e92cf0f025290fa9d15729ba6ba05d8eceb38fa7
[deliverable/linux.git] / fs / jffs2 / gc.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $
11 *
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
21 #include "nodelist.h"
22 #include "compr.h"
23
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44 {
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
48
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
53 again:
54 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81
82 nextlist = &c->erasable_list;
83 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 spin_unlock(&c->erase_completion_lock);
87 jffs2_flush_wbuf_pad(c);
88 spin_lock(&c->erase_completion_lock);
89 goto again;
90 } else {
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93 return NULL;
94 }
95
96 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 list_del(&ret->list);
98 c->gcblock = ret;
99 ret->gc_node = ret->first_node;
100 if (!ret->gc_node) {
101 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102 BUG();
103 }
104
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret->wasted_size) {
107 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 ret->dirty_size += ret->wasted_size;
109 c->wasted_size -= ret->wasted_size;
110 c->dirty_size += ret->wasted_size;
111 ret->wasted_size = 0;
112 }
113
114 return ret;
115 }
116
117 /* jffs2_garbage_collect_pass
118 * Make a single attempt to progress GC. Move one node, and possibly
119 * start erasing one eraseblock.
120 */
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
122 {
123 struct jffs2_inode_info *f;
124 struct jffs2_inode_cache *ic;
125 struct jffs2_eraseblock *jeb;
126 struct jffs2_raw_node_ref *raw;
127 int ret = 0, inum, nlink;
128 int xattr = 0;
129
130 if (down_interruptible(&c->alloc_sem))
131 return -EINTR;
132
133 for (;;) {
134 spin_lock(&c->erase_completion_lock);
135 if (!c->unchecked_size)
136 break;
137
138 /* We can't start doing GC yet. We haven't finished checking
139 the node CRCs etc. Do it now. */
140
141 /* checked_ino is protected by the alloc_sem */
142 if (c->checked_ino > c->highest_ino && xattr) {
143 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
144 c->unchecked_size);
145 jffs2_dbg_dump_block_lists_nolock(c);
146 spin_unlock(&c->erase_completion_lock);
147 up(&c->alloc_sem);
148 return -ENOSPC;
149 }
150
151 spin_unlock(&c->erase_completion_lock);
152
153 if (!xattr)
154 xattr = jffs2_verify_xattr(c);
155
156 spin_lock(&c->inocache_lock);
157
158 ic = jffs2_get_ino_cache(c, c->checked_ino++);
159
160 if (!ic) {
161 spin_unlock(&c->inocache_lock);
162 continue;
163 }
164
165 if (!ic->nlink) {
166 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
167 ic->ino));
168 spin_unlock(&c->inocache_lock);
169 jffs2_xattr_delete_inode(c, ic);
170 continue;
171 }
172 switch(ic->state) {
173 case INO_STATE_CHECKEDABSENT:
174 case INO_STATE_PRESENT:
175 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
176 spin_unlock(&c->inocache_lock);
177 continue;
178
179 case INO_STATE_GC:
180 case INO_STATE_CHECKING:
181 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
182 spin_unlock(&c->inocache_lock);
183 BUG();
184
185 case INO_STATE_READING:
186 /* We need to wait for it to finish, lest we move on
187 and trigger the BUG() above while we haven't yet
188 finished checking all its nodes */
189 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
190 /* We need to come back again for the _same_ inode. We've
191 made no progress in this case, but that should be OK */
192 c->checked_ino--;
193
194 up(&c->alloc_sem);
195 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
196 return 0;
197
198 default:
199 BUG();
200
201 case INO_STATE_UNCHECKED:
202 ;
203 }
204 ic->state = INO_STATE_CHECKING;
205 spin_unlock(&c->inocache_lock);
206
207 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
208
209 ret = jffs2_do_crccheck_inode(c, ic);
210 if (ret)
211 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
212
213 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
214 up(&c->alloc_sem);
215 return ret;
216 }
217
218 /* First, work out which block we're garbage-collecting */
219 jeb = c->gcblock;
220
221 if (!jeb)
222 jeb = jffs2_find_gc_block(c);
223
224 if (!jeb) {
225 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
226 spin_unlock(&c->erase_completion_lock);
227 up(&c->alloc_sem);
228 return -EIO;
229 }
230
231 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
232 D1(if (c->nextblock)
