[MTD] NAND Replace oobinfo by ecclayout
[deliverable/linux.git] / fs / jffs2 / wbuf.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22
23 #include "nodelist.h"
24
25 /* For testing write failures */
26 #undef BREAKME
27 #undef BREAKMEHEADER
28
29 #ifdef BREAKME
30 static unsigned char *brokenbuf;
31 #endif
32
33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
35
36 /* max. erase failures before we mark a block bad */
37 #define MAX_ERASE_FAILURES 2
38
39 struct jffs2_inodirty {
40 uint32_t ino;
41 struct jffs2_inodirty *next;
42 };
43
44 static struct jffs2_inodirty inodirty_nomem;
45
46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
47 {
48 struct jffs2_inodirty *this = c->wbuf_inodes;
49
50 /* If a malloc failed, consider _everything_ dirty */
51 if (this == &inodirty_nomem)
52 return 1;
53
54 /* If ino == 0, _any_ non-GC writes mean 'yes' */
55 if (this && !ino)
56 return 1;
57
58 /* Look to see if the inode in question is pending in the wbuf */
59 while (this) {
60 if (this->ino == ino)
61 return 1;
62 this = this->next;
63 }
64 return 0;
65 }
66
67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
68 {
69 struct jffs2_inodirty *this;
70
71 this = c->wbuf_inodes;
72
73 if (this != &inodirty_nomem) {
74 while (this) {
75 struct jffs2_inodirty *next = this->next;
76 kfree(this);
77 this = next;
78 }
79 }
80 c->wbuf_inodes = NULL;
81 }
82
83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
84 {
85 struct jffs2_inodirty *new;
86
87 /* Mark the superblock dirty so that kupdated will flush... */
88 jffs2_erase_pending_trigger(c);
89
90 if (jffs2_wbuf_pending_for_ino(c, ino))
91 return;
92
93 new = kmalloc(sizeof(*new), GFP_KERNEL);
94 if (!new) {
95 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
96 jffs2_clear_wbuf_ino_list(c);
97 c->wbuf_inodes = &inodirty_nomem;
98 return;
99 }
100 new->ino = ino;
101 new->next = c->wbuf_inodes;
102 c->wbuf_inodes = new;
103 return;
104 }
105
106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
107 {
108 struct list_head *this, *next;
109 static int n;
110
111 if (list_empty(&c->erasable_pending_wbuf_list))
112 return;
113
114 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
115 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
116
117 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
118 list_del(this);
119 if ((jiffies + (n++)) & 127) {
120 /* Most of the time, we just erase it immediately. Otherwise we
121 spend ages scanning it on mount, etc. */
122 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
123 list_add_tail(&jeb->list, &c->erase_pending_list);
124 c->nr_erasing_blocks++;
125 jffs2_erase_pending_trigger(c);
126 } else {
127 /* Sometimes, however, we leave it elsewhere so it doesn't get
128 immediately reused, and we spread the load a bit. */
129 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
130 list_add_tail(&jeb->list, &c->erasable_list);
131 }
132 }
133 }
134
135 #define REFILE_NOTEMPTY 0
136 #define REFILE_ANYWAY 1
137
138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
139 {
140 D1(printk("About to refile bad block at %08x\n", jeb->offset));
141
142 /* File the existing block on the bad_used_list.... */
143 if (c->nextblock == jeb)
144 c->nextblock = NULL;
145 else /* Not sure this should ever happen... need more coffee */
146 list_del(&jeb->list);
147 if (jeb->first_node) {
148 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
149 list_add(&jeb->list, &c->bad_used_list);
150 } else {
151 BUG_ON(allow_empty == REFILE_NOTEMPTY);
152 /* It has to have had some nodes or we couldn't be here */
153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 list_add(&jeb->list, &c->erase_pending_list);
155 c->nr_erasing_blocks++;
156 jffs2_erase_pending_trigger(c);
157 }
158
159 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
160 uint32_t oldfree = jeb->free_size;
