Merge branch 'linux-2.6' into for-2.6.22
[deliverable/linux.git] / fs / jffs2 / wbuf.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22 #include <linux/sched.h>
23
24 #include "nodelist.h"
25
26 /* For testing write failures */
27 #undef BREAKME
28 #undef BREAKMEHEADER
29
30 #ifdef BREAKME
31 static unsigned char *brokenbuf;
32 #endif
33
34 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
35 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
36
37 /* max. erase failures before we mark a block bad */
38 #define MAX_ERASE_FAILURES 2
39
40 struct jffs2_inodirty {
41 uint32_t ino;
42 struct jffs2_inodirty *next;
43 };
44
45 static struct jffs2_inodirty inodirty_nomem;
46
47 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
48 {
49 struct jffs2_inodirty *this = c->wbuf_inodes;
50
51 /* If a malloc failed, consider _everything_ dirty */
52 if (this == &inodirty_nomem)
53 return 1;
54
55 /* If ino == 0, _any_ non-GC writes mean 'yes' */
56 if (this && !ino)
57 return 1;
58
59 /* Look to see if the inode in question is pending in the wbuf */
60 while (this) {
61 if (this->ino == ino)
62 return 1;
63 this = this->next;
64 }
65 return 0;
66 }
67
68 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
69 {
70 struct jffs2_inodirty *this;
71
72 this = c->wbuf_inodes;
73
74 if (this != &inodirty_nomem) {
75 while (this) {
76 struct jffs2_inodirty *next = this->next;
77 kfree(this);
78 this = next;
79 }
80 }
81 c->wbuf_inodes = NULL;
82 }
83
84 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
85 {
86 struct jffs2_inodirty *new;
87
88 /* Mark the superblock dirty so that kupdated will flush... */
89 jffs2_erase_pending_trigger(c);
90
91 if (jffs2_wbuf_pending_for_ino(c, ino))
92 return;
93
94 new = kmalloc(sizeof(*new), GFP_KERNEL);
95 if (!new) {
96 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
97 jffs2_clear_wbuf_ino_list(c);
98 c->wbuf_inodes = &inodirty_nomem;
99 return;
100 }
101 new->ino = ino;
102 new->next = c->wbuf_inodes;
103 c->wbuf_inodes = new;
104 return;
105 }
106
107 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
108 {
109 struct list_head *this, *next;
110 static int n;
111
112 if (list_empty(&c->erasable_pending_wbuf_list))
113 return;
114
115 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
116 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
117
118 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
119 list_del(this);
120 if ((jiffies + (n++)) & 127) {
121 /* Most of the time, we just erase it immediately. Otherwise we
122 spend ages scanning it on mount, etc. */
123 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
124 list_add_tail(&jeb->list, &c->erase_pending_list);
125 c->nr_erasing_blocks++;
126 jffs2_erase_pending_trigger(c);
127 } else {
128 /* Sometimes, however, we leave it elsewhere so it doesn't get
129 immediately reused, and we spread the load a bit. */
130 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
131 list_add_tail(&jeb->list, &c->erasable_list);
132 }
133 }
134 }
135
136 #define REFILE_NOTEMPTY 0
137 #define REFILE_ANYWAY 1
138
139 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
140 {
141 D1(printk("About to refile bad block at %08x\n", jeb->offset));
142
143 /* File the existing block on the bad_used_list.... */
144 if (c->nextblock == jeb)
145 c->nextblock = NULL;
146 else /* Not sure this should ever happen... need more coffee */
147 list_del(&jeb->list);
148 if (jeb->first_node) {
149 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
150 list_add(&jeb->list, &c->bad_used_list);
151 } else {
152 BUG_ON(allow_empty == REFILE_NOTEMPTY);
153 /* It has to have had some nodes or we couldn't be here */
154 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
155 list_add(&jeb->list, &c->erase_pending_list);
156 c->nr_erasing_blocks++;
157 jffs2_erase_pending_trigger(c);
158 }
159
160 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
161 uint32_t oldfree = jeb->free_size;