233 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
234
235 if (!jeb->used_size) {
236 up(&c->alloc_sem);
237 goto eraseit;
238 }
239
240 raw = jeb->gc_node;
241
242 while(ref_obsolete(raw)) {
243 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
244 raw = ref_next(raw);
245 if (unlikely(!raw)) {
246 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
247 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
248 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
249 jeb->gc_node = raw;
250 spin_unlock(&c->erase_completion_lock);
251 up(&c->alloc_sem);
252 BUG();
253 }
254 }
255 jeb->gc_node = raw;
256
257 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
258
259 if (!raw->next_in_ino) {
260 /* Inode-less node. Clean marker, snapshot or something like that */
261 spin_unlock(&c->erase_completion_lock);
262 if (ref_flags(raw) == REF_PRISTINE) {
263 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
264 jffs2_garbage_collect_pristine(c, NULL, raw);
265 } else {
266 /* Just mark it obsolete */
267 jffs2_mark_node_obsolete(c, raw);
268 }
269 up(&c->alloc_sem);
270 goto eraseit_lock;
271 }
272
273 ic = jffs2_raw_ref_to_ic(raw);
274
275 #ifdef CONFIG_JFFS2_FS_XATTR
276 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
277 * We can decide whether this node is inode or xattr by ic->class. */
278 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
279 || ic->class == RAWNODE_CLASS_XATTR_REF) {
280 spin_unlock(&c->erase_completion_lock);
281
282 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
283 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
284 } else {
285 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
286 }
287 goto release_sem;
288 }
289 #endif
290
291 /* We need to hold the inocache. Either the erase_completion_lock or
292 the inocache_lock are sufficient; we trade down since the inocache_lock
293 causes less contention. */
294 spin_lock(&c->inocache_lock);
295
296 spin_unlock(&c->erase_completion_lock);
297
298 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
299
300 /* Three possibilities:
301 1. Inode is already in-core. We must iget it and do proper
302 updating to its fragtree, etc.
303 2. Inode is not in-core, node is REF_PRISTINE. We lock the
304 inocache to prevent a read_inode(), copy the node intact.
305 3. Inode is not in-core, node is not pristine. We must iget()
306 and take the slow path.
307 */
308
309 switch(ic->state) {
310 case INO_STATE_CHECKEDABSENT:
311 /* It's been checked, but it's not currently in-core.
312 We can just copy any pristine nodes, but have
313 to prevent anyone else from doing read_inode() while
314 we're at it, so we set the state accordingly */
315 if (ref_flags(raw) == REF_PRISTINE)
316 ic->state = INO_STATE_GC;
317 else {
318 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
319 ic->ino));
320 }
321 break;
322
323 case INO_STATE_PRESENT:
324 /* It's in-core. GC must iget() it. */
325 break;
326
327 case INO_STATE_UNCHECKED:
328 case INO_STATE_CHECKING:
329 case INO_STATE_GC:
330 /* Should never happen. We should have finished checking
331 by the time we actually start doing any GC, and since
332 we're holding the alloc_sem, no other garbage collection
333 can happen.
334 */
335 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
336 ic->ino, ic->state);
337 up(&c->alloc_sem);
338 spin_unlock(&c->inocache_lock);
339 BUG();
340
341 case INO_STATE_READING:
342 /* Someone's currently trying to read it. We must wait for
343 them to finish and then go through the full iget() route
344 to do the GC. However, sometimes read_inode() needs to get
345 the alloc_sem() (for marking nodes invalid) so we must
346 drop the alloc_sem before sleeping. */
347
348 up(&c->alloc_sem);
349 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
350 ic->ino, ic->state));
351 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
352 /* And because we dropped the alloc_sem we must start again from the
353 beginning. Ponder chance of livelock here -- we're returning success
354 without actually making any progress.
355
356 Q: What are the chances that the inode is back in INO_STATE_READING
357 again by the time we next enter this function? And that this happens
358 enough times to cause a real delay?
359
360 A: Small enough that I don't care :)
361 */
362 return 0;
363 }
364
365 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
366 node intact, and we don't have to muck about with the fragtree etc.
