Revert "kernfs: implement kernfs_{de|re}activate[_self]()"
[deliverable/linux.git] / fs / kernfs / dir.c
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22
23 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
24
25 static bool kernfs_lockdep(struct kernfs_node *kn)
26 {
27 #ifdef CONFIG_DEBUG_LOCK_ALLOC
28 return kn->flags & KERNFS_LOCKDEP;
29 #else
30 return false;
31 #endif
32 }
33
34 /**
35 * kernfs_name_hash
36 * @name: Null terminated string to hash
37 * @ns: Namespace tag to hash
38 *
39 * Returns 31 bit hash of ns + name (so it fits in an off_t )
40 */
41 static unsigned int kernfs_name_hash(const char *name, const void *ns)
42 {
43 unsigned long hash = init_name_hash();
44 unsigned int len = strlen(name);
45 while (len--)
46 hash = partial_name_hash(*name++, hash);
47 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
48 hash &= 0x7fffffffU;
49 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
50 if (hash < 1)
51 hash += 2;
52 if (hash >= INT_MAX)
53 hash = INT_MAX - 1;
54 return hash;
55 }
56
57 static int kernfs_name_compare(unsigned int hash, const char *name,
58 const void *ns, const struct kernfs_node *kn)
59 {
60 if (hash != kn->hash)
61 return hash - kn->hash;
62 if (ns != kn->ns)
63 return ns - kn->ns;
64 return strcmp(name, kn->name);
65 }
66
67 static int kernfs_sd_compare(const struct kernfs_node *left,
68 const struct kernfs_node *right)
69 {
70 return kernfs_name_compare(left->hash, left->name, left->ns, right);
71 }
72
73 /**
74 * kernfs_link_sibling - link kernfs_node into sibling rbtree
75 * @kn: kernfs_node of interest
76 *
77 * Link @kn into its sibling rbtree which starts from
78 * @kn->parent->dir.children.
79 *
80 * Locking:
81 * mutex_lock(kernfs_mutex)
82 *
83 * RETURNS:
84 * 0 on susccess -EEXIST on failure.
85 */
86 static int kernfs_link_sibling(struct kernfs_node *kn)
87 {
88 struct rb_node **node = &kn->parent->dir.children.rb_node;
89 struct rb_node *parent = NULL;
90
91 if (kernfs_type(kn) == KERNFS_DIR)
92 kn->parent->dir.subdirs++;
93
94 while (*node) {
95 struct kernfs_node *pos;
96 int result;
97
98 pos = rb_to_kn(*node);
99 parent = *node;
100 result = kernfs_sd_compare(kn, pos);
101 if (result < 0)
102 node = &pos->rb.rb_left;
103 else if (result > 0)
104 node = &pos->rb.rb_right;
105 else
106 return -EEXIST;
107 }
108 /* add new node and rebalance the tree */
109 rb_link_node(&kn->rb, parent, node);
110 rb_insert_color(&kn->rb, &kn->parent->dir.children);
111 return 0;
112 }
113
114 /**
115 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
116 * @kn: kernfs_node of interest
117 *
118 * Unlink @kn from its sibling rbtree which starts from
119 * kn->parent->dir.children.
120 *
121 * Locking:
122 * mutex_lock(kernfs_mutex)
123 */
124 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
125 {
126 if (RB_EMPTY_NODE(&kn->rb))
127 return false;
128
129 if (kernfs_type(kn) == KERNFS_DIR)
130 kn->parent->dir.subdirs--;
131
132 rb_erase(&kn->rb, &kn->parent->dir.children);
133 RB_CLEAR_NODE(&kn->rb);
134 return true;
135 }
136
137 /**
138 * kernfs_get_active - get an active reference to kernfs_node
139 * @kn: kernfs_node to get an active reference to
140 *
141 * Get an active reference of @kn. This function is noop if @kn
142 * is NULL.
143 *
144 * RETURNS:
145 * Pointer to @kn on success, NULL on failure.