162
163 jffs2_link_node_ref(c, jeb,
164 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
165 oldfree, NULL);
166 /* convert to wasted */
167 c->wasted_size += oldfree;
168 jeb->wasted_size += oldfree;
169 c->dirty_size -= oldfree;
170 jeb->dirty_size -= oldfree;
171 }
172
173 jffs2_dbg_dump_block_lists_nolock(c);
174 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
175 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
176 }
177
178 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
179 struct jffs2_inode_info *f,
180 struct jffs2_raw_node_ref *raw,
181 union jffs2_node_union *node)
182 {
183 struct jffs2_node_frag *frag;
184 struct jffs2_full_dirent *fd;
185
186 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
187 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
188
189 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
190 je16_to_cpu(node->u.magic) != 0);
191
192 switch (je16_to_cpu(node->u.nodetype)) {
193 case JFFS2_NODETYPE_INODE:
194 if (f->metadata && f->metadata->raw == raw) {
195 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
196 return &f->metadata->raw;
197 }
198 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
199 BUG_ON(!frag);
200 /* Find a frag which refers to the full_dnode we want to modify */
201 while (!frag->node || frag->node->raw != raw) {
202 frag = frag_next(frag);
203 BUG_ON(!frag);
204 }
205 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
206 return &frag->node->raw;
207
208 case JFFS2_NODETYPE_DIRENT:
209 for (fd = f->dents; fd; fd = fd->next) {
210 if (fd->raw == raw) {
211 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
212 return &fd->raw;
213 }
214 }
215 BUG();
216
217 default:
218 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
219 je16_to_cpu(node->u.nodetype));
220 break;
221 }
222 return NULL;
223 }
224
225 /* Recover from failure to write wbuf. Recover the nodes up to the
226 * wbuf, not the one which we were starting to try to write. */
227
228 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
229 {
230 struct jffs2_eraseblock *jeb, *new_jeb;
231 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
232 size_t retlen;
233 int ret;
234 int nr_refile = 0;
235 unsigned char *buf;
236 uint32_t start, end, ofs, len;
237
238 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
239
240 spin_lock(&c->erase_completion_lock);
241 if (c->wbuf_ofs % c->mtd->erasesize)
242 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
243 else
244 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
245 spin_unlock(&c->erase_completion_lock);
246
247 BUG_ON(!ref_obsolete(jeb->last_node));
248
249 /* Find the first node to be recovered, by skipping over every
250 node which ends before the wbuf starts, or which is obsolete. */
251 for (next = raw = jeb->first_node; next; raw = next) {
252 next = ref_next(raw);
253
254 if (ref_obsolete(raw) ||
255 (next && ref_offset(next) <= c->wbuf_ofs)) {
256 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
257 ref_offset(raw), ref_flags(raw),
258 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
259 c->wbuf_ofs);
260 continue;
261 }
262 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
263 ref_offset(raw), ref_flags(raw),
264 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
265
266 first_raw = raw;
267 break;
268 }
269
270 if (!first_raw) {
271 /* All nodes were obsolete. Nothing to recover. */
272 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
273 c->wbuf_len = 0;
274 return;
275 }
276
277 start = ref_offset(first_raw);
278 end = ref_offset(jeb->last_node);
279 nr_refile = 1;
280
281 /* Count the number of refs which need to be copied */
282 while ((raw = ref_next(raw)) != jeb->last_node)
283 nr_refile++;
284
285 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
286 start, end, end - start, nr_refile);
287
288 buf = NULL;
289 if (start < c->wbuf_ofs) {
290 /* First affected node was already partially written.
