parallel on SMP systems, which limits our scalability. So
125 * unless debugging is enabled, we no longer update t_max_wait, which
126 * means that maximum wait time reported by the jbd2_run_stats
127 * tracepoint will always be zero.
128 */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 if (jbd2_journal_enable_debug &&
134 time_after(transaction->t_start, ts)) {
135 ts = jbd2_time_diff(ts, transaction->t_start);
136 spin_lock(&transaction->t_handle_lock);
137 if (ts > transaction->t_max_wait)
138 transaction->t_max_wait = ts;
139 spin_unlock(&transaction->t_handle_lock);
140 }
141 #endif
142 }
143
144 /*
145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
146 * if needed. The function expects running transaction to exist and releases
147 * j_state_lock.
148 */
149 static void wait_transaction_locked(journal_t *journal)
150 __releases(journal->j_state_lock)
151 {
152 DEFINE_WAIT(wait);
153 int need_to_start;
154 tid_t tid = journal->j_running_transaction->t_tid;
155
156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 TASK_UNINTERRUPTIBLE);
158 need_to_start = !tid_geq(journal->j_commit_request, tid);
159 read_unlock(&journal->j_state_lock);
160 if (need_to_start)
161 jbd2_log_start_commit(journal, tid);
162 schedule();
163 finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 atomic_sub(blocks, &journal->j_reserved_credits);
169 wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173 * Wait until we can add credits for handle to the running transaction. Called
174 * with j_state_lock held for reading. Returns 0 if handle joined the running
175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176 * caller must retry.
177 */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 int rsv_blocks)
180 {
181 transaction_t *t = journal->j_running_transaction;
182 int needed;
183 int total = blocks + rsv_blocks;
184
185 /*
186 * If the current transaction is locked down for commit, wait
187 * for the lock to be released.
188 */
189 if (t->t_state == T_LOCKED) {
190 wait_transaction_locked(journal);
191 return 1;
192 }
193
194 /*
195 * If there is not enough space left in the log to write all
196 * potential buffers requested by this operation, we need to
197 * stall pending a log checkpoint to free some more log space.
198 */
199 needed = atomic_add_return(total, &t->t_outstanding_credits);
200 if (needed > journal->j_max_transaction_buffers) {
201 /*
202 * If the current transaction is already too large,
203 * then start to commit it: we can then go back and
204 * attach this handle to a new transaction.
205 */
206 atomic_sub(total, &t->t_outstanding_credits);
207 wait_transaction_locked(journal);
208 return 1;
209 }
210
211 /*
212 * The commit code assumes that it can get enough log space
213 * without forcing a checkpoint. This is *critical* for
214 * correctness: a checkpoint of a buffer which is also
215 * associated with a committing transaction creates a deadlock,
216 * so commit simply cannot force through checkpoints.
217 *
218 * We must therefore ensure the necessary space in the journal
219 * *before* starting to dirty potentially checkpointed buffers
220 * in the new transaction.
221 */
222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223 atomic_sub(total, &t->t_outstanding_credits);
224 read_unlock(&journal->j_state_lock);
225 write_lock(&journal->j_state_lock);
226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227 __jbd2_log_wait_for_space(journal);
228 write_unlock(&journal->j_state_lock);
229 return 1;
230 }
231
232 /* No reservation? We are done... */
233 if (!rsv_blocks)
234 return 0;
235
236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237 /* We allow at most half of a transaction to be reserved */
238 if (needed > journal->j_max_transaction_buffers / 2) {
239 sub_reserved_credits(journal, rsv_blocks);
240 atomic_sub(total, &t->t_outstanding_credits);
241 read_unlock(&journal->j_state_lock);
242 wait_event(journal->j_wait_reserved,
243 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244 <= journal->j_max_transaction_buffers / 2);
245 return 1;
246 }
247 return 0;
248 }
249
250 /*
251 * start_this_handle: Given a handle, deal with any locking or stalling
252 * needed to make sure that there is enough journal space for the handle
253 * to begin. Attach the handle to a transaction and set up the
254 * transaction's buffer credits.
255 */
256
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258 gfp_t gfp_mask)
259 {
260 transaction_t *transaction, *new_transaction = NULL;
261 int blocks = handle->h_buffer_credits;
262 int rsv_blocks = 0;
263 unsigned long ts = jiffies;
264
265 /*
266 * 1/2 of transaction can be reserved so we can practically handle
267 * only 1/2 of maximum transaction size per operation
268 */
269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271 current->comm, blocks,
272 journal->j_max_transaction_buffers / 2);
273 return -ENOSPC;
274 }
275
276 if (handle->h_rsv_handle)
277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278
279 alloc_transaction:
280 if (!journal->j_running_transaction) {
281 new_transaction = kmem_cache_zalloc(transaction_cache,
282 gfp_mask);
283 if (!new_transaction) {
284 /*
285 * If __GFP_FS is not present, then we may be
286 * being called from inside the fs writeback
287 * layer, so we MUST NOT fail. Since
288 * __GFP_NOFAIL is going away, we will arrange
289 * to retry the allocation ourselves.
290 */
291 if ((gfp_mask & __GFP_FS) == 0) {
292 congestion_wait(BLK_RW_ASYNC, HZ/50);
293 goto alloc_transaction;
294 }
295 return -ENOMEM;
296 }
297 }
298
299 jbd_debug(3, "New handle %p going live.\n", handle);
300
301 /*
302 * We need to hold j_state_lock until t_updates has been incremented,
303 * for proper journal barrier handling
304 */
305 repeat:
306 read_lock(&journal->j_state_lock);
307 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
308 if (is_journal_aborted(journal) ||
309 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
310 read_unlock(&journal->j_state_lock);
311 jbd2_journal_free_transaction(new_transaction);
312 return -EROFS;
313 }
314
315 /*
316 * Wait on the journal's transaction barrier if necessary. Specifically
317 * we allow reserved handles to proceed because otherwise commit could
318 * deadlock on page writeback not being able to complete.
319 */
320 if (!handle->h_reserved && journal->j_barrier_count) {
321 read_unlock(&journal->j_state_lock);
322 wait_event(journal->j_wait_transaction_locked,
323 journal->j_barrier_count == 0);
324 goto repeat;
325 }
326
327 if (!journal->j_running_transaction) {
328 read_unlock(&journal->j_state_lock);
329 if (!new_transaction)
330 goto alloc_transaction;
331 write_lock(&journal->j_state_lock);
332 if (!journal->j_running_transaction &&
333 (handle->h_reserved || !journal->j_barrier_count)) {
334 jbd2_get_transaction(journal, new_transaction);
335 new_transaction = NULL;
336 }
337 write_unlock(&journal->j_state_lock);
338 goto repeat;
339 }
340
341 transaction = journal->j_running_transaction;
342
343 if (!handle->h_reserved) {
344 /* We may have dropped j_state_lock - restart in that case */
345 if (add_transaction_credits(journal, blocks, rsv_blocks))
346 goto repeat;
347 } else {
348 /*
349 * We have handle reserved so we are allowed to join T_LOCKED
350 * transaction and we don't have to check for transaction size
351 * and journal space.
352 */
353 sub_reserved_credits(journal, blocks);
354 handle->h_reserved = 0;
355 }
356
357 /* OK, account for the buffers that this operation expects to
358 * use and add the handle to the running transaction.
359 */
360 update_t_max_wait(transaction, ts);
361 handle->h_transaction = transaction;
362 handle->h_requested_credits = blocks;
363 handle->h_start_jiffies = jiffies;
364 atomic_inc(&transaction->t_updates);
365 atomic_inc(&transaction->t_handle_count);
366 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
367 handle, blocks,
368 atomic_read(&transaction->t_outstanding_credits),
369 jbd2_log_space_left(journal));
370 read_unlock(&journal->j_state_lock);
371
372 lock_map_acquire(&handle->h_lockdep_map);
373 jbd2_journal_free_transaction(new_transaction);
374 return 0;
375 }
376
377 static struct lock_class_key jbd2_handle_key;
378
379 /* Allocate a new handle. This should probably be in a slab... */
380 static handle_t *new_handle(int nblocks)
381 {
382 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
383 if (!handle)
384 return NULL;
385 handle->h_buffer_credits = nblocks;
386 handle->h_ref = 1;
387
388 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
389 &jbd2_handle_key, 0);
390
391 return handle;
392 }
393
394 /**
395 * handle_t *jbd2_journal_start() - Obtain a new handle.
396 * @journal: Journal to start transaction on.
397 * @nblocks: number of block buffer we might modify
398 *
399 * We make sure that the transaction can guarantee at least nblocks of
400 * modified buffers in the log. We block until the log can guarantee
401 * that much space. Additionally, if rsv_blocks > 0, we also create another
402 * handle with rsv_blocks reserved blocks in the journal. This handle is
403 * is stored in h_rsv_handle. It is not attached to any particular transaction
404 * and thus doesn't block transaction commit. If the caller uses this reserved
405 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
406 * on the parent handle will dispose the reserved one. Reserved handle has to
407 * be converted to a normal handle using jbd2_journal_start_reserved() before
408 * it can be used.
409 *
410 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
411 * on failure.
