[JFFS2] Core changes required to support JFFS2-on-Dataflash devices.
[deliverable/linux.git] / fs / jffs2 / wbuf.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
12 * $Id: wbuf.c,v 1.87 2005/02/09 09:09:02 pavlov Exp $
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include "nodelist.h"
22
23 /* For testing write failures */
24 #undef BREAKME
25 #undef BREAKMEHEADER
26
27 #ifdef BREAKME
28 static unsigned char *brokenbuf;
29 #endif
30
31 /* max. erase failures before we mark a block bad */
32 #define MAX_ERASE_FAILURES 2
33
34 /* two seconds timeout for timed wbuf-flushing */
35 #define WBUF_FLUSH_TIMEOUT 2 * HZ
36
37 struct jffs2_inodirty {
38 uint32_t ino;
39 struct jffs2_inodirty *next;
40 };
41
42 static struct jffs2_inodirty inodirty_nomem;
43
44 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
45 {
46 struct jffs2_inodirty *this = c->wbuf_inodes;
47
48 /* If a malloc failed, consider _everything_ dirty */
49 if (this == &inodirty_nomem)
50 return 1;
51
52 /* If ino == 0, _any_ non-GC writes mean 'yes' */
53 if (this && !ino)
54 return 1;
55
56 /* Look to see if the inode in question is pending in the wbuf */
57 while (this) {
58 if (this->ino == ino)
59 return 1;
60 this = this->next;
61 }
62 return 0;
63 }
64
65 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
66 {
67 struct jffs2_inodirty *this;
68
69 this = c->wbuf_inodes;
70
71 if (this != &inodirty_nomem) {
72 while (this) {
73 struct jffs2_inodirty *next = this->next;
74 kfree(this);
75 this = next;
76 }
77 }
78 c->wbuf_inodes = NULL;
79 }
80
81 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
82 {
83 struct jffs2_inodirty *new;
84
85 /* Mark the superblock dirty so that kupdated will flush... */
86 OFNI_BS_2SFFJ(c)->s_dirt = 1;
87
88 if (jffs2_wbuf_pending_for_ino(c, ino))
89 return;
90
91 new = kmalloc(sizeof(*new), GFP_KERNEL);
92 if (!new) {
93 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
94 jffs2_clear_wbuf_ino_list(c);
95 c->wbuf_inodes = &inodirty_nomem;
96 return;
97 }
98 new->ino = ino;
99 new->next = c->wbuf_inodes;
100 c->wbuf_inodes = new;
101 return;
102 }
103
104 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
105 {
106 struct list_head *this, *next;
107 static int n;
108
109 if (list_empty(&c->erasable_pending_wbuf_list))
110 return;
111
112 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
113 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
114
115 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
116 list_del(this);
117 if ((jiffies + (n++)) & 127) {
118 /* Most of the time, we just erase it immediately. Otherwise we
119 spend ages scanning it on mount, etc. */
120 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
121 list_add_tail(&jeb->list, &c->erase_pending_list);
122 c->nr_erasing_blocks++;
123 jffs2_erase_pending_trigger(c);
124 } else {
125 /* Sometimes, however, we leave it elsewhere so it doesn't get
126 immediately reused, and we spread the load a bit. */
127 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
128 list_add_tail(&jeb->list, &c->erasable_list);
129 }
130 }
131 }
132
133 #define REFILE_NOTEMPTY 0
134 #define REFILE_ANYWAY 1
135
136 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
137 {
138 D1(printk("About to refile bad block at %08x\n", jeb->offset));
139
140 D2(jffs2_dump_block_lists(c));
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
155 jffs2_erase_pending_trigger(c);
156 }
157 D2(jffs2_dump_block_lists(c));
158
159 /* Adjust its size counts accordingly */
160 c->wasted_size += jeb->free_size;
161 c->free_size -= jeb->free_size;
162 jeb->wasted_size += jeb->free_size;
163 jeb->free_size = 0;
164
165 ACCT_SANITY_CHECK(c,jeb);
166 D1(ACCT_PARANOIA_CHECK(jeb));
167 }
168
169 /* Recover from failure to write wbuf. Recover the nodes up to the
170 * wbuf, not the one which we were starting to try to write. */
171
172 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