161
162 jffs2_link_node_ref(c, jeb,
163 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
164 oldfree, NULL);
165 /* convert to wasted */
166 c->wasted_size += oldfree;
167 jeb->wasted_size += oldfree;
168 c->dirty_size -= oldfree;
169 jeb->dirty_size -= oldfree;
170 }
171
172 jffs2_dbg_dump_block_lists_nolock(c);
173 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
174 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
175 }
176
177 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
178 struct jffs2_inode_info *f,
179 struct jffs2_raw_node_ref *raw,
180 union jffs2_node_union *node)
181 {
182 struct jffs2_node_frag *frag;
183 struct jffs2_full_dirent *fd;
184
185 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
186 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
187
188 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
189 je16_to_cpu(node->u.magic) != 0);
190
191 switch (je16_to_cpu(node->u.nodetype)) {
192 case JFFS2_NODETYPE_INODE:
193 if (f->metadata && f->metadata->raw == raw) {
194 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
195 return &f->metadata->raw;
196 }
197 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
198 BUG_ON(!frag);
199 /* Find a frag which refers to the full_dnode we want to modify */
200 while (!frag->node || frag->node->raw != raw) {
201 frag = frag_next(frag);
202 BUG_ON(!frag);
203 }
204 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
205 return &frag->node->raw;
206
207 case JFFS2_NODETYPE_DIRENT:
208 for (fd = f->dents; fd; fd = fd->next) {
209 if (fd->raw == raw) {
210 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
211 return &fd->raw;
212 }
213 }
214 BUG();
215
216 default:
217 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
218 je16_to_cpu(node->u.nodetype));
219 break;
220 }
221 return NULL;
222 }
223
224 /* Recover from failure to write wbuf. Recover the nodes up to the
225 * wbuf, not the one which we were starting to try to write. */
226
227 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
228 {
229 struct jffs2_eraseblock *jeb, *new_jeb;
230 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
231 size_t retlen;
232 int ret;
233 int nr_refile = 0;
234 unsigned char *buf;
235 uint32_t start, end, ofs, len;
236
237 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
238
239 spin_lock(&c->erase_completion_lock);
240 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
241 spin_unlock(&c->erase_completion_lock);
242
243 BUG_ON(!ref_obsolete(jeb->last_node));
244
245 /* Find the first node to be recovered, by skipping over every
246 node which ends before the wbuf starts, or which is obsolete. */
247 for (next = raw = jeb->first_node; next; raw = next) {
248 next = ref_next(raw);
249
250 if (ref_obsolete(raw) ||
251 (next && ref_offset(next) <= c->wbuf_ofs)) {
252 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
253 ref_offset(raw), ref_flags(raw),
254 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
255 c->wbuf_ofs);
256 continue;
257 }
258 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
259 ref_offset(raw), ref_flags(raw),
260 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
261
262 first_raw = raw;
263 break;
264 }
265
266 if (!first_raw) {
267 /* All nodes were obsolete. Nothing to recover. */
268 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
269 c->wbuf_len = 0;
270 return;
271 }
272
273 start = ref_offset(first_raw);
274 end = ref_offset(jeb->last_node);
275 nr_refile = 1;
276
277 /* Count the number of refs which need to be copied */
278 while ((raw = ref_next(raw)) != jeb->last_node)
279 nr_refile++;
280
281 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
282 start, end, end - start, nr_refile);
283
284 buf = NULL;
285 if (start < c->wbuf_ofs) {
286 /* First affected node was already partially written.
