jbd2: fix race in t_outstanding_credits update in jbd2_journal_extend()
[deliverable/linux.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits, 0);
93 atomic_set(&transaction->t_handle_count, 0);
94 INIT_LIST_HEAD(&transaction->t_inode_list);
95 INIT_LIST_HEAD(&transaction->t_private_list);
96
97 /* Set up the commit timer for the new transaction. */
98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 add_timer(&journal->j_commit_timer);
100
101 J_ASSERT(journal->j_running_transaction == NULL);
102 journal->j_running_transaction = transaction;
103 transaction->t_max_wait = 0;
104 transaction->t_start = jiffies;
105 transaction->t_requested = 0;
106
107 return transaction;
108 }
109
110 /*
111 * Handle management.
112 *
113 * A handle_t is an object which represents a single atomic update to a
114 * filesystem, and which tracks all of the modifications which form part
115 * of that one update.
116 */
117
118 /*
119 * Update transaction's maximum wait time, if debugging is enabled.
120 *
121 * In order for t_max_wait to be reliable, it must be protected by a
122 * lock. But doing so will mean that start_this_handle() can not be
123 * run in parallel on SMP systems, which limits our scalability. So
124 * unless debugging is enabled, we no longer update t_max_wait, which
125 * means that maximum wait time reported by the jbd2_run_stats
126 * tracepoint will always be zero.
127 */
128 static inline void update_t_max_wait(transaction_t *transaction,
129 unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132 if (jbd2_journal_enable_debug &&
133 time_after(transaction->t_start, ts)) {
134 ts = jbd2_time_diff(ts, transaction->t_start);
135 spin_lock(&transaction->t_handle_lock);
136 if (ts > transaction->t_max_wait)
137 transaction->t_max_wait = ts;
138 spin_unlock(&transaction->t_handle_lock);
139 }
140 #endif
141 }
142
143 /*
144 * start_this_handle: Given a handle, deal with any locking or stalling
145 * needed to make sure that there is enough journal space for the handle
146 * to begin. Attach the handle to a transaction and set up the
147 * transaction's buffer credits.
148 */
149
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151 gfp_t gfp_mask)
152 {
153 transaction_t *transaction, *new_transaction = NULL;
154 tid_t tid;
155 int needed, need_to_start;
156 int nblocks = handle->h_buffer_credits;
157 unsigned long ts = jiffies;
158
159 if (nblocks > journal->j_max_transaction_buffers) {
160 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161 current->comm, nblocks,
162 journal->j_max_transaction_buffers);
163 return -ENOSPC;
164 }
165
166 alloc_transaction:
167 if (!journal->j_running_transaction) {
168 new_transaction = kmem_cache_zalloc(transaction_cache,
169 gfp_mask);
170 if (!new_transaction) {
171 /*
172 * If __GFP_FS is not present, then we may be
173 * being called from inside the fs writeback
174 * layer, so we MUST NOT fail. Since
175 * __GFP_NOFAIL is going away, we will arrange
176 * to retry the allocation ourselves.
177 */
178 if ((gfp_mask & __GFP_FS) == 0) {
179 congestion_wait(BLK_RW_ASYNC, HZ/50);
180 goto alloc_transaction;
181 }
182 return -ENOMEM;
183 }
184 }
185
186 jbd_debug(3, "New handle %p going live.\n", handle);
187
188 /*
189 * We need to hold j_state_lock until t_updates has been incremented,
190 * for proper journal barrier handling
191 */
192 repeat:
193 read_lock(&journal->j_state_lock);
194 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195 if (is_journal_aborted(journal) ||
196 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197 read_unlock(&journal->j_state_lock);
198 jbd2_journal_free_transaction(new_transaction);
199 return -EROFS;
200 }
201
202 /* Wait on the journal's transaction barrier if necessary */
203 if (journal->j_barrier_count) {
204 read_unlock(&journal->j_state_lock);
205 wait_event(journal->j_wait_transaction_locked,
206 journal->j_barrier_count == 0);
207 goto repeat;
208 }
209
210 if (!journal->j_running_transaction) {
211 read_unlock(&journal->j_state_lock);
212 if (!new_transaction)
213 goto alloc_transaction;
214 write_lock(&journal->j_state_lock);
215 if (!journal->j_running_transaction &&
216 !journal->j_barrier_count) {
217 jbd2_get_transaction(journal, new_transaction);
218 new_transaction = NULL;
219 }
220 write_unlock(&journal->j_state_lock);
221 goto repeat;
222 }
223
224 transaction = journal->j_running_transaction;
225
226 /*
227 * If the current transaction is locked down for commit, wait for the
228 * lock to be released.
229 */
230 if (transaction->t_state == T_LOCKED) {
231 DEFINE_WAIT(wait);
232
233 prepare_to_wait(&journal->j_wait_transaction_locked,
234 &wait, TASK_UNINTERRUPTIBLE);
235 read_unlock(&journal->j_state_lock);
236 schedule();
237 finish_wait(&journal->j_wait_transaction_locked, &wait);
238 goto repeat;
239 }
240
241 /*
242 * If there is not enough space left in the log to write all potential
243 * buffers requested by this operation, we need to stall pending a log
244 * checkpoint to free some more log space.
245 */
246 needed = atomic_add_return(nblocks,
247 &transaction->t_outstanding_credits);
248
249 if (needed > journal->j_max_transaction_buffers) {
250 /*
251 * If the current transaction is already too large, then start
252 * to commit it: we can then go back and attach this handle to
253 * a new transaction.
254 */
255 DEFINE_WAIT(wait);
256
257 jbd_debug(2, "Handle %p starting new commit...\n", handle);
258 atomic_sub(nblocks, &transaction->t_outstanding_credits);
259 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260 TASK_UNINTERRUPTIBLE);
261 tid = transaction->t_tid;
262 need_to_start = !tid_geq(journal->j_commit_request, tid);
263 read_unlock(&journal->j_state_lock);
264 if (need_to_start)
265 jbd2_log_start_commit(journal, tid);
266 schedule();
267 finish_wait(&journal->j_wait_transaction_locked, &wait);
268 goto repeat;
269 }
270
271 /*
272 * The commit code assumes that it can get enough log space
273 * without forcing a checkpoint. This is *critical* for
274 * correctness: a checkpoint of a buffer which is also
275 * associated with a committing transaction creates a deadlock,
276 * so commit simply cannot force through checkpoints.
277 *
278 * We must therefore ensure the necessary space in the journal
279 * *before* starting to dirty potentially checkpointed buffers
280 * in the new transaction.
281 *
282 * The worst part is, any transaction currently committing can
283 * reduce the free space arbitrarily. Be careful to account for
284 * those buffers when checkpointing.
285 */
286 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
287 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
288 atomic_sub(nblocks, &transaction->t_outstanding_credits);
289 read_unlock(&journal->j_state_lock);
290 write_lock(&journal->j_state_lock);
291 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
292 __jbd2_log_wait_for_space(journal);
293 write_unlock(&journal->j_state_lock);
294 goto repeat;
295 }
296
297 /* OK, account for the buffers that this operation expects to
298 * use and add the handle to the running transaction.
299 */
300 update_t_max_wait(transaction, ts);
301 handle->h_transaction = transaction;
302 handle->h_requested_credits = nblocks;
303 handle->h_start_jiffies = jiffies;
304 atomic_inc(&transaction->t_updates);
305 atomic_inc(&transaction->t_handle_count);
306 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
307 handle, nblocks,
308 atomic_read(&transaction->t_outstanding_credits),
309 jbd2_log_space_left(journal));
310 read_unlock(&journal->j_state_lock);
311
312 lock_map_acquire(&handle->h_lockdep_map);
313 jbd2_journal_free_transaction(new_transaction);
314 return 0;
315 }
316
317 static struct lock_class_key jbd2_handle_key;
318
319 /* Allocate a new handle. This should probably be in a slab... */
320 static handle_t *new_handle(int nblocks)
321 {
322 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
323 if (!handle)
324 return NULL;
325 handle->h_buffer_credits = nblocks;
326 handle->h_ref = 1;
327
328 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
329 &jbd2_handle_key, 0);
330
331 return handle;
332 }
333
334 /**
335 * handle_t *jbd2_journal_start() - Obtain a new handle.
336 * @journal: Journal to start transaction on.
337 * @nblocks: number of block buffer we might modify
338 *
339 * We make sure that the transaction can guarantee at least nblocks of
340 * modified buffers in the log. We block until the log can guarantee
341 * that much space.
342 *
343 * This function is visible to journal users (like ext3fs), so is not
344 * called with the journal already locked.
345 *
346 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
347 * on failure.
348 */
349 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
350 unsigned int type, unsigned int line_no)
351 {
352 handle_t *handle = journal_current_handle();
353 int err;
354
355 if (!journal)
356 return ERR_PTR(-EROFS);
357
358 if (handle) {
359 J_ASSERT(handle->h_transaction->t_journal == journal);
360 handle->h_ref++;
361 return handle;
362 }
363
364 handle = new_handle(nblocks);
365 if (!handle)
366 return ERR_PTR(-ENOMEM);
367
368 current->journal_info = handle;
369
370 err = start_this_handle(journal, handle, gfp_mask);
371 if (err < 0) {
372 jbd2_free_handle(handle);
373 current->journal_info = NULL;
374 return ERR_PTR(err);
375 }
376 handle->h_type = type;
377 handle->h_line_no = line_no;
378 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
379 handle->h_transaction->t_tid, type,
380 line_no, nblocks);
381 return handle;
382 }
383 EXPORT_SYMBOL(jbd2__journal_start);
384
385
386 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
387 {
388 return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
389 }
390 EXPORT_SYMBOL(jbd2_journal_start);
391
392
393 /**
394 * int jbd2_journal_extend() - extend buffer credits.