412 */
413 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
414 gfp_t gfp_mask, unsigned int type,
415 unsigned int line_no)
416 {
417 handle_t *handle = journal_current_handle();
418 int err;
419
420 if (!journal)
421 return ERR_PTR(-EROFS);
422
423 if (handle) {
424 J_ASSERT(handle->h_transaction->t_journal == journal);
425 handle->h_ref++;
426 return handle;
427 }
428
429 handle = new_handle(nblocks);
430 if (!handle)
431 return ERR_PTR(-ENOMEM);
432 if (rsv_blocks) {
433 handle_t *rsv_handle;
434
435 rsv_handle = new_handle(rsv_blocks);
436 if (!rsv_handle) {
437 jbd2_free_handle(handle);
438 return ERR_PTR(-ENOMEM);
439 }
440 rsv_handle->h_reserved = 1;
441 rsv_handle->h_journal = journal;
442 handle->h_rsv_handle = rsv_handle;
443 }
444
445 current->journal_info = handle;
446
447 err = start_this_handle(journal, handle, gfp_mask);
448 if (err < 0) {
449 if (handle->h_rsv_handle)
450 jbd2_free_handle(handle->h_rsv_handle);
451 jbd2_free_handle(handle);
452 current->journal_info = NULL;
453 return ERR_PTR(err);
454 }
455 handle->h_type = type;
456 handle->h_line_no = line_no;
457 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
458 handle->h_transaction->t_tid, type,
459 line_no, nblocks);
460 return handle;
461 }
462 EXPORT_SYMBOL(jbd2__journal_start);
463
464
465 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
466 {
467 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
468 }
469 EXPORT_SYMBOL(jbd2_journal_start);
470
471 void jbd2_journal_free_reserved(handle_t *handle)
472 {
473 journal_t *journal = handle->h_journal;
474
475 WARN_ON(!handle->h_reserved);
476 sub_reserved_credits(journal, handle->h_buffer_credits);
477 jbd2_free_handle(handle);
478 }
479 EXPORT_SYMBOL(jbd2_journal_free_reserved);
480
481 /**
482 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
483 * @handle: handle to start
484 *
485 * Start handle that has been previously reserved with jbd2_journal_reserve().
486 * This attaches @handle to the running transaction (or creates one if there's
487 * not transaction running). Unlike jbd2_journal_start() this function cannot
488 * block on journal commit, checkpointing, or similar stuff. It can block on
489 * memory allocation or frozen journal though.
490 *
491 * Return 0 on success, non-zero on error - handle is freed in that case.
492 */
493 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
494 unsigned int line_no)
495 {
496 journal_t *journal = handle->h_journal;
497 int ret = -EIO;
498
499 if (WARN_ON(!handle->h_reserved)) {
500 /* Someone passed in normal handle? Just stop it. */
501 jbd2_journal_stop(handle);
502 return ret;
503 }
504 /*
505 * Usefulness of mixing of reserved and unreserved handles is
506 * questionable. So far nobody seems to need it so just error out.
507 */
508 if (WARN_ON(current->journal_info)) {
509 jbd2_journal_free_reserved(handle);
510 return ret;
511 }
512
513 handle->h_journal = NULL;
514 current->journal_info = handle;
515 /*
516 * GFP_NOFS is here because callers are likely from writeback or
517 * similarly constrained call sites
518 */
519 ret = start_this_handle(journal, handle, GFP_NOFS);
520 if (ret < 0) {
521 current->journal_info = NULL;
522 jbd2_journal_free_reserved(handle);
523 }
524 handle->h_type = type;
525 handle->h_line_no = line_no;
526 return ret;
527 }
528 EXPORT_SYMBOL(jbd2_journal_start_reserved);
529
530 /**
531 * int jbd2_journal_extend() - extend buffer credits.
532 * @handle: handle to 'extend'
533 * @nblocks: nr blocks to try to extend by.
534 *
535 * Some transactions, such as large extends and truncates, can be done
536 * atomically all at once or in several stages. The operation requests
537 * a credit for a number of buffer modications in advance, but can
538 * extend its credit if it needs more.
539 *
540 * jbd2_journal_extend tries to give the running handle more buffer credits.
541 * It does not guarantee that allocation - this is a best-effort only.
542 * The calling process MUST be able to deal cleanly with a failure to
543 * extend here.
544 *
545 * Return 0 on success, non-zero on failure.
546 *
547 * return code < 0 implies an error
548 * return code > 0 implies normal transaction-full status.
549 */
550 int jbd2_journal_extend(handle_t *handle, int nblocks)
551 {
552 transaction_t *transaction = handle->h_transaction;
553 journal_t *journal = transaction->t_journal;
554 int result;
555 int wanted;
556
557 result = -EIO;
558 if (is_handle_aborted(handle))
559 goto out;
560
561 result = 1;
562
563 read_lock(&journal->j_state_lock);
564
565 /* Don't extend a locked-down transaction! */
566 if (handle->h_transaction->t_state != T_RUNNING) {
567 jbd_debug(3, "denied handle %p %d blocks: "
568 "transaction not running\n", handle, nblocks);
569 goto error_out;
570 }
571
572 spin_lock(&transaction->t_handle_lock);
573 wanted = atomic_add_return(nblocks,
574 &transaction->t_outstanding_credits);
575
576 if (wanted > journal->j_max_transaction_buffers) {
577 jbd_debug(3, "denied handle %p %d blocks: "
578 "transaction too large\n", handle, nblocks);
579 atomic_sub(nblocks, &transaction->t_outstanding_credits);
580 goto unlock;
581 }
582
583 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
584 jbd2_log_space_left(journal)) {
585 jbd_debug(3, "denied handle %p %d blocks: "
586 "insufficient log space\n", handle, nblocks);
587 atomic_sub(nblocks, &transaction->t_outstanding_credits);
588 goto unlock;
589 }
590
591 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
592 handle->h_transaction->t_tid,
593 handle->h_type, handle->h_line_no,
594 handle->h_buffer_credits,
595 nblocks);
596
597 handle->h_buffer_credits += nblocks;
598 handle->h_requested_credits += nblocks;
599 result = 0;
600
601 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
602 unlock:
603 spin_unlock(&transaction->t_handle_lock);
604 error_out:
605 read_unlock(&journal->j_state_lock);
606 out:
607 return result;
608 }
609
610
611 /**
612 * int jbd2_journal_restart() - restart a handle .
613 * @handle: handle to restart
614 * @nblocks: nr credits requested
615 *
616 * Restart a handle for a multi-transaction filesystem
617 * operation.
618 *
619 * If the jbd2_journal_extend() call above fails to grant new buffer credits
620 * to a running handle, a call to jbd2_journal_restart will commit the
621 * handle's transaction so far and reattach the handle to a new
622 * transaction capabable of guaranteeing the requested number of
623 * credits. We preserve reserved handle if there's any attached to the
624 * passed in handle.
625 */
626 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
627 {
628 transaction_t *transaction = handle->h_transaction;
629 journal_t *journal = transaction->t_journal;
630 tid_t tid;
631 int need_to_start, ret;
632
633 /* If we've had an abort of any type, don't even think about
634 * actually doing the restart! */
635 if (is_handle_aborted(handle))
636 return 0;
637
638 /*
639 * First unlink the handle from its current transaction, and start the
640 * commit on that.
641 */
642 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
643 J_ASSERT(journal_current_handle() == handle);
644
645 read_lock(&journal->j_state_lock);
646 spin_lock(&transaction->t_handle_lock);
647 atomic_sub(handle->h_buffer_credits,
648 &transaction->t_outstanding_credits);
649 if (handle->h_rsv_handle) {
650 sub_reserved_credits(journal,
651 handle->h_rsv_handle->h_buffer_credits);
652 }
653 if (atomic_dec_and_test(&transaction->t_updates))
654 wake_up(&journal->j_wait_updates);
655 spin_unlock(&transaction->t_handle_lock);
656
657 jbd_debug(2, "restarting handle %p\n", handle);
658 tid = transaction->t_tid;
659 need_to_start = !tid_geq(journal->j_commit_request, tid);
660 read_unlock(&journal->j_state_lock);
661 if (need_to_start)
662 jbd2_log_start_commit(journal, tid);
663
664 lock_map_release(&handle->h_lockdep_map);
665 handle->h_buffer_credits = nblocks;
666 ret = start_this_handle(journal, handle, gfp_mask);
667 return ret;
668 }
669 EXPORT_SYMBOL(jbd2__journal_restart);
670
671
672 int jbd2_journal_restart(handle_t *handle, int nblocks)
673 {
674 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
675 }
676 EXPORT_SYMBOL(jbd2_journal_restart);
677
678 /**
679 * void jbd2_journal_lock_updates () - establish a transaction barrier.
680 * @journal: Journal to establish a barrier on.
681 *
682 * This locks out any further updates from being started, and blocks
683 * until all existing updates have completed, returning only once the
684 * journal is in a quiescent state with no updates running.
685 *
686 * The journal lock should not be held on entry.
687 */
688 void jbd2_journal_lock_updates(journal_t *journal)
689 {
690 DEFINE_WAIT(wait);
691
692 write_lock(&journal->j_state_lock);
693 ++journal->j_barrier_count;
694
695 /* Wait until there are no reserved handles */
696 if (atomic_read(&journal->j_reserved_credits)) {
697 write_unlock(&journal->j_state_lock);
698 wait_event(journal->j_wait_reserved,
699 atomic_read(&journal->j_reserved_credits) == 0);
700 write_lock(&journal->j_state_lock);
701 }
702
703 /* Wait until there are no running updates */
704 while (1) {
705 transaction_t *transaction = journal->j_running_transaction;
706
707 if (!transaction)
708 break;
709
710 spin_lock(&transaction->t_handle_lock);
711 prepare_to_wait(&journal->j_wait_updates, &wait,
712 TASK_UNINTERRUPTIBLE);
713 if (!atomic_read(&transaction->t_updates)) {
714 spin_unlock(&transaction->t_handle_lock);
715 finish_wait(&journal->j_wait_updates, &wait);
716 break;
717 }
718 spin_unlock(&transaction->t_handle_lock);
719 write_unlock(&journal->j_state_lock);
720 schedule();
721 finish_wait(&journal->j_wait_updates, &wait);
722 write_lock(&journal->j_state_lock);
723 }
724 write_unlock(&journal->j_state_lock);
725
726 /*
727 * We have now established a barrier against other normal updates, but
728 * we also need to barrier against other jbd2_journal_lock_updates() calls
729 * to make sure that we serialise special journal-locked operations
730 * too.
731 */
732 mutex_lock(&journal->j_barrier);
733 }
734
735 /**
736 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
737 * @journal: Journal to release the barrier on.
738 *
739 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
740 *
741 * Should be called without the journal lock held.