173 {
174 struct jffs2_eraseblock *jeb, *new_jeb;
175 struct jffs2_raw_node_ref **first_raw, **raw;
176 size_t retlen;
177 int ret;
178 unsigned char *buf;
179 uint32_t start, end, ofs, len;
180
181 spin_lock(&c->erase_completion_lock);
182
183 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
184
185 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
186
187 /* Find the first node to be recovered, by skipping over every
188 node which ends before the wbuf starts, or which is obsolete. */
189 first_raw = &jeb->first_node;
190 while (*first_raw &&
191 (ref_obsolete(*first_raw) ||
192 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
193 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
194 ref_offset(*first_raw), ref_flags(*first_raw),
195 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
196 c->wbuf_ofs));
197 first_raw = &(*first_raw)->next_phys;
198 }
199
200 if (!*first_raw) {
201 /* All nodes were obsolete. Nothing to recover. */
202 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
203 spin_unlock(&c->erase_completion_lock);
204 return;
205 }
206
207 start = ref_offset(*first_raw);
208 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
209
210 /* Find the last node to be recovered */
211 raw = first_raw;
212 while ((*raw)) {
213 if (!ref_obsolete(*raw))
214 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
215
216 raw = &(*raw)->next_phys;
217 }
218 spin_unlock(&c->erase_completion_lock);
219
220 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
221
222 buf = NULL;
223 if (start < c->wbuf_ofs) {
224 /* First affected node was already partially written.
225 * Attempt to reread the old data into our buffer. */
226
227 buf = kmalloc(end - start, GFP_KERNEL);
228 if (!buf) {
229 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
230
231 goto read_failed;
232 }
233
234 /* Do the read... */
235 if (jffs2_cleanmarker_oob(c))
236 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
237 else
238 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
239
240 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
241 /* ECC recovered */
242 ret = 0;
243 }
244 if (ret || retlen != c->wbuf_ofs - start) {
245 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
246
247 kfree(buf);
248 buf = NULL;
249 read_failed:
250 first_raw = &(*first_raw)->next_phys;
251 /* If this was the only node to be recovered, give up */
252 if (!(*first_raw))
253 return;
254
255 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
256 start = ref_offset(*first_raw);
257 } else {
258 /* Read succeeded. Copy the remaining data from the wbuf */
259 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
260 }
261 }
262 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
263 Either 'buf' contains the data, or we find it in the wbuf */
264
265
266 /* ... and get an allocation of space from a shiny new block instead */
267 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
268 if (ret) {
269 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
270 kfree(buf);
271 return;
272 }
273 if (end-start >= c->wbuf_pagesize) {
274 /* Need to do another write immediately, but it's possible
275 that this is just because the wbuf itself is completely
276 full, and there's nothing earlier read back from the
277 flash. Hence 'buf' isn't necessarily what we're writing
278 from. */
279 unsigned char *rewrite_buf = buf?:c->wbuf;
280 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
281
282 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
283 towrite, ofs));
284
285 #ifdef BREAKMEHEADER
286 static int breakme;
287 if (breakme++ == 20) {
288 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
289 breakme = 0;
290 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
291 brokenbuf, NULL, c->oobinfo);
292 ret = -EIO;
293 } else
294 #endif
295 if (jffs2_cleanmarker_oob(c))
296 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
297 rewrite_buf, NULL, c->oobinfo);