287 * Attempt to reread the old data into our buffer. */
288
289 buf = kmalloc(end - start, GFP_KERNEL);
290 if (!buf) {
291 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
292
293 goto read_failed;
294 }
295
296 /* Do the read... */
297 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
298
299 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
300 /* ECC recovered */
301 ret = 0;
302 }
303 if (ret || retlen != c->wbuf_ofs - start) {
304 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
305
306 kfree(buf);
307 buf = NULL;
308 read_failed:
309 first_raw = ref_next(first_raw);
310 nr_refile--;
311 while (first_raw && ref_obsolete(first_raw)) {
312 first_raw = ref_next(first_raw);
313 nr_refile--;
314 }
315
316 /* If this was the only node to be recovered, give up */
317 if (!first_raw) {
318 c->wbuf_len = 0;
319 return;
320 }
321
322 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
323 start = ref_offset(first_raw);
324 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
325 start, end, end - start, nr_refile);
326
327 } else {
328 /* Read succeeded. Copy the remaining data from the wbuf */
329 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
330 }
331 }
332 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
333 Either 'buf' contains the data, or we find it in the wbuf */
334
335 /* ... and get an allocation of space from a shiny new block instead */
336 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
337 if (ret) {
338 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
339 kfree(buf);
340 return;
341 }
342
343 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
344 if (ret) {
345 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
346 kfree(buf);
347 return;
348 }
349
350 ofs = write_ofs(c);
351
352 if (end-start >= c->wbuf_pagesize) {
353 /* Need to do another write immediately, but it's possible
354 that this is just because the wbuf itself is completely
355 full, and there's nothing earlier read back from the
356 flash. Hence 'buf' isn't necessarily what we're writing
357 from. */
358 unsigned char *rewrite_buf = buf?:c->wbuf;
359 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
360
361 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
362 towrite, ofs));
363
364 #ifdef BREAKMEHEADER
365 static int breakme;
366 if (breakme++ == 20) {
367 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
368 breakme = 0;
369 c->mtd->write(c->mtd, ofs, towrite, &retlen,
370 brokenbuf);
371 ret = -EIO;
372 } else
373 #endif
374 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
375 rewrite_buf);
376
377 if (ret || retlen != towrite) {
378 /* Argh. We tried. Really we did. */
379 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
380 kfree(buf);
381
382 if (retlen)
383 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
384
385 return;
386 }
387 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
388
389 c->wbuf_len = (end - start) - towrite;
390 c->wbuf_ofs = ofs + towrite;
391 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
392 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
393 } else {
394 /* OK, now we're left with the dregs in whichever buffer we're using */
395 if (buf) {
396 memcpy(c->wbuf, buf, end-start);
397 } else {
398 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
399 }
400 c->wbuf_ofs = ofs;
401 c->wbuf_len = end - start;
402 }
403
404 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
405 new_jeb = &c->blocks[ofs / c->sector_size];
406
407 spin_lock(&c->erase_completion_lock);
408 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
409 uint32_t rawlen = ref_totlen(c, jeb, raw);
410 struct jffs2_inode_cache *ic;
411 struct jffs2_raw_node_ref *new_ref;
412 struct jffs2_raw_node_ref **adjust_ref = NULL;
413 struct jffs2_inode_info *f = NULL;
414
415 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
416 rawlen, ref_offset(raw), ref_flags(raw), ofs));
417
418 ic = jffs2_raw_ref_to_ic(raw);
419
420 /* Ick. This XATTR mess should be fixed shortly... */
421 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
422 struct jffs2_xattr_datum *xd = (void *)ic;
423 BUG_ON(xd->node != raw);
424 adjust_ref = &xd->node;
425 raw->next_in_ino = NULL;
426 ic = NULL;
427 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
428 struct jffs2_xattr_datum *xr = (void *)ic;
429 BUG_ON(xr->node != raw);
430 adjust_ref = &xr->node;
431 raw->next_in_ino = NULL;
432 ic = NULL;
433 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
434 struct jffs2_raw_node_ref **p = &ic->nodes;
435
436 /* Remove the old node from the per-inode list */
437 while (*p && *p != (void *)ic) {
438 if (*p == raw) {
439 (*p) = (raw->next_in_ino);
440 raw->next_in_ino = NULL;
441 break;
442 }
443 p = &((*p)->next_in_ino);
444 }
445
446 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
447 /* If it's an in-core inode, then we have to adjust any
448 full_dirent or full_dnode structure to point to the
449 new version instead of the old */
450 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
451 if (IS_ERR(f)) {
452 /* Should never happen; it _must_ be present */
453 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
454 ic->ino, PTR_ERR(f));
455 BUG();
456 }
457 /* We don't lock f->sem. There's a number of ways we could
458 end up in here with it already being locked, and nobody's
459 going to modify it on us anyway because we hold the
460 alloc_sem. We're only changing one ->raw pointer too,
461 which we can get away with without upsetting readers. */