742 */
743 void jbd2_journal_unlock_updates (journal_t *journal)
744 {
745 J_ASSERT(journal->j_barrier_count != 0);
746
747 mutex_unlock(&journal->j_barrier);
748 write_lock(&journal->j_state_lock);
749 --journal->j_barrier_count;
750 write_unlock(&journal->j_state_lock);
751 wake_up(&journal->j_wait_transaction_locked);
752 }
753
754 static void warn_dirty_buffer(struct buffer_head *bh)
755 {
756 char b[BDEVNAME_SIZE];
757
758 printk(KERN_WARNING
759 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
760 "There's a risk of filesystem corruption in case of system "
761 "crash.\n",
762 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
763 }
764
765 static int sleep_on_shadow_bh(void *word)
766 {
767 io_schedule();
768 return 0;
769 }
770
771 /*
772 * If the buffer is already part of the current transaction, then there
773 * is nothing we need to do. If it is already part of a prior
774 * transaction which we are still committing to disk, then we need to
775 * make sure that we do not overwrite the old copy: we do copy-out to
776 * preserve the copy going to disk. We also account the buffer against
777 * the handle's metadata buffer credits (unless the buffer is already
778 * part of the transaction, that is).
779 *
780 */
781 static int
782 do_get_write_access(handle_t *handle, struct journal_head *jh,
783 int force_copy)
784 {
785 struct buffer_head *bh;
786 transaction_t *transaction;
787 journal_t *journal;
788 int error;
789 char *frozen_buffer = NULL;
790 int need_copy = 0;
791 unsigned long start_lock, time_lock;
792
793 if (is_handle_aborted(handle))
794 return -EROFS;
795
796 transaction = handle->h_transaction;
797 journal = transaction->t_journal;
798
799 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
800
801 JBUFFER_TRACE(jh, "entry");
802 repeat:
803 bh = jh2bh(jh);
804
805 /* @@@ Need to check for errors here at some point. */
806
807 start_lock = jiffies;
808 lock_buffer(bh);
809 jbd_lock_bh_state(bh);
810
811 /* If it takes too long to lock the buffer, trace it */
812 time_lock = jbd2_time_diff(start_lock, jiffies);
813 if (time_lock > HZ/10)
814 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
815 jiffies_to_msecs(time_lock));
816
817 /* We now hold the buffer lock so it is safe to query the buffer
818 * state. Is the buffer dirty?
819 *
820 * If so, there are two possibilities. The buffer may be
821 * non-journaled, and undergoing a quite legitimate writeback.
822 * Otherwise, it is journaled, and we don't expect dirty buffers
823 * in that state (the buffers should be marked JBD_Dirty
824 * instead.) So either the IO is being done under our own
825 * control and this is a bug, or it's a third party IO such as
826 * dump(8) (which may leave the buffer scheduled for read ---
827 * ie. locked but not dirty) or tune2fs (which may actually have
828 * the buffer dirtied, ugh.) */
829
830 if (buffer_dirty(bh)) {
831 /*
832 * First question: is this buffer already part of the current
833 * transaction or the existing committing transaction?
834 */
835 if (jh->b_transaction) {
836 J_ASSERT_JH(jh,
837 jh->b_transaction == transaction ||
838 jh->b_transaction ==
839 journal->j_committing_transaction);
840 if (jh->b_next_transaction)
841 J_ASSERT_JH(jh, jh->b_next_transaction ==
842 transaction);
843 warn_dirty_buffer(bh);
844 }
845 /*
846 * In any case we need to clean the dirty flag and we must
847 * do it under the buffer lock to be sure we don't race
848 * with running write-out.
849 */
850 JBUFFER_TRACE(jh, "Journalling dirty buffer");
851 clear_buffer_dirty(bh);
852 set_buffer_jbddirty(bh);
853 }
854
855 unlock_buffer(bh);
856
857 error = -EROFS;
858 if (is_handle_aborted(handle)) {
859 jbd_unlock_bh_state(bh);
860 goto out;
861 }
862 error = 0;
863
864 /*
865 * The buffer is already part of this transaction if b_transaction or
866 * b_next_transaction points to it
867 */
868 if (jh->b_transaction == transaction ||
869 jh->b_next_transaction == transaction)
870 goto done;
871
872 /*
873 * this is the first time this transaction is touching this buffer,
874 * reset the modified flag
875 */
876 jh->b_modified = 0;
877
878 /*
879 * If there is already a copy-out version of this buffer, then we don't
880 * need to make another one
881 */
882 if (jh->b_frozen_data) {
883 JBUFFER_TRACE(jh, "has frozen data");
884 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
885 jh->b_next_transaction = transaction;
886 goto done;
887 }
888
889 /* Is there data here we need to preserve? */
890
891 if (jh->b_transaction && jh->b_transaction != transaction) {
892 JBUFFER_TRACE(jh, "owned by older transaction");
893 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
894 J_ASSERT_JH(jh, jh->b_transaction ==
895 journal->j_committing_transaction);
896
897 /* There is one case we have to be very careful about.
898 * If the committing transaction is currently writing
899 * this buffer out to disk and has NOT made a copy-out,
900 * then we cannot modify the buffer contents at all
901 * right now. The essence of copy-out is that it is the
902 * extra copy, not the primary copy, which gets
903 * journaled. If the primary copy is already going to
904 * disk then we cannot do copy-out here. */
905
906 if (buffer_shadow(bh)) {
907 JBUFFER_TRACE(jh, "on shadow: sleep");
908 jbd_unlock_bh_state(bh);
909 wait_on_bit(&bh->b_state, BH_Shadow,
910 sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
911 goto repeat;
912 }
913
914 /*
915 * Only do the copy if the currently-owning transaction still
916 * needs it. If buffer isn't on BJ_Metadata list, the
917 * committing transaction is past that stage (here we use the
918 * fact that BH_Shadow is set under bh_state lock together with
919 * refiling to BJ_Shadow list and at this point we know the
920 * buffer doesn't have BH_Shadow set).
921 *
922 * Subtle point, though: if this is a get_undo_access,
923 * then we will be relying on the frozen_data to contain
924 * the new value of the committed_data record after the
925 * transaction, so we HAVE to force the frozen_data copy
926 * in that case.
927 */
928 if (jh->b_jlist == BJ_Metadata || force_copy) {
929 JBUFFER_TRACE(jh, "generate frozen data");
930 if (!frozen_buffer) {
931 JBUFFER_TRACE(jh, "allocate memory for buffer");
932 jbd_unlock_bh_state(bh);
933 frozen_buffer =
934 jbd2_alloc(jh2bh(jh)->b_size,
935 GFP_NOFS);
936 if (!frozen_buffer) {
937 printk(KERN_EMERG
938 "%s: OOM for frozen_buffer\n",
939 __func__);
940 JBUFFER_TRACE(jh, "oom!");
941 error = -ENOMEM;
942 jbd_lock_bh_state(bh);
943 goto done;
944 }
945 goto repeat;
946 }
947 jh->b_frozen_data = frozen_buffer;
948 frozen_buffer = NULL;
949 need_copy = 1;
950 }
951 jh->b_next_transaction = transaction;
952 }
953
954
955 /*
956 * Finally, if the buffer is not journaled right now, we need to make
957 * sure it doesn't get written to disk before the caller actually
958 * commits the new data
959 */
960 if (!jh->b_transaction) {
961 JBUFFER_TRACE(jh, "no transaction");
962 J_ASSERT_JH(jh, !jh->b_next_transaction);
963 JBUFFER_TRACE(jh, "file as BJ_Reserved");
964 spin_lock(&journal->j_list_lock);
965 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
966 spin_unlock(&journal->j_list_lock);
967 }
968
969 done:
970 if (need_copy) {
971 struct page *page;
972 int offset;
973 char *source;
974
975 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
976 "Possible IO failure.\n");
977 page = jh2bh(jh)->b_page;
978 offset = offset_in_page(jh2bh(jh)->b_data);
979 source = kmap_atomic(page);
980 /* Fire data frozen trigger just before we copy the data */
981 jbd2_buffer_frozen_trigger(jh, source + offset,
982 jh->b_triggers);
983 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
984 kunmap_atomic(source);
985
986 /*
987 * Now that the frozen data is saved off, we need to store
988 * any matching triggers.
989 */
990 jh->b_frozen_triggers = jh->b_triggers;
991 }
992 jbd_unlock_bh_state(bh);
993
994 /*
995 * If we are about to journal a buffer, then any revoke pending on it is
996 * no longer valid
997 */
998 jbd2_journal_cancel_revoke(handle, jh);
999
1000 out:
1001 if (unlikely(frozen_buffer)) /* It's usually NULL */
1002 jbd2_free(frozen_buffer, bh->b_size);
1003
1004 JBUFFER_TRACE(jh, "exit");
1005 return error;
1006 }
1007
1008 /**
1009 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1010 * @handle: transaction to add buffer modifications to
1011 * @bh: bh to be used for metadata writes
1012 *
1013 * Returns an error code or 0 on success.
1014 *
1015 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1016 * because we're write()ing a buffer which is also part of a shared mapping.
1017 */
1018
1019 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1020 {
1021 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1022 int rc;
1023
1024 /* We do not want to get caught playing with fields which the
1025 * log thread also manipulates. Make sure that the buffer
1026 * completes any outstanding IO before proceeding. */
1027 rc = do_get_write_access(handle, jh, 0);
1028 jbd2_journal_put_journal_head(jh);
1029 return rc;
1030 }
1031
1032
1033 /*
1034 * When the user wants to journal a newly created buffer_head
1035 * (ie. getblk() returned a new buffer and we are going to populate it
1036 * manually rather than reading off disk), then we need to keep the
1037 * buffer_head locked until it has been completely filled with new
1038 * data. In this case, we should be able to make the assertion that
1039 * the bh is not already part of an existing transaction.
1040 *
1041 * The buffer should already be locked by the caller by this point.
1042 * There is no lock ranking violation: it was a newly created,
1043 * unlocked buffer beforehand. */
1044
1045 /**
1046 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1047 * @handle: transaction to new buffer to
1048 * @bh: new buffer.
1049 *
1050 * Call this if you create a new bh.