395 * @handle: handle to 'extend'
396 * @nblocks: nr blocks to try to extend by.
397 *
398 * Some transactions, such as large extends and truncates, can be done
399 * atomically all at once or in several stages. The operation requests
400 * a credit for a number of buffer modications in advance, but can
401 * extend its credit if it needs more.
402 *
403 * jbd2_journal_extend tries to give the running handle more buffer credits.
404 * It does not guarantee that allocation - this is a best-effort only.
405 * The calling process MUST be able to deal cleanly with a failure to
406 * extend here.
407 *
408 * Return 0 on success, non-zero on failure.
409 *
410 * return code < 0 implies an error
411 * return code > 0 implies normal transaction-full status.
412 */
413 int jbd2_journal_extend(handle_t *handle, int nblocks)
414 {
415 transaction_t *transaction = handle->h_transaction;
416 journal_t *journal = transaction->t_journal;
417 int result;
418 int wanted;
419
420 result = -EIO;
421 if (is_handle_aborted(handle))
422 goto out;
423
424 result = 1;
425
426 read_lock(&journal->j_state_lock);
427
428 /* Don't extend a locked-down transaction! */
429 if (handle->h_transaction->t_state != T_RUNNING) {
430 jbd_debug(3, "denied handle %p %d blocks: "
431 "transaction not running\n", handle, nblocks);
432 goto error_out;
433 }
434
435 spin_lock(&transaction->t_handle_lock);
436 wanted = atomic_add_return(nblocks,
437 &transaction->t_outstanding_credits);
438
439 if (wanted > journal->j_max_transaction_buffers) {
440 jbd_debug(3, "denied handle %p %d blocks: "
441 "transaction too large\n", handle, nblocks);
442 atomic_sub(nblocks, &transaction->t_outstanding_credits);
443 goto unlock;
444 }
445
446 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
447 jbd2_log_space_left(journal)) {
448 jbd_debug(3, "denied handle %p %d blocks: "
449 "insufficient log space\n", handle, nblocks);
450 atomic_sub(nblocks, &transaction->t_outstanding_credits);
451 goto unlock;
452 }
453
454 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
455 handle->h_transaction->t_tid,
456 handle->h_type, handle->h_line_no,
457 handle->h_buffer_credits,
458 nblocks);
459
460 handle->h_buffer_credits += nblocks;
461 handle->h_requested_credits += nblocks;
462 result = 0;
463
464 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
465 unlock:
466 spin_unlock(&transaction->t_handle_lock);
467 error_out:
468 read_unlock(&journal->j_state_lock);
469 out:
470 return result;
471 }
472
473
474 /**
475 * int jbd2_journal_restart() - restart a handle .
476 * @handle: handle to restart
477 * @nblocks: nr credits requested
478 *
479 * Restart a handle for a multi-transaction filesystem
480 * operation.
481 *
482 * If the jbd2_journal_extend() call above fails to grant new buffer credits
483 * to a running handle, a call to jbd2_journal_restart will commit the
484 * handle's transaction so far and reattach the handle to a new
485 * transaction capabable of guaranteeing the requested number of
486 * credits.
487 */
488 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
489 {
490 transaction_t *transaction = handle->h_transaction;
491 journal_t *journal = transaction->t_journal;
492 tid_t tid;
493 int need_to_start, ret;
494
495 /* If we've had an abort of any type, don't even think about
496 * actually doing the restart! */
497 if (is_handle_aborted(handle))
498 return 0;
499
500 /*
501 * First unlink the handle from its current transaction, and start the
502 * commit on that.
503 */
504 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
505 J_ASSERT(journal_current_handle() == handle);
506
507 read_lock(&journal->j_state_lock);
508 spin_lock(&transaction->t_handle_lock);
509 atomic_sub(handle->h_buffer_credits,
510 &transaction->t_outstanding_credits);
511 if (atomic_dec_and_test(&transaction->t_updates))
512 wake_up(&journal->j_wait_updates);
513 spin_unlock(&transaction->t_handle_lock);
514
515 jbd_debug(2, "restarting handle %p\n", handle);
516 tid = transaction->t_tid;
517 need_to_start = !tid_geq(journal->j_commit_request, tid);
518 read_unlock(&journal->j_state_lock);
519 if (need_to_start)
520 jbd2_log_start_commit(journal, tid);
521
522 lock_map_release(&handle->h_lockdep_map);
523 handle->h_buffer_credits = nblocks;
524 ret = start_this_handle(journal, handle, gfp_mask);
525 return ret;
526 }
527 EXPORT_SYMBOL(jbd2__journal_restart);
528
529
530 int jbd2_journal_restart(handle_t *handle, int nblocks)
531 {
532 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
533 }
534 EXPORT_SYMBOL(jbd2_journal_restart);
535
536 /**
537 * void jbd2_journal_lock_updates () - establish a transaction barrier.
538 * @journal: Journal to establish a barrier on.
539 *
540 * This locks out any further updates from being started, and blocks
541 * until all existing updates have completed, returning only once the
542 * journal is in a quiescent state with no updates running.
543 *
544 * The journal lock should not be held on entry.
545 */
546 void jbd2_journal_lock_updates(journal_t *journal)
547 {
548 DEFINE_WAIT(wait);
549
550 write_lock(&journal->j_state_lock);
551 ++journal->j_barrier_count;
552
553 /* Wait until there are no running updates */
554 while (1) {
555 transaction_t *transaction = journal->j_running_transaction;
556
557 if (!transaction)
558 break;
559
560 spin_lock(&transaction->t_handle_lock);
561 prepare_to_wait(&journal->j_wait_updates, &wait,
562 TASK_UNINTERRUPTIBLE);
563 if (!atomic_read(&transaction->t_updates)) {
564 spin_unlock(&transaction->t_handle_lock);
565 finish_wait(&journal->j_wait_updates, &wait);
566 break;
567 }
568 spin_unlock(&transaction->t_handle_lock);
569 write_unlock(&journal->j_state_lock);
570 schedule();
571 finish_wait(&journal->j_wait_updates, &wait);
572 write_lock(&journal->j_state_lock);
573 }
574 write_unlock(&journal->j_state_lock);
575
576 /*
577 * We have now established a barrier against other normal updates, but
578 * we also need to barrier against other jbd2_journal_lock_updates() calls
579 * to make sure that we serialise special journal-locked operations
580 * too.
581 */
582 mutex_lock(&journal->j_barrier);
583 }
584
585 /**
586 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
587 * @journal: Journal to release the barrier on.
588 *
589 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
590 *
591 * Should be called without the journal lock held.
592 */
593 void jbd2_journal_unlock_updates (journal_t *journal)
594 {
595 J_ASSERT(journal->j_barrier_count != 0);
596
597 mutex_unlock(&journal->j_barrier);
598 write_lock(&journal->j_state_lock);
599 --journal->j_barrier_count;
600 write_unlock(&journal->j_state_lock);
601 wake_up(&journal->j_wait_transaction_locked);
602 }
603
604 static void warn_dirty_buffer(struct buffer_head *bh)
605 {
606 char b[BDEVNAME_SIZE];
607
608 printk(KERN_WARNING
609 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
610 "There's a risk of filesystem corruption in case of system "
611 "crash.\n",
612 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
613 }
614
615 static int sleep_on_shadow_bh(void *word)
616 {
617 io_schedule();
618 return 0;
619 }
620
621 /*
622 * If the buffer is already part of the current transaction, then there
623 * is nothing we need to do. If it is already part of a prior
624 * transaction which we are still committing to disk, then we need to
625 * make sure that we do not overwrite the old copy: we do copy-out to
626 * preserve the copy going to disk. We also account the buffer against
627 * the handle's metadata buffer credits (unless the buffer is already
628 * part of the transaction, that is).
629 *
630 */
631 static int
632 do_get_write_access(handle_t *handle, struct journal_head *jh,
633 int force_copy)
634 {
635 struct buffer_head *bh;
636 transaction_t *transaction;
637 journal_t *journal;
638 int error;
639 char *frozen_buffer = NULL;
640 int need_copy = 0;
641 unsigned long start_lock, time_lock;
642
643 if (is_handle_aborted(handle))
644 return -EROFS;
645
646 transaction = handle->h_transaction;
647 journal = transaction->t_journal;
648
649 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
650
651 JBUFFER_TRACE(jh, "entry");
652 repeat:
653 bh = jh2bh(jh);
654
655 /* @@@ Need to check for errors here at some point. */
656
657 start_lock = jiffies;
658 lock_buffer(bh);
659 jbd_lock_bh_state(bh);
660
661 /* If it takes too long to lock the buffer, trace it */
662 time_lock = jbd2_time_diff(start_lock, jiffies);
663 if (time_lock > HZ/10)
664 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
665 jiffies_to_msecs(time_lock));
666
667 /* We now hold the buffer lock so it is safe to query the buffer
668 * state. Is the buffer dirty?
669 *
670 * If so, there are two possibilities. The buffer may be
671 * non-journaled, and undergoing a quite legitimate writeback.
672 * Otherwise, it is journaled, and we don't expect dirty buffers
673 * in that state (the buffers should be marked JBD_Dirty
674 * instead.) So either the IO is being done under our own
675 * control and this is a bug, or it's a third party IO such as
676 * dump(8) (which may leave the buffer scheduled for read ---
677 * ie. locked but not dirty) or tune2fs (which may actually have
678 * the buffer dirtied, ugh.) */
679
680 if (buffer_dirty(bh)) {
681 /*
682 * First question: is this buffer already part of the current
683 * transaction or the existing committing transaction?