462 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
463 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
464 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
465 ic->state != INO_STATE_CHECKEDABSENT &&
466 ic->state != INO_STATE_GC)) {
467 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
468 BUG();
469 }
470 }
471
472 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
473
474 if (adjust_ref) {
475 BUG_ON(*adjust_ref != raw);
476 *adjust_ref = new_ref;
477 }
478 if (f)
479 jffs2_gc_release_inode(c, f);
480
481 if (!ref_obsolete(raw)) {
482 jeb->dirty_size += rawlen;
483 jeb->used_size -= rawlen;
484 c->dirty_size += rawlen;
485 c->used_size -= rawlen;
486 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
487 BUG_ON(raw->next_in_ino);
488 }
489 ofs += rawlen;
490 }
491
492 kfree(buf);
493
494 /* Fix up the original jeb now it's on the bad_list */
495 if (first_raw == jeb->first_node) {
496 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
497 list_del(&jeb->list);
498 list_add(&jeb->list, &c->erase_pending_list);
499 c->nr_erasing_blocks++;
500 jffs2_erase_pending_trigger(c);
501 }
502
503 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
504 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
505
506 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
507 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
508
509 spin_unlock(&c->erase_completion_lock);
510
511 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
512
513 }
514
515 /* Meaning of pad argument:
516 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
517 1: Pad, do not adjust nextblock free_size
518 2: Pad, adjust nextblock free_size
519 */
520 #define NOPAD 0
521 #define PAD_NOACCOUNT 1
522 #define PAD_ACCOUNTING 2
523
524 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
525 {
526 struct jffs2_eraseblock *wbuf_jeb;
527 int ret;
528 size_t retlen;
529
530 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
531 del_timer() the timer we never initialised. */
532 if (!jffs2_is_writebuffered(c))
533 return 0;
534
535 if (!down_trylock(&c->alloc_sem)) {
536 up(&c->alloc_sem);
537 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
538 BUG();
539 }
540
541 if (!c->wbuf_len) /* already checked c->wbuf above */
542 return 0;
543
544 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
545 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
546 return -ENOMEM;
547
548 /* claim remaining space on the page
549 this happens, if we have a change to a new block,
550 or if fsync forces us to flush the writebuffer.
551 if we have a switch to next page, we will not have
552 enough remaining space for this.
553 */
554 if (pad ) {
555 c->wbuf_len = PAD(c->wbuf_len);
556
557 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
558 with 8 byte page size */
559 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
560
561 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
562 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
563 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
564 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
565 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
566 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
567 }
568 }
569 /* else jffs2_flash_writev has actually filled in the rest of the
570 buffer for us, and will deal with the node refs etc. later. */
571
572 #ifdef BREAKME
573 static int breakme;
574 if (breakme++ == 20) {
575 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
576 breakme = 0;
577 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
578 brokenbuf);
579 ret = -EIO;
580 } else
581 #endif
582
583 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
584
585 if (ret || retlen != c->wbuf_pagesize) {
586 if (ret)
587 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
588 else {
589 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
590 retlen, c->wbuf_pagesize);
591 ret = -EIO;
592 }
593
594 jffs2_wbuf_recover(c);
595
596 return ret;
597 }
598
599 /* Adjust free size of the block if we padded. */
600 if (pad) {
601 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
602
603 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
604 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
605
606 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
607 padded. If there is less free space in the block than that,
608 something screwed up */
609 if (wbuf_jeb->free_size < waste) {
610 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
611 c->wbuf_ofs, c->wbuf_len, waste);
612 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
613 wbuf_jeb->offset, wbuf_jeb->free_size);
614 BUG();
615 }
616
617 spin_lock(&c->erase_completion_lock);
618
619 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
620 /* FIXME: that made it count as dirty. Convert to wasted */
621 wbuf_jeb->dirty_size -= waste;
622 c->dirty_size -= waste;
623 wbuf_jeb->wasted_size += waste;
624 c->wasted_size += waste;
625 } else
626 spin_lock(&c->erase_completion_lock);
627
628 /* Stick any now-obsoleted blocks on the erase_pending_list */
629 jffs2_refile_wbuf_blocks(c);
630 jffs2_clear_wbuf_ino_list(c);
631 spin_unlock(&c->erase_completion_lock);
632
633 memset(c->wbuf,0xff,c->wbuf_pagesize);
634 /* adjust write buffer offset, else we get a non contiguous write bug */
635 c->wbuf_ofs += c->wbuf_pagesize;
636 c->wbuf_len = 0;
637 return 0;
638 }
639
640 /* Trigger garbage collection to flush the write-buffer.