298 else
299 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
300
301 if (ret || retlen != towrite) {
302 /* Argh. We tried. Really we did. */
303 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
304 kfree(buf);
305
306 if (retlen) {
307 struct jffs2_raw_node_ref *raw2;
308
309 raw2 = jffs2_alloc_raw_node_ref();
310 if (!raw2)
311 return;
312
313 raw2->flash_offset = ofs | REF_OBSOLETE;
314 raw2->__totlen = ref_totlen(c, jeb, *first_raw);
315 raw2->next_phys = NULL;
316 raw2->next_in_ino = NULL;
317
318 jffs2_add_physical_node_ref(c, raw2);
319 }
320 return;
321 }
322 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
323
324 c->wbuf_len = (end - start) - towrite;
325 c->wbuf_ofs = ofs + towrite;
326 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
327 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
328 if (buf)
329 kfree(buf);
330 } else {
331 /* OK, now we're left with the dregs in whichever buffer we're using */
332 if (buf) {
333 memcpy(c->wbuf, buf, end-start);
334 kfree(buf);
335 } else {
336 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
337 }
338 c->wbuf_ofs = ofs;
339 c->wbuf_len = end - start;
340 }
341
342 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
343 new_jeb = &c->blocks[ofs / c->sector_size];
344
345 spin_lock(&c->erase_completion_lock);
346 if (new_jeb->first_node) {
347 /* Odd, but possible with ST flash later maybe */
348 new_jeb->last_node->next_phys = *first_raw;
349 } else {
350 new_jeb->first_node = *first_raw;
351 }
352
353 raw = first_raw;
354 while (*raw) {
355 uint32_t rawlen = ref_totlen(c, jeb, *raw);
356
357 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
358 rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
359
360 if (ref_obsolete(*raw)) {
361 /* Shouldn't really happen much */
362 new_jeb->dirty_size += rawlen;
363 new_jeb->free_size -= rawlen;
364 c->dirty_size += rawlen;
365 } else {
366 new_jeb->used_size += rawlen;
367 new_jeb->free_size -= rawlen;
368 jeb->dirty_size += rawlen;
369 jeb->used_size -= rawlen;
370 c->dirty_size += rawlen;
371 }
372 c->free_size -= rawlen;
373 (*raw)->flash_offset = ofs | ref_flags(*raw);
374 ofs += rawlen;
375 new_jeb->last_node = *raw;
376
377 raw = &(*raw)->next_phys;
378 }
379
380 /* Fix up the original jeb now it's on the bad_list */
381 *first_raw = NULL;
382 if (first_raw == &jeb->first_node) {
383 jeb->last_node = NULL;
384 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
385 list_del(&jeb->list);
386 list_add(&jeb->list, &c->erase_pending_list);
387 c->nr_erasing_blocks++;
388 jffs2_erase_pending_trigger(c);
389 }
390 else
391 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
392
393 ACCT_SANITY_CHECK(c,jeb);
394 D1(ACCT_PARANOIA_CHECK(jeb));
395
396 ACCT_SANITY_CHECK(c,new_jeb);
397 D1(ACCT_PARANOIA_CHECK(new_jeb));
398
399 spin_unlock(&c->erase_completion_lock);
400
401 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
402 }
403
404 /* Meaning of pad argument:
405 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
406 1: Pad, do not adjust nextblock free_size
407 2: Pad, adjust nextblock free_size
408 */
409 #define NOPAD 0
410 #define PAD_NOACCOUNT 1
411 #define PAD_ACCOUNTING 2
412
413 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
414 {
415 int ret;
416 size_t retlen;
417
418 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
419 del_timer() the timer we never initialised. */
420 if (!jffs2_is_writebuffered(c))
421 return 0;
422
423 if (!down_trylock(&c->alloc_sem)) {
424 up(&c->alloc_sem);
425 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
426 BUG();
427 }
428
429 if (!c->wbuf_len) /* already checked c->wbuf above */
430 return 0;
431
432 /* claim remaining space on the page
433 this happens, if we have a change to a new block,
434 or if fsync forces us to flush the writebuffer.
435 if we have a switch to next page, we will not have
436 enough remaining space for this.