291 * Attempt to reread the old data into our buffer. */
292
293 buf = kmalloc(end - start, GFP_KERNEL);
294 if (!buf) {
295 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
296
297 goto read_failed;
298 }
299
300 /* Do the read... */
301 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
302
303 /* ECC recovered ? */
304 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
305 (retlen == c->wbuf_ofs - start))
306 ret = 0;
307
308 if (ret || retlen != c->wbuf_ofs - start) {
309 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
310
311 kfree(buf);
312 buf = NULL;
313 read_failed:
314 first_raw = ref_next(first_raw);
315 nr_refile--;
316 while (first_raw && ref_obsolete(first_raw)) {
317 first_raw = ref_next(first_raw);
318 nr_refile--;
319 }
320
321 /* If this was the only node to be recovered, give up */
322 if (!first_raw) {
323 c->wbuf_len = 0;
324 return;
325 }
326
327 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
328 start = ref_offset(first_raw);
329 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
330 start, end, end - start, nr_refile);
331
332 } else {
333 /* Read succeeded. Copy the remaining data from the wbuf */
334 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
335 }
336 }
337 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
338 Either 'buf' contains the data, or we find it in the wbuf */
339
340 /* ... and get an allocation of space from a shiny new block instead */
341 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
342 if (ret) {
343 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
344 kfree(buf);
345 return;
346 }
347
348 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
349 if (ret) {
350 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
351 kfree(buf);
352 return;
353 }
354
355 ofs = write_ofs(c);
356
357 if (end-start >= c->wbuf_pagesize) {
358 /* Need to do another write immediately, but it's possible
359 that this is just because the wbuf itself is completely
360 full, and there's nothing earlier read back from the
361 flash. Hence 'buf' isn't necessarily what we're writing
362 from. */
363 unsigned char *rewrite_buf = buf?:c->wbuf;
364 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
365
366 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
367 towrite, ofs));
368
369 #ifdef BREAKMEHEADER
370 static int breakme;
371 if (breakme++ == 20) {
372 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
373 breakme = 0;
374 c->mtd->write(c->mtd, ofs, towrite, &retlen,
375 brokenbuf);
376 ret = -EIO;
377 } else
378 #endif
379 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
380 rewrite_buf);
381
382 if (ret || retlen != towrite) {
383 /* Argh. We tried. Really we did. */
384 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
385 kfree(buf);
386
387 if (retlen)
388 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
389
390 return;
391 }
392 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
393
394 c->wbuf_len = (end - start) - towrite;
395 c->wbuf_ofs = ofs + towrite;
396 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
397 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
398 } else {
399 /* OK, now we're left with the dregs in whichever buffer we're using */
400 if (buf) {
401 memcpy(c->wbuf, buf, end-start);
402 } else {
403 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
404 }
405 c->wbuf_ofs = ofs;
406 c->wbuf_len = end - start;
407 }
408
409 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
410 new_jeb = &c->blocks[ofs / c->sector_size];
411
412 spin_lock(&c->erase_completion_lock);
413 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
414 uint32_t rawlen = ref_totlen(c, jeb, raw);
415 struct jffs2_inode_cache *ic;
416 struct jffs2_raw_node_ref *new_ref;
417 struct jffs2_raw_node_ref **adjust_ref = NULL;
418 struct jffs2_inode_info *f = NULL;
419
420 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
421 rawlen, ref_offset(raw), ref_flags(raw), ofs));
422
423 ic = jffs2_raw_ref_to_ic(raw);
424
425 /* Ick. This XATTR mess should be fixed shortly... */
426 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
427 struct jffs2_xattr_datum *xd = (void *)ic;
428 BUG_ON(xd->node != raw);
429 adjust_ref = &xd->node;
430 raw->next_in_ino = NULL;
431 ic = NULL;
432 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
433 struct jffs2_xattr_datum *xr = (void *)ic;
434 BUG_ON(xr->node != raw);
435 adjust_ref = &xr->node;
436 raw->next_in_ino = NULL;
437 ic = NULL;
438 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
439 struct jffs2_raw_node_ref **p = &ic->nodes;
440
441 /* Remove the old node from the per-inode list */
442 while (*p && *p != (void *)ic) {
443 if (*p == raw) {
444 (*p) = (raw->next_in_ino);
445 raw->next_in_ino = NULL;
446 break;
447 }
448 p = &((*p)->next_in_ino);
449 }
450
451 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
452 /* If it's an in-core inode, then we have to adjust any
453 full_dirent or full_dnode structure to point to the
454 new version instead of the old */
455 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
456 if (IS_ERR(f)) {
457 /* Should never happen; it _must_ be present */
458 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
459 ic->ino, PTR_ERR(f));
460 BUG();
461 }
462 /* We don't lock f->sem. There's a number of ways we could
463 end up in here with it already being locked, and nobody's
464 going to modify it on us anyway because we hold the
465 alloc_sem. We're only changing one ->raw pointer too,