367 because we know it's not in-core. If it _was_ in-core, we go through
368 all the iget() crap anyway */
369
370 if (ic->state == INO_STATE_GC) {
371 spin_unlock(&c->inocache_lock);
372
373 ret = jffs2_garbage_collect_pristine(c, ic, raw);
374
375 spin_lock(&c->inocache_lock);
376 ic->state = INO_STATE_CHECKEDABSENT;
377 wake_up(&c->inocache_wq);
378
379 if (ret != -EBADFD) {
380 spin_unlock(&c->inocache_lock);
381 goto release_sem;
382 }
383
384 /* Fall through if it wanted us to, with inocache_lock held */
385 }
386
387 /* Prevent the fairly unlikely race where the gcblock is
388 entirely obsoleted by the final close of a file which had
389 the only valid nodes in the block, followed by erasure,
390 followed by freeing of the ic because the erased block(s)
391 held _all_ the nodes of that inode.... never been seen but
392 it's vaguely possible. */
393
394 inum = ic->ino;
395 nlink = ic->nlink;
396 spin_unlock(&c->inocache_lock);
397
398 f = jffs2_gc_fetch_inode(c, inum, nlink);
399 if (IS_ERR(f)) {
400 ret = PTR_ERR(f);
401 goto release_sem;
402 }
403 if (!f) {
404 ret = 0;
405 goto release_sem;
406 }
407
408 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
409
410 jffs2_gc_release_inode(c, f);
411
412 release_sem:
413 up(&c->alloc_sem);
414
415 eraseit_lock:
416 /* If we've finished this block, start it erasing */
417 spin_lock(&c->erase_completion_lock);
418
419 eraseit:
420 if (c->gcblock && !c->gcblock->used_size) {
421 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
422 /* We're GC'ing an empty block? */
423 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
424 c->gcblock = NULL;
425 c->nr_erasing_blocks++;
426 jffs2_erase_pending_trigger(c);
427 }
428 spin_unlock(&c->erase_completion_lock);
429
430 return ret;
431 }
432
433 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
434 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
435 {
436 struct jffs2_node_frag *frag;
437 struct jffs2_full_dnode *fn = NULL;
438 struct jffs2_full_dirent *fd;
439 uint32_t start = 0, end = 0, nrfrags = 0;
440 int ret = 0;
441
442 down(&f->sem);
443
444 /* Now we have the lock for this inode. Check that it's still the one at the head
445 of the list. */
446
447 spin_lock(&c->erase_completion_lock);
448
449 if (c->gcblock != jeb) {
450 spin_unlock(&c->erase_completion_lock);
451 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
452 goto upnout;
453 }
454 if (ref_obsolete(raw)) {
455 spin_unlock(&c->erase_completion_lock);
456 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
457 /* They'll call again */
458 goto upnout;
459 }
460 spin_unlock(&c->erase_completion_lock);
461
462 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
463 if (f->metadata && f->metadata->raw == raw) {
464 fn = f->metadata;
465 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
466 goto upnout;
467 }
468
469 /* FIXME. Read node and do lookup? */
470 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
471 if (frag->node && frag->node->raw == raw) {
472 fn = frag->node;
473 end = frag->ofs + frag->size;
474 if (!nrfrags++)
475 start = frag->ofs;
476 if (nrfrags == frag->node->frags)
477 break; /* We've found them all */
478 }
479 }
480 if (fn) {
481 if (ref_flags(raw) == REF_PRISTINE) {
482 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
483 if (!ret) {
484 /* Urgh. Return it sensibly. */
485 frag->node->raw = f->inocache->nodes;
486 }
487 if (ret != -EBADFD)
488 goto upnout;
489 }
490 /* We found a datanode. Do the GC */
491 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
492 /* It crosses a page boundary. Therefore, it must be a hole. */
493 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
494 } else {
495 /* It could still be a hole. But we GC the page this way anyway */
496 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
497 }
498 goto upnout;
499 }
500
501 /* Wasn't a dnode. Try dirent */
502 for (fd = f->dents; fd; fd=fd->next) {
503 if (fd->raw == raw)
504 break;
505 }
506
507 if (fd && fd->ino) {
508 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
509 } else if (fd) {
510 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
511 } else {
512 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
513 ref_offset(raw), f->inocache->ino);
514 if (ref_obsolete(raw)) {
515 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
516 } else {
517 jffs2_dbg_dump_node(c, ref_offset(raw));
518 BUG();
519 }
520 }
521 upnout:
522 up(&f->sem);
523
524 return ret;
525 }
526
527 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
528 struct jffs2_inode_cache *ic,
529 struct jffs2_raw_node_ref *raw)
530 {
531 union jffs2_node_union *node;
532 size_t retlen;
533 int ret;
534 uint32_t phys_ofs, alloclen;
535 uint32_t crc, rawlen;
536 int retried = 0;
537
538 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
539
540 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
541
542 /* Ask for a small amount of space (or the totlen if smaller) because we
543 don't want to force wastage of the end of a block if splitting would
544 work. */
545 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
546 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
547
548 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