684 */
685 if (jh->b_transaction) {
686 J_ASSERT_JH(jh,
687 jh->b_transaction == transaction ||
688 jh->b_transaction ==
689 journal->j_committing_transaction);
690 if (jh->b_next_transaction)
691 J_ASSERT_JH(jh, jh->b_next_transaction ==
692 transaction);
693 warn_dirty_buffer(bh);
694 }
695 /*
696 * In any case we need to clean the dirty flag and we must
697 * do it under the buffer lock to be sure we don't race
698 * with running write-out.
699 */
700 JBUFFER_TRACE(jh, "Journalling dirty buffer");
701 clear_buffer_dirty(bh);
702 set_buffer_jbddirty(bh);
703 }
704
705 unlock_buffer(bh);
706
707 error = -EROFS;
708 if (is_handle_aborted(handle)) {
709 jbd_unlock_bh_state(bh);
710 goto out;
711 }
712 error = 0;
713
714 /*
715 * The buffer is already part of this transaction if b_transaction or
716 * b_next_transaction points to it
717 */
718 if (jh->b_transaction == transaction ||
719 jh->b_next_transaction == transaction)
720 goto done;
721
722 /*
723 * this is the first time this transaction is touching this buffer,
724 * reset the modified flag
725 */
726 jh->b_modified = 0;
727
728 /*
729 * If there is already a copy-out version of this buffer, then we don't
730 * need to make another one
731 */
732 if (jh->b_frozen_data) {
733 JBUFFER_TRACE(jh, "has frozen data");
734 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
735 jh->b_next_transaction = transaction;
736 goto done;
737 }
738
739 /* Is there data here we need to preserve? */
740
741 if (jh->b_transaction && jh->b_transaction != transaction) {
742 JBUFFER_TRACE(jh, "owned by older transaction");
743 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
744 J_ASSERT_JH(jh, jh->b_transaction ==
745 journal->j_committing_transaction);
746
747 /* There is one case we have to be very careful about.
748 * If the committing transaction is currently writing
749 * this buffer out to disk and has NOT made a copy-out,
750 * then we cannot modify the buffer contents at all
751 * right now. The essence of copy-out is that it is the
752 * extra copy, not the primary copy, which gets
753 * journaled. If the primary copy is already going to
754 * disk then we cannot do copy-out here. */
755
756 if (buffer_shadow(bh)) {
757 JBUFFER_TRACE(jh, "on shadow: sleep");
758 jbd_unlock_bh_state(bh);
759 wait_on_bit(&bh->b_state, BH_Shadow,
760 sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
761 goto repeat;
762 }
763
764 /*
765 * Only do the copy if the currently-owning transaction still
766 * needs it. If buffer isn't on BJ_Metadata list, the
767 * committing transaction is past that stage (here we use the
768 * fact that BH_Shadow is set under bh_state lock together with
769 * refiling to BJ_Shadow list and at this point we know the
770 * buffer doesn't have BH_Shadow set).
771 *
772 * Subtle point, though: if this is a get_undo_access,
773 * then we will be relying on the frozen_data to contain
774 * the new value of the committed_data record after the
775 * transaction, so we HAVE to force the frozen_data copy
776 * in that case.
777 */
778 if (jh->b_jlist == BJ_Metadata || force_copy) {
779 JBUFFER_TRACE(jh, "generate frozen data");
780 if (!frozen_buffer) {
781 JBUFFER_TRACE(jh, "allocate memory for buffer");
782 jbd_unlock_bh_state(bh);
783 frozen_buffer =
784 jbd2_alloc(jh2bh(jh)->b_size,
785 GFP_NOFS);
786 if (!frozen_buffer) {
787 printk(KERN_EMERG
788 "%s: OOM for frozen_buffer\n",
789 __func__);
790 JBUFFER_TRACE(jh, "oom!");
791 error = -ENOMEM;
792 jbd_lock_bh_state(bh);
793 goto done;
794 }
795 goto repeat;
796 }
797 jh->b_frozen_data = frozen_buffer;
798 frozen_buffer = NULL;
799 need_copy = 1;
800 }
801 jh->b_next_transaction = transaction;
802 }
803
804
805 /*
806 * Finally, if the buffer is not journaled right now, we need to make
807 * sure it doesn't get written to disk before the caller actually
808 * commits the new data
809 */
810 if (!jh->b_transaction) {
811 JBUFFER_TRACE(jh, "no transaction");
812 J_ASSERT_JH(jh, !jh->b_next_transaction);
813 JBUFFER_TRACE(jh, "file as BJ_Reserved");
814 spin_lock(&journal->j_list_lock);
815 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
816 spin_unlock(&journal->j_list_lock);
817 }
818
819 done:
820 if (need_copy) {
821 struct page *page;
822 int offset;
823 char *source;
824
825 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
826 "Possible IO failure.\n");
827 page = jh2bh(jh)->b_page;
828 offset = offset_in_page(jh2bh(jh)->b_data);
829 source = kmap_atomic(page);
830 /* Fire data frozen trigger just before we copy the data */
831 jbd2_buffer_frozen_trigger(jh, source + offset,
832 jh->b_triggers);
833 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
834 kunmap_atomic(source);
835
836 /*
837 * Now that the frozen data is saved off, we need to store
838 * any matching triggers.
839 */
840 jh->b_frozen_triggers = jh->b_triggers;
841 }
842 jbd_unlock_bh_state(bh);
843
844 /*
845 * If we are about to journal a buffer, then any revoke pending on it is
846 * no longer valid
847 */
848 jbd2_journal_cancel_revoke(handle, jh);
849
850 out:
851 if (unlikely(frozen_buffer)) /* It's usually NULL */
852 jbd2_free(frozen_buffer, bh->b_size);
853
854 JBUFFER_TRACE(jh, "exit");
855 return error;
856 }
857
858 /**
859 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
860 * @handle: transaction to add buffer modifications to
861 * @bh: bh to be used for metadata writes
862 *
863 * Returns an error code or 0 on success.
864 *
865 * In full data journalling mode the buffer may be of type BJ_AsyncData,
866 * because we're write()ing a buffer which is also part of a shared mapping.
867 */
868
869 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
870 {
871 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
872 int rc;
873
874 /* We do not want to get caught playing with fields which the
875 * log thread also manipulates. Make sure that the buffer
876 * completes any outstanding IO before proceeding. */
877 rc = do_get_write_access(handle, jh, 0);
878 jbd2_journal_put_journal_head(jh);
879 return rc;
880 }
881
882
883 /*
884 * When the user wants to journal a newly created buffer_head
885 * (ie. getblk() returned a new buffer and we are going to populate it
886 * manually rather than reading off disk), then we need to keep the
887 * buffer_head locked until it has been completely filled with new
888 * data. In this case, we should be able to make the assertion that
889 * the bh is not already part of an existing transaction.
890 *
891 * The buffer should already be locked by the caller by this point.
892 * There is no lock ranking violation: it was a newly created,
893 * unlocked buffer beforehand. */
894
895 /**
896 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
897 * @handle: transaction to new buffer to
898 * @bh: new buffer.
899 *
900 * Call this if you create a new bh.
901 */
902 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
903 {
904 transaction_t *transaction = handle->h_transaction;
905 journal_t *journal = transaction->t_journal;
906 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
907 int err;
908
909 jbd_debug(5, "journal_head %p\n", jh);
910 err = -EROFS;
911 if (is_handle_aborted(handle))
912 goto out;
913 err = 0;
914
915 JBUFFER_TRACE(jh, "entry");
916 /*
917 * The buffer may already belong to this transaction due to pre-zeroing
918 * in the filesystem's new_block code. It may also be on the previous,
919 * committing transaction's lists, but it HAS to be in Forget state in
920 * that case: the transaction must have deleted the buffer for it to be
921 * reused here.
922 */
923 jbd_lock_bh_state(bh);
924 spin_lock(&journal->j_list_lock);
925 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
926 jh->b_transaction == NULL ||
927 (jh->b_transaction == journal->j_committing_transaction &&
928 jh->b_jlist == BJ_Forget)));
929
930 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
931 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
932
933 if (jh->b_transaction == NULL) {
934 /*
935 * Previous jbd2_journal_forget() could have left the buffer
936 * with jbddirty bit set because it was being committed. When
937 * the commit finished, we've filed the buffer for
938 * checkpointing and marked it dirty. Now we are reallocating
939 * the buffer so the transaction freeing it must have
940 * committed and so it's safe to clear the dirty bit.
941 */
942 clear_buffer_dirty(jh2bh(jh));
943 /* first access by this transaction */
944 jh->b_modified = 0;
945
946 JBUFFER_TRACE(jh, "file as BJ_Reserved");
947 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
948 } else if (jh->b_transaction == journal->j_committing_transaction) {
949 /* first access by this transaction */
950 jh->b_modified = 0;
951
952 JBUFFER_TRACE(jh, "set next transaction");
953 jh->b_next_transaction = transaction;
954 }
955 spin_unlock(&journal->j_list_lock);
956 jbd_unlock_bh_state(bh);
957
958 /*
959 * akpm: I added this. ext3_alloc_branch can pick up new indirect
960 * blocks which contain freed but then revoked metadata. We need
961 * to cancel the revoke in case we end up freeing it yet again
962 * and the reallocating as data - this would cause a second revoke,
963 * which hits an assertion error.