466 which we can get away with without upsetting readers. */
467 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
468 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
469 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
470 ic->state != INO_STATE_CHECKEDABSENT &&
471 ic->state != INO_STATE_GC)) {
472 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
473 BUG();
474 }
475 }
476
477 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
478
479 if (adjust_ref) {
480 BUG_ON(*adjust_ref != raw);
481 *adjust_ref = new_ref;
482 }
483 if (f)
484 jffs2_gc_release_inode(c, f);
485
486 if (!ref_obsolete(raw)) {
487 jeb->dirty_size += rawlen;
488 jeb->used_size -= rawlen;
489 c->dirty_size += rawlen;
490 c->used_size -= rawlen;
491 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
492 BUG_ON(raw->next_in_ino);
493 }
494 ofs += rawlen;
495 }
496
497 kfree(buf);
498
499 /* Fix up the original jeb now it's on the bad_list */
500 if (first_raw == jeb->first_node) {
501 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
502 list_move(&jeb->list, &c->erase_pending_list);
503 c->nr_erasing_blocks++;
504 jffs2_erase_pending_trigger(c);
505 }
506
507 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
508 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
509
510 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
511 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
512
513 spin_unlock(&c->erase_completion_lock);
514
515 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
516
517 }
518
519 /* Meaning of pad argument:
520 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
521 1: Pad, do not adjust nextblock free_size
522 2: Pad, adjust nextblock free_size
523 */
524 #define NOPAD 0
525 #define PAD_NOACCOUNT 1
526 #define PAD_ACCOUNTING 2
527
528 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
529 {
530 struct jffs2_eraseblock *wbuf_jeb;
531 int ret;
532 size_t retlen;
533
534 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
535 del_timer() the timer we never initialised. */
536 if (!jffs2_is_writebuffered(c))
537 return 0;
538
539 if (!down_trylock(&c->alloc_sem)) {
540 up(&c->alloc_sem);
541 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
542 BUG();
543 }
544
545 if (!c->wbuf_len) /* already checked c->wbuf above */
546 return 0;
547
548 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
549 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
550 return -ENOMEM;
551
552 /* claim remaining space on the page
553 this happens, if we have a change to a new block,
554 or if fsync forces us to flush the writebuffer.
555 if we have a switch to next page, we will not have
556 enough remaining space for this.
557 */
558 if (pad ) {
559 c->wbuf_len = PAD(c->wbuf_len);
560
561 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
562 with 8 byte page size */
563 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
564
565 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
566 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
567 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
568 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
569 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
570 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
571 }
572 }
573 /* else jffs2_flash_writev has actually filled in the rest of the
574 buffer for us, and will deal with the node refs etc. later. */
575
576 #ifdef BREAKME
577 static int breakme;
578 if (breakme++ == 20) {
579 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
580 breakme = 0;
581 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
582 brokenbuf);
583 ret = -EIO;
584 } else
585 #endif
586
587 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
588
589 if (ret || retlen != c->wbuf_pagesize) {
590 if (ret)
591 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
592 else {
593 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
594 retlen, c->wbuf_pagesize);
595 ret = -EIO;
596 }
597
598 jffs2_wbuf_recover(c);
599
600 return ret;
601 }
602
603 /* Adjust free size of the block if we padded. */
604 if (pad) {
605 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
606
607 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
608 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
609
610 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
611 padded. If there is less free space in the block than that,
612 something screwed up */
613 if (wbuf_jeb->free_size < waste) {
614 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
615 c->wbuf_ofs, c->wbuf_len, waste);
616 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
617 wbuf_jeb->offset, wbuf_jeb->free_size);
618 BUG();
619 }
620
621 spin_lock(&c->erase_completion_lock);
622
623 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
624 /* FIXME: that made it count as dirty. Convert to wasted */
625 wbuf_jeb->dirty_size -= waste;
626 c->dirty_size -= waste;
627 wbuf_jeb->wasted_size += waste;
628 c->wasted_size += waste;
629 } else
630 spin_lock(&c->erase_completion_lock);
631
632 /* Stick any now-obsoleted blocks on the erase_pending_list */
633 jffs2_refile_wbuf_blocks(c);
634 jffs2_clear_wbuf_ino_list(c);
635 spin_unlock(&c->erase_completion_lock);
636
637 memset(c->wbuf,0xff,c->wbuf_pagesize);
638 /* adjust write buffer offset, else we get a non contiguous write bug */
639 c->wbuf_ofs += c->wbuf_pagesize;
640 c->wbuf_len = 0;
641 return 0;
642 }
643
644 /* Trigger garbage collection to flush the write-buffer.