549 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
550
551 if (ret)
552 return ret;
553
554 if (alloclen < rawlen) {
555 /* Doesn't fit untouched. We'll go the old route and split it */
556 return -EBADFD;
557 }
558
559 node = kmalloc(rawlen, GFP_KERNEL);
560 if (!node)
561 return -ENOMEM;
562
563 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
564 if (!ret && retlen != rawlen)
565 ret = -EIO;
566 if (ret)
567 goto out_node;
568
569 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
570 if (je32_to_cpu(node->u.hdr_crc) != crc) {
571 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
572 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
573 goto bail;
574 }
575
576 switch(je16_to_cpu(node->u.nodetype)) {
577 case JFFS2_NODETYPE_INODE:
578 crc = crc32(0, node, sizeof(node->i)-8);
579 if (je32_to_cpu(node->i.node_crc) != crc) {
580 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
581 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
582 goto bail;
583 }
584
585 if (je32_to_cpu(node->i.dsize)) {
586 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
587 if (je32_to_cpu(node->i.data_crc) != crc) {
588 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
589 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
590 goto bail;
591 }
592 }
593 break;
594
595 case JFFS2_NODETYPE_DIRENT:
596 crc = crc32(0, node, sizeof(node->d)-8);
597 if (je32_to_cpu(node->d.node_crc) != crc) {
598 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
599 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
600 goto bail;
601 }
602
603 if (node->d.nsize) {
604 crc = crc32(0, node->d.name, node->d.nsize);
605 if (je32_to_cpu(node->d.name_crc) != crc) {
606 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
607 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
608 goto bail;
609 }
610 }
611 break;
612 default:
613 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
614 if (ic) {
615 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
616 ref_offset(raw), je16_to_cpu(node->u.nodetype));
617 goto bail;
618 }
619 }
620
621 /* OK, all the CRCs are good; this node can just be copied as-is. */
622 retry:
623 phys_ofs = write_ofs(c);
624
625 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
626
627 if (ret || (retlen != rawlen)) {
628 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
629 rawlen, phys_ofs, ret, retlen);
630 if (retlen) {
631 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
632 } else {
633 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
634 }
635 if (!retried) {
636 /* Try to reallocate space and retry */
637 uint32_t dummy;
638 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
639
640 retried = 1;
641
642 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
643
644 jffs2_dbg_acct_sanity_check(c,jeb);
645 jffs2_dbg_acct_paranoia_check(c, jeb);
646
647 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
648 /* this is not the exact summary size of it,
649 it is only an upper estimation */
650
651 if (!ret) {
652 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
653
654 jffs2_dbg_acct_sanity_check(c,jeb);
655 jffs2_dbg_acct_paranoia_check(c, jeb);
656
657 goto retry;
658 }
659 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
660 }
661
662 if (!ret)
663 ret = -EIO;
664 goto out_node;
665 }
666 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
667
668 jffs2_mark_node_obsolete(c, raw);
669 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
670
671 out_node:
672 kfree(node);
673 return ret;
674 bail:
675 ret = -EBADFD;
676 goto out_node;
677 }
678
679 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
680 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
681 {
682 struct jffs2_full_dnode *new_fn;
683 struct jffs2_raw_inode ri;
684 struct jffs2_node_frag *last_frag;
685 union jffs2_device_node dev;
686 char *mdata = NULL, mdatalen = 0;
687 uint32_t alloclen, ilen;
688 int ret;
689
690 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
691 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
692 /* For these, we don't actually need to read the old node */
693 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
694 mdata = (char *)&dev;
695 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
696 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
697 mdatalen = fn->size;
698 mdata = kmalloc(fn->size, GFP_KERNEL);
699 if (!mdata) {
700 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
701 return -ENOMEM;
702 }
703 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
704 if (ret) {
705 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
706 kfree(mdata);
707 return ret;
708 }
709 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
710
711 }
712
713 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
714 JFFS2_SUMMARY_INODE_SIZE);
715 if (ret) {
716 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
717 sizeof(ri)+ mdatalen, ret);
718 goto out;
719 }
720
721 last_frag = frag_last(&f->fragtree);
722 if (last_frag)
723 /* Fetch the inode length from the fragtree rather then
724 * from i_size since i_size may have not been updated yet */
725 ilen = last_frag->ofs + last_frag->size;
726 else
727 ilen = JFFS2_F_I_SIZE(f);
728
729 memset(&ri, 0, sizeof(ri));