964 */
965 JBUFFER_TRACE(jh, "cancelling revoke");
966 jbd2_journal_cancel_revoke(handle, jh);
967 out:
968 jbd2_journal_put_journal_head(jh);
969 return err;
970 }
971
972 /**
973 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
974 * non-rewindable consequences
975 * @handle: transaction
976 * @bh: buffer to undo
977 *
978 * Sometimes there is a need to distinguish between metadata which has
979 * been committed to disk and that which has not. The ext3fs code uses
980 * this for freeing and allocating space, we have to make sure that we
981 * do not reuse freed space until the deallocation has been committed,
982 * since if we overwrote that space we would make the delete
983 * un-rewindable in case of a crash.
984 *
985 * To deal with that, jbd2_journal_get_undo_access requests write access to a
986 * buffer for parts of non-rewindable operations such as delete
987 * operations on the bitmaps. The journaling code must keep a copy of
988 * the buffer's contents prior to the undo_access call until such time
989 * as we know that the buffer has definitely been committed to disk.
990 *
991 * We never need to know which transaction the committed data is part
992 * of, buffers touched here are guaranteed to be dirtied later and so
993 * will be committed to a new transaction in due course, at which point
994 * we can discard the old committed data pointer.
995 *
996 * Returns error number or 0 on success.
997 */
998 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
999 {
1000 int err;
1001 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1002 char *committed_data = NULL;
1003
1004 JBUFFER_TRACE(jh, "entry");
1005
1006 /*
1007 * Do this first --- it can drop the journal lock, so we want to
1008 * make sure that obtaining the committed_data is done
1009 * atomically wrt. completion of any outstanding commits.
1010 */
1011 err = do_get_write_access(handle, jh, 1);
1012 if (err)
1013 goto out;
1014
1015 repeat:
1016 if (!jh->b_committed_data) {
1017 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1018 if (!committed_data) {
1019 printk(KERN_EMERG "%s: No memory for committed data\n",
1020 __func__);
1021 err = -ENOMEM;
1022 goto out;
1023 }
1024 }
1025
1026 jbd_lock_bh_state(bh);
1027 if (!jh->b_committed_data) {
1028 /* Copy out the current buffer contents into the
1029 * preserved, committed copy. */
1030 JBUFFER_TRACE(jh, "generate b_committed data");
1031 if (!committed_data) {
1032 jbd_unlock_bh_state(bh);
1033 goto repeat;
1034 }
1035
1036 jh->b_committed_data = committed_data;
1037 committed_data = NULL;
1038 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1039 }
1040 jbd_unlock_bh_state(bh);
1041 out:
1042 jbd2_journal_put_journal_head(jh);
1043 if (unlikely(committed_data))
1044 jbd2_free(committed_data, bh->b_size);
1045 return err;
1046 }
1047
1048 /**
1049 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1050 * @bh: buffer to trigger on
1051 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1052 *
1053 * Set any triggers on this journal_head. This is always safe, because
1054 * triggers for a committing buffer will be saved off, and triggers for
1055 * a running transaction will match the buffer in that transaction.
1056 *
1057 * Call with NULL to clear the triggers.
1058 */
1059 void jbd2_journal_set_triggers(struct buffer_head *bh,
1060 struct jbd2_buffer_trigger_type *type)
1061 {
1062 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1063
1064 if (WARN_ON(!jh))
1065 return;
1066 jh->b_triggers = type;
1067 jbd2_journal_put_journal_head(jh);
1068 }
1069
1070 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1071 struct jbd2_buffer_trigger_type *triggers)
1072 {
1073 struct buffer_head *bh = jh2bh(jh);
1074
1075 if (!triggers || !triggers->t_frozen)
1076 return;
1077
1078 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1079 }
1080
1081 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1082 struct jbd2_buffer_trigger_type *triggers)
1083 {
1084 if (!triggers || !triggers->t_abort)
1085 return;
1086
1087 triggers->t_abort(triggers, jh2bh(jh));
1088 }
1089
1090
1091
1092 /**
1093 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1094 * @handle: transaction to add buffer to.
1095 * @bh: buffer to mark
1096 *
1097 * mark dirty metadata which needs to be journaled as part of the current
1098 * transaction.
1099 *
1100 * The buffer must have previously had jbd2_journal_get_write_access()
1101 * called so that it has a valid journal_head attached to the buffer
1102 * head.
1103 *
1104 * The buffer is placed on the transaction's metadata list and is marked
1105 * as belonging to the transaction.
1106 *
1107 * Returns error number or 0 on success.
1108 *
1109 * Special care needs to be taken if the buffer already belongs to the
1110 * current committing transaction (in which case we should have frozen
1111 * data present for that commit). In that case, we don't relink the
1112 * buffer: that only gets done when the old transaction finally
1113 * completes its commit.
1114 */
1115 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1116 {
1117 transaction_t *transaction = handle->h_transaction;
1118 journal_t *journal = transaction->t_journal;
1119 struct journal_head *jh;
1120 int ret = 0;
1121
1122 if (is_handle_aborted(handle))
1123 goto out;
1124 jh = jbd2_journal_grab_journal_head(bh);
1125 if (!jh) {
1126 ret = -EUCLEAN;
1127 goto out;
1128 }
1129 jbd_debug(5, "journal_head %p\n", jh);
1130 JBUFFER_TRACE(jh, "entry");
1131
1132 jbd_lock_bh_state(bh);
1133
1134 if (jh->b_modified == 0) {
1135 /*
1136 * This buffer's got modified and becoming part
1137 * of the transaction. This needs to be done
1138 * once a transaction -bzzz
1139 */
1140 jh->b_modified = 1;
1141 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1142 handle->h_buffer_credits--;
1143 }
1144
1145 /*
1146 * fastpath, to avoid expensive locking. If this buffer is already
1147 * on the running transaction's metadata list there is nothing to do.
1148 * Nobody can take it off again because there is a handle open.
1149 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1150 * result in this test being false, so we go in and take the locks.
1151 */
1152 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1153 JBUFFER_TRACE(jh, "fastpath");
1154 if (unlikely(jh->b_transaction !=
1155 journal->j_running_transaction)) {
1156 printk(KERN_EMERG "JBD: %s: "
1157 "jh->b_transaction (%llu, %p, %u) != "
1158 "journal->j_running_transaction (%p, %u)",
1159 journal->j_devname,
1160 (unsigned long long) bh->b_blocknr,
1161 jh->b_transaction,
1162 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1163 journal->j_running_transaction,
1164 journal->j_running_transaction ?
1165 journal->j_running_transaction->t_tid : 0);
1166 ret = -EINVAL;
1167 }
1168 goto out_unlock_bh;
1169 }
1170
1171 set_buffer_jbddirty(bh);
1172
1173 /*
1174 * Metadata already on the current transaction list doesn't
1175 * need to be filed. Metadata on another transaction's list must
1176 * be committing, and will be refiled once the commit completes:
1177 * leave it alone for now.
1178 */
1179 if (jh->b_transaction != transaction) {
1180 JBUFFER_TRACE(jh, "already on other transaction");
1181 if (unlikely(jh->b_transaction !=
1182 journal->j_committing_transaction)) {
1183 printk(KERN_EMERG "JBD: %s: "
1184 "jh->b_transaction (%llu, %p, %u) != "
1185 "journal->j_committing_transaction (%p, %u)",
1186 journal->j_devname,
1187 (unsigned long long) bh->b_blocknr,
1188 jh->b_transaction,
1189 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1190 journal->j_committing_transaction,
1191 journal->j_committing_transaction ?
1192 journal->j_committing_transaction->t_tid : 0);
1193 ret = -EINVAL;
1194 }
1195 if (unlikely(jh->b_next_transaction != transaction)) {
1196 printk(KERN_EMERG "JBD: %s: "
1197 "jh->b_next_transaction (%llu, %p, %u) != "
1198 "transaction (%p, %u)",
1199 journal->j_devname,
1200 (unsigned long long) bh->b_blocknr,
1201 jh->b_next_transaction,
1202 jh->b_next_transaction ?
1203 jh->b_next_transaction->t_tid : 0,
1204 transaction, transaction->t_tid);
1205 ret = -EINVAL;
1206 }
1207 /* And this case is illegal: we can't reuse another
1208 * transaction's data buffer, ever. */
1209 goto out_unlock_bh;
1210 }
1211
1212 /* That test should have eliminated the following case: */
1213 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1214
1215 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1216 spin_lock(&journal->j_list_lock);
1217 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1218 spin_unlock(&journal->j_list_lock);
1219 out_unlock_bh:
1220 jbd_unlock_bh_state(bh);
1221 jbd2_journal_put_journal_head(jh);
1222 out:
1223 JBUFFER_TRACE(jh, "exit");
1224 WARN_ON(ret); /* All errors are bugs, so dump the stack */
1225 return ret;
1226 }
1227
1228 /**
1229 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1230 * @handle: transaction handle
1231 * @bh: bh to 'forget'
1232 *
1233 * We can only do the bforget if there are no commits pending against the
1234 * buffer. If the buffer is dirty in the current running transaction we
1235 * can safely unlink it.
1236 *
1237 * bh may not be a journalled buffer at all - it may be a non-JBD
1238 * buffer which came off the hashtable. Check for this.
1239 *
1240 * Decrements bh->b_count by one.
1241 *
1242 * Allow this call even if the handle has aborted --- it may be part of
1243 * the caller's cleanup after an abort.