437 */
438 if (pad) {
439 c->wbuf_len = PAD(c->wbuf_len);
440
441 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
442 with 8 byte page size */
443 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
444
445 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
446 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
447 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
448 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
449 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
450 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
451 }
452 }
453 /* else jffs2_flash_writev has actually filled in the rest of the
454 buffer for us, and will deal with the node refs etc. later. */
455
456 #ifdef BREAKME
457 static int breakme;
458 if (breakme++ == 20) {
459 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
460 breakme = 0;
461 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
462 &retlen, brokenbuf, NULL, c->oobinfo);
463 ret = -EIO;
464 } else
465 #endif
466
467 if (jffs2_cleanmarker_oob(c))
468 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
469 else
470 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
471
472 if (ret || retlen != c->wbuf_pagesize) {
473 if (ret)
474 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
475 else {
476 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
477 retlen, c->wbuf_pagesize);
478 ret = -EIO;
479 }
480
481 jffs2_wbuf_recover(c);
482
483 return ret;
484 }
485
486 spin_lock(&c->erase_completion_lock);
487
488 /* Adjust free size of the block if we padded. */
489 if (pad) {
490 struct jffs2_eraseblock *jeb;
491
492 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
493
494 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
495 (jeb==c->nextblock)?"next":"", jeb->offset));
496
497 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
498 padded. If there is less free space in the block than that,
499 something screwed up */
500 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
501 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
502 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
503 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
504 jeb->offset, jeb->free_size);
505 BUG();
506 }
507 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
508 c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
509 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
510 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
511 }
512
513 /* Stick any now-obsoleted blocks on the erase_pending_list */
514 jffs2_refile_wbuf_blocks(c);
515 jffs2_clear_wbuf_ino_list(c);
516 spin_unlock(&c->erase_completion_lock);
517
518 memset(c->wbuf,0xff,c->wbuf_pagesize);
519 /* adjust write buffer offset, else we get a non contiguous write bug */
520 c->wbuf_ofs += c->wbuf_pagesize;
521 c->wbuf_len = 0;
522 return 0;
523 }
524
525 /* Trigger garbage collection to flush the write-buffer.
526 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
527 outstanding. If ino arg non-zero, do it only if a write for the
528 given inode is outstanding. */
529 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
530 {
531 uint32_t old_wbuf_ofs;
532 uint32_t old_wbuf_len;
533 int ret = 0;
534
535 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
536
537 if (!c->wbuf)
538 return 0;
539
540 down(&c->alloc_sem);
541 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
542 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
543 up(&c->alloc_sem);
544 return 0;
545 }
546
547 old_wbuf_ofs = c->wbuf_ofs;
548 old_wbuf_len = c->wbuf_len;
549
550 if (c->unchecked_size) {
551 /* GC won't make any progress for a while */
552 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
553 down_write(&c->wbuf_sem);
554 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
555 /* retry flushing wbuf in case jffs2_wbuf_recover
556 left some data in the wbuf */
557 if (ret)
558 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
559 up_write(&c->wbuf_sem);
560 } else while (old_wbuf_len &&
561 old_wbuf_ofs == c->wbuf_ofs) {
562
563 up(&c->alloc_sem);
564
565 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
566
567 ret = jffs2_garbage_collect_pass(c);
568 if (ret) {
569 /* GC failed. Flush it with padding instead */
570 down(&c->alloc_sem);
571 down_write(&c->wbuf_sem);
572 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
573 /* retry flushing wbuf in case jffs2_wbuf_recover
574 left some data in the wbuf */
575 if (ret)
576 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
577 up_write(&c->wbuf_sem);
578 break;
579 }
580 down(&c->alloc_sem);
581 }
582
583 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
584
585 up(&c->alloc_sem);
586 return ret;
587 }
588
589 /* Pad write-buffer to end and write it, wasting space. */
590 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
591 {
592 int ret;
593
594 if (!c->wbuf)
595 return 0;
596
597 down_write(&c->wbuf_sem);
598 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
599 /* retry - maybe wbuf recover left some data in wbuf. */
600 if (ret)
601 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
602 up_write(&c->wbuf_sem);
603
604 return ret;
605 }
606
607 #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
608 #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
609 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
610 {
611 struct kvec outvecs[3];
612 uint32_t totlen = 0;
613 uint32_t split_ofs = 0;
614 uint32_t old_totlen;
615 int ret, splitvec = -1;
616 int invec, outvec;
617 size_t wbuf_retlen;
618 unsigned char *wbuf_ptr;
619 size_t donelen = 0;
620 uint32_t outvec_to = to;
621
622 /* If not NAND flash, don't bother */
623 if (!jffs2_is_writebuffered(c))
624 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
625
626 down_write(&c->wbuf_sem);
627
628 /* If wbuf_ofs is not initialized, set it to target address */
629 if (c->wbuf_ofs == 0xFFFFFFFF) {
630 c->wbuf_ofs = PAGE_DIV(to);
631 c->wbuf_len = PAGE_MOD(to);
632 memset(c->wbuf,0xff,c->wbuf_pagesize);
633 }
634
635 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below
636 fail for ECC'd NOR because cleanmarker == 16, so a block starts at
637 xxx0010. */
638 if (jffs2_nor_ecc(c)) {
639 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
640 c->wbuf_ofs = PAGE_DIV(to);
641 c->wbuf_len = PAGE_MOD(to);
642 memset(c->wbuf,0xff,c->wbuf_pagesize);
643 }
644 }
645
646 /* Sanity checks on target address.