730 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
731 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
732 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
733 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
734
735 ri.ino = cpu_to_je32(f->inocache->ino);
736 ri.version = cpu_to_je32(++f->highest_version);
737 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
738 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
739 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
740 ri.isize = cpu_to_je32(ilen);
741 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
742 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
743 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
744 ri.offset = cpu_to_je32(0);
745 ri.csize = cpu_to_je32(mdatalen);
746 ri.dsize = cpu_to_je32(mdatalen);
747 ri.compr = JFFS2_COMPR_NONE;
748 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
749 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
750
751 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
752
753 if (IS_ERR(new_fn)) {
754 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
755 ret = PTR_ERR(new_fn);
756 goto out;
757 }
758 jffs2_mark_node_obsolete(c, fn->raw);
759 jffs2_free_full_dnode(fn);
760 f->metadata = new_fn;
761 out:
762 if (S_ISLNK(JFFS2_F_I_MODE(f)))
763 kfree(mdata);
764 return ret;
765 }
766
767 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
768 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
769 {
770 struct jffs2_full_dirent *new_fd;
771 struct jffs2_raw_dirent rd;
772 uint32_t alloclen;
773 int ret;
774
775 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
776 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
777 rd.nsize = strlen(fd->name);
778 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
779 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
780
781 rd.pino = cpu_to_je32(f->inocache->ino);
782 rd.version = cpu_to_je32(++f->highest_version);
783 rd.ino = cpu_to_je32(fd->ino);
784 /* If the times on this inode were set by explicit utime() they can be different,
785 so refrain from splatting them. */
786 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
787 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
788 else
789 rd.mctime = cpu_to_je32(0);
790 rd.type = fd->type;
791 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
792 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
793
794 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
795 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
796 if (ret) {
797 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
798 sizeof(rd)+rd.nsize, ret);
799 return ret;
800 }
801 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
802
803 if (IS_ERR(new_fd)) {
804 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
805 return PTR_ERR(new_fd);
806 }
807 jffs2_add_fd_to_list(c, new_fd, &f->dents);
808 return 0;
809 }
810
811 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
812 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
813 {
814 struct jffs2_full_dirent **fdp = &f->dents;
815 int found = 0;
816
817 /* On a medium where we can't actually mark nodes obsolete
818 pernamently, such as NAND flash, we need to work out
819 whether this deletion dirent is still needed to actively
820 delete a 'real' dirent with the same name that's still
821 somewhere else on the flash. */
822 if (!jffs2_can_mark_obsolete(c)) {
823 struct jffs2_raw_dirent *rd;
824 struct jffs2_raw_node_ref *raw;
825 int ret;
826 size_t retlen;
827 int name_len = strlen(fd->name);
828 uint32_t name_crc = crc32(0, fd->name, name_len);
829 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
830
831 rd = kmalloc(rawlen, GFP_KERNEL);
832 if (!rd)
833 return -ENOMEM;
834
835 /* Prevent the erase code from nicking the obsolete node refs while
836 we're looking at them. I really don't like this extra lock but
837 can't see any alternative. Suggestions on a postcard to... */
838 down(&c->erase_free_sem);
839
840 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
841
842 cond_resched();
843
844 /* We only care about obsolete ones */
845 if (!(ref_obsolete(raw)))
846 continue;
847
848 /* Any dirent with the same name is going to have the same length... */
849 if (ref_totlen(c, NULL, raw) != rawlen)
850 continue;
851
852 /* Doesn't matter if there's one in the same erase block. We're going to
853 delete it too at the same time. */
854 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
855 continue;
856
857 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
858
859 /* This is an obsolete node belonging to the same directory, and it's of the right
860 length. We need to take a closer look...*/
861 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
862 if (ret) {
863 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
864 /* If we can't read it, we don't need to continue to obsolete it. Continue */
865 continue;
866 }
867 if (retlen != rawlen) {
868 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
869 retlen, rawlen, ref_offset(raw));
870 continue;
871 }
872
873 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
874 continue;
875
876 /* If the name CRC doesn't match, skip */
877 if (je32_to_cpu(rd->name_crc) != name_crc)
878 continue;
879