146 */
147 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
148 {
149 if (unlikely(!kn))
150 return NULL;
151
152 if (kernfs_lockdep(kn))
153 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
154
155 /*
156 * Try to obtain an active ref. If @kn is deactivated, we block
157 * till either it's reactivated or killed.
158 */
159 do {
160 if (atomic_inc_unless_negative(&kn->active))
161 return kn;
162
163 wait_event(kernfs_root(kn)->deactivate_waitq,
164 atomic_read(&kn->active) >= 0 ||
165 RB_EMPTY_NODE(&kn->rb));
166 } while (!RB_EMPTY_NODE(&kn->rb));
167
168 if (kernfs_lockdep(kn))
169 rwsem_release(&kn->dep_map, 1, _RET_IP_);
170 return NULL;
171 }
172
173 /**
174 * kernfs_put_active - put an active reference to kernfs_node
175 * @kn: kernfs_node to put an active reference to
176 *
177 * Put an active reference to @kn. This function is noop if @kn
178 * is NULL.
179 */
180 void kernfs_put_active(struct kernfs_node *kn)
181 {
182 struct kernfs_root *root = kernfs_root(kn);
183 int v;
184
185 if (unlikely(!kn))
186 return;
187
188 if (kernfs_lockdep(kn))
189 rwsem_release(&kn->dep_map, 1, _RET_IP_);
190 v = atomic_dec_return(&kn->active);
191 if (likely(v != KN_DEACTIVATED_BIAS))
192 return;
193
194 wake_up_all(&root->deactivate_waitq);
195 }
196
197 /**
198 * kernfs_drain - drain kernfs_node
199 * @kn: kernfs_node to drain
200 *
201 * Drain existing usages of @kn. Mutiple removers may invoke this function
202 * concurrently on @kn and all will return after draining is complete.
203 * Returns %true if drain is performed and kernfs_mutex was temporarily
204 * released. %false if @kn was already drained and no operation was
205 * necessary.
206 *
207 * The caller is responsible for ensuring @kn stays pinned while this
208 * function is in progress even if it gets removed by someone else.
209 */
210 static bool kernfs_drain(struct kernfs_node *kn)
211 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
212 {
213 struct kernfs_root *root = kernfs_root(kn);
214
215 lockdep_assert_held(&kernfs_mutex);
216 WARN_ON_ONCE(atomic_read(&kn->active) >= 0);
217
218 /*
219 * We want to go through the active ref lockdep annotation at least
220 * once for all node removals, but the lockdep annotation can't be
221 * nested inside kernfs_mutex and deactivation can't make forward
222 * progress if we keep dropping the mutex. Use JUST_ACTIVATED to
223 * force the slow path once for each deactivation if lockdep is
224 * enabled.
225 */
226 if ((!kernfs_lockdep(kn) || !(kn->flags & KERNFS_JUST_DEACTIVATED)) &&
227 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
228 return false;
229
230 kn->flags &= ~KERNFS_JUST_DEACTIVATED;
231 mutex_unlock(&kernfs_mutex);
232
233 if (kernfs_lockdep(kn)) {
234 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
235 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
236 lock_contended(&kn->dep_map, _RET_IP_);
237 }
238
239 wait_event(root->deactivate_waitq,
240 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
241
242 if (kernfs_lockdep(kn)) {
243 lock_acquired(&kn->dep_map, _RET_IP_);
244 rwsem_release(&kn->dep_map, 1, _RET_IP_);
245 }
246
247 mutex_lock(&kernfs_mutex);
248 return true;
249 }
250
251 /**
252 * kernfs_get - get a reference count on a kernfs_node
253 * @kn: the target kernfs_node
254 */
255 void kernfs_get(struct kernfs_node *kn)
256 {
257 if (kn) {
258 WARN_ON(!atomic_read(&kn->count));
259 atomic_inc(&kn->count);
260 }
261 }
262 EXPORT_SYMBOL_GPL(kernfs_get);
263
264 /**
265 * kernfs_put - put a reference count on a kernfs_node
266 * @kn: the target kernfs_node
267 *
268 * Put a reference count of @kn and destroy it if it reached zero.