647 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
648 and it's permitted to write at the beginning of a new
649 erase block. Anything else, and you die.
650 New block starts at xxx000c (0-b = block header)
651 */
652 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
653 /* It's a write to a new block */
654 if (c->wbuf_len) {
655 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
656 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
657 if (ret) {
658 /* the underlying layer has to check wbuf_len to do the cleanup */
659 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
660 *retlen = 0;
661 goto exit;
662 }
663 }
664 /* set pointer to new block */
665 c->wbuf_ofs = PAGE_DIV(to);
666 c->wbuf_len = PAGE_MOD(to);
667 }
668
669 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
670 /* We're not writing immediately after the writebuffer. Bad. */
671 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
672 if (c->wbuf_len)
673 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
674 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
675 BUG();
676 }
677
678 /* Note outvecs[3] above. We know count is never greater than 2 */
679 if (count > 2) {
680 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
681 BUG();
682 }
683
684 invec = 0;
685 outvec = 0;
686
687 /* Fill writebuffer first, if already in use */
688 if (c->wbuf_len) {
689 uint32_t invec_ofs = 0;
690
691 /* adjust alignment offset */
692 if (c->wbuf_len != PAGE_MOD(to)) {
693 c->wbuf_len = PAGE_MOD(to);
694 /* take care of alignment to next page */
695 if (!c->wbuf_len)
696 c->wbuf_len = c->wbuf_pagesize;
697 }
698
699 while(c->wbuf_len < c->wbuf_pagesize) {
700 uint32_t thislen;
701
702 if (invec == count)
703 goto alldone;
704
705 thislen = c->wbuf_pagesize - c->wbuf_len;
706
707 if (thislen >= invecs[invec].iov_len)
708 thislen = invecs[invec].iov_len;
709
710 invec_ofs = thislen;
711
712 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
713 c->wbuf_len += thislen;
714 donelen += thislen;
715 /* Get next invec, if actual did not fill the buffer */
716 if (c->wbuf_len < c->wbuf_pagesize)
717 invec++;
718 }
719
720 /* write buffer is full, flush buffer */
721 ret = __jffs2_flush_wbuf(c, NOPAD);
722 if (ret) {
723 /* the underlying layer has to check wbuf_len to do the cleanup */
724 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
725 /* Retlen zero to make sure our caller doesn't mark the space dirty.
726 We've already done everything that's necessary */
727 *retlen = 0;
728 goto exit;
729 }
730 outvec_to += donelen;
731 c->wbuf_ofs = outvec_to;
732
733 /* All invecs done ? */
734 if (invec == count)
735 goto alldone;
736
737 /* Set up the first outvec, containing the remainder of the
738 invec we partially used */
739 if (invecs[invec].iov_len > invec_ofs) {
740 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
741 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
742 if (totlen > c->wbuf_pagesize) {
743 splitvec = outvec;
744 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
745 }
746 outvec++;
747 }
748 invec++;
749 }
750
751 /* OK, now we've flushed the wbuf and the start of the bits
752 we have been asked to write, now to write the rest.... */
753
754 /* totlen holds the amount of data still to be written */
755 old_totlen = totlen;
756 for ( ; invec < count; invec++,outvec++ ) {
757 outvecs[outvec].iov_base = invecs[invec].iov_base;
758 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
759 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
760 splitvec = outvec;
761 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
762 old_totlen = totlen;
763 }
764 }
765
766 /* Now the outvecs array holds all the remaining data to write */
767 /* Up to splitvec,split_ofs is to be written immediately. The rest
768 goes into the (now-empty) wbuf */
769
770 if (splitvec != -1) {
771 uint32_t remainder;
772
773 remainder = outvecs[splitvec].iov_len - split_ofs;
774 outvecs[splitvec].iov_len = split_ofs;
775
776 /* We did cross a page boundary, so we write some now */
777 if (jffs2_cleanmarker_oob(c))
778 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
779 else
780 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
781
782 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
783 /* At this point we have no problem,
784 c->wbuf is empty. However refile nextblock to avoid
785 writing again to same address.