880 /* If the name length doesn't match, or it's another deletion dirent, skip */
881 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
882 continue;
883
884 /* OK, check the actual name now */
885 if (memcmp(rd->name, fd->name, name_len))
886 continue;
887
888 /* OK. The name really does match. There really is still an older node on
889 the flash which our deletion dirent obsoletes. So we have to write out
890 a new deletion dirent to replace it */
891 up(&c->erase_free_sem);
892
893 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
894 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
895 kfree(rd);
896
897 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
898 }
899
900 up(&c->erase_free_sem);
901 kfree(rd);
902 }
903
904 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
905 we should update the metadata node with those times accordingly */
906
907 /* No need for it any more. Just mark it obsolete and remove it from the list */
908 while (*fdp) {
909 if ((*fdp) == fd) {
910 found = 1;
911 *fdp = fd->next;
912 break;
913 }
914 fdp = &(*fdp)->next;
915 }
916 if (!found) {
917 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
918 }
919 jffs2_mark_node_obsolete(c, fd->raw);
920 jffs2_free_full_dirent(fd);
921 return 0;
922 }
923
924 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
925 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
926 uint32_t start, uint32_t end)
927 {
928 struct jffs2_raw_inode ri;
929 struct jffs2_node_frag *frag;
930 struct jffs2_full_dnode *new_fn;
931 uint32_t alloclen, ilen;
932 int ret;
933
934 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
935 f->inocache->ino, start, end));
936
937 memset(&ri, 0, sizeof(ri));
938
939 if(fn->frags > 1) {
940 size_t readlen;
941 uint32_t crc;
942 /* It's partially obsoleted by a later write. So we have to
943 write it out again with the _same_ version as before */
944 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
945 if (readlen != sizeof(ri) || ret) {
946 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
947 goto fill;
948 }
949 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
950 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
951 ref_offset(fn->raw),
952 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
953 return -EIO;
954 }
955 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
956 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
957 ref_offset(fn->raw),
958 je32_to_cpu(ri.totlen), sizeof(ri));
959 return -EIO;
960 }
961 crc = crc32(0, &ri, sizeof(ri)-8);
962 if (crc != je32_to_cpu(ri.node_crc)) {
963 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
964 ref_offset(fn->raw),
965 je32_to_cpu(ri.node_crc), crc);
966 /* FIXME: We could possibly deal with this by writing new holes for each frag */
967 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
968 start, end, f->inocache->ino);
969 goto fill;
970 }
971 if (ri.compr != JFFS2_COMPR_ZERO) {
972 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
973 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
974 start, end, f->inocache->ino);
975 goto fill;
976 }
977 } else {
978 fill:
979 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
980 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
981 ri.totlen = cpu_to_je32(sizeof(ri));
982 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
983
984 ri.ino = cpu_to_je32(f->inocache->ino);
985 ri.version = cpu_to_je32(++f->highest_version);
986 ri.offset = cpu_to_je32(start);
987 ri.dsize = cpu_to_je32(end - start);
988 ri.csize = cpu_to_je32(0);
989 ri.compr = JFFS2_COMPR_ZERO;
990 }
991
992 frag = frag_last(&f->fragtree);
993 if (frag)
994 /* Fetch the inode length from the fragtree rather then
995 * from i_size since i_size may have not been updated yet */
996 ilen = frag->ofs + frag->size;
997 else
998 ilen = JFFS2_F_I_SIZE(f);
999
1000 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1001 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1002 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1003 ri.isize = cpu_to_je32(ilen);
1004 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1005 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1006 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1007 ri.data_crc = cpu_to_je32(0);
1008 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1009
1010 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1011 JFFS2_SUMMARY_INODE_SIZE);
1012 if (ret) {
1013 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1014 sizeof(ri), ret);
1015 return ret;
1016 }
1017 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1018
1019 if (IS_ERR(new_fn)) {
1020 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1021 return PTR_ERR(new_fn);
1022 }
1023 if (je32_to_cpu(ri.version) == f->highest_version) {
1024 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1025 if (f->metadata) {
1026 jffs2_mark_node_obsolete(c, f->metadata->raw);
1027 jffs2_free_full_dnode(f->metadata);
1028 f->metadata = NULL;
1029 }
1030 return 0;
1031 }
1032
1033 /*
1034 * We should only get here in the case where the node we are
1035 * replacing had more than one frag, so we kept the same version
1036 * number as before. (Except in case of error -- see 'goto fill;'
1037 * above.)