645 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
646 outstanding. If ino arg non-zero, do it only if a write for the
647 given inode is outstanding. */
648 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
649 {
650 uint32_t old_wbuf_ofs;
651 uint32_t old_wbuf_len;
652 int ret = 0;
653
654 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
655
656 if (!c->wbuf)
657 return 0;
658
659 down(&c->alloc_sem);
660 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
661 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
662 up(&c->alloc_sem);
663 return 0;
664 }
665
666 old_wbuf_ofs = c->wbuf_ofs;
667 old_wbuf_len = c->wbuf_len;
668
669 if (c->unchecked_size) {
670 /* GC won't make any progress for a while */
671 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
672 down_write(&c->wbuf_sem);
673 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
674 /* retry flushing wbuf in case jffs2_wbuf_recover
675 left some data in the wbuf */
676 if (ret)
677 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
678 up_write(&c->wbuf_sem);
679 } else while (old_wbuf_len &&
680 old_wbuf_ofs == c->wbuf_ofs) {
681
682 up(&c->alloc_sem);
683
684 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
685
686 ret = jffs2_garbage_collect_pass(c);
687 if (ret) {
688 /* GC failed. Flush it with padding instead */
689 down(&c->alloc_sem);
690 down_write(&c->wbuf_sem);
691 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
692 /* retry flushing wbuf in case jffs2_wbuf_recover
693 left some data in the wbuf */
694 if (ret)
695 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
696 up_write(&c->wbuf_sem);
697 break;
698 }
699 down(&c->alloc_sem);
700 }
701
702 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
703
704 up(&c->alloc_sem);
705 return ret;
706 }
707
708 /* Pad write-buffer to end and write it, wasting space. */
709 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
710 {
711 int ret;
712
713 if (!c->wbuf)
714 return 0;
715
716 down_write(&c->wbuf_sem);
717 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
718 /* retry - maybe wbuf recover left some data in wbuf. */
719 if (ret)
720 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
721 up_write(&c->wbuf_sem);
722
723 return ret;
724 }
725
726 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
727 size_t len)
728 {
729 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
730 return 0;
731
732 if (len > (c->wbuf_pagesize - c->wbuf_len))
733 len = c->wbuf_pagesize - c->wbuf_len;
734 memcpy(c->wbuf + c->wbuf_len, buf, len);
735 c->wbuf_len += (uint32_t) len;
736 return len;
737 }
738
739 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
740 unsigned long count, loff_t to, size_t *retlen,
741 uint32_t ino)
742 {
743 struct jffs2_eraseblock *jeb;
744 size_t wbuf_retlen, donelen = 0;
745 uint32_t outvec_to = to;
746 int ret, invec;
747
748 /* If not writebuffered flash, don't bother */
749 if (!jffs2_is_writebuffered(c))
750 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
751
752 down_write(&c->wbuf_sem);
753
754 /* If wbuf_ofs is not initialized, set it to target address */
755 if (c->wbuf_ofs == 0xFFFFFFFF) {
756 c->wbuf_ofs = PAGE_DIV(to);
757 c->wbuf_len = PAGE_MOD(to);
758 memset(c->wbuf,0xff,c->wbuf_pagesize);
759 }
760
761 /*