269 */
270 void kernfs_put(struct kernfs_node *kn)
271 {
272 struct kernfs_node *parent;
273 struct kernfs_root *root;
274
275 if (!kn || !atomic_dec_and_test(&kn->count))
276 return;
277 root = kernfs_root(kn);
278 repeat:
279 /*
280 * Moving/renaming is always done while holding reference.
281 * kn->parent won't change beneath us.
282 */
283 parent = kn->parent;
284
285 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
286 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
287 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
288
289 if (kernfs_type(kn) == KERNFS_LINK)
290 kernfs_put(kn->symlink.target_kn);
291 if (!(kn->flags & KERNFS_STATIC_NAME))
292 kfree(kn->name);
293 if (kn->iattr) {
294 if (kn->iattr->ia_secdata)
295 security_release_secctx(kn->iattr->ia_secdata,
296 kn->iattr->ia_secdata_len);
297 simple_xattrs_free(&kn->iattr->xattrs);
298 }
299 kfree(kn->iattr);
300 ida_simple_remove(&root->ino_ida, kn->ino);
301 kmem_cache_free(kernfs_node_cache, kn);
302
303 kn = parent;
304 if (kn) {
305 if (atomic_dec_and_test(&kn->count))
306 goto repeat;
307 } else {
308 /* just released the root kn, free @root too */
309 ida_destroy(&root->ino_ida);
310 kfree(root);
311 }
312 }
313 EXPORT_SYMBOL_GPL(kernfs_put);
314
315 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
316 {
317 struct kernfs_node *kn;
318
319 if (flags & LOOKUP_RCU)
320 return -ECHILD;
321
322 /* Always perform fresh lookup for negatives */
323 if (!dentry->d_inode)
324 goto out_bad_unlocked;
325
326 kn = dentry->d_fsdata;
327 mutex_lock(&kernfs_mutex);
328
329 /* Force fresh lookup if removed */
330 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
331 goto out_bad;
332
333 /* The kernfs node has been moved? */
334 if (dentry->d_parent->d_fsdata != kn->parent)
335 goto out_bad;
336
337 /* The kernfs node has been renamed */
338 if (strcmp(dentry->d_name.name, kn->name) != 0)
339 goto out_bad;
340
341 /* The kernfs node has been moved to a different namespace */
342 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
343 kernfs_info(dentry->d_sb)->ns != kn->ns)
344 goto out_bad;
345
346 mutex_unlock(&kernfs_mutex);
347 out_valid:
348 return 1;
349 out_bad:
350 mutex_unlock(&kernfs_mutex);
351 out_bad_unlocked:
352 /*
353 * @dentry doesn't match the underlying kernfs node, drop the
354 * dentry and force lookup. If we have submounts we must allow the
355 * vfs caches to lie about the state of the filesystem to prevent
356 * leaks and other nasty things, so use check_submounts_and_drop()
357 * instead of d_drop().
358 */
359 if (check_submounts_and_drop(dentry) != 0)
360 goto out_valid;
361
362 return 0;
363 }
364
365 static void kernfs_dop_release(struct dentry *dentry)
366 {
367 kernfs_put(dentry->d_fsdata);
368 }
369
370 const struct dentry_operations kernfs_dops = {
371 .d_revalidate = kernfs_dop_revalidate,
372 .d_release = kernfs_dop_release,
373 };
374
375 struct kernfs_node *kernfs_new_node(struct kernfs_root *root, const char *name,
376 umode_t mode, unsigned flags)
377 {
378 char *dup_name = NULL;
379 struct kernfs_node *kn;
380 int ret;
381
382 if (!(flags & KERNFS_STATIC_NAME)) {
383 name = dup_name = kstrdup(name, GFP_KERNEL);
384 if (!name)
385 return NULL;
386 }
387
388 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
389 if (!kn)
390 goto err_out1;
391
392 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
393 if (ret < 0)
394 goto err_out2;
395 kn->ino = ret;
396
397 atomic_set(&kn->count, 1);
398 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
399 RB_CLEAR_NODE(&kn->rb);
400
401 kn->name = name;
402 kn->mode = mode;
403 kn->flags = flags;
404
405 return kn;
406
407 err_out2:
408 kmem_cache_free(kernfs_node_cache, kn);
409 err_out1:
410 kfree(dup_name);
411 return NULL;
412 }
413
414 /**
415 * kernfs_add_one - add kernfs_node to parent without warning
416 * @kn: kernfs_node to be added
417 * @parent: the parent kernfs_node to add @kn to
418 *
419 * Get @parent and set @kn->parent to it and increment nlink of the
420 * parent inode if @kn is a directory and link into the children list
421 * of the parent.