1051 */
1052 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1053 {
1054 transaction_t *transaction = handle->h_transaction;
1055 journal_t *journal = transaction->t_journal;
1056 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1057 int err;
1058
1059 jbd_debug(5, "journal_head %p\n", jh);
1060 err = -EROFS;
1061 if (is_handle_aborted(handle))
1062 goto out;
1063 err = 0;
1064
1065 JBUFFER_TRACE(jh, "entry");
1066 /*
1067 * The buffer may already belong to this transaction due to pre-zeroing
1068 * in the filesystem's new_block code. It may also be on the previous,
1069 * committing transaction's lists, but it HAS to be in Forget state in
1070 * that case: the transaction must have deleted the buffer for it to be
1071 * reused here.
1072 */
1073 jbd_lock_bh_state(bh);
1074 spin_lock(&journal->j_list_lock);
1075 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1076 jh->b_transaction == NULL ||
1077 (jh->b_transaction == journal->j_committing_transaction &&
1078 jh->b_jlist == BJ_Forget)));
1079
1080 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1081 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1082
1083 if (jh->b_transaction == NULL) {
1084 /*
1085 * Previous jbd2_journal_forget() could have left the buffer
1086 * with jbddirty bit set because it was being committed. When
1087 * the commit finished, we've filed the buffer for
1088 * checkpointing and marked it dirty. Now we are reallocating
1089 * the buffer so the transaction freeing it must have
1090 * committed and so it's safe to clear the dirty bit.
1091 */
1092 clear_buffer_dirty(jh2bh(jh));
1093 /* first access by this transaction */
1094 jh->b_modified = 0;
1095
1096 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1097 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1098 } else if (jh->b_transaction == journal->j_committing_transaction) {
1099 /* first access by this transaction */
1100 jh->b_modified = 0;
1101
1102 JBUFFER_TRACE(jh, "set next transaction");
1103 jh->b_next_transaction = transaction;
1104 }
1105 spin_unlock(&journal->j_list_lock);
1106 jbd_unlock_bh_state(bh);
1107
1108 /*
1109 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1110 * blocks which contain freed but then revoked metadata. We need
1111 * to cancel the revoke in case we end up freeing it yet again
1112 * and the reallocating as data - this would cause a second revoke,
1113 * which hits an assertion error.
1114 */
1115 JBUFFER_TRACE(jh, "cancelling revoke");
1116 jbd2_journal_cancel_revoke(handle, jh);
1117 out:
1118 jbd2_journal_put_journal_head(jh);
1119 return err;
1120 }
1121
1122 /**
1123 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1124 * non-rewindable consequences
1125 * @handle: transaction
1126 * @bh: buffer to undo
1127 *
1128 * Sometimes there is a need to distinguish between metadata which has
1129 * been committed to disk and that which has not. The ext3fs code uses
1130 * this for freeing and allocating space, we have to make sure that we
1131 * do not reuse freed space until the deallocation has been committed,
1132 * since if we overwrote that space we would make the delete
1133 * un-rewindable in case of a crash.
1134 *
1135 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1136 * buffer for parts of non-rewindable operations such as delete
1137 * operations on the bitmaps. The journaling code must keep a copy of
1138 * the buffer's contents prior to the undo_access call until such time
1139 * as we know that the buffer has definitely been committed to disk.
1140 *
1141 * We never need to know which transaction the committed data is part
1142 * of, buffers touched here are guaranteed to be dirtied later and so
1143 * will be committed to a new transaction in due course, at which point
1144 * we can discard the old committed data pointer.
1145 *
1146 * Returns error number or 0 on success.
1147 */
1148 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1149 {
1150 int err;
1151 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1152 char *committed_data = NULL;
1153
1154 JBUFFER_TRACE(jh, "entry");
1155
1156 /*
1157 * Do this first --- it can drop the journal lock, so we want to
1158 * make sure that obtaining the committed_data is done
1159 * atomically wrt. completion of any outstanding commits.
1160 */
1161 err = do_get_write_access(handle, jh, 1);
1162 if (err)
1163 goto out;
1164
1165 repeat:
1166 if (!jh->b_committed_data) {
1167 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1168 if (!committed_data) {
1169 printk(KERN_EMERG "%s: No memory for committed data\n",
1170 __func__);
1171 err = -ENOMEM;
1172 goto out;
1173 }
1174 }
1175
1176 jbd_lock_bh_state(bh);
1177 if (!jh->b_committed_data) {
1178 /* Copy out the current buffer contents into the
1179 * preserved, committed copy. */
1180 JBUFFER_TRACE(jh, "generate b_committed data");
1181 if (!committed_data) {
1182 jbd_unlock_bh_state(bh);
1183 goto repeat;
1184 }
1185
1186 jh->b_committed_data = committed_data;
1187 committed_data = NULL;
1188 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1189 }
1190 jbd_unlock_bh_state(bh);
1191 out:
1192 jbd2_journal_put_journal_head(jh);
1193 if (unlikely(committed_data))
1194 jbd2_free(committed_data, bh->b_size);
1195 return err;
1196 }
1197
1198 /**
1199 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1200 * @bh: buffer to trigger on
1201 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1202 *
1203 * Set any triggers on this journal_head. This is always safe, because
1204 * triggers for a committing buffer will be saved off, and triggers for
1205 * a running transaction will match the buffer in that transaction.
1206 *
1207 * Call with NULL to clear the triggers.
1208 */
1209 void jbd2_journal_set_triggers(struct buffer_head *bh,
1210 struct jbd2_buffer_trigger_type *type)
1211 {
1212 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1213
1214 if (WARN_ON(!jh))
1215 return;
1216 jh->b_triggers = type;
1217 jbd2_journal_put_journal_head(jh);
1218 }
1219
1220 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1221 struct jbd2_buffer_trigger_type *triggers)
1222 {
1223 struct buffer_head *bh = jh2bh(jh);
1224
1225 if (!triggers || !triggers->t_frozen)
1226 return;
1227
1228 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1229 }
1230
1231 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1232 struct jbd2_buffer_trigger_type *triggers)
1233 {
1234 if (!triggers || !triggers->t_abort)
1235 return;
1236
1237 triggers->t_abort(triggers, jh2bh(jh));
1238 }
1239
1240
1241
1242 /**
1243 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1244 * @handle: transaction to add buffer to.
1245 * @bh: buffer to mark
1246 *
1247 * mark dirty metadata which needs to be journaled as part of the current
1248 * transaction.
1249 *
1250 * The buffer must have previously had jbd2_journal_get_write_access()
1251 * called so that it has a valid journal_head attached to the buffer
1252 * head.
1253 *
1254 * The buffer is placed on the transaction's metadata list and is marked
1255 * as belonging to the transaction.
1256 *
1257 * Returns error number or 0 on success.
1258 *
1259 * Special care needs to be taken if the buffer already belongs to the
1260 * current committing transaction (in which case we should have frozen
1261 * data present for that commit). In that case, we don't relink the
1262 * buffer: that only gets done when the old transaction finally
1263 * completes its commit.
1264 */
1265 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1266 {
1267 transaction_t *transaction = handle->h_transaction;
1268 journal_t *journal = transaction->t_journal;
1269 struct journal_head *jh;
1270 int ret = 0;
1271
1272 if (is_handle_aborted(handle))
1273 goto out;
1274 jh = jbd2_journal_grab_journal_head(bh);
1275 if (!jh) {
1276 ret = -EUCLEAN;
1277 goto out;
1278 }
1279 jbd_debug(5, "journal_head %p\n", jh);
1280 JBUFFER_TRACE(jh, "entry");
1281
1282 jbd_lock_bh_state(bh);
1283
1284 if (jh->b_modified == 0) {
1285 /*
1286 * This buffer's got modified and becoming part
1287 * of the transaction. This needs to be done
1288 * once a transaction -bzzz
1289 */
1290 jh->b_modified = 1;
1291 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1292 handle->h_buffer_credits--;
1293 }
1294
1295 /*
1296 * fastpath, to avoid expensive locking. If this buffer is already
1297 * on the running transaction's metadata list there is nothing to do.
1298 * Nobody can take it off again because there is a handle open.
1299 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1300 * result in this test being false, so we go in and take the locks.
1301 */
1302 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1303 JBUFFER_TRACE(jh, "fastpath");
1304 if (unlikely(jh->b_transaction !=
1305 journal->j_running_transaction)) {
1306 printk(KERN_EMERG "JBD: %s: "
1307 "jh->b_transaction (%llu, %p, %u) != "
1308 "journal->j_running_transaction (%p, %u)",
1309 journal->j_devname,
1310 (unsigned long long) bh->b_blocknr,
1311 jh->b_transaction,
1312 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1313 journal->j_running_transaction,
1314 journal->j_running_transaction ?
1315 journal->j_running_transaction->t_tid : 0);
1316 ret = -EINVAL;
1317 }
1318 goto out_unlock_bh;
1319 }
1320
1321 set_buffer_jbddirty(bh);
1322
1323 /*
1324 * Metadata already on the current transaction list doesn't
1325 * need to be filed. Metadata on another transaction's list must
1326 * be committing, and will be refiled once the commit completes:
1327 * leave it alone for now.
1328 */
1329 if (jh->b_transaction != transaction) {
1330 JBUFFER_TRACE(jh, "already on other transaction");
1331 if (unlikely(jh->b_transaction !=
1332 journal->j_committing_transaction)) {
1333 printk(KERN_EMERG "JBD: %s: "
1334 "jh->b_transaction (%llu, %p, %u) != "
1335 "journal->j_committing_transaction (%p, %u)",
1336 journal->j_devname,
1337 (unsigned long long) bh->b_blocknr,
1338 jh->b_transaction,
1339 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1340 journal->j_committing_transaction,
1341 journal->j_committing_transaction ?
1342 journal->j_committing_transaction->t_tid : 0);
1343 ret = -EINVAL;
1344 }
1345 if (unlikely(jh->b_next_transaction != transaction)) {
1346 printk(KERN_EMERG "JBD: %s: "
1347 "jh->b_next_transaction (%llu, %p, %u) != "
1348 "transaction (%p, %u)",
1349 journal->j_devname,
1350 (unsigned long long) bh->b_blocknr,
1351 jh->b_next_transaction,
1352 jh->b_next_transaction ?