1038 */
1039 D1(if(unlikely(fn->frags <= 1)) {
1040 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1041 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1042 je32_to_cpu(ri.ino));
1043 });
1044
1045 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1046 mark_ref_normal(new_fn->raw);
1047
1048 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1049 frag; frag = frag_next(frag)) {
1050 if (frag->ofs > fn->size + fn->ofs)
1051 break;
1052 if (frag->node == fn) {
1053 frag->node = new_fn;
1054 new_fn->frags++;
1055 fn->frags--;
1056 }
1057 }
1058 if (fn->frags) {
1059 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1060 BUG();
1061 }
1062 if (!new_fn->frags) {
1063 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1064 BUG();
1065 }
1066
1067 jffs2_mark_node_obsolete(c, fn->raw);
1068 jffs2_free_full_dnode(fn);
1069
1070 return 0;
1071 }
1072
1073 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1074 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1075 uint32_t start, uint32_t end)
1076 {
1077 struct jffs2_full_dnode *new_fn;
1078 struct jffs2_raw_inode ri;
1079 uint32_t alloclen, offset, orig_end, orig_start;
1080 int ret = 0;
1081 unsigned char *comprbuf = NULL, *writebuf;
1082 unsigned long pg;
1083 unsigned char *pg_ptr;
1084
1085 memset(&ri, 0, sizeof(ri));
1086
1087 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1088 f->inocache->ino, start, end));
1089
1090 orig_end = end;
1091 orig_start = start;
1092
1093 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1094 /* Attempt to do some merging. But only expand to cover logically
1095 adjacent frags if the block containing them is already considered
1096 to be dirty. Otherwise we end up with GC just going round in
1097 circles dirtying the nodes it already wrote out, especially
1098 on NAND where we have small eraseblocks and hence a much higher
1099 chance of nodes having to be split to cross boundaries. */
1100
1101 struct jffs2_node_frag *frag;
1102 uint32_t min, max;
1103
1104 min = start & ~(PAGE_CACHE_SIZE-1);
1105 max = min + PAGE_CACHE_SIZE;
1106
1107 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1108
1109 /* BUG_ON(!frag) but that'll happen anyway... */
1110
1111 BUG_ON(frag->ofs != start);
1112
1113 /* First grow down... */
1114 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1115
1116 /* If the previous frag doesn't even reach the beginning, there's
1117 excessive fragmentation. Just merge. */
1118 if (frag->ofs > min) {
1119 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1120 frag->ofs, frag->ofs+frag->size));
1121 start = frag->ofs;
1122 continue;
1123 }
1124 /* OK. This frag holds the first byte of the page. */
1125 if (!frag->node || !frag->node->raw) {
1126 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1127 frag->ofs, frag->ofs+frag->size));
1128 break;
1129 } else {
1130
1131 /* OK, it's a frag which extends to the beginning of the page. Does it live
1132 in a block which is still considered clean? If so, don't obsolete it.