786 */
787 struct jffs2_eraseblock *jeb;
788
789 spin_lock(&c->erase_completion_lock);
790
791 jeb = &c->blocks[outvec_to / c->sector_size];
792 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
793
794 *retlen = 0;
795 spin_unlock(&c->erase_completion_lock);
796 goto exit;
797 }
798
799 donelen += wbuf_retlen;
800 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
801
802 if (remainder) {
803 outvecs[splitvec].iov_base += split_ofs;
804 outvecs[splitvec].iov_len = remainder;
805 } else {
806 splitvec++;
807 }
808
809 } else {
810 splitvec = 0;
811 }
812
813 /* Now splitvec points to the start of the bits we have to copy
814 into the wbuf */
815 wbuf_ptr = c->wbuf;
816
817 for ( ; splitvec < outvec; splitvec++) {
818 /* Don't copy the wbuf into itself */
819 if (outvecs[splitvec].iov_base == c->wbuf)
820 continue;
821 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
822 wbuf_ptr += outvecs[splitvec].iov_len;
823 donelen += outvecs[splitvec].iov_len;
824 }
825 c->wbuf_len = wbuf_ptr - c->wbuf;
826
827 /* If there's a remainder in the wbuf and it's a non-GC write,
828 remember that the wbuf affects this ino */
829 alldone:
830 *retlen = donelen;
831
832 if (c->wbuf_len && ino)
833 jffs2_wbuf_dirties_inode(c, ino);
834
835 ret = 0;
836
837 exit:
838 up_write(&c->wbuf_sem);
839 return ret;
840 }
841
842 /*
843 * This is the entry for flash write.
844 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
845 */
846 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
847 {
848 struct kvec vecs[1];
849
850 if (!jffs2_is_writebuffered(c))
851 return c->mtd->write(c->mtd, ofs, len, retlen, buf);
852
853 vecs[0].iov_base = (unsigned char *) buf;
854 vecs[0].iov_len = len;
855 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
856 }
857
858 /*
859 Handle readback from writebuffer and ECC failure return
860 */
861 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
862 {
863 loff_t orbf = 0, owbf = 0, lwbf = 0;
864 int ret;
865
866 if (!jffs2_is_writebuffered(c))
867 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
868
869 /* Read flash */
870 if (jffs2_cleanmarker_oob(c))
871 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
872 else
873 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
874
875 if ( (ret == -EBADMSG) && (*retlen == len) ) {
876 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
877 len, ofs);
878 /*
879 * We have the raw data without ECC correction in the buffer, maybe
880 * we are lucky and all data or parts are correct. We check the node.
881 * If data are corrupted node check will sort it out.
882 * We keep this block, it will fail on write or erase and the we
883 * mark it bad. Or should we do that now? But we should give him a chance.
884 * Maybe we had a system crash or power loss before the ecc write or
885 * a erase was completed.