422 *
423 * RETURNS:
424 * 0 on success, -EEXIST if entry with the given name already
425 * exists.
426 */
427 int kernfs_add_one(struct kernfs_node *kn, struct kernfs_node *parent)
428 {
429 struct kernfs_iattrs *ps_iattr;
430 bool has_ns;
431 int ret;
432
433 if (!kernfs_get_active(parent))
434 return -ENOENT;
435
436 mutex_lock(&kernfs_mutex);
437
438 ret = -EINVAL;
439 has_ns = kernfs_ns_enabled(parent);
440 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
441 has_ns ? "required" : "invalid", parent->name, kn->name))
442 goto out_unlock;
443
444 if (kernfs_type(parent) != KERNFS_DIR)
445 goto out_unlock;
446
447 kn->hash = kernfs_name_hash(kn->name, kn->ns);
448 kn->parent = parent;
449 kernfs_get(parent);
450
451 ret = kernfs_link_sibling(kn);
452 if (ret)
453 goto out_unlock;
454
455 /* Update timestamps on the parent */
456 ps_iattr = parent->iattr;
457 if (ps_iattr) {
458 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
459 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
460 }
461
462 /* Mark the entry added into directory tree */
463 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
464 ret = 0;
465 out_unlock:
466 mutex_unlock(&kernfs_mutex);
467 kernfs_put_active(parent);
468 return ret;
469 }
470
471 /**
472 * kernfs_find_ns - find kernfs_node with the given name
473 * @parent: kernfs_node to search under
474 * @name: name to look for
475 * @ns: the namespace tag to use
476 *
477 * Look for kernfs_node with name @name under @parent. Returns pointer to
478 * the found kernfs_node on success, %NULL on failure.
479 */
480 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
481 const unsigned char *name,
482 const void *ns)
483 {
484 struct rb_node *node = parent->dir.children.rb_node;
485 bool has_ns = kernfs_ns_enabled(parent);
486 unsigned int hash;
487
488 lockdep_assert_held(&kernfs_mutex);
489
490 if (has_ns != (bool)ns) {
491 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
492 has_ns ? "required" : "invalid", parent->name, name);
493 return NULL;
494 }
495
496 hash = kernfs_name_hash(name, ns);
497 while (node) {
498 struct kernfs_node *kn;
499 int result;
500
501 kn = rb_to_kn(node);
502 result = kernfs_name_compare(hash, name, ns, kn);
503 if (result < 0)
504 node = node->rb_left;
505 else if (result > 0)
506 node = node->rb_right;
507 else
508 return kn;
509 }
510 return NULL;
511 }
512
513 /**
514 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
515 * @parent: kernfs_node to search under
516 * @name: name to look for
517 * @ns: the namespace tag to use
518 *
519 * Look for kernfs_node with name @name under @parent and get a reference
520 * if found. This function may sleep and returns pointer to the found
521 * kernfs_node on success, %NULL on failure.
522 */
523 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
524 const char *name, const void *ns)
525 {
526 struct kernfs_node *kn;
527
528 mutex_lock(&kernfs_mutex);
529 kn = kernfs_find_ns(parent, name, ns);
530 kernfs_get(kn);
531 mutex_unlock(&kernfs_mutex);
532
533 return kn;
534 }
535 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
536
537 /**
538 * kernfs_create_root - create a new kernfs hierarchy
539 * @kdops: optional directory syscall operations for the hierarchy
540 * @priv: opaque data associated with the new directory
541 *
542 * Returns the root of the new hierarchy on success, ERR_PTR() value on
543 * failure.