1353 jh->b_next_transaction->t_tid : 0,
1354 transaction, transaction->t_tid);
1355 ret = -EINVAL;
1356 }
1357 /* And this case is illegal: we can't reuse another
1358 * transaction's data buffer, ever. */
1359 goto out_unlock_bh;
1360 }
1361
1362 /* That test should have eliminated the following case: */
1363 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1364
1365 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1366 spin_lock(&journal->j_list_lock);
1367 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1368 spin_unlock(&journal->j_list_lock);
1369 out_unlock_bh:
1370 jbd_unlock_bh_state(bh);
1371 jbd2_journal_put_journal_head(jh);
1372 out:
1373 JBUFFER_TRACE(jh, "exit");
1374 WARN_ON(ret); /* All errors are bugs, so dump the stack */
1375 return ret;
1376 }
1377
1378 /**
1379 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1380 * @handle: transaction handle
1381 * @bh: bh to 'forget'
1382 *
1383 * We can only do the bforget if there are no commits pending against the
1384 * buffer. If the buffer is dirty in the current running transaction we
1385 * can safely unlink it.
1386 *
1387 * bh may not be a journalled buffer at all - it may be a non-JBD
1388 * buffer which came off the hashtable. Check for this.
1389 *
1390 * Decrements bh->b_count by one.
1391 *
1392 * Allow this call even if the handle has aborted --- it may be part of
1393 * the caller's cleanup after an abort.
1394 */
1395 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1396 {
1397 transaction_t *transaction = handle->h_transaction;
1398 journal_t *journal = transaction->t_journal;
1399 struct journal_head *jh;
1400 int drop_reserve = 0;
1401 int err = 0;
1402 int was_modified = 0;
1403
1404 BUFFER_TRACE(bh, "entry");
1405
1406 jbd_lock_bh_state(bh);
1407 spin_lock(&journal->j_list_lock);
1408
1409 if (!buffer_jbd(bh))
1410 goto not_jbd;
1411 jh = bh2jh(bh);
1412
1413 /* Critical error: attempting to delete a bitmap buffer, maybe?
1414 * Don't do any jbd operations, and return an error. */
1415 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1416 "inconsistent data on disk")) {
1417 err = -EIO;
1418 goto not_jbd;
1419 }
1420
1421 /* keep track of whether or not this transaction modified us */
1422 was_modified = jh->b_modified;
1423
1424 /*
1425 * The buffer's going from the transaction, we must drop
1426 * all references -bzzz
1427 */
1428 jh->b_modified = 0;
1429
1430 if (jh->b_transaction == handle->h_transaction) {
1431 J_ASSERT_JH(jh, !jh->b_frozen_data);
1432
1433 /* If we are forgetting a buffer which is already part
1434 * of this transaction, then we can just drop it from
1435 * the transaction immediately. */
1436 clear_buffer_dirty(bh);
1437 clear_buffer_jbddirty(bh);
1438
1439 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1440
1441 /*
1442 * we only want to drop a reference if this transaction
1443 * modified the buffer
1444 */
1445 if (was_modified)
1446 drop_reserve = 1;
1447
1448 /*
1449 * We are no longer going to journal this buffer.
1450 * However, the commit of this transaction is still
1451 * important to the buffer: the delete that we are now
1452 * processing might obsolete an old log entry, so by
1453 * committing, we can satisfy the buffer's checkpoint.
1454 *
1455 * So, if we have a checkpoint on the buffer, we should
1456 * now refile the buffer on our BJ_Forget list so that
1457 * we know to remove the checkpoint after we commit.
1458 */
1459
1460 if (jh->b_cp_transaction) {
1461 __jbd2_journal_temp_unlink_buffer(jh);
1462 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1463 } else {
1464 __jbd2_journal_unfile_buffer(jh);
1465 if (!buffer_jbd(bh)) {
1466 spin_unlock(&journal->j_list_lock);
1467 jbd_unlock_bh_state(bh);
1468 __bforget(bh);
1469 goto drop;
1470 }
1471 }
1472 } else if (jh->b_transaction) {
1473 J_ASSERT_JH(jh, (jh->b_transaction ==
1474 journal->j_committing_transaction));
1475 /* However, if the buffer is still owned by a prior
1476 * (committing) transaction, we can't drop it yet... */
1477 JBUFFER_TRACE(jh, "belongs to older transaction");
1478 /* ... but we CAN drop it from the new transaction if we
1479 * have also modified it since the original commit. */
1480
1481 if (jh->b_next_transaction) {
1482 J_ASSERT(jh->b_next_transaction == transaction);
1483 jh->b_next_transaction = NULL;
1484
1485 /*
1486 * only drop a reference if this transaction modified
1487 * the buffer
1488 */
1489 if (was_modified)
1490 drop_reserve = 1;
1491 }
1492 }
1493
1494 not_jbd:
1495 spin_unlock(&journal->j_list_lock);
1496 jbd_unlock_bh_state(bh);
1497 __brelse(bh);
1498 drop:
1499 if (drop_reserve) {
1500 /* no need to reserve log space for this block -bzzz */
1501 handle->h_buffer_credits++;
1502 }
1503 return err;
1504 }
1505
1506 /**
1507 * int jbd2_journal_stop() - complete a transaction
1508 * @handle: tranaction to complete.
1509 *
1510 * All done for a particular handle.
1511 *
1512 * There is not much action needed here. We just return any remaining
1513 * buffer credits to the transaction and remove the handle. The only
1514 * complication is that we need to start a commit operation if the
1515 * filesystem is marked for synchronous update.
1516 *
1517 * jbd2_journal_stop itself will not usually return an error, but it may
1518 * do so in unusual circumstances. In particular, expect it to
1519 * return -EIO if a jbd2_journal_abort has been executed since the
1520 * transaction began.
1521 */
1522 int jbd2_journal_stop(handle_t *handle)
1523 {
1524 transaction_t *transaction = handle->h_transaction;
1525 journal_t *journal = transaction->t_journal;
1526 int err, wait_for_commit = 0;
1527 tid_t tid;
1528 pid_t pid;
1529
1530 J_ASSERT(journal_current_handle() == handle);
1531
1532 if (is_handle_aborted(handle))
1533 err = -EIO;
1534 else {
1535 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1536 err = 0;
1537 }
1538
1539 if (--handle->h_ref > 0) {
1540 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1541 handle->h_ref);
1542 return err;
1543 }
1544
1545 jbd_debug(4, "Handle %p going down\n", handle);
1546 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1547 handle->h_transaction->t_tid,
1548 handle->h_type, handle->h_line_no,
1549 jiffies - handle->h_start_jiffies,
1550 handle->h_sync, handle->h_requested_credits,
1551 (handle->h_requested_credits -
1552 handle->h_buffer_credits));
1553
1554 /*
1555 * Implement synchronous transaction batching. If the handle
1556 * was synchronous, don't force a commit immediately. Let's
1557 * yield and let another thread piggyback onto this
1558 * transaction. Keep doing that while new threads continue to
1559 * arrive. It doesn't cost much - we're about to run a commit
1560 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1561 * operations by 30x or more...
1562 *
1563 * We try and optimize the sleep time against what the
1564 * underlying disk can do, instead of having a static sleep
1565 * time. This is useful for the case where our storage is so
1566 * fast that it is more optimal to go ahead and force a flush
1567 * and wait for the transaction to be committed than it is to
1568 * wait for an arbitrary amount of time for new writers to
1569 * join the transaction. We achieve this by measuring how
1570 * long it takes to commit a transaction, and compare it with
1571 * how long this transaction has been running, and if run time
1572 * < commit time then we sleep for the delta and commit. This
1573 * greatly helps super fast disks that would see slowdowns as
1574 * more threads started doing fsyncs.
1575 *
1576 * But don't do this if this process was the most recent one
1577 * to perform a synchronous write. We do this to detect the
1578 * case where a single process is doing a stream of sync
1579 * writes. No point in waiting for joiners in that case.
1580 */
1581 pid = current->pid;
1582 if (handle->h_sync && journal->j_last_sync_writer != pid) {
1583 u64 commit_time, trans_time;
1584
1585 journal->j_last_sync_writer = pid;
1586
1587 read_lock(&journal->j_state_lock);
1588 commit_time = journal->j_average_commit_time;
1589 read_unlock(&journal->j_state_lock);
1590
1591 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1592 transaction->t_start_time));
1593
1594 commit_time = max_t(u64, commit_time,
1595 1000*journal->j_min_batch_time);
1596 commit_time = min_t(u64, commit_time,
1597 1000*journal->j_max_batch_time);
1598
1599 if (trans_time < commit_time) {
1600 ktime_t expires = ktime_add_ns(ktime_get(),
1601 commit_time);
1602 set_current_state(TASK_UNINTERRUPTIBLE);
1603 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1604 }
1605 }
1606
1607 if (handle->h_sync)
1608 transaction->t_synchronous_commit = 1;
1609 current->journal_info = NULL;
1610 atomic_sub(handle->h_buffer_credits,
1611 &transaction->t_outstanding_credits);
1612
1613 /*
1614 * If the handle is marked SYNC, we need to set another commit
1615 * going! We also want to force a commit if the current
1616 * transaction is occupying too much of the log, or if the
1617 * transaction is too old now.
1618 */
1619 if (handle->h_sync ||
1620 (atomic_read(&transaction->t_outstanding_credits) >
1621 journal->j_max_transaction_buffers) ||
1622 time_after_eq(jiffies, transaction->t_expires)) {
1623 /* Do this even for aborted journals: an abort still
1624 * completes the commit thread, it just doesn't write
1625 * anything to disk. */
1626
1627 jbd_debug(2, "transaction too old, requesting commit for "
1628 "handle %p\n", handle);
1629 /* This is non-blocking */
1630 jbd2_log_start_commit(journal, transaction->t_tid);
1631
1632 /*
1633 * Special case: JBD2_SYNC synchronous updates require us
1634 * to wait for the commit to complete.
