MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / fs / kernfs / file.c
1 /*
2 * fs/kernfs/file.c - kernfs file implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/poll.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/fsnotify.h>
18
19 #include "kernfs-internal.h"
20
21 /*
22 * There's one kernfs_open_file for each open file and one kernfs_open_node
23 * for each kernfs_node with one or more open files.
24 *
25 * kernfs_node->attr.open points to kernfs_open_node. attr.open is
26 * protected by kernfs_open_node_lock.
27 *
28 * filp->private_data points to seq_file whose ->private points to
29 * kernfs_open_file. kernfs_open_files are chained at
30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31 */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34
35 struct kernfs_open_node {
36 atomic_t refcnt;
37 atomic_t event;
38 wait_queue_head_t poll;
39 struct list_head files; /* goes through kernfs_open_file.list */
40 };
41
42 /*
43 * kernfs_notify() may be called from any context and bounces notifications
44 * through a work item. To minimize space overhead in kernfs_node, the
45 * pending queue is implemented as a singly linked list of kernfs_nodes.
46 * The list is terminated with the self pointer so that whether a
47 * kernfs_node is on the list or not can be determined by testing the next
48 * pointer for NULL.
49 */
50 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list)
51
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 return ((struct seq_file *)file->private_data)->private;
58 }
59
60 /*
61 * Determine the kernfs_ops for the given kernfs_node. This function must
62 * be called while holding an active reference.
63 */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 if (kn->flags & KERNFS_LOCKDEP)
67 lockdep_assert_held(kn);
68 return kn->attr.ops;
69 }
70
71 /*
72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74 * a seq_file iteration which is fully initialized with an active reference
75 * or an aborted kernfs_seq_start() due to get_active failure. The
76 * position pointer is the only context for each seq_file iteration and
77 * thus the stop condition should be encoded in it. As the return value is
78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79 * choice to indicate get_active failure.
80 *
81 * Unfortunately, this is complicated due to the optional custom seq_file
82 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop()
83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84 * custom seq_file operations and thus can't decide whether put_active
85 * should be performed or not only on ERR_PTR(-ENODEV).
86 *
87 * This is worked around by factoring out the custom seq_stop() and
88 * put_active part into kernfs_seq_stop_active(), skipping it from
89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
92 */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 struct kernfs_open_file *of = sf->private;
96 const struct kernfs_ops *ops = kernfs_ops(of->kn);
97
98 if (ops->seq_stop)
99 ops->seq_stop(sf, v);
100 kernfs_put_active(of->kn);
101 }
102
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 struct kernfs_open_file *of = sf->private;
106 const struct kernfs_ops *ops;
107
108 /*
109 * @of->mutex nests outside active ref and is primarily to ensure that
110 * the ops aren't called concurrently for the same open file.
111 */
112 mutex_lock(&of->mutex);
113 if (!kernfs_get_active(of->kn))
114 return ERR_PTR(-ENODEV);
115
116 ops = kernfs_ops(of->kn);
117 if (ops->seq_start) {
118 void *next = ops->seq_start(sf, ppos);
119 /* see the comment above kernfs_seq_stop_active() */
120 if (next == ERR_PTR(-ENODEV))
121 kernfs_seq_stop_active(sf, next);
122 return next;
123 } else {
124 /*
125 * The same behavior and code as single_open(). Returns
126 * !NULL if pos is at the beginning; otherwise, NULL.
127 */
128 return NULL + !*ppos;
129 }
130 }
131
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 {
134 struct kernfs_open_file *of = sf->private;
135 const struct kernfs_ops *ops = kernfs_ops(of->kn);
136
137 if (ops->seq_next) {
138 void *next = ops->seq_next(sf, v, ppos);
139 /* see the comment above kernfs_seq_stop_active() */
140 if (next == ERR_PTR(-ENODEV))