544 */
545 struct kernfs_root *kernfs_create_root(struct kernfs_dir_ops *kdops, void *priv)
546 {
547 struct kernfs_root *root;
548 struct kernfs_node *kn;
549
550 root = kzalloc(sizeof(*root), GFP_KERNEL);
551 if (!root)
552 return ERR_PTR(-ENOMEM);
553
554 ida_init(&root->ino_ida);
555
556 kn = kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, KERNFS_DIR);
557 if (!kn) {
558 ida_destroy(&root->ino_ida);
559 kfree(root);
560 return ERR_PTR(-ENOMEM);
561 }
562
563 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
564 kn->priv = priv;
565 kn->dir.root = root;
566
567 root->dir_ops = kdops;
568 root->kn = kn;
569 init_waitqueue_head(&root->deactivate_waitq);
570
571 return root;
572 }
573
574 /**
575 * kernfs_destroy_root - destroy a kernfs hierarchy
576 * @root: root of the hierarchy to destroy
577 *
578 * Destroy the hierarchy anchored at @root by removing all existing
579 * directories and destroying @root.
580 */
581 void kernfs_destroy_root(struct kernfs_root *root)
582 {
583 kernfs_remove(root->kn); /* will also free @root */
584 }
585
586 /**
587 * kernfs_create_dir_ns - create a directory
588 * @parent: parent in which to create a new directory
589 * @name: name of the new directory
590 * @mode: mode of the new directory
591 * @priv: opaque data associated with the new directory
592 * @ns: optional namespace tag of the directory
593 *
594 * Returns the created node on success, ERR_PTR() value on failure.
595 */
596 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
597 const char *name, umode_t mode,
598 void *priv, const void *ns)
599 {
600 struct kernfs_node *kn;
601 int rc;
602
603 /* allocate */
604 kn = kernfs_new_node(kernfs_root(parent), name, mode | S_IFDIR,
605 KERNFS_DIR);
606 if (!kn)
607 return ERR_PTR(-ENOMEM);
608
609 kn->dir.root = parent->dir.root;
610 kn->ns = ns;
611 kn->priv = priv;
612
613 /* link in */
614 rc = kernfs_add_one(kn, parent);
615 if (!rc)
616 return kn;
617
618 kernfs_put(kn);
619 return ERR_PTR(rc);
620 }
621
622 static struct dentry *kernfs_iop_lookup(struct inode *dir,
623 struct dentry *dentry,
624 unsigned int flags)
625 {
626 struct dentry *ret;
627 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
628 struct kernfs_node *kn;
629 struct inode *inode;
630 const void *ns = NULL;
631
632 mutex_lock(&kernfs_mutex);
633
634 if (kernfs_ns_enabled(parent))
635 ns = kernfs_info(dir->i_sb)->ns;
636
637 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
638
639 /* no such entry */
640 if (!kn) {
641 ret = NULL;
642 goto out_unlock;
643 }
644 kernfs_get(kn);
645 dentry->d_fsdata = kn;
646
647 /* attach dentry and inode */
648 inode = kernfs_get_inode(dir->i_sb, kn);
649 if (!inode) {
650 ret = ERR_PTR(-ENOMEM);
651 goto out_unlock;
652 }
653
654 /* instantiate and hash dentry */
655 ret = d_materialise_unique(dentry, inode);
656 out_unlock:
657 mutex_unlock(&kernfs_mutex);
658 return ret;
659 }
660
661 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
662 umode_t mode)
663 {
664 struct kernfs_node *parent = dir->i_private;
665 struct kernfs_dir_ops *kdops = kernfs_root(parent)->dir_ops;
666
667 if (!kdops || !kdops->mkdir)
668 return -EPERM;
669
670 return kdops->mkdir(parent, dentry->d_name.name, mode);
671 }
672
673 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
674 {
675 struct kernfs_node *kn = dentry->d_fsdata;
676 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
677
678 if (!kdops || !kdops->rmdir)
679 return -EPERM;
680
681 return kdops->rmdir(kn);
682 }
683
684 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
685 struct inode *new_dir, struct dentry *new_dentry)