1635 */
1636 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1637 wait_for_commit = 1;
1638 }
1639
1640 /*
1641 * Once we drop t_updates, if it goes to zero the transaction
1642 * could start committing on us and eventually disappear. So
1643 * once we do this, we must not dereference transaction
1644 * pointer again.
1645 */
1646 tid = transaction->t_tid;
1647 if (atomic_dec_and_test(&transaction->t_updates)) {
1648 wake_up(&journal->j_wait_updates);
1649 if (journal->j_barrier_count)
1650 wake_up(&journal->j_wait_transaction_locked);
1651 }
1652
1653 if (wait_for_commit)
1654 err = jbd2_log_wait_commit(journal, tid);
1655
1656 lock_map_release(&handle->h_lockdep_map);
1657
1658 if (handle->h_rsv_handle)
1659 jbd2_journal_free_reserved(handle->h_rsv_handle);
1660 jbd2_free_handle(handle);
1661 return err;
1662 }
1663
1664 /**
1665 * int jbd2_journal_force_commit() - force any uncommitted transactions
1666 * @journal: journal to force
1667 *
1668 * For synchronous operations: force any uncommitted transactions
1669 * to disk. May seem kludgy, but it reuses all the handle batching
1670 * code in a very simple manner.
1671 */
1672 int jbd2_journal_force_commit(journal_t *journal)
1673 {
1674 handle_t *handle;
1675 int ret;
1676
1677 handle = jbd2_journal_start(journal, 1);
1678 if (IS_ERR(handle)) {
1679 ret = PTR_ERR(handle);
1680 } else {
1681 handle->h_sync = 1;
1682 ret = jbd2_journal_stop(handle);
1683 }
1684 return ret;
1685 }
1686
1687 /*
1688 *
1689 * List management code snippets: various functions for manipulating the
1690 * transaction buffer lists.
1691 *
1692 */
1693
1694 /*
1695 * Append a buffer to a transaction list, given the transaction's list head
1696 * pointer.
1697 *
1698 * j_list_lock is held.
1699 *
1700 * jbd_lock_bh_state(jh2bh(jh)) is held.
1701 */
1702
1703 static inline void
1704 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1705 {
1706 if (!*list) {
1707 jh->b_tnext = jh->b_tprev = jh;
1708 *list = jh;
1709 } else {
1710 /* Insert at the tail of the list to preserve order */
1711 struct journal_head *first = *list, *last = first->b_tprev;
1712 jh->b_tprev = last;
1713 jh->b_tnext = first;
1714 last->b_tnext = first->b_tprev = jh;
1715 }
1716 }
1717
1718 /*
1719 * Remove a buffer from a transaction list, given the transaction's list
1720 * head pointer.
1721 *
1722 * Called with j_list_lock held, and the journal may not be locked.
1723 *
1724 * jbd_lock_bh_state(jh2bh(jh)) is held.
1725 */
1726
1727 static inline void
1728 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1729 {
1730 if (*list == jh) {
1731 *list = jh->b_tnext;
1732 if (*list == jh)
1733 *list = NULL;
1734 }
1735 jh->b_tprev->b_tnext = jh->b_tnext;
1736 jh->b_tnext->b_tprev = jh->b_tprev;
1737 }
1738
1739 /*
1740 * Remove a buffer from the appropriate transaction list.
1741 *
1742 * Note that this function can *change* the value of
1743 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1744 * t_reserved_list. If the caller is holding onto a copy of one of these
1745 * pointers, it could go bad. Generally the caller needs to re-read the
1746 * pointer from the transaction_t.
1747 *
1748 * Called under j_list_lock.
1749 */
1750 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1751 {
1752 struct journal_head **list = NULL;
1753 transaction_t *transaction;
1754 struct buffer_head *bh = jh2bh(jh);
1755
1756 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1757 transaction = jh->b_transaction;
1758 if (transaction)
1759 assert_spin_locked(&transaction->t_journal->j_list_lock);
1760
1761 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1762 if (jh->b_jlist != BJ_None)
1763 J_ASSERT_JH(jh, transaction != NULL);
1764
1765 switch (jh->b_jlist) {
1766 case BJ_None:
1767 return;
1768 case BJ_Metadata:
1769 transaction->t_nr_buffers--;
1770 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1771 list = &transaction->t_buffers;
1772 break;
1773 case BJ_Forget:
1774 list = &transaction->t_forget;
1775 break;
1776 case BJ_Shadow:
1777 list = &transaction->t_shadow_list;
1778 break;
1779 case BJ_Reserved:
1780 list = &transaction->t_reserved_list;
1781 break;
1782 }
1783
1784 __blist_del_buffer(list, jh);
1785 jh->b_jlist = BJ_None;
1786 if (test_clear_buffer_jbddirty(bh))
1787 mark_buffer_dirty(bh); /* Expose it to the VM */
1788 }
1789
1790 /*
1791 * Remove buffer from all transactions.
1792 *
1793 * Called with bh_state lock and j_list_lock
1794 *
1795 * jh and bh may be already freed when this function returns.
1796 */
1797 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1798 {
1799 __jbd2_journal_temp_unlink_buffer(jh);
1800 jh->b_transaction = NULL;
1801 jbd2_journal_put_journal_head(jh);
1802 }
1803
1804 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1805 {
1806 struct buffer_head *bh = jh2bh(jh);
1807
1808 /* Get reference so that buffer cannot be freed before we unlock it */
1809 get_bh(bh);
1810 jbd_lock_bh_state(bh);
1811 spin_lock(&journal->j_list_lock);
1812 __jbd2_journal_unfile_buffer(jh);
1813 spin_unlock(&journal->j_list_lock);
1814 jbd_unlock_bh_state(bh);
1815 __brelse(bh);
1816 }
1817
1818 /*
1819 * Called from jbd2_journal_try_to_free_buffers().
1820 *
1821 * Called under jbd_lock_bh_state(bh)
1822 */
1823 static void
1824 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1825 {
1826 struct journal_head *jh;
1827
1828 jh = bh2jh(bh);
1829
1830 if (buffer_locked(bh) || buffer_dirty(bh))
1831 goto out;
1832
1833 if (jh->b_next_transaction != NULL)
1834 goto out;
1835
1836 spin_lock(&journal->j_list_lock);
1837 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1838 /* written-back checkpointed metadata buffer */
1839 JBUFFER_TRACE(jh, "remove from checkpoint list");
1840 __jbd2_journal_remove_checkpoint(jh);
1841 }
1842 spin_unlock(&journal->j_list_lock);
1843 out:
1844 return;
1845 }
1846
1847 /**
1848 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1849 * @journal: journal for operation
1850 * @page: to try and free
1851 * @gfp_mask: we use the mask to detect how hard should we try to release
1852 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1853 * release the buffers.
1854 *
1855 *
1856 * For all the buffers on this page,
1857 * if they are fully written out ordered data, move them onto BUF_CLEAN
1858 * so try_to_free_buffers() can reap them.
1859 *
1860 * This function returns non-zero if we wish try_to_free_buffers()
1861 * to be called. We do this if the page is releasable by try_to_free_buffers().
1862 * We also do it if the page has locked or dirty buffers and the caller wants
1863 * us to perform sync or async writeout.
1864 *
1865 * This complicates JBD locking somewhat. We aren't protected by the
1866 * BKL here. We wish to remove the buffer from its committing or
1867 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1868 *
1869 * This may *change* the value of transaction_t->t_datalist, so anyone
1870 * who looks at t_datalist needs to lock against this function.
1871 *
1872 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1873 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1874 * will come out of the lock with the buffer dirty, which makes it
1875 * ineligible for release here.
1876 *
1877 * Who else is affected by this? hmm... Really the only contender
1878 * is do_get_write_access() - it could be looking at the buffer while
1879 * journal_try_to_free_buffer() is changing its state. But that
1880 * cannot happen because we never reallocate freed data as metadata
1881 * while the data is part of a transaction. Yes?
1882 *
1883 * Return 0 on failure, 1 on success
1884 */
1885 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1886 struct page *page, gfp_t gfp_mask)
1887 {
1888 struct buffer_head *head;
1889 struct buffer_head *bh;
1890 int ret = 0;
1891
1892 J_ASSERT(PageLocked(page));
1893
1894 head = page_buffers(page);
1895 bh = head;
1896 do {
1897 struct journal_head *jh;
1898
1899 /*
1900 * We take our own ref against the journal_head here to avoid
1901 * having to add tons of locking around each instance of
1902 * jbd2_journal_put_journal_head().
1903 */
1904 jh = jbd2_journal_grab_journal_head(bh);
1905 if (!jh)
1906 continue;
1907
1908 jbd_lock_bh_state(bh);
1909 __journal_try_to_free_buffer(journal, bh);
1910 jbd2_journal_put_journal_head(jh);
1911 jbd_unlock_bh_state(bh);
1912 if (buffer_jbd(bh))
1913 goto busy;
1914 } while ((bh = bh->b_this_page) != head);
1915
1916 ret = try_to_free_buffers(page);
1917
1918 busy:
1919 return ret;
1920 }
1921
1922 /*
1923 * This buffer is no longer needed. If it is on an older transaction's
1924 * checkpoint list we need to record it on this transaction's forget list
1925 * to pin this buffer (and hence its checkpointing transaction) down until
1926 * this transaction commits. If the buffer isn't on a checkpoint list, we
1927 * release it.
1928 * Returns non-zero if JBD no longer has an interest in the buffer.
1929 *
1930 * Called under j_list_lock.
1931 *
1932 * Called under jbd_lock_bh_state(bh).
1933 */
1934 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1935 {
1936 int may_free = 1;
1937 struct buffer_head *bh = jh2bh(jh);
1938
1939 if (jh->b_cp_transaction) {
1940 JBUFFER_TRACE(jh, "on running+cp transaction");
1941 __jbd2_journal_temp_unlink_buffer(jh);
1942 /*
1943 * We don't want to write the buffer anymore, clear the
1944 * bit so that we don't confuse checks in
1945 * __journal_file_buffer
1946 */
1947 clear_buffer_dirty(bh);
1948 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1949 may_free = 0;
1950 } else {
1951 JBUFFER_TRACE(jh, "on running transaction");
1952 __jbd2_journal_unfile_buffer(jh);
1953 }
1954 return may_free;
1955 }
1956
1957 /*
1958 * jbd2_journal_invalidatepage
1959 *
1960 * This code is tricky. It has a number of cases to deal with.