641 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
642 outstanding. If ino arg non-zero, do it only if a write for the
643 given inode is outstanding. */
644 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
645 {
646 uint32_t old_wbuf_ofs;
647 uint32_t old_wbuf_len;
648 int ret = 0;
649
650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
651
652 if (!c->wbuf)
653 return 0;
654
655 down(&c->alloc_sem);
656 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
657 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
658 up(&c->alloc_sem);
659 return 0;
660 }
661
662 old_wbuf_ofs = c->wbuf_ofs;
663 old_wbuf_len = c->wbuf_len;
664
665 if (c->unchecked_size) {
666 /* GC won't make any progress for a while */
667 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
668 down_write(&c->wbuf_sem);
669 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
670 /* retry flushing wbuf in case jffs2_wbuf_recover
671 left some data in the wbuf */
672 if (ret)
673 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
674 up_write(&c->wbuf_sem);
675 } else while (old_wbuf_len &&
676 old_wbuf_ofs == c->wbuf_ofs) {
677
678 up(&c->alloc_sem);
679
680 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
681
682 ret = jffs2_garbage_collect_pass(c);
683 if (ret) {
684 /* GC failed. Flush it with padding instead */
685 down(&c->alloc_sem);
686 down_write(&c->wbuf_sem);
687 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
688 /* retry flushing wbuf in case jffs2_wbuf_recover
689 left some data in the wbuf */
690 if (ret)
691 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
692 up_write(&c->wbuf_sem);
693 break;
694 }
695 down(&c->alloc_sem);
696 }
697
698 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
699
700 up(&c->alloc_sem);
701 return ret;
702 }
703
704 /* Pad write-buffer to end and write it, wasting space. */
705 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
706 {
707 int ret;
708
709 if (!c->wbuf)
710 return 0;
711
712 down_write(&c->wbuf_sem);
713 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
714 /* retry - maybe wbuf recover left some data in wbuf. */
715 if (ret)
716 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
717 up_write(&c->wbuf_sem);
718
719 return ret;
720 }
721
722 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
723 size_t len)
724 {
725 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
726 return 0;
727
728 if (len > (c->wbuf_pagesize - c->wbuf_len))
729 len = c->wbuf_pagesize - c->wbuf_len;
730 memcpy(c->wbuf + c->wbuf_len, buf, len);
731 c->wbuf_len += (uint32_t) len;
732 return len;
733 }
734
735 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
736 unsigned long count, loff_t to, size_t *retlen,
737 uint32_t ino)
738 {
739 struct jffs2_eraseblock *jeb;
740 size_t wbuf_retlen, donelen = 0;
741 uint32_t outvec_to = to;
742 int ret, invec;
743
744 /* If not writebuffered flash, don't bother */
745 if (!jffs2_is_writebuffered(c))
746 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
747
748 down_write(&c->wbuf_sem);
749
750 /* If wbuf_ofs is not initialized, set it to target address */
751 if (c->wbuf_ofs == 0xFFFFFFFF) {
752 c->wbuf_ofs = PAGE_DIV(to);
753 c->wbuf_len = PAGE_MOD(to);
754 memset(c->wbuf,0xff,c->wbuf_pagesize);
755 }
756
757 /*
758 * Sanity checks on target address. It's permitted to write
759 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
760 * write at the beginning of a new erase block. Anything else,
761 * and you die. New block starts at xxx000c (0-b = block
762 * header)
763 */
764 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
765 /* It's a write to a new block */
766 if (c->wbuf_len) {
767 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
768 "causes flush of wbuf at 0x%08x\n",
769 (unsigned long)to, c->wbuf_ofs));
770 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
771 if (ret)
772 goto outerr;
773 }
774 /* set pointer to new block */
775 c->wbuf_ofs = PAGE_DIV(to);
776 c->wbuf_len = PAGE_MOD(to);
777 }
778