686 {
687 struct kernfs_node *kn = old_dentry->d_fsdata;
688 struct kernfs_node *new_parent = new_dir->i_private;
689 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
690
691 if (!kdops || !kdops->rename)
692 return -EPERM;
693
694 return kdops->rename(kn, new_parent, new_dentry->d_name.name);
695 }
696
697 const struct inode_operations kernfs_dir_iops = {
698 .lookup = kernfs_iop_lookup,
699 .permission = kernfs_iop_permission,
700 .setattr = kernfs_iop_setattr,
701 .getattr = kernfs_iop_getattr,
702 .setxattr = kernfs_iop_setxattr,
703 .removexattr = kernfs_iop_removexattr,
704 .getxattr = kernfs_iop_getxattr,
705 .listxattr = kernfs_iop_listxattr,
706
707 .mkdir = kernfs_iop_mkdir,
708 .rmdir = kernfs_iop_rmdir,
709 .rename = kernfs_iop_rename,
710 };
711
712 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
713 {
714 struct kernfs_node *last;
715
716 while (true) {
717 struct rb_node *rbn;
718
719 last = pos;
720
721 if (kernfs_type(pos) != KERNFS_DIR)
722 break;
723
724 rbn = rb_first(&pos->dir.children);
725 if (!rbn)
726 break;
727
728 pos = rb_to_kn(rbn);
729 }
730
731 return last;
732 }
733
734 /**
735 * kernfs_next_descendant_post - find the next descendant for post-order walk
736 * @pos: the current position (%NULL to initiate traversal)
737 * @root: kernfs_node whose descendants to walk
738 *
739 * Find the next descendant to visit for post-order traversal of @root's
740 * descendants. @root is included in the iteration and the last node to be
741 * visited.
742 */
743 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
744 struct kernfs_node *root)
745 {
746 struct rb_node *rbn;
747
748 lockdep_assert_held(&kernfs_mutex);
749
750 /* if first iteration, visit leftmost descendant which may be root */
751 if (!pos)
752 return kernfs_leftmost_descendant(root);
753
754 /* if we visited @root, we're done */
755 if (pos == root)
756 return NULL;
757
758 /* if there's an unvisited sibling, visit its leftmost descendant */
759 rbn = rb_next(&pos->rb);
760 if (rbn)
761 return kernfs_leftmost_descendant(rb_to_kn(rbn));
762
763 /* no sibling left, visit parent */
764 return pos->parent;
765 }
766
767 static void __kernfs_deactivate(struct kernfs_node *kn)
768 {
769 struct kernfs_node *pos;
770
771 lockdep_assert_held(&kernfs_mutex);
772
773 /* prevent any new usage under @kn by deactivating all nodes */
774 pos = NULL;
775 while ((pos = kernfs_next_descendant_post(pos, kn))) {
776 if (atomic_read(&pos->active) >= 0) {
777 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
778 pos->flags |= KERNFS_JUST_DEACTIVATED;
779 }
780 }
781
782 /*
783 * Drain the subtree. If kernfs_drain() blocked to drain, which is
784 * indicated by %true return, it temporarily released kernfs_mutex
785 * and the rbtree might have been modified inbetween breaking our
786 * future walk. Restart the walk after each %true return.
787 */
788 pos = NULL;
789 while ((pos = kernfs_next_descendant_post(pos, kn))) {
790 bool drained;
791
792 kernfs_get(pos);
793 drained = kernfs_drain(pos);
794 kernfs_put(pos);
795 if (drained)
796 pos = NULL;
797 }
798 }
799
800 static void __kernfs_remove(struct kernfs_node *kn)
801 {
802 struct kernfs_root *root = kernfs_root(kn);
803 struct kernfs_node *pos;
804
805 lockdep_assert_held(&kernfs_mutex);
806
807 if (!kn)
808 return;
809
810 pr_debug("kernfs %s: removing\n", kn->name);
811
812 __kernfs_deactivate(kn);
813
814 /* unlink the subtree node-by-node */
815 do {
816 pos = kernfs_leftmost_descendant(kn);
817
818 /*
819 * We're gonna release kernfs_mutex to unmap bin files,
820 * Make sure @pos doesn't go away inbetween.