762 * Sanity checks on target address. It's permitted to write
763 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
764 * write at the beginning of a new erase block. Anything else,
765 * and you die. New block starts at xxx000c (0-b = block
766 * header)
767 */
768 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
769 /* It's a write to a new block */
770 if (c->wbuf_len) {
771 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
772 "causes flush of wbuf at 0x%08x\n",
773 (unsigned long)to, c->wbuf_ofs));
774 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
775 if (ret)
776 goto outerr;
777 }
778 /* set pointer to new block */
779 c->wbuf_ofs = PAGE_DIV(to);
780 c->wbuf_len = PAGE_MOD(to);
781 }
782
783 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
784 /* We're not writing immediately after the writebuffer. Bad. */
785 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
786 "to %08lx\n", (unsigned long)to);
787 if (c->wbuf_len)
788 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
789 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
790 BUG();
791 }
792
793 /* adjust alignment offset */
794 if (c->wbuf_len != PAGE_MOD(to)) {
795 c->wbuf_len = PAGE_MOD(to);
796 /* take care of alignment to next page */
797 if (!c->wbuf_len) {
798 c->wbuf_len = c->wbuf_pagesize;
799 ret = __jffs2_flush_wbuf(c, NOPAD);
800 if (ret)
801 goto outerr;
802 }
803 }
804
805 for (invec = 0; invec < count; invec++) {
806 int vlen = invecs[invec].iov_len;
807 uint8_t *v = invecs[invec].iov_base;
808
809 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
810
811 if (c->wbuf_len == c->wbuf_pagesize) {
812 ret = __jffs2_flush_wbuf(c, NOPAD);
813 if (ret)
814 goto outerr;
815 }
816 vlen -= wbuf_retlen;
817 outvec_to += wbuf_retlen;
818 donelen += wbuf_retlen;
819 v += wbuf_retlen;
820
821 if (vlen >= c->wbuf_pagesize) {
822 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
823 &wbuf_retlen, v);
824 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
825 goto outfile;
826
827 vlen -= wbuf_retlen;
828 outvec_to += wbuf_retlen;
829 c->wbuf_ofs = outvec_to;
830 donelen += wbuf_retlen;
831 v += wbuf_retlen;
832 }
833
834 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
835 if (c->wbuf_len == c->wbuf_pagesize) {
836 ret = __jffs2_flush_wbuf(c, NOPAD);
837 if (ret)
838 goto outerr;
839 }
840
841 outvec_to += wbuf_retlen;
842 donelen += wbuf_retlen;
843 }
844
845 /*
846 * If there's a remainder in the wbuf and it's a non-GC write,
847 * remember that the wbuf affects this ino
848 */
849 *retlen = donelen;
850
851 if (jffs2_sum_active()) {
852 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
853 if (res)
854 return res;
855 }
856
857 if (c->wbuf_len && ino)
858 jffs2_wbuf_dirties_inode(c, ino);
859
860 ret = 0;
861 up_write(&c->wbuf_sem);
862 return ret;
863
864 outfile:
865 /*
866 * At this point we have no problem, c->wbuf is empty. However
867 * refile nextblock to avoid writing again to same address.
868 */
869
870 spin_lock(&c->erase_completion_lock);
871
872 jeb = &c->blocks[outvec_to / c->sector_size];
873 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
874
875 spin_unlock(&c->erase_completion_lock);
876
877 outerr:
878 *retlen = 0;
879 up_write(&c->wbuf_sem);
880 return ret;
881 }
882
883 /*
884 * This is the entry for flash write.