1961 *
1962 * There are two invariants which this code relies on:
1963 *
1964 * i_size must be updated on disk before we start calling invalidatepage on the
1965 * data.
1966 *
1967 * This is done in ext3 by defining an ext3_setattr method which
1968 * updates i_size before truncate gets going. By maintaining this
1969 * invariant, we can be sure that it is safe to throw away any buffers
1970 * attached to the current transaction: once the transaction commits,
1971 * we know that the data will not be needed.
1972 *
1973 * Note however that we can *not* throw away data belonging to the
1974 * previous, committing transaction!
1975 *
1976 * Any disk blocks which *are* part of the previous, committing
1977 * transaction (and which therefore cannot be discarded immediately) are
1978 * not going to be reused in the new running transaction
1979 *
1980 * The bitmap committed_data images guarantee this: any block which is
1981 * allocated in one transaction and removed in the next will be marked
1982 * as in-use in the committed_data bitmap, so cannot be reused until
1983 * the next transaction to delete the block commits. This means that
1984 * leaving committing buffers dirty is quite safe: the disk blocks
1985 * cannot be reallocated to a different file and so buffer aliasing is
1986 * not possible.
1987 *
1988 *
1989 * The above applies mainly to ordered data mode. In writeback mode we
1990 * don't make guarantees about the order in which data hits disk --- in
1991 * particular we don't guarantee that new dirty data is flushed before
1992 * transaction commit --- so it is always safe just to discard data
1993 * immediately in that mode. --sct
1994 */
1995
1996 /*
1997 * The journal_unmap_buffer helper function returns zero if the buffer
1998 * concerned remains pinned as an anonymous buffer belonging to an older
1999 * transaction.
2000 *
2001 * We're outside-transaction here. Either or both of j_running_transaction
2002 * and j_committing_transaction may be NULL.
2003 */
2004 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2005 int partial_page)
2006 {
2007 transaction_t *transaction;
2008 struct journal_head *jh;
2009 int may_free = 1;
2010
2011 BUFFER_TRACE(bh, "entry");
2012
2013 /*
2014 * It is safe to proceed here without the j_list_lock because the
2015 * buffers cannot be stolen by try_to_free_buffers as long as we are
2016 * holding the page lock. --sct
2017 */
2018
2019 if (!buffer_jbd(bh))
2020 goto zap_buffer_unlocked;
2021
2022 /* OK, we have data buffer in journaled mode */
2023 write_lock(&journal->j_state_lock);
2024 jbd_lock_bh_state(bh);
2025 spin_lock(&journal->j_list_lock);
2026
2027 jh = jbd2_journal_grab_journal_head(bh);
2028 if (!jh)
2029 goto zap_buffer_no_jh;
2030
2031 /*
2032 * We cannot remove the buffer from checkpoint lists until the
2033 * transaction adding inode to orphan list (let's call it T)
2034 * is committed. Otherwise if the transaction changing the
2035 * buffer would be cleaned from the journal before T is
2036 * committed, a crash will cause that the correct contents of
2037 * the buffer will be lost. On the other hand we have to
2038 * clear the buffer dirty bit at latest at the moment when the
2039 * transaction marking the buffer as freed in the filesystem
2040 * structures is committed because from that moment on the
2041 * block can be reallocated and used by a different page.
2042 * Since the block hasn't been freed yet but the inode has
2043 * already been added to orphan list, it is safe for us to add
2044 * the buffer to BJ_Forget list of the newest transaction.
2045 *
2046 * Also we have to clear buffer_mapped flag of a truncated buffer
2047 * because the buffer_head may be attached to the page straddling
2048 * i_size (can happen only when blocksize < pagesize) and thus the
2049 * buffer_head can be reused when the file is extended again. So we end
2050 * up keeping around invalidated buffers attached to transactions'
2051 * BJ_Forget list just to stop checkpointing code from cleaning up
2052 * the transaction this buffer was modified in.
2053 */
2054 transaction = jh->b_transaction;
2055 if (transaction == NULL) {
2056 /* First case: not on any transaction. If it
2057 * has no checkpoint link, then we can zap it:
2058 * it's a writeback-mode buffer so we don't care
2059 * if it hits disk safely. */
2060 if (!jh->b_cp_transaction) {
2061 JBUFFER_TRACE(jh, "not on any transaction: zap");
2062 goto zap_buffer;
2063 }
2064
2065 if (!buffer_dirty(bh)) {
2066 /* bdflush has written it. We can drop it now */
2067 goto zap_buffer;
2068 }
2069
2070 /* OK, it must be in the journal but still not
2071 * written fully to disk: it's metadata or
2072 * journaled data... */
2073
2074 if (journal->j_running_transaction) {
2075 /* ... and once the current transaction has
2076 * committed, the buffer won't be needed any
2077 * longer. */
2078 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2079 may_free = __dispose_buffer(jh,
2080 journal->j_running_transaction);
2081 goto zap_buffer;
2082 } else {
2083 /* There is no currently-running transaction. So the
2084 * orphan record which we wrote for this file must have
2085 * passed into commit. We must attach this buffer to
2086 * the committing transaction, if it exists. */
2087 if (journal->j_committing_transaction) {
2088 JBUFFER_TRACE(jh, "give to committing trans");
2089 may_free = __dispose_buffer(jh,
2090 journal->j_committing_transaction);
2091 goto zap_buffer;
2092 } else {
2093 /* The orphan record's transaction has
2094 * committed. We can cleanse this buffer */
2095 clear_buffer_jbddirty(bh);
2096 goto zap_buffer;
2097 }
2098 }
2099 } else if (transaction == journal->j_committing_transaction) {
2100 JBUFFER_TRACE(jh, "on committing transaction");
2101 /*
2102 * The buffer is committing, we simply cannot touch
2103 * it. If the page is straddling i_size we have to wait
2104 * for commit and try again.
2105 */
2106 if (partial_page) {
2107 jbd2_journal_put_journal_head(jh);
2108 spin_unlock(&journal->j_list_lock);
2109 jbd_unlock_bh_state(bh);
2110 write_unlock(&journal->j_state_lock);
2111 return -EBUSY;
2112 }
2113 /*
2114 * OK, buffer won't be reachable after truncate. We just set
2115 * j_next_transaction to the running transaction (if there is
2116 * one) and mark buffer as freed so that commit code knows it
2117 * should clear dirty bits when it is done with the buffer.
2118 */
2119 set_buffer_freed(bh);
2120 if (journal->j_running_transaction && buffer_jbddirty(bh))
2121 jh->b_next_transaction = journal->j_running_transaction;
2122 jbd2_journal_put_journal_head(jh);
2123 spin_unlock(&journal->j_list_lock);
2124 jbd_unlock_bh_state(bh);
2125 write_unlock(&journal->j_state_lock);
2126 return 0;
2127 } else {
2128 /* Good, the buffer belongs to the running transaction.
2129 * We are writing our own transaction's data, not any
2130 * previous one's, so it is safe to throw it away
2131 * (remember that we expect the filesystem to have set
2132 * i_size already for this truncate so recovery will not
2133 * expose the disk blocks we are discarding here.) */
2134 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2135 JBUFFER_TRACE(jh, "on running transaction");
2136 may_free = __dispose_buffer(jh, transaction);
2137 }
2138
2139 zap_buffer:
2140 /*
2141 * This is tricky. Although the buffer is truncated, it may be reused
2142 * if blocksize < pagesize and it is attached to the page straddling
2143 * EOF. Since the buffer might have been added to BJ_Forget list of the
2144 * running transaction, journal_get_write_access() won't clear
2145 * b_modified and credit accounting gets confused. So clear b_modified
2146 * here.
2147 */
2148 jh->b_modified = 0;
2149 jbd2_journal_put_journal_head(jh);
2150 zap_buffer_no_jh:
2151 spin_unlock(&journal->j_list_lock);
2152 jbd_unlock_bh_state(bh);
2153 write_unlock(&journal->j_state_lock);
2154 zap_buffer_unlocked:
2155 clear_buffer_dirty(bh);
2156 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2157 clear_buffer_mapped(bh);
2158 clear_buffer_req(bh);
2159 clear_buffer_new(bh);
2160 clear_buffer_delay(bh);
2161 clear_buffer_unwritten(bh);
2162 bh->b_bdev = NULL;
2163 return may_free;
2164 }
2165
2166 /**
2167 * void jbd2_journal_invalidatepage()
2168 * @journal: journal to use for flush...
2169 * @page: page to flush
2170 * @offset: start of the range to invalidate
2171 * @length: length of the range to invalidate
2172 *
2173 * Reap page buffers containing data after in the specified range in page.
2174 * Can return -EBUSY if buffers are part of the committing transaction and
2175 * the page is straddling i_size. Caller then has to wait for current commit
2176 * and try again.
2177 */
2178 int jbd2_journal_invalidatepage(journal_t *journal,
2179 struct page *page,
2180 unsigned int offset,
2181 unsigned int length)
2182 {
2183 struct buffer_head *head, *bh, *next;
2184 unsigned int stop = offset + length;
2185 unsigned int curr_off = 0;
2186 int partial_page = (offset || length < PAGE_CACHE_SIZE);
2187 int may_free = 1;
2188 int ret = 0;
2189
2190 if (!PageLocked(page))
2191 BUG();
2192 if (!page_has_buffers(page))
2193 return 0;
2194
2195 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2196
2197 /* We will potentially be playing with lists other than just the
2198 * data lists (especially for journaled data mode), so be
2199 * cautious in our locking. */
2200
2201 head = bh = page_buffers(page);
2202 do {
2203 unsigned int next_off = curr_off + bh->b_size;
2204 next = bh->b_this_page;
2205
2206 if (next_off > stop)
2207 return 0;
2208
2209 if (offset <= curr_off) {
2210 /* This block is wholly outside the truncation point */
2211 lock_buffer(bh);
2212 ret = journal_unmap_buffer(journal, bh, partial_page);
2213 unlock_buffer(bh);
2214 if (ret < 0)
2215 return ret;
2216 may_free &= ret;
2217 }
2218 curr_off = next_off;
2219 bh = next;
2220
2221 } while (bh != head);
2222
2223 if (!partial_page) {
2224 if (may_free && try_to_free_buffers(page))
2225 J_ASSERT(!page_has_buffers(page));
2226 }
2227 return 0;
2228 }
2229
2230 /*
2231 * File a buffer on the given transaction list.