821 */
822 kernfs_get(pos);
823
824 /*
825 * This must be come before unlinking; otherwise, when
826 * there are multiple removers, some may finish before
827 * unmapping is complete.
828 */
829 if (pos->flags & KERNFS_HAS_MMAP) {
830 mutex_unlock(&kernfs_mutex);
831 kernfs_unmap_file(pos);
832 mutex_lock(&kernfs_mutex);
833 }
834
835 /*
836 * kernfs_unlink_sibling() succeeds once per node. Use it
837 * to decide who's responsible for cleanups.
838 */
839 if (!pos->parent || kernfs_unlink_sibling(pos)) {
840 struct kernfs_iattrs *ps_iattr =
841 pos->parent ? pos->parent->iattr : NULL;
842
843 /* update timestamps on the parent */
844 if (ps_iattr) {
845 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
846 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
847 }
848
849 kernfs_put(pos);
850 }
851
852 kernfs_put(pos);
853 } while (pos != kn);
854
855 /* some nodes killed, kick get_active waiters */
856 wake_up_all(&root->deactivate_waitq);
857 }
858
859 /**
860 * kernfs_remove - remove a kernfs_node recursively
861 * @kn: the kernfs_node to remove
862 *
863 * Remove @kn along with all its subdirectories and files.
864 */
865 void kernfs_remove(struct kernfs_node *kn)
866 {
867 mutex_lock(&kernfs_mutex);
868 __kernfs_remove(kn);
869 mutex_unlock(&kernfs_mutex);
870 }
871
872 /**
873 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
874 * @parent: parent of the target
875 * @name: name of the kernfs_node to remove
876 * @ns: namespace tag of the kernfs_node to remove
877 *
878 * Look for the kernfs_node with @name and @ns under @parent and remove it.
879 * Returns 0 on success, -ENOENT if such entry doesn't exist.
880 */
881 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
882 const void *ns)
883 {
884 struct kernfs_node *kn;
885
886 if (!parent) {
887 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
888 name);
889 return -ENOENT;
890 }
891
892 mutex_lock(&kernfs_mutex);
893
894 kn = kernfs_find_ns(parent, name, ns);
895 if (kn)
896 __kernfs_remove(kn);
897
898 mutex_unlock(&kernfs_mutex);
899
900 if (kn)
901 return 0;
902 else
903 return -ENOENT;
904 }
905
906 /**
907 * kernfs_rename_ns - move and rename a kernfs_node
908 * @kn: target node
909 * @new_parent: new parent to put @sd under
910 * @new_name: new name
911 * @new_ns: new namespace tag
912 */
913 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
914 const char *new_name, const void *new_ns)
915 {
916 int error;
917
918 error = -ENOENT;
919 if (!kernfs_get_active(new_parent))
920 goto out;
921 if (!kernfs_get_active(kn))
922 goto out_put_new_parent;
923
924 mutex_lock(&kernfs_mutex);
925
926 error = 0;
927 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
928 (strcmp(kn->name, new_name) == 0))
929 goto out_unlock; /* nothing to rename */
930
931 error = -EEXIST;
932 if (kernfs_find_ns(new_parent, new_name, new_ns))
933 goto out_unlock;
934
935 /* rename kernfs_node */
936 if (strcmp(kn->name, new_name) != 0) {
937 error = -ENOMEM;
938 new_name = kstrdup(new_name, GFP_KERNEL);
939 if (!new_name)
940 goto out_unlock;
941
942 if (kn->flags & KERNFS_STATIC_NAME)
943 kn->flags &= ~KERNFS_STATIC_NAME;
944 else
945 kfree(kn->name);
946
947 kn->name = new_name;
948 }
949
950 /*
951 * Move to the appropriate place in the appropriate directories rbtree.