1244 */
1245 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1246 {
1247 transaction_t *transaction = handle->h_transaction;
1248 journal_t *journal = transaction->t_journal;
1249 struct journal_head *jh;
1250 int drop_reserve = 0;
1251 int err = 0;
1252 int was_modified = 0;
1253
1254 BUFFER_TRACE(bh, "entry");
1255
1256 jbd_lock_bh_state(bh);
1257 spin_lock(&journal->j_list_lock);
1258
1259 if (!buffer_jbd(bh))
1260 goto not_jbd;
1261 jh = bh2jh(bh);
1262
1263 /* Critical error: attempting to delete a bitmap buffer, maybe?
1264 * Don't do any jbd operations, and return an error. */
1265 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1266 "inconsistent data on disk")) {
1267 err = -EIO;
1268 goto not_jbd;
1269 }
1270
1271 /* keep track of whether or not this transaction modified us */
1272 was_modified = jh->b_modified;
1273
1274 /*
1275 * The buffer's going from the transaction, we must drop
1276 * all references -bzzz
1277 */
1278 jh->b_modified = 0;
1279
1280 if (jh->b_transaction == handle->h_transaction) {
1281 J_ASSERT_JH(jh, !jh->b_frozen_data);
1282
1283 /* If we are forgetting a buffer which is already part
1284 * of this transaction, then we can just drop it from
1285 * the transaction immediately. */
1286 clear_buffer_dirty(bh);
1287 clear_buffer_jbddirty(bh);
1288
1289 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1290
1291 /*
1292 * we only want to drop a reference if this transaction
1293 * modified the buffer
1294 */
1295 if (was_modified)
1296 drop_reserve = 1;
1297
1298 /*
1299 * We are no longer going to journal this buffer.
1300 * However, the commit of this transaction is still
1301 * important to the buffer: the delete that we are now
1302 * processing might obsolete an old log entry, so by
1303 * committing, we can satisfy the buffer's checkpoint.
1304 *
1305 * So, if we have a checkpoint on the buffer, we should
1306 * now refile the buffer on our BJ_Forget list so that
1307 * we know to remove the checkpoint after we commit.
1308 */
1309
1310 if (jh->b_cp_transaction) {
1311 __jbd2_journal_temp_unlink_buffer(jh);
1312 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1313 } else {
1314 __jbd2_journal_unfile_buffer(jh);
1315 if (!buffer_jbd(bh)) {
1316 spin_unlock(&journal->j_list_lock);
1317 jbd_unlock_bh_state(bh);
1318 __bforget(bh);
1319 goto drop;
1320 }
1321 }
1322 } else if (jh->b_transaction) {
1323 J_ASSERT_JH(jh, (jh->b_transaction ==
1324 journal->j_committing_transaction));
1325 /* However, if the buffer is still owned by a prior
1326 * (committing) transaction, we can't drop it yet... */
1327 JBUFFER_TRACE(jh, "belongs to older transaction");
1328 /* ... but we CAN drop it from the new transaction if we
1329 * have also modified it since the original commit. */
1330
1331 if (jh->b_next_transaction) {
1332 J_ASSERT(jh->b_next_transaction == transaction);
1333 jh->b_next_transaction = NULL;
1334
1335 /*
1336 * only drop a reference if this transaction modified
1337 * the buffer
1338 */
1339 if (was_modified)
1340 drop_reserve = 1;
1341 }
1342 }
1343
1344 not_jbd:
1345 spin_unlock(&journal->j_list_lock);
1346 jbd_unlock_bh_state(bh);
1347 __brelse(bh);
1348 drop:
1349 if (drop_reserve) {
1350 /* no need to reserve log space for this block -bzzz */
1351 handle->h_buffer_credits++;
1352 }
1353 return err;
1354 }
1355
1356 /**
1357 * int jbd2_journal_stop() - complete a transaction
1358 * @handle: tranaction to complete.
1359 *
1360 * All done for a particular handle.
1361 *
1362 * There is not much action needed here. We just return any remaining
1363 * buffer credits to the transaction and remove the handle. The only
1364 * complication is that we need to start a commit operation if the
1365 * filesystem is marked for synchronous update.
1366 *
1367 * jbd2_journal_stop itself will not usually return an error, but it may
1368 * do so in unusual circumstances. In particular, expect it to
1369 * return -EIO if a jbd2_journal_abort has been executed since the
1370 * transaction began.
1371 */
1372 int jbd2_journal_stop(handle_t *handle)
1373 {
1374 transaction_t *transaction = handle->h_transaction;
1375 journal_t *journal = transaction->t_journal;
1376 int err, wait_for_commit = 0;
1377 tid_t tid;
1378 pid_t pid;
1379
1380 J_ASSERT(journal_current_handle() == handle);
1381
1382 if (is_handle_aborted(handle))
1383 err = -EIO;
1384 else {
1385 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1386 err = 0;
1387 }
1388
1389 if (--handle->h_ref > 0) {
1390 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1391 handle->h_ref);
1392 return err;
1393 }
1394
1395 jbd_debug(4, "Handle %p going down\n", handle);
1396 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1397 handle->h_transaction->t_tid,
1398 handle->h_type, handle->h_line_no,
1399 jiffies - handle->h_start_jiffies,
1400 handle->h_sync, handle->h_requested_credits,
1401 (handle->h_requested_credits -
1402 handle->h_buffer_credits));
1403
1404 /*
1405 * Implement synchronous transaction batching. If the handle
1406 * was synchronous, don't force a commit immediately. Let's
1407 * yield and let another thread piggyback onto this
1408 * transaction. Keep doing that while new threads continue to
1409 * arrive. It doesn't cost much - we're about to run a commit
1410 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1411 * operations by 30x or more...
1412 *
1413 * We try and optimize the sleep time against what the
1414 * underlying disk can do, instead of having a static sleep
1415 * time. This is useful for the case where our storage is so
1416 * fast that it is more optimal to go ahead and force a flush
1417 * and wait for the transaction to be committed than it is to
1418 * wait for an arbitrary amount of time for new writers to
1419 * join the transaction. We achieve this by measuring how
1420 * long it takes to commit a transaction, and compare it with
1421 * how long this transaction has been running, and if run time
1422 * < commit time then we sleep for the delta and commit. This
1423 * greatly helps super fast disks that would see slowdowns as
1424 * more threads started doing fsyncs.
1425 *
1426 * But don't do this if this process was the most recent one
1427 * to perform a synchronous write. We do this to detect the
1428 * case where a single process is doing a stream of sync
1429 * writes. No point in waiting for joiners in that case.
1430 */
1431 pid = current->pid;
1432 if (handle->h_sync && journal->j_last_sync_writer != pid) {
1433 u64 commit_time, trans_time;
1434
1435 journal->j_last_sync_writer = pid;
1436
1437 read_lock(&journal->j_state_lock);
1438 commit_time = journal->j_average_commit_time;
1439 read_unlock(&journal->j_state_lock);
1440
1441 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1442 transaction->t_start_time));
1443
1444 commit_time = max_t(u64, commit_time,
1445 1000*journal->j_min_batch_time);
1446 commit_time = min_t(u64, commit_time,
1447 1000*journal->j_max_batch_time);
1448
1449 if (trans_time < commit_time) {
1450 ktime_t expires = ktime_add_ns(ktime_get(),
1451 commit_time);
1452 set_current_state(TASK_UNINTERRUPTIBLE);
1453 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1454 }
1455 }
1456
1457 if (handle->h_sync)
1458 transaction->t_synchronous_commit = 1;
1459 current->journal_info = NULL;
1460 atomic_sub(handle->h_buffer_credits,
1461 &transaction->t_outstanding_credits);
1462
1463 /*
1464 * If the handle is marked SYNC, we need to set another commit
1465 * going! We also want to force a commit if the current
1466 * transaction is occupying too much of the log, or if the
1467 * transaction is too old now.
1468 */
1469 if (handle->h_sync ||
1470 (atomic_read(&transaction->t_outstanding_credits) >
1471 journal->j_max_transaction_buffers) ||
1472 time_after_eq(jiffies, transaction->t_expires)) {
1473 /* Do this even for aborted journals: an abort still
1474 * completes the commit thread, it just doesn't write
1475 * anything to disk. */
1476
1477 jbd_debug(2, "transaction too old, requesting commit for "
1478 "handle %p\n", handle);
1479 /* This is non-blocking */
1480 jbd2_log_start_commit(journal, transaction->t_tid);
1481
1482 /*
1483 * Special case: JBD2_SYNC synchronous updates require us
1484 * to wait for the commit to complete.
1485 */
1486 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1487 wait_for_commit = 1;
1488 }
1489
1490 /*
1491 * Once we drop t_updates, if it goes to zero the transaction
1492 * could start committing on us and eventually disappear. So
1493 * once we do this, we must not dereference transaction
1494 * pointer again.
1495 */
1496 tid = transaction->t_tid;
1497 if (atomic_dec_and_test(&transaction->t_updates)) {
1498 wake_up(&journal->j_wait_updates);
1499 if (journal->j_barrier_count)
1500 wake_up(&journal->j_wait_transaction_locked);
1501 }
1502
1503 if (wait_for_commit)
1504 err = jbd2_log_wait_commit(journal, tid);
1505
1506 lock_map_release(&handle->h_lockdep_map);
1507
1508 jbd2_free_handle(handle);
1509 return err;
1510 }
1511
1512 /**
1513 * int jbd2_journal_force_commit() - force any uncommitted transactions
1514 * @journal: journal to force
1515 *
1516 * For synchronous operations: force any uncommitted transactions
1517 * to disk. May seem kludgy, but it reuses all the handle batching
1518 * code in a very simple manner.