779 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
780 /* We're not writing immediately after the writebuffer. Bad. */
781 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
782 "to %08lx\n", (unsigned long)to);
783 if (c->wbuf_len)
784 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
785 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
786 BUG();
787 }
788
789 /* adjust alignment offset */
790 if (c->wbuf_len != PAGE_MOD(to)) {
791 c->wbuf_len = PAGE_MOD(to);
792 /* take care of alignment to next page */
793 if (!c->wbuf_len) {
794 c->wbuf_len = c->wbuf_pagesize;
795 ret = __jffs2_flush_wbuf(c, NOPAD);
796 if (ret)
797 goto outerr;
798 }
799 }
800
801 for (invec = 0; invec < count; invec++) {
802 int vlen = invecs[invec].iov_len;
803 uint8_t *v = invecs[invec].iov_base;
804
805 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
806
807 if (c->wbuf_len == c->wbuf_pagesize) {
808 ret = __jffs2_flush_wbuf(c, NOPAD);
809 if (ret)
810 goto outerr;
811 }
812 vlen -= wbuf_retlen;
813 outvec_to += wbuf_retlen;
814 donelen += wbuf_retlen;
815 v += wbuf_retlen;
816
817 if (vlen >= c->wbuf_pagesize) {
818 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
819 &wbuf_retlen, v);
820 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
821 goto outfile;
822
823 vlen -= wbuf_retlen;
824 outvec_to += wbuf_retlen;
825 c->wbuf_ofs = outvec_to;
826 donelen += wbuf_retlen;
827 v += wbuf_retlen;
828 }
829
830 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
831 if (c->wbuf_len == c->wbuf_pagesize) {
832 ret = __jffs2_flush_wbuf(c, NOPAD);
833 if (ret)
834 goto outerr;
835 }
836
837 outvec_to += wbuf_retlen;
838 donelen += wbuf_retlen;
839 }
840
841 /*
842 * If there's a remainder in the wbuf and it's a non-GC write,
843 * remember that the wbuf affects this ino
844 */
845 *retlen = donelen;
846
847 if (jffs2_sum_active()) {
848 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
849 if (res)
850 return res;
851 }
852
853 if (c->wbuf_len && ino)
854 jffs2_wbuf_dirties_inode(c, ino);
855
856 ret = 0;
857 up_write(&c->wbuf_sem);
858 return ret;
859
860 outfile:
861 /*
862 * At this point we have no problem, c->wbuf is empty. However
863 * refile nextblock to avoid writing again to same address.
864 */
865
866 spin_lock(&c->erase_completion_lock);
867
868 jeb = &c->blocks[outvec_to / c->sector_size];
869 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
870
871 spin_unlock(&c->erase_completion_lock);
872
873 outerr:
874 *retlen = 0;
875 up_write(&c->wbuf_sem);
876 return ret;
877 }
878
879 /*
880 * This is the entry for flash write.
881 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
882 */
883 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
884 size_t *retlen, const u_char *buf)
885 {
886 struct kvec vecs[1];
887
888 if (!jffs2_is_writebuffered(c))
889 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
890
891 vecs[0].iov_base = (unsigned char *) buf;
892 vecs[0].iov_len = len;
893 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
894 }
895
896 /*
897 Handle readback from writebuffer and ECC failure return
898 */
899 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
900 {
901 loff_t orbf = 0, owbf = 0, lwbf = 0;
902 int ret;
903
904 if (!jffs2_is_writebuffered(c))
905 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
906
907 /* Read flash */
908 down_read(&c->wbuf_sem);
909 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
910
911 if ( (ret == -EBADMSG) && (*retlen == len) ) {
912 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
913 len, ofs);
914 /*
915 * We have the raw data without ECC correction in the buffer, maybe
916 * we are lucky and all data or parts are correct. We check the node.
917 * If data are corrupted node check will sort it out.
918 * We keep this block, it will fail on write or erase and the we
919 * mark it bad. Or should we do that now? But we should give him a chance.
920 * Maybe we had a system crash or power loss before the ecc write or
921 * a erase was completed.