1133 If not, cover it anyway. */
1134
1135 struct jffs2_raw_node_ref *raw = frag->node->raw;
1136 struct jffs2_eraseblock *jeb;
1137
1138 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1139
1140 if (jeb == c->gcblock) {
1141 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1142 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1143 start = frag->ofs;
1144 break;
1145 }
1146 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1147 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1148 frag->ofs, frag->ofs+frag->size, jeb->offset));
1149 break;
1150 }
1151
1152 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1153 frag->ofs, frag->ofs+frag->size, jeb->offset));
1154 start = frag->ofs;
1155 break;
1156 }
1157 }
1158
1159 /* ... then up */
1160
1161 /* Find last frag which is actually part of the node we're to GC. */
1162 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1163
1164 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1165
1166 /* If the previous frag doesn't even reach the beginning, there's lots
1167 of fragmentation. Just merge. */
1168 if (frag->ofs+frag->size < max) {
1169 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1170 frag->ofs, frag->ofs+frag->size));
1171 end = frag->ofs + frag->size;
1172 continue;
1173 }
1174
1175 if (!frag->node || !frag->node->raw) {
1176 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1177 frag->ofs, frag->ofs+frag->size));
1178 break;
1179 } else {
1180
1181 /* OK, it's a frag which extends to the beginning of the page. Does it live
1182 in a block which is still considered clean? If so, don't obsolete it.
1183 If not, cover it anyway. */
1184
1185 struct jffs2_raw_node_ref *raw = frag->node->raw;
1186 struct jffs2_eraseblock *jeb;
1187
1188 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1189
1190 if (jeb == c->gcblock) {
1191 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1192 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1193 end = frag->ofs + frag->size;
1194 break;
1195 }
1196 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1197 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1198 frag->ofs, frag->ofs+frag->size, jeb->offset));
1199 break;
1200 }
1201
1202 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1203 frag->ofs, frag->ofs+frag->size, jeb->offset));
1204 end = frag->ofs + frag->size;
1205 break;
1206 }
1207 }
1208 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1209 orig_start, orig_end, start, end));
1210
1211 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1212 BUG_ON(end < orig_end);
1213 BUG_ON(start > orig_start);
1214 }
1215
1216 /* First, use readpage() to read the appropriate page into the page cache */
1217 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1218 * triggered garbage collection in the first place?
1219 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1220 * page OK. We'll actually write it out again in commit_write, which is a little
1221 * suboptimal, but at least we're correct.
1222 */
1223 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1224
1225 if (IS_ERR(pg_ptr)) {
1226 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1227 return PTR_ERR(pg_ptr);
1228 }
1229
1230 offset = start;
1231 while(offset < orig_end) {
1232 uint32_t datalen;
1233 uint32_t cdatalen;
1234 uint16_t comprtype = JFFS2_COMPR_NONE;
1235
1236 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1237 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1238
1239 if (ret) {
1240 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1241 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1242 break;
1243 }
1244 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1245 datalen = end - offset;
1246
1247 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1248
1249 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1250
1251 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1252 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1253 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1254 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1255
1256 ri.ino = cpu_to_je32(f->inocache->ino);
1257 ri.version = cpu_to_je32(++f->highest_version);
1258 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1259 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1260 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1261 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1262 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1263 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1264 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1265 ri.offset = cpu_to_je32(offset);
1266 ri.csize = cpu_to_je32(cdatalen);
1267 ri.dsize = cpu_to_je32(datalen);
1268 ri.compr = comprtype & 0xff;
1269 ri.usercompr = (comprtype >> 8) & 0xff;
1270 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1271 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1272
1273 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1274
1275 jffs2_free_comprbuf(comprbuf, writebuf);
1276
1277 if (IS_ERR(new_fn)) {
1278 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1279 ret = PTR_ERR(new_fn);
1280 break;
1281 }
1282 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1283 offset += datalen;
1284 if (f->metadata) {
1285 jffs2_mark_node_obsolete(c, f->metadata->raw);
1286 jffs2_free_full_dnode(f->metadata);
1287 f->metadata = NULL;
1288 }
1289 }
1290
1291 jffs2_gc_release_page(c, pg_ptr, &pg);
1292 return ret;
1293 }
This page took 0.083415 seconds and 4 git commands to generate.