1519 */
1520 int jbd2_journal_force_commit(journal_t *journal)
1521 {
1522 handle_t *handle;
1523 int ret;
1524
1525 handle = jbd2_journal_start(journal, 1);
1526 if (IS_ERR(handle)) {
1527 ret = PTR_ERR(handle);
1528 } else {
1529 handle->h_sync = 1;
1530 ret = jbd2_journal_stop(handle);
1531 }
1532 return ret;
1533 }
1534
1535 /*
1536 *
1537 * List management code snippets: various functions for manipulating the
1538 * transaction buffer lists.
1539 *
1540 */
1541
1542 /*
1543 * Append a buffer to a transaction list, given the transaction's list head
1544 * pointer.
1545 *
1546 * j_list_lock is held.
1547 *
1548 * jbd_lock_bh_state(jh2bh(jh)) is held.
1549 */
1550
1551 static inline void
1552 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1553 {
1554 if (!*list) {
1555 jh->b_tnext = jh->b_tprev = jh;
1556 *list = jh;
1557 } else {
1558 /* Insert at the tail of the list to preserve order */
1559 struct journal_head *first = *list, *last = first->b_tprev;
1560 jh->b_tprev = last;
1561 jh->b_tnext = first;
1562 last->b_tnext = first->b_tprev = jh;
1563 }
1564 }
1565
1566 /*
1567 * Remove a buffer from a transaction list, given the transaction's list
1568 * head pointer.
1569 *
1570 * Called with j_list_lock held, and the journal may not be locked.
1571 *
1572 * jbd_lock_bh_state(jh2bh(jh)) is held.
1573 */
1574
1575 static inline void
1576 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1577 {
1578 if (*list == jh) {
1579 *list = jh->b_tnext;
1580 if (*list == jh)
1581 *list = NULL;
1582 }
1583 jh->b_tprev->b_tnext = jh->b_tnext;
1584 jh->b_tnext->b_tprev = jh->b_tprev;
1585 }
1586
1587 /*
1588 * Remove a buffer from the appropriate transaction list.
1589 *
1590 * Note that this function can *change* the value of
1591 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1592 * t_reserved_list. If the caller is holding onto a copy of one of these
1593 * pointers, it could go bad. Generally the caller needs to re-read the
1594 * pointer from the transaction_t.
1595 *
1596 * Called under j_list_lock.
1597 */
1598 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1599 {
1600 struct journal_head **list = NULL;
1601 transaction_t *transaction;
1602 struct buffer_head *bh = jh2bh(jh);
1603
1604 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1605 transaction = jh->b_transaction;
1606 if (transaction)
1607 assert_spin_locked(&transaction->t_journal->j_list_lock);
1608
1609 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1610 if (jh->b_jlist != BJ_None)
1611 J_ASSERT_JH(jh, transaction != NULL);
1612
1613 switch (jh->b_jlist) {
1614 case BJ_None:
1615 return;
1616 case BJ_Metadata:
1617 transaction->t_nr_buffers--;
1618 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1619 list = &transaction->t_buffers;
1620 break;
1621 case BJ_Forget:
1622 list = &transaction->t_forget;
1623 break;
1624 case BJ_Shadow:
1625 list = &transaction->t_shadow_list;
1626 break;
1627 case BJ_Reserved:
1628 list = &transaction->t_reserved_list;
1629 break;
1630 }
1631
1632 __blist_del_buffer(list, jh);
1633 jh->b_jlist = BJ_None;
1634 if (test_clear_buffer_jbddirty(bh))
1635 mark_buffer_dirty(bh); /* Expose it to the VM */
1636 }
1637
1638 /*
1639 * Remove buffer from all transactions.
1640 *
1641 * Called with bh_state lock and j_list_lock
1642 *
1643 * jh and bh may be already freed when this function returns.
1644 */
1645 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1646 {
1647 __jbd2_journal_temp_unlink_buffer(jh);
1648 jh->b_transaction = NULL;
1649 jbd2_journal_put_journal_head(jh);
1650 }
1651
1652 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1653 {
1654 struct buffer_head *bh = jh2bh(jh);
1655
1656 /* Get reference so that buffer cannot be freed before we unlock it */
1657 get_bh(bh);
1658 jbd_lock_bh_state(bh);
1659 spin_lock(&journal->j_list_lock);
1660 __jbd2_journal_unfile_buffer(jh);
1661 spin_unlock(&journal->j_list_lock);
1662 jbd_unlock_bh_state(bh);
1663 __brelse(bh);
1664 }
1665
1666 /*
1667 * Called from jbd2_journal_try_to_free_buffers().
1668 *
1669 * Called under jbd_lock_bh_state(bh)
1670 */
1671 static void
1672 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1673 {
1674 struct journal_head *jh;
1675
1676 jh = bh2jh(bh);
1677
1678 if (buffer_locked(bh) || buffer_dirty(bh))
1679 goto out;
1680
1681 if (jh->b_next_transaction != NULL)
1682 goto out;
1683
1684 spin_lock(&journal->j_list_lock);
1685 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1686 /* written-back checkpointed metadata buffer */
1687 JBUFFER_TRACE(jh, "remove from checkpoint list");
1688 __jbd2_journal_remove_checkpoint(jh);
1689 }
1690 spin_unlock(&journal->j_list_lock);
1691 out:
1692 return;
1693 }
1694
1695 /**
1696 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1697 * @journal: journal for operation
1698 * @page: to try and free
1699 * @gfp_mask: we use the mask to detect how hard should we try to release
1700 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1701 * release the buffers.
1702 *
1703 *
1704 * For all the buffers on this page,
1705 * if they are fully written out ordered data, move them onto BUF_CLEAN
1706 * so try_to_free_buffers() can reap them.
1707 *
1708 * This function returns non-zero if we wish try_to_free_buffers()
1709 * to be called. We do this if the page is releasable by try_to_free_buffers().
1710 * We also do it if the page has locked or dirty buffers and the caller wants
1711 * us to perform sync or async writeout.
1712 *
1713 * This complicates JBD locking somewhat. We aren't protected by the
1714 * BKL here. We wish to remove the buffer from its committing or
1715 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1716 *
1717 * This may *change* the value of transaction_t->t_datalist, so anyone
1718 * who looks at t_datalist needs to lock against this function.
1719 *
1720 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1721 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1722 * will come out of the lock with the buffer dirty, which makes it
1723 * ineligible for release here.
1724 *
1725 * Who else is affected by this? hmm... Really the only contender
1726 * is do_get_write_access() - it could be looking at the buffer while
1727 * journal_try_to_free_buffer() is changing its state. But that
1728 * cannot happen because we never reallocate freed data as metadata
1729 * while the data is part of a transaction. Yes?
1730 *
1731 * Return 0 on failure, 1 on success
1732 */
1733 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1734 struct page *page, gfp_t gfp_mask)
1735 {
1736 struct buffer_head *head;
1737 struct buffer_head *bh;
1738 int ret = 0;
1739
1740 J_ASSERT(PageLocked(page));
1741
1742 head = page_buffers(page);
1743 bh = head;
1744 do {
1745 struct journal_head *jh;
1746
1747 /*
1748 * We take our own ref against the journal_head here to avoid
1749 * having to add tons of locking around each instance of
1750 * jbd2_journal_put_journal_head().
1751 */
1752 jh = jbd2_journal_grab_journal_head(bh);
1753 if (!jh)
1754 continue;
1755
1756 jbd_lock_bh_state(bh);
1757 __journal_try_to_free_buffer(journal, bh);
1758 jbd2_journal_put_journal_head(jh);
1759 jbd_unlock_bh_state(bh);
1760 if (buffer_jbd(bh))
1761 goto busy;
1762 } while ((bh = bh->b_this_page) != head);
1763
1764 ret = try_to_free_buffers(page);
1765
1766 busy:
1767 return ret;
1768 }
1769
1770 /*
1771 * This buffer is no longer needed. If it is on an older transaction's
1772 * checkpoint list we need to record it on this transaction's forget list
1773 * to pin this buffer (and hence its checkpointing transaction) down until
1774 * this transaction commits. If the buffer isn't on a checkpoint list, we
1775 * release it.
1776 * Returns non-zero if JBD no longer has an interest in the buffer.
1777 *
1778 * Called under j_list_lock.
1779 *
1780 * Called under jbd_lock_bh_state(bh).
1781 */
1782 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1783 {
1784 int may_free = 1;
1785 struct buffer_head *bh = jh2bh(jh);
1786
1787 if (jh->b_cp_transaction) {
1788 JBUFFER_TRACE(jh, "on running+cp transaction");
1789 __jbd2_journal_temp_unlink_buffer(jh);
1790 /*
1791 * We don't want to write the buffer anymore, clear the
1792 * bit so that we don't confuse checks in
1793 * __journal_file_buffer
1794 */
1795 clear_buffer_dirty(bh);
1796 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1797 may_free = 0;
1798 } else {
1799 JBUFFER_TRACE(jh, "on running transaction");
1800 __jbd2_journal_unfile_buffer(jh);
1801 }
1802 return may_free;
1803 }
1804
1805 /*
1806 * jbd2_journal_invalidatepage
1807 *
1808 * This code is tricky. It has a number of cases to deal with.
1809 *
1810 * There are two invariants which this code relies on:
1811 *
1812 * i_size must be updated on disk before we start calling invalidatepage on the
1813 * data.
1814 *
1815 * This is done in ext3 by defining an ext3_setattr method which
1816 * updates i_size before truncate gets going. By maintaining this
1817 * invariant, we can be sure that it is safe to throw away any buffers
1818 * attached to the current transaction: once the transaction commits,
1819 * we know that the data will not be needed.
1820 *
1821 * Note however that we can *not* throw away data belonging to the
1822 * previous, committing transaction!