952 */
953 kernfs_unlink_sibling(kn);
954 kernfs_get(new_parent);
955 kernfs_put(kn->parent);
956 kn->ns = new_ns;
957 kn->hash = kernfs_name_hash(kn->name, kn->ns);
958 kn->parent = new_parent;
959 kernfs_link_sibling(kn);
960
961 error = 0;
962 out_unlock:
963 mutex_unlock(&kernfs_mutex);
964 kernfs_put_active(kn);
965 out_put_new_parent:
966 kernfs_put_active(new_parent);
967 out:
968 return error;
969 }
970
971 /* Relationship between s_mode and the DT_xxx types */
972 static inline unsigned char dt_type(struct kernfs_node *kn)
973 {
974 return (kn->mode >> 12) & 15;
975 }
976
977 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
978 {
979 kernfs_put(filp->private_data);
980 return 0;
981 }
982
983 static struct kernfs_node *kernfs_dir_pos(const void *ns,
984 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
985 {
986 if (pos) {
987 int valid = pos->parent == parent && hash == pos->hash;
988 kernfs_put(pos);
989 if (!valid)
990 pos = NULL;
991 }
992 if (!pos && (hash > 1) && (hash < INT_MAX)) {
993 struct rb_node *node = parent->dir.children.rb_node;
994 while (node) {
995 pos = rb_to_kn(node);
996
997 if (hash < pos->hash)
998 node = node->rb_left;
999 else if (hash > pos->hash)
1000 node = node->rb_right;
1001 else
1002 break;
1003 }
1004 }
1005 /* Skip over entries in the wrong namespace */
1006 while (pos && pos->ns != ns) {
1007 struct rb_node *node = rb_next(&pos->rb);
1008 if (!node)
1009 pos = NULL;
1010 else
1011 pos = rb_to_kn(node);
1012 }
1013 return pos;
1014 }
1015
1016 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1017 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1018 {
1019 pos = kernfs_dir_pos(ns, parent, ino, pos);
1020 if (pos)
1021 do {
1022 struct rb_node *node = rb_next(&pos->rb);
1023 if (!node)
1024 pos = NULL;
1025 else
1026 pos = rb_to_kn(node);
1027 } while (pos && pos->ns != ns);
1028 return pos;
1029 }
1030
1031 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1032 {
1033 struct dentry *dentry = file->f_path.dentry;
1034 struct kernfs_node *parent = dentry->d_fsdata;
1035 struct kernfs_node *pos = file->private_data;
1036 const void *ns = NULL;
1037
1038 if (!dir_emit_dots(file, ctx))
1039 return 0;
1040 mutex_lock(&kernfs_mutex);
1041
1042 if (kernfs_ns_enabled(parent))
1043 ns = kernfs_info(dentry->d_sb)->ns;
1044
1045 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1046 pos;
1047 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1048 const char *name = pos->name;
1049 unsigned int type = dt_type(pos);
1050 int len = strlen(name);
1051 ino_t ino = pos->ino;
1052
1053 ctx->pos = pos->hash;
1054 file->private_data = pos;
1055 kernfs_get(pos);
1056
1057 mutex_unlock(&kernfs_mutex);
1058 if (!dir_emit(ctx, name, len, ino, type))
1059 return 0;
1060 mutex_lock(&kernfs_mutex);
1061 }
1062 mutex_unlock(&kernfs_mutex);
1063 file->private_data = NULL;
1064 ctx->pos = INT_MAX;
1065 return 0;
1066 }
1067
1068 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1069 int whence)
1070 {
1071 struct inode *inode = file_inode(file);
1072 loff_t ret;
1073
1074 mutex_lock(&inode->i_mutex);
1075 ret = generic_file_llseek(file, offset, whence);
1076 mutex_unlock(&inode->i_mutex);
1077
1078 return ret;
1079 }
1080
1081 const struct file_operations kernfs_dir_fops = {
1082 .read = generic_read_dir,
1083 .iterate = kernfs_fop_readdir,
1084 .release = kernfs_dir_fop_release,
1085 .llseek = kernfs_dir_fop_llseek,
1086 };
This page took 0.051143 seconds and 6 git commands to generate.