885 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
886 */
887 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
888 size_t *retlen, const u_char *buf)
889 {
890 struct kvec vecs[1];
891
892 if (!jffs2_is_writebuffered(c))
893 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
894
895 vecs[0].iov_base = (unsigned char *) buf;
896 vecs[0].iov_len = len;
897 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
898 }
899
900 /*
901 Handle readback from writebuffer and ECC failure return
902 */
903 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
904 {
905 loff_t orbf = 0, owbf = 0, lwbf = 0;
906 int ret;
907
908 if (!jffs2_is_writebuffered(c))
909 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
910
911 /* Read flash */
912 down_read(&c->wbuf_sem);
913 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
914
915 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
916 if (ret == -EBADMSG)
917 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
918 " returned ECC error\n", len, ofs);
919 /*
920 * We have the raw data without ECC correction in the buffer,
921 * maybe we are lucky and all data or parts are correct. We
922 * check the node. If data are corrupted node check will sort
923 * it out. We keep this block, it will fail on write or erase
924 * and the we mark it bad. Or should we do that now? But we
925 * should give him a chance. Maybe we had a system crash or
926 * power loss before the ecc write or a erase was completed.
927 * So we return success. :)
928 */
929 ret = 0;
930 }
931
932 /* if no writebuffer available or write buffer empty, return */
933 if (!c->wbuf_pagesize || !c->wbuf_len)
934 goto exit;
935
936 /* if we read in a different block, return */
937 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
938 goto exit;
939
940 if (ofs >= c->wbuf_ofs) {
941 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
942 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
943 goto exit;
944 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
945 if (lwbf > len)
946 lwbf = len;
947 } else {
948 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
949 if (orbf > len) /* is write beyond write buffer ? */
950 goto exit;
951 lwbf = len - orbf; /* number of bytes to copy */
952 if (lwbf > c->wbuf_len)
953 lwbf = c->wbuf_len;
954 }
955 if (lwbf > 0)
956 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
957
958 exit:
959 up_read(&c->wbuf_sem);
960 return ret;
961 }
962
963 #define NR_OOB_SCAN_PAGES 4
964
965 /* For historical reasons we use only 12 bytes for OOB clean marker */
966 #define OOB_CM_SIZE 12
967
968 static const struct jffs2_unknown_node oob_cleanmarker =
969 {
970 .magic = cpu_to_je16(JFFS2_MAGIC_BITMASK),
971 .nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
972 .totlen = cpu_to_je32(8)
973 };
974
975 /*
976 * Check, if the out of band area is empty. This function knows about the clean
977 * marker and if it is present in OOB, treats the OOB as empty anyway.
978 */
979 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
980 struct jffs2_eraseblock *jeb, int mode)
981 {
982 int i, ret;
983 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
984 struct mtd_oob_ops ops;
985
986 ops.mode = MTD_OOB_AUTO;
987 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
988 ops.oobbuf = c->oobbuf;
989 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
990 ops.datbuf = NULL;
991
992 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
993 if (ret || ops.oobretlen != ops.ooblen) {
994 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
995 " bytes, read %zd bytes, error %d\n",
996 jeb->offset, ops.ooblen, ops.oobretlen, ret);
997 if (!ret)
998 ret = -EIO;
999 return ret;
1000 }
1001
1002 for(i = 0; i < ops.ooblen; i++) {
1003 if (mode && i < cmlen)
1004 /* Yeah, we know about the cleanmarker */
1005 continue;
1006
1007 if (ops.oobbuf[i] != 0xFF) {
1008 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1009 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1010 return 1;
1011 }
1012 }
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * Check for a valid cleanmarker.
1019 * Returns: 0 if a valid cleanmarker was found
1020 * 1 if no cleanmarker was found
1021 * negative error code if an error occurred
1022 */
1023 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1024 struct jffs2_eraseblock *jeb)
1025 {
1026 struct mtd_oob_ops ops;
1027 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1028
1029 ops.mode = MTD_OOB_AUTO;
1030 ops.ooblen = cmlen;
1031 ops.oobbuf = c->oobbuf;
1032 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1033 ops.datbuf = NULL;
1034
1035 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1036 if (ret || ops.oobretlen != ops.ooblen) {
1037 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1038 " bytes, read %zd bytes, error %d\n",
1039 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1040 if (!ret)
1041 ret = -EIO;
1042 return ret;
1043 }
1044
1045 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1046 }
1047
1048 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1049 struct jffs2_eraseblock *jeb)
1050 {
1051 int ret;
1052 struct mtd_oob_ops ops;
1053 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1054
1055 ops.mode = MTD_OOB_AUTO;
1056 ops.ooblen = cmlen;
1057 ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1058 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1059 ops.datbuf = NULL;
1060
1061 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1062 if (ret || ops.oobretlen != ops.ooblen) {
1063 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1064 " bytes, read %zd bytes, error %d\n",
1065 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1066 if (!ret)
1067 ret = -EIO;
1068 return ret;
1069 }
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * On NAND we try to mark this block bad. If the block was erased more
1076 * than MAX_ERASE_FAILURES we mark it finaly bad.