1823 *
1824 * Any disk blocks which *are* part of the previous, committing
1825 * transaction (and which therefore cannot be discarded immediately) are
1826 * not going to be reused in the new running transaction
1827 *
1828 * The bitmap committed_data images guarantee this: any block which is
1829 * allocated in one transaction and removed in the next will be marked
1830 * as in-use in the committed_data bitmap, so cannot be reused until
1831 * the next transaction to delete the block commits. This means that
1832 * leaving committing buffers dirty is quite safe: the disk blocks
1833 * cannot be reallocated to a different file and so buffer aliasing is
1834 * not possible.
1835 *
1836 *
1837 * The above applies mainly to ordered data mode. In writeback mode we
1838 * don't make guarantees about the order in which data hits disk --- in
1839 * particular we don't guarantee that new dirty data is flushed before
1840 * transaction commit --- so it is always safe just to discard data
1841 * immediately in that mode. --sct
1842 */
1843
1844 /*
1845 * The journal_unmap_buffer helper function returns zero if the buffer
1846 * concerned remains pinned as an anonymous buffer belonging to an older
1847 * transaction.
1848 *
1849 * We're outside-transaction here. Either or both of j_running_transaction
1850 * and j_committing_transaction may be NULL.
1851 */
1852 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1853 int partial_page)
1854 {
1855 transaction_t *transaction;
1856 struct journal_head *jh;
1857 int may_free = 1;
1858
1859 BUFFER_TRACE(bh, "entry");
1860
1861 /*
1862 * It is safe to proceed here without the j_list_lock because the
1863 * buffers cannot be stolen by try_to_free_buffers as long as we are
1864 * holding the page lock. --sct
1865 */
1866
1867 if (!buffer_jbd(bh))
1868 goto zap_buffer_unlocked;
1869
1870 /* OK, we have data buffer in journaled mode */
1871 write_lock(&journal->j_state_lock);
1872 jbd_lock_bh_state(bh);
1873 spin_lock(&journal->j_list_lock);
1874
1875 jh = jbd2_journal_grab_journal_head(bh);
1876 if (!jh)
1877 goto zap_buffer_no_jh;
1878
1879 /*
1880 * We cannot remove the buffer from checkpoint lists until the
1881 * transaction adding inode to orphan list (let's call it T)
1882 * is committed. Otherwise if the transaction changing the
1883 * buffer would be cleaned from the journal before T is
1884 * committed, a crash will cause that the correct contents of
1885 * the buffer will be lost. On the other hand we have to
1886 * clear the buffer dirty bit at latest at the moment when the
1887 * transaction marking the buffer as freed in the filesystem
1888 * structures is committed because from that moment on the
1889 * block can be reallocated and used by a different page.
1890 * Since the block hasn't been freed yet but the inode has
1891 * already been added to orphan list, it is safe for us to add
1892 * the buffer to BJ_Forget list of the newest transaction.
1893 *
1894 * Also we have to clear buffer_mapped flag of a truncated buffer
1895 * because the buffer_head may be attached to the page straddling
1896 * i_size (can happen only when blocksize < pagesize) and thus the
1897 * buffer_head can be reused when the file is extended again. So we end
1898 * up keeping around invalidated buffers attached to transactions'
1899 * BJ_Forget list just to stop checkpointing code from cleaning up
1900 * the transaction this buffer was modified in.
1901 */
1902 transaction = jh->b_transaction;
1903 if (transaction == NULL) {
1904 /* First case: not on any transaction. If it
1905 * has no checkpoint link, then we can zap it:
1906 * it's a writeback-mode buffer so we don't care
1907 * if it hits disk safely. */
1908 if (!jh->b_cp_transaction) {
1909 JBUFFER_TRACE(jh, "not on any transaction: zap");
1910 goto zap_buffer;
1911 }
1912
1913 if (!buffer_dirty(bh)) {
1914 /* bdflush has written it. We can drop it now */
1915 goto zap_buffer;
1916 }
1917
1918 /* OK, it must be in the journal but still not
1919 * written fully to disk: it's metadata or
1920 * journaled data... */
1921
1922 if (journal->j_running_transaction) {
1923 /* ... and once the current transaction has
1924 * committed, the buffer won't be needed any
1925 * longer. */
1926 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1927 may_free = __dispose_buffer(jh,
1928 journal->j_running_transaction);
1929 goto zap_buffer;
1930 } else {
1931 /* There is no currently-running transaction. So the
1932 * orphan record which we wrote for this file must have
1933 * passed into commit. We must attach this buffer to
1934 * the committing transaction, if it exists. */
1935 if (journal->j_committing_transaction) {
1936 JBUFFER_TRACE(jh, "give to committing trans");
1937 may_free = __dispose_buffer(jh,
1938 journal->j_committing_transaction);
1939 goto zap_buffer;
1940 } else {
1941 /* The orphan record's transaction has
1942 * committed. We can cleanse this buffer */
1943 clear_buffer_jbddirty(bh);
1944 goto zap_buffer;
1945 }
1946 }
1947 } else if (transaction == journal->j_committing_transaction) {
1948 JBUFFER_TRACE(jh, "on committing transaction");
1949 /*
1950 * The buffer is committing, we simply cannot touch
1951 * it. If the page is straddling i_size we have to wait
1952 * for commit and try again.
1953 */
1954 if (partial_page) {
1955 jbd2_journal_put_journal_head(jh);
1956 spin_unlock(&journal->j_list_lock);
1957 jbd_unlock_bh_state(bh);
1958 write_unlock(&journal->j_state_lock);
1959 return -EBUSY;
1960 }
1961 /*
1962 * OK, buffer won't be reachable after truncate. We just set
1963 * j_next_transaction to the running transaction (if there is
1964 * one) and mark buffer as freed so that commit code knows it
1965 * should clear dirty bits when it is done with the buffer.
1966 */
1967 set_buffer_freed(bh);
1968 if (journal->j_running_transaction && buffer_jbddirty(bh))
1969 jh->b_next_transaction = journal->j_running_transaction;
1970 jbd2_journal_put_journal_head(jh);
1971 spin_unlock(&journal->j_list_lock);
1972 jbd_unlock_bh_state(bh);
1973 write_unlock(&journal->j_state_lock);
1974 return 0;
1975 } else {
1976 /* Good, the buffer belongs to the running transaction.
1977 * We are writing our own transaction's data, not any
1978 * previous one's, so it is safe to throw it away
1979 * (remember that we expect the filesystem to have set
1980 * i_size already for this truncate so recovery will not
1981 * expose the disk blocks we are discarding here.) */
1982 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1983 JBUFFER_TRACE(jh, "on running transaction");
1984 may_free = __dispose_buffer(jh, transaction);
1985 }
1986
1987 zap_buffer:
1988 /*
1989 * This is tricky. Although the buffer is truncated, it may be reused
1990 * if blocksize < pagesize and it is attached to the page straddling
1991 * EOF. Since the buffer might have been added to BJ_Forget list of the
1992 * running transaction, journal_get_write_access() won't clear
1993 * b_modified and credit accounting gets confused. So clear b_modified
1994 * here.
1995 */
1996 jh->b_modified = 0;
1997 jbd2_journal_put_journal_head(jh);
1998 zap_buffer_no_jh:
1999 spin_unlock(&journal->j_list_lock);
2000 jbd_unlock_bh_state(bh);
2001 write_unlock(&journal->j_state_lock);
2002 zap_buffer_unlocked:
2003 clear_buffer_dirty(bh);
2004 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2005 clear_buffer_mapped(bh);
2006 clear_buffer_req(bh);
2007 clear_buffer_new(bh);
2008 clear_buffer_delay(bh);
2009 clear_buffer_unwritten(bh);
2010 bh->b_bdev = NULL;
2011 return may_free;
2012 }
2013
2014 /**
2015 * void jbd2_journal_invalidatepage()
2016 * @journal: journal to use for flush...
2017 * @page: page to flush
2018 * @offset: start of the range to invalidate
2019 * @length: length of the range to invalidate
2020 *
2021 * Reap page buffers containing data after in the specified range in page.
2022 * Can return -EBUSY if buffers are part of the committing transaction and
2023 * the page is straddling i_size. Caller then has to wait for current commit
2024 * and try again.
2025 */
2026 int jbd2_journal_invalidatepage(journal_t *journal,
2027 struct page *page,
2028 unsigned int offset,
2029 unsigned int length)
2030 {
2031 struct buffer_head *head, *bh, *next;
2032 unsigned int stop = offset + length;
2033 unsigned int curr_off = 0;
2034 int partial_page = (offset || length < PAGE_CACHE_SIZE);
2035 int may_free = 1;
2036 int ret = 0;
2037
2038 if (!PageLocked(page))
2039 BUG();
2040 if (!page_has_buffers(page))
2041 return 0;
2042
2043 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2044
2045 /* We will potentially be playing with lists other than just the
2046 * data lists (especially for journaled data mode), so be
2047 * cautious in our locking. */
2048
2049 head = bh = page_buffers(page);
2050 do {
2051 unsigned int next_off = curr_off + bh->b_size;
2052 next = bh->b_this_page;
2053
2054 if (next_off > stop)
2055 return 0;
2056
2057 if (offset <= curr_off) {
2058 /* This block is wholly outside the truncation point */
2059 lock_buffer(bh);
2060 ret = journal_unmap_buffer(journal, bh, partial_page);
2061 unlock_buffer(bh);
2062 if (ret < 0)
2063 return ret;
2064 may_free &= ret;
2065 }
2066 curr_off = next_off;
2067 bh = next;
2068
2069 } while (bh != head);
2070
2071 if (!partial_page) {
2072 if (may_free && try_to_free_buffers(page))
2073 J_ASSERT(!page_has_buffers(page));
2074 }
2075 return 0;
2076 }
2077
2078 /*
2079 * File a buffer on the given transaction list.