886 * So we return success. :)
887 */
888 ret = 0;
889 }
890
891 /* if no writebuffer available or write buffer empty, return */
892 if (!c->wbuf_pagesize || !c->wbuf_len)
893 return ret;;
894
895 /* if we read in a different block, return */
896 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
897 return ret;
898
899 /* Lock only if we have reason to believe wbuf contains relevant data,
900 so that checking an erased block during wbuf recovery space allocation
901 does not deadlock. */
902 down_read(&c->wbuf_sem);
903
904 if (ofs >= c->wbuf_ofs) {
905 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
906 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
907 goto exit;
908 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
909 if (lwbf > len)
910 lwbf = len;
911 } else {
912 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
913 if (orbf > len) /* is write beyond write buffer ? */
914 goto exit;
915 lwbf = len - orbf; /* number of bytes to copy */
916 if (lwbf > c->wbuf_len)
917 lwbf = c->wbuf_len;
918 }
919 if (lwbf > 0)
920 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
921
922 exit:
923 up_read(&c->wbuf_sem);
924 return ret;
925 }
926
927 /*
928 * Check, if the out of band area is empty
929 */
930 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
931 {
932 unsigned char *buf;
933 int ret = 0;
934 int i,len,page;
935 size_t retlen;
936 int oob_size;
937
938 /* allocate a buffer for all oob data in this sector */
939 oob_size = c->mtd->oobsize;
940 len = 4 * oob_size;
941 buf = kmalloc(len, GFP_KERNEL);
942 if (!buf) {
943 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
944 return -ENOMEM;
945 }
946 /*
947 * if mode = 0, we scan for a total empty oob area, else we have
948 * to take care of the cleanmarker in the first page of the block
949 */
950 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
951 if (ret) {
952 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
953 goto out;
954 }
955
956 if (retlen < len) {
957 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
958 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
959 ret = -EIO;
960 goto out;
961 }
962
963 /* Special check for first page */
964 for(i = 0; i < oob_size ; i++) {
965 /* Yeah, we know about the cleanmarker. */
966 if (mode && i >= c->fsdata_pos &&
967 i < c->fsdata_pos + c->fsdata_len)
968 continue;
969
970 if (buf[i] != 0xFF) {
971 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
972 buf[page+i], page+i, jeb->offset));
973 ret = 1;
974 goto out;
975 }
976 }
977
978 /* we know, we are aligned :) */
979 for (page = oob_size; page < len; page += sizeof(long)) {
980 unsigned long dat = *(unsigned long *)(&buf[page]);
981 if(dat != -1) {
982 ret = 1;
983 goto out;
984 }
985 }
986
987 out:
988 kfree(buf);
989
990 return ret;
991 }
992
993 /*
994 * Scan for a valid cleanmarker and for bad blocks
995 * For virtual blocks (concatenated physical blocks) check the cleanmarker
996 * only in the first page of the first physical block, but scan for bad blocks in all
997 * physical blocks
998 */
999 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1000 {
1001 struct jffs2_unknown_node n;
1002 unsigned char buf[2 * NAND_MAX_OOBSIZE];
1003 unsigned char *p;
1004 int ret, i, cnt, retval = 0;
1005 size_t retlen, offset;
1006 int oob_size;
1007
1008 offset = jeb->offset;
1009 oob_size = c->mtd->oobsize;
1010
1011 /* Loop through the physical blocks */
1012 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1013 /* Check first if the block is bad. */
1014 if (c->mtd->block_isbad (c->mtd, offset)) {
1015 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1016 return 2;
1017 }
1018 /*
1019 * We read oob data from page 0 and 1 of the block.
1020 * page 0 contains cleanmarker and badblock info
1021 * page 1 contains failure count of this block
1022 */
1023 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1024
1025 if (ret) {
1026 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1027 return ret;
1028 }
1029 if (retlen < (oob_size << 1)) {
1030 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1031 return -EIO;
1032 }
1033
1034 /* Check cleanmarker only on the first physical block */
1035 if (!cnt) {
1036 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1037 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1038 n.totlen = cpu_to_je32 (8);
1039 p = (unsigned char *) &n;
1040
1041 for (i = 0; i < c->fsdata_len; i++) {
1042 if (buf[c->fsdata_pos + i] != p[i]) {
1043 retval = 1;
1044 }
1045 }
1046 D1(if (retval == 1) {
1047 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1048 printk(KERN_WARNING "OOB at %08x was ", offset);
1049 for (i=0; i < oob_size; i++) {
1050 printk("%02x ", buf[i]);
1051 }
1052 printk("\n");
1053 })
1054 }
1055 offset += c->mtd->erasesize;
1056 }
1057 return retval;
1058 }
1059
1060 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1061 {
1062 struct jffs2_unknown_node n;
1063 int ret;
1064 size_t retlen;
1065
1066 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1067 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1068 n.totlen = cpu_to_je32(8);
1069
1070 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1071
1072 if (ret) {
1073 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1074 return ret;
1075 }
1076 if (retlen != c->fsdata_len) {
1077 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1078 return ret;
1079 }
1080 return 0;
1081 }
1082
1083 /*
1084 * On NAND we try to mark this block bad. If the block was erased more
1085 * than MAX_ERASE_FAILURES we mark it finaly bad.