922 * So we return success. :)
923 */
924 ret = 0;
925 }
926
927 /* if no writebuffer available or write buffer empty, return */
928 if (!c->wbuf_pagesize || !c->wbuf_len)
929 goto exit;
930
931 /* if we read in a different block, return */
932 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
933 goto exit;
934
935 if (ofs >= c->wbuf_ofs) {
936 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
937 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
938 goto exit;
939 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
940 if (lwbf > len)
941 lwbf = len;
942 } else {
943 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
944 if (orbf > len) /* is write beyond write buffer ? */
945 goto exit;
946 lwbf = len - orbf; /* number of bytes to copy */
947 if (lwbf > c->wbuf_len)
948 lwbf = c->wbuf_len;
949 }
950 if (lwbf > 0)
951 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
952
953 exit:
954 up_read(&c->wbuf_sem);
955 return ret;
956 }
957
958 /*
959 * Check, if the out of band area is empty
960 */
961 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
962 {
963 unsigned char *buf;
964 int ret = 0;
965 int i,len,page;
966 size_t retlen;
967 int oob_size;
968
969 /* allocate a buffer for all oob data in this sector */
970 oob_size = c->mtd->oobsize;
971 len = 4 * oob_size;
972 buf = kmalloc(len, GFP_KERNEL);
973 if (!buf) {
974 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
975 return -ENOMEM;
976 }
977 /*
978 * if mode = 0, we scan for a total empty oob area, else we have
979 * to take care of the cleanmarker in the first page of the block
980 */
981 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
982 if (ret) {
983 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
984 goto out;
985 }
986
987 if (retlen < len) {
988 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
989 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
990 ret = -EIO;
991 goto out;
992 }
993
994 /* Special check for first page */
995 for(i = 0; i < oob_size ; i++) {
996 /* Yeah, we know about the cleanmarker. */
997 if (mode && i >= c->fsdata_pos &&
998 i < c->fsdata_pos + c->fsdata_len)
999 continue;
1000
1001 if (buf[i] != 0xFF) {
1002 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
1003 buf[i], i, jeb->offset));
1004 ret = 1;
1005 goto out;
1006 }
1007 }
1008
1009 /* we know, we are aligned :) */
1010 for (page = oob_size; page < len; page += sizeof(long)) {
1011 unsigned long dat = *(unsigned long *)(&buf[page]);
1012 if(dat != -1) {
1013 ret = 1;
1014 goto out;
1015 }
1016 }
1017
1018 out:
1019 kfree(buf);
1020
1021 return ret;
1022 }
1023
1024 /*
1025 * Scan for a valid cleanmarker and for bad blocks
1026 * For virtual blocks (concatenated physical blocks) check the cleanmarker
1027 * only in the first page of the first physical block, but scan for bad blocks in all
1028 * physical blocks
1029 */
1030 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1031 {
1032 struct jffs2_unknown_node n;
1033 unsigned char buf[2 * NAND_MAX_OOBSIZE];
1034 unsigned char *p;
1035 int ret, i, cnt, retval = 0;
1036 size_t retlen, offset;
1037 int oob_size;
1038
1039 offset = jeb->offset;
1040 oob_size = c->mtd->oobsize;
1041
1042 /* Loop through the physical blocks */
1043 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1044 /* Check first if the block is bad. */
1045 if (c->mtd->block_isbad (c->mtd, offset)) {
1046 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1047 return 2;
1048 }
1049 /*
1050 * We read oob data from page 0 and 1 of the block.
1051 * page 0 contains cleanmarker and badblock info
1052 * page 1 contains failure count of this block
1053 */
1054 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1055
1056 if (ret) {
1057 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1058 return ret;
1059 }
1060 if (retlen < (oob_size << 1)) {
1061 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1062 return -EIO;
1063 }
1064
1065 /* Check cleanmarker only on the first physical block */
1066 if (!cnt) {
1067 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1068 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1069 n.totlen = cpu_to_je32 (8);
1070 p = (unsigned char *) &n;
1071
1072 for (i = 0; i < c->fsdata_len; i++) {
1073 if (buf[c->fsdata_pos + i] != p[i]) {
1074 retval = 1;
1075 }
1076 }
1077 D1(if (retval == 1) {
1078 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1079 printk(KERN_WARNING "OOB at %08zx was ", offset);
1080 for (i=0; i < oob_size; i++) {
1081 printk("%02x ", buf[i]);
1082 }
1083 printk("\n");
1084 })
1085 }
1086 offset += c->mtd->erasesize;
1087 }
1088 return retval;
1089 }
1090
1091 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1092 {
1093 struct jffs2_unknown_node n;
1094 int ret;
1095 size_t retlen;
1096
1097 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1098 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1099 n.totlen = cpu_to_je32(8);
1100
1101 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1102
1103 if (ret) {
1104 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1105 return ret;
1106 }
1107 if (retlen != c->fsdata_len) {
1108 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1109 return ret;
1110 }
1111 return 0;
1112 }
1113
1114 /*
1115 * On NAND we try to mark this block bad. If the block was erased more
1116 * than MAX_ERASE_FAILURES we mark it finaly bad.