2080 */
2081 void __jbd2_journal_file_buffer(struct journal_head *jh,
2082 transaction_t *transaction, int jlist)
2083 {
2084 struct journal_head **list = NULL;
2085 int was_dirty = 0;
2086 struct buffer_head *bh = jh2bh(jh);
2087
2088 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2089 assert_spin_locked(&transaction->t_journal->j_list_lock);
2090
2091 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2092 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2093 jh->b_transaction == NULL);
2094
2095 if (jh->b_transaction && jh->b_jlist == jlist)
2096 return;
2097
2098 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2099 jlist == BJ_Shadow || jlist == BJ_Forget) {
2100 /*
2101 * For metadata buffers, we track dirty bit in buffer_jbddirty
2102 * instead of buffer_dirty. We should not see a dirty bit set
2103 * here because we clear it in do_get_write_access but e.g.
2104 * tune2fs can modify the sb and set the dirty bit at any time
2105 * so we try to gracefully handle that.
2106 */
2107 if (buffer_dirty(bh))
2108 warn_dirty_buffer(bh);
2109 if (test_clear_buffer_dirty(bh) ||
2110 test_clear_buffer_jbddirty(bh))
2111 was_dirty = 1;
2112 }
2113
2114 if (jh->b_transaction)
2115 __jbd2_journal_temp_unlink_buffer(jh);
2116 else
2117 jbd2_journal_grab_journal_head(bh);
2118 jh->b_transaction = transaction;
2119
2120 switch (jlist) {
2121 case BJ_None:
2122 J_ASSERT_JH(jh, !jh->b_committed_data);
2123 J_ASSERT_JH(jh, !jh->b_frozen_data);
2124 return;
2125 case BJ_Metadata:
2126 transaction->t_nr_buffers++;
2127 list = &transaction->t_buffers;
2128 break;
2129 case BJ_Forget:
2130 list = &transaction->t_forget;
2131 break;
2132 case BJ_Shadow:
2133 list = &transaction->t_shadow_list;
2134 break;
2135 case BJ_Reserved:
2136 list = &transaction->t_reserved_list;
2137 break;
2138 }
2139
2140 __blist_add_buffer(list, jh);
2141 jh->b_jlist = jlist;
2142
2143 if (was_dirty)
2144 set_buffer_jbddirty(bh);
2145 }
2146
2147 void jbd2_journal_file_buffer(struct journal_head *jh,
2148 transaction_t *transaction, int jlist)
2149 {
2150 jbd_lock_bh_state(jh2bh(jh));
2151 spin_lock(&transaction->t_journal->j_list_lock);
2152 __jbd2_journal_file_buffer(jh, transaction, jlist);
2153 spin_unlock(&transaction->t_journal->j_list_lock);
2154 jbd_unlock_bh_state(jh2bh(jh));
2155 }
2156
2157 /*
2158 * Remove a buffer from its current buffer list in preparation for
2159 * dropping it from its current transaction entirely. If the buffer has
2160 * already started to be used by a subsequent transaction, refile the
2161 * buffer on that transaction's metadata list.
2162 *
2163 * Called under j_list_lock
2164 * Called under jbd_lock_bh_state(jh2bh(jh))
2165 *
2166 * jh and bh may be already free when this function returns
2167 */
2168 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2169 {
2170 int was_dirty, jlist;
2171 struct buffer_head *bh = jh2bh(jh);
2172
2173 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2174 if (jh->b_transaction)
2175 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2176
2177 /* If the buffer is now unused, just drop it. */
2178 if (jh->b_next_transaction == NULL) {
2179 __jbd2_journal_unfile_buffer(jh);
2180 return;
2181 }
2182
2183 /*
2184 * It has been modified by a later transaction: add it to the new
2185 * transaction's metadata list.
2186 */
2187
2188 was_dirty = test_clear_buffer_jbddirty(bh);
2189 __jbd2_journal_temp_unlink_buffer(jh);
2190 /*
2191 * We set b_transaction here because b_next_transaction will inherit
2192 * our jh reference and thus __jbd2_journal_file_buffer() must not
2193 * take a new one.
2194 */
2195 jh->b_transaction = jh->b_next_transaction;
2196 jh->b_next_transaction = NULL;
2197 if (buffer_freed(bh))
2198 jlist = BJ_Forget;
2199 else if (jh->b_modified)
2200 jlist = BJ_Metadata;
2201 else
2202 jlist = BJ_Reserved;
2203 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2204 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2205
2206 if (was_dirty)
2207 set_buffer_jbddirty(bh);
2208 }
2209
2210 /*
2211 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2212 * bh reference so that we can safely unlock bh.
2213 *
2214 * The jh and bh may be freed by this call.
2215 */
2216 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2217 {
2218 struct buffer_head *bh = jh2bh(jh);
2219
2220 /* Get reference so that buffer cannot be freed before we unlock it */
2221 get_bh(bh);
2222 jbd_lock_bh_state(bh);
2223 spin_lock(&journal->j_list_lock);
2224 __jbd2_journal_refile_buffer(jh);
2225 jbd_unlock_bh_state(bh);
2226 spin_unlock(&journal->j_list_lock);
2227 __brelse(bh);
2228 }
2229
2230 /*
2231 * File inode in the inode list of the handle's transaction
2232 */
2233 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2234 {
2235 transaction_t *transaction = handle->h_transaction;
2236 journal_t *journal = transaction->t_journal;
2237
2238 if (is_handle_aborted(handle))
2239 return -EIO;
2240
2241 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2242 transaction->t_tid);
2243
2244 /*
2245 * First check whether inode isn't already on the transaction's
2246 * lists without taking the lock. Note that this check is safe
2247 * without the lock as we cannot race with somebody removing inode
2248 * from the transaction. The reason is that we remove inode from the
2249 * transaction only in journal_release_jbd_inode() and when we commit
2250 * the transaction. We are guarded from the first case by holding
2251 * a reference to the inode. We are safe against the second case
2252 * because if jinode->i_transaction == transaction, commit code
2253 * cannot touch the transaction because we hold reference to it,
2254 * and if jinode->i_next_transaction == transaction, commit code
2255 * will only file the inode where we want it.
2256 */
2257 if (jinode->i_transaction == transaction ||
2258 jinode->i_next_transaction == transaction)
2259 return 0;
2260
2261 spin_lock(&journal->j_list_lock);
2262
2263 if (jinode->i_transaction == transaction ||
2264 jinode->i_next_transaction == transaction)
2265 goto done;
2266
2267 /*
2268 * We only ever set this variable to 1 so the test is safe. Since
2269 * t_need_data_flush is likely to be set, we do the test to save some
2270 * cacheline bouncing
2271 */
2272 if (!transaction->t_need_data_flush)
2273 transaction->t_need_data_flush = 1;
2274 /* On some different transaction's list - should be
2275 * the committing one */
2276 if (jinode->i_transaction) {
2277 J_ASSERT(jinode->i_next_transaction == NULL);
2278 J_ASSERT(jinode->i_transaction ==
2279 journal->j_committing_transaction);
2280 jinode->i_next_transaction = transaction;
2281 goto done;
2282 }
2283 /* Not on any transaction list... */
2284 J_ASSERT(!jinode->i_next_transaction);
2285 jinode->i_transaction = transaction;
2286 list_add(&jinode->i_list, &transaction->t_inode_list);
2287 done:
2288 spin_unlock(&journal->j_list_lock);
2289
2290 return 0;
2291 }
2292
2293 /*
2294 * File truncate and transaction commit interact with each other in a
2295 * non-trivial way. If a transaction writing data block A is
2296 * committing, we cannot discard the data by truncate until we have
2297 * written them. Otherwise if we crashed after the transaction with
2298 * write has committed but before the transaction with truncate has
2299 * committed, we could see stale data in block A. This function is a
2300 * helper to solve this problem. It starts writeout of the truncated
2301 * part in case it is in the committing transaction.
2302 *
2303 * Filesystem code must call this function when inode is journaled in
2304 * ordered mode before truncation happens and after the inode has been
2305 * placed on orphan list with the new inode size. The second condition
2306 * avoids the race that someone writes new data and we start
2307 * committing the transaction after this function has been called but
2308 * before a transaction for truncate is started (and furthermore it
2309 * allows us to optimize the case where the addition to orphan list
2310 * happens in the same transaction as write --- we don't have to write
2311 * any data in such case).
2312 */
2313 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2314 struct jbd2_inode *jinode,
2315 loff_t new_size)
2316 {
2317 transaction_t *inode_trans, *commit_trans;
2318 int ret = 0;
2319
2320 /* This is a quick check to avoid locking if not necessary */
2321 if (!jinode->i_transaction)
2322 goto out;
2323 /* Locks are here just to force reading of recent values, it is
2324 * enough that the transaction was not committing before we started
2325 * a transaction adding the inode to orphan list */
2326 read_lock(&journal->j_state_lock);
2327 commit_trans = journal->j_committing_transaction;
2328 read_unlock(&journal->j_state_lock);
2329 spin_lock(&journal->j_list_lock);
2330 inode_trans = jinode->i_transaction;
2331 spin_unlock(&journal->j_list_lock);
2332 if (inode_trans == commit_trans) {
2333 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2334 new_size, LLONG_MAX);
2335 if (ret)
2336 jbd2_journal_abort(journal, ret);
2337 }
2338 out:
2339 return ret;
2340 }
This page took 0.105173 seconds and 6 git commands to generate.