1086 * Don't care about failures. This block remains on the erase-pending
1087 * or badblock list as long as nobody manipulates the flash with
1088 * a bootloader or something like that.
1089 */
1090
1091 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1092 {
1093 int ret;
1094
1095 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1096 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1097 return 0;
1098
1099 if (!c->mtd->block_markbad)
1100 return 1; // What else can we do?
1101
1102 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1103 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1104
1105 if (ret) {
1106 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1107 return ret;
1108 }
1109 return 1;
1110 }
1111
1112 #define NAND_JFFS2_OOB16_FSDALEN 8
1113
1114 static struct nand_oobinfo jffs2_oobinfo_docecc = {
1115 .useecc = MTD_NANDECC_PLACE,
1116 .eccbytes = 6,
1117 .eccpos = {0,1,2,3,4,5}
1118 };
1119
1120
1121 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1122 {
1123 struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
1124
1125 /* Do this only, if we have an oob buffer */
1126 if (!c->mtd->oobsize)
1127 return 0;
1128
1129 /* Cleanmarker is out-of-band, so inline size zero */
1130 c->cleanmarker_size = 0;
1131
1132 /* Should we use autoplacement ? */
1133 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
1134 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1135 /* Get the position of the free bytes */
1136 if (!oinfo->oobfree[0][1]) {
1137 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1138 return -ENOSPC;
1139 }
1140 c->fsdata_pos = oinfo->oobfree[0][0];
1141 c->fsdata_len = oinfo->oobfree[0][1];
1142 if (c->fsdata_len > 8)
1143 c->fsdata_len = 8;
1144 } else {
1145 /* This is just a legacy fallback and should go away soon */
1146 switch(c->mtd->ecctype) {
1147 case MTD_ECC_RS_DiskOnChip:
1148 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1149 c->oobinfo = &jffs2_oobinfo_docecc;
1150 c->fsdata_pos = 6;
1151 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
1152 c->badblock_pos = 15;
1153 break;
1154
1155 default:
1156 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1157 return -EINVAL;
1158 }
1159 }
1160 return 0;
1161 }
1162
1163 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1164 {
1165 int res;
1166
1167 /* Initialise write buffer */
1168 init_rwsem(&c->wbuf_sem);
1169 c->wbuf_pagesize = c->mtd->oobblock;
1170 c->wbuf_ofs = 0xFFFFFFFF;
1171
1172 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1173 if (!c->wbuf)
1174 return -ENOMEM;
1175
1176 res = jffs2_nand_set_oobinfo(c);
1177
1178 #ifdef BREAKME
1179 if (!brokenbuf)
1180 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1181 if (!brokenbuf) {
1182 kfree(c->wbuf);
1183 return -ENOMEM;
1184 }
1185 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1186 #endif
1187 return res;
1188 }
1189
1190 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1191 {
1192 kfree(c->wbuf);
1193 }
1194
1195 #ifdef CONFIG_JFFS2_FS_NOR_ECC
1196 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
1197 /* Cleanmarker is actually larger on the flashes */
1198 c->cleanmarker_size = 16;
1199
1200 /* Initialize write buffer */
1201 init_rwsem(&c->wbuf_sem);
1202 c->wbuf_pagesize = c->mtd->eccsize;
1203 c->wbuf_ofs = 0xFFFFFFFF;
1204
1205 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1206 if (!c->wbuf)
1207 return -ENOMEM;
1208
1209 return 0;
1210 }
1211
1212 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
1213 kfree(c->wbuf);
1214 }
1215 #endif
This page took 0.060199 seconds and 5 git commands to generate.