1117 * Don't care about failures. This block remains on the erase-pending
1118 * or badblock list as long as nobody manipulates the flash with
1119 * a bootloader or something like that.
1120 */
1121
1122 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1123 {
1124 int ret;
1125
1126 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1127 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1128 return 0;
1129
1130 if (!c->mtd->block_markbad)
1131 return 1; // What else can we do?
1132
1133 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1134 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1135
1136 if (ret) {
1137 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1138 return ret;
1139 }
1140 return 1;
1141 }
1142
1143 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1144 {
1145 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1146
1147 /* Do this only, if we have an oob buffer */
1148 if (!c->mtd->oobsize)
1149 return 0;
1150
1151 /* Cleanmarker is out-of-band, so inline size zero */
1152 c->cleanmarker_size = 0;
1153
1154 /* Should we use autoplacement ? */
1155 if (!oinfo) {
1156 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1157 return -EINVAL;
1158 }
1159
1160 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1161 /* Get the position of the free bytes */
1162 if (!oinfo->oobfree[0].length) {
1163 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep."
1164 " Autoplacement selected and no empty space in oob\n");
1165 return -ENOSPC;
1166 }
1167 c->fsdata_pos = oinfo->oobfree[0].offset;
1168 c->fsdata_len = oinfo->oobfree[0].length;
1169 if (c->fsdata_len > 8)
1170 c->fsdata_len = 8;
1171
1172 return 0;
1173 }
1174
1175 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1176 {
1177 int res;
1178
1179 /* Initialise write buffer */
1180 init_rwsem(&c->wbuf_sem);
1181 c->wbuf_pagesize = c->mtd->writesize;
1182 c->wbuf_ofs = 0xFFFFFFFF;
1183
1184 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1185 if (!c->wbuf)
1186 return -ENOMEM;
1187
1188 res = jffs2_nand_set_oobinfo(c);
1189
1190 #ifdef BREAKME
1191 if (!brokenbuf)
1192 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1193 if (!brokenbuf) {
1194 kfree(c->wbuf);
1195 return -ENOMEM;
1196 }
1197 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1198 #endif
1199 return res;
1200 }
1201
1202 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1203 {
1204 kfree(c->wbuf);
1205 }
1206
1207 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1208 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1209
1210 /* Initialize write buffer */
1211 init_rwsem(&c->wbuf_sem);
1212
1213
1214 c->wbuf_pagesize = c->mtd->erasesize;
1215
1216 /* Find a suitable c->sector_size
1217 * - Not too much sectors
1218 * - Sectors have to be at least 4 K + some bytes
1219 * - All known dataflashes have erase sizes of 528 or 1056
1220 * - we take at least 8 eraseblocks and want to have at least 8K size
1221 * - The concatenation should be a power of 2
1222 */
1223
1224 c->sector_size = 8 * c->mtd->erasesize;
1225
1226 while (c->sector_size < 8192) {
1227 c->sector_size *= 2;
1228 }
1229
1230 /* It may be necessary to adjust the flash size */
1231 c->flash_size = c->mtd->size;
1232
1233 if ((c->flash_size % c->sector_size) != 0) {
1234 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1235 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1236 };
1237
1238 c->wbuf_ofs = 0xFFFFFFFF;
1239 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1240 if (!c->wbuf)
1241 return -ENOMEM;
1242
1243 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1244
1245 return 0;
1246 }
1247
1248 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1249 kfree(c->wbuf);
1250 }
1251
1252 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1253 /* Cleanmarker currently occupies whole programming regions,
1254 * either one or 2 for 8Byte STMicro flashes. */
1255 c->cleanmarker_size = max(16u, c->mtd->writesize);
1256
1257 /* Initialize write buffer */
1258 init_rwsem(&c->wbuf_sem);
1259 c->wbuf_pagesize = c->mtd->writesize;
1260 c->wbuf_ofs = 0xFFFFFFFF;
1261
1262 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1263 if (!c->wbuf)
1264 return -ENOMEM;
1265
1266 return 0;
1267 }
1268
1269 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1270 kfree(c->wbuf);
1271 }
This page took 0.076603 seconds and 6 git commands to generate.