2232 */
2233 void __jbd2_journal_file_buffer(struct journal_head *jh,
2234 transaction_t *transaction, int jlist)
2235 {
2236 struct journal_head **list = NULL;
2237 int was_dirty = 0;
2238 struct buffer_head *bh = jh2bh(jh);
2239
2240 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2241 assert_spin_locked(&transaction->t_journal->j_list_lock);
2242
2243 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2244 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2245 jh->b_transaction == NULL);
2246
2247 if (jh->b_transaction && jh->b_jlist == jlist)
2248 return;
2249
2250 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2251 jlist == BJ_Shadow || jlist == BJ_Forget) {
2252 /*
2253 * For metadata buffers, we track dirty bit in buffer_jbddirty
2254 * instead of buffer_dirty. We should not see a dirty bit set
2255 * here because we clear it in do_get_write_access but e.g.
2256 * tune2fs can modify the sb and set the dirty bit at any time
2257 * so we try to gracefully handle that.
2258 */
2259 if (buffer_dirty(bh))
2260 warn_dirty_buffer(bh);
2261 if (test_clear_buffer_dirty(bh) ||
2262 test_clear_buffer_jbddirty(bh))
2263 was_dirty = 1;
2264 }
2265
2266 if (jh->b_transaction)
2267 __jbd2_journal_temp_unlink_buffer(jh);
2268 else
2269 jbd2_journal_grab_journal_head(bh);
2270 jh->b_transaction = transaction;
2271
2272 switch (jlist) {
2273 case BJ_None:
2274 J_ASSERT_JH(jh, !jh->b_committed_data);
2275 J_ASSERT_JH(jh, !jh->b_frozen_data);
2276 return;
2277 case BJ_Metadata:
2278 transaction->t_nr_buffers++;
2279 list = &transaction->t_buffers;
2280 break;
2281 case BJ_Forget:
2282 list = &transaction->t_forget;
2283 break;
2284 case BJ_Shadow:
2285 list = &transaction->t_shadow_list;
2286 break;
2287 case BJ_Reserved:
2288 list = &transaction->t_reserved_list;
2289 break;
2290 }
2291
2292 __blist_add_buffer(list, jh);
2293 jh->b_jlist = jlist;
2294
2295 if (was_dirty)
2296 set_buffer_jbddirty(bh);
2297 }
2298
2299 void jbd2_journal_file_buffer(struct journal_head *jh,
2300 transaction_t *transaction, int jlist)
2301 {
2302 jbd_lock_bh_state(jh2bh(jh));
2303 spin_lock(&transaction->t_journal->j_list_lock);
2304 __jbd2_journal_file_buffer(jh, transaction, jlist);
2305 spin_unlock(&transaction->t_journal->j_list_lock);
2306 jbd_unlock_bh_state(jh2bh(jh));
2307 }
2308
2309 /*
2310 * Remove a buffer from its current buffer list in preparation for
2311 * dropping it from its current transaction entirely. If the buffer has
2312 * already started to be used by a subsequent transaction, refile the
2313 * buffer on that transaction's metadata list.
2314 *
2315 * Called under j_list_lock
2316 * Called under jbd_lock_bh_state(jh2bh(jh))
2317 *
2318 * jh and bh may be already free when this function returns
2319 */
2320 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2321 {
2322 int was_dirty, jlist;
2323 struct buffer_head *bh = jh2bh(jh);
2324
2325 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2326 if (jh->b_transaction)
2327 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2328
2329 /* If the buffer is now unused, just drop it. */
2330 if (jh->b_next_transaction == NULL) {
2331 __jbd2_journal_unfile_buffer(jh);
2332 return;
2333 }
2334
2335 /*
2336 * It has been modified by a later transaction: add it to the new
2337 * transaction's metadata list.
2338 */
2339
2340 was_dirty = test_clear_buffer_jbddirty(bh);
2341 __jbd2_journal_temp_unlink_buffer(jh);
2342 /*
2343 * We set b_transaction here because b_next_transaction will inherit
2344 * our jh reference and thus __jbd2_journal_file_buffer() must not
2345 * take a new one.
2346 */
2347 jh->b_transaction = jh->b_next_transaction;
2348 jh->b_next_transaction = NULL;
2349 if (buffer_freed(bh))
2350 jlist = BJ_Forget;
2351 else if (jh->b_modified)
2352 jlist = BJ_Metadata;
2353 else
2354 jlist = BJ_Reserved;
2355 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2356 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2357
2358 if (was_dirty)
2359 set_buffer_jbddirty(bh);
2360 }
2361
2362 /*
2363 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2364 * bh reference so that we can safely unlock bh.
2365 *
2366 * The jh and bh may be freed by this call.
2367 */
2368 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2369 {
2370 struct buffer_head *bh = jh2bh(jh);
2371
2372 /* Get reference so that buffer cannot be freed before we unlock it */
2373 get_bh(bh);
2374 jbd_lock_bh_state(bh);
2375 spin_lock(&journal->j_list_lock);
2376 __jbd2_journal_refile_buffer(jh);
2377 jbd_unlock_bh_state(bh);
2378 spin_unlock(&journal->j_list_lock);
2379 __brelse(bh);
2380 }
2381
2382 /*
2383 * File inode in the inode list of the handle's transaction
2384 */
2385 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2386 {
2387 transaction_t *transaction = handle->h_transaction;
2388 journal_t *journal = transaction->t_journal;
2389
2390 if (is_handle_aborted(handle))
2391 return -EIO;
2392
2393 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2394 transaction->t_tid);
2395
2396 /*
2397 * First check whether inode isn't already on the transaction's
2398 * lists without taking the lock. Note that this check is safe
2399 * without the lock as we cannot race with somebody removing inode
2400 * from the transaction. The reason is that we remove inode from the
2401 * transaction only in journal_release_jbd_inode() and when we commit
2402 * the transaction. We are guarded from the first case by holding
2403 * a reference to the inode. We are safe against the second case
2404 * because if jinode->i_transaction == transaction, commit code
2405 * cannot touch the transaction because we hold reference to it,
2406 * and if jinode->i_next_transaction == transaction, commit code
2407 * will only file the inode where we want it.
2408 */
2409 if (jinode->i_transaction == transaction ||
2410 jinode->i_next_transaction == transaction)
2411 return 0;
2412
2413 spin_lock(&journal->j_list_lock);
2414
2415 if (jinode->i_transaction == transaction ||
2416 jinode->i_next_transaction == transaction)
2417 goto done;
2418
2419 /*
2420 * We only ever set this variable to 1 so the test is safe. Since
2421 * t_need_data_flush is likely to be set, we do the test to save some
2422 * cacheline bouncing
2423 */
2424 if (!transaction->t_need_data_flush)
2425 transaction->t_need_data_flush = 1;
2426 /* On some different transaction's list - should be
2427 * the committing one */
2428 if (jinode->i_transaction) {
2429 J_ASSERT(jinode->i_next_transaction == NULL);
2430 J_ASSERT(jinode->i_transaction ==
2431 journal->j_committing_transaction);
2432 jinode->i_next_transaction = transaction;
2433 goto done;
2434 }
2435 /* Not on any transaction list... */
2436 J_ASSERT(!jinode->i_next_transaction);
2437 jinode->i_transaction = transaction;
2438 list_add(&jinode->i_list, &transaction->t_inode_list);
2439 done:
2440 spin_unlock(&journal->j_list_lock);
2441
2442 return 0;
2443 }
2444
2445 /*
2446 * File truncate and transaction commit interact with each other in a
2447 * non-trivial way. If a transaction writing data block A is
2448 * committing, we cannot discard the data by truncate until we have
2449 * written them. Otherwise if we crashed after the transaction with
2450 * write has committed but before the transaction with truncate has
2451 * committed, we could see stale data in block A. This function is a
2452 * helper to solve this problem. It starts writeout of the truncated
2453 * part in case it is in the committing transaction.
2454 *
2455 * Filesystem code must call this function when inode is journaled in
2456 * ordered mode before truncation happens and after the inode has been
2457 * placed on orphan list with the new inode size. The second condition
2458 * avoids the race that someone writes new data and we start
2459 * committing the transaction after this function has been called but
2460 * before a transaction for truncate is started (and furthermore it
2461 * allows us to optimize the case where the addition to orphan list
2462 * happens in the same transaction as write --- we don't have to write
2463 * any data in such case).
2464 */
2465 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2466 struct jbd2_inode *jinode,
2467 loff_t new_size)
2468 {
2469 transaction_t *inode_trans, *commit_trans;
2470 int ret = 0;
2471
2472 /* This is a quick check to avoid locking if not necessary */
2473 if (!jinode->i_transaction)
2474 goto out;
2475 /* Locks are here just to force reading of recent values, it is
2476 * enough that the transaction was not committing before we started
2477 * a transaction adding the inode to orphan list */
2478 read_lock(&journal->j_state_lock);
2479 commit_trans = journal->j_committing_transaction;
2480 read_unlock(&journal->j_state_lock);
2481 spin_lock(&journal->j_list_lock);
2482 inode_trans = jinode->i_transaction;
2483 spin_unlock(&journal->j_list_lock);
2484 if (inode_trans == commit_trans) {
2485 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2486 new_size, LLONG_MAX);
2487 if (ret)
2488 jbd2_journal_abort(journal, ret);
2489 }
2490 out:
2491 return ret;
2492 }
This page took 0.078372 seconds and 6 git commands to generate.