1077 * Don't care about failures. This block remains on the erase-pending
1078 * or badblock list as long as nobody manipulates the flash with
1079 * a bootloader or something like that.
1080 */
1081
1082 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1083 {
1084 int ret;
1085
1086 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1087 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1088 return 0;
1089
1090 if (!c->mtd->block_markbad)
1091 return 1; // What else can we do?
1092
1093 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1094 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1095
1096 if (ret) {
1097 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1098 return ret;
1099 }
1100 return 1;
1101 }
1102
1103 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1104 {
1105 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1106
1107 if (!c->mtd->oobsize)
1108 return 0;
1109
1110 /* Cleanmarker is out-of-band, so inline size zero */
1111 c->cleanmarker_size = 0;
1112
1113 if (!oinfo || oinfo->oobavail == 0) {
1114 printk(KERN_ERR "inconsistent device description\n");
1115 return -EINVAL;
1116 }
1117
1118 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
1119
1120 c->oobavail = oinfo->oobavail;
1121
1122 /* Initialise write buffer */
1123 init_rwsem(&c->wbuf_sem);
1124 c->wbuf_pagesize = c->mtd->writesize;
1125 c->wbuf_ofs = 0xFFFFFFFF;
1126
1127 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1128 if (!c->wbuf)
1129 return -ENOMEM;
1130
1131 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1132 if (!c->oobbuf) {
1133 kfree(c->wbuf);
1134 return -ENOMEM;
1135 }
1136
1137 return 0;
1138 }
1139
1140 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1141 {
1142 kfree(c->wbuf);
1143 kfree(c->oobbuf);
1144 }
1145
1146 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1147 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1148
1149 /* Initialize write buffer */
1150 init_rwsem(&c->wbuf_sem);
1151
1152
1153 c->wbuf_pagesize = c->mtd->erasesize;
1154
1155 /* Find a suitable c->sector_size
1156 * - Not too much sectors
1157 * - Sectors have to be at least 4 K + some bytes
1158 * - All known dataflashes have erase sizes of 528 or 1056
1159 * - we take at least 8 eraseblocks and want to have at least 8K size
1160 * - The concatenation should be a power of 2
1161 */
1162
1163 c->sector_size = 8 * c->mtd->erasesize;
1164
1165 while (c->sector_size < 8192) {
1166 c->sector_size *= 2;
1167 }
1168
1169 /* It may be necessary to adjust the flash size */
1170 c->flash_size = c->mtd->size;
1171
1172 if ((c->flash_size % c->sector_size) != 0) {
1173 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1174 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1175 };
1176
1177 c->wbuf_ofs = 0xFFFFFFFF;
1178 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1179 if (!c->wbuf)
1180 return -ENOMEM;
1181
1182 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1183
1184 return 0;
1185 }
1186
1187 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1188 kfree(c->wbuf);
1189 }
1190
1191 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1192 /* Cleanmarker currently occupies whole programming regions,
1193 * either one or 2 for 8Byte STMicro flashes. */
1194 c->cleanmarker_size = max(16u, c->mtd->writesize);
1195
1196 /* Initialize write buffer */
1197 init_rwsem(&c->wbuf_sem);
1198 c->wbuf_pagesize = c->mtd->writesize;
1199 c->wbuf_ofs = 0xFFFFFFFF;
1200
1201 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1202 if (!c->wbuf)
1203 return -ENOMEM;
1204
1205 return 0;
1206 }
1207
1208 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1209 kfree(c->wbuf);
1210 }
This page took 0.057767 seconds and 6 git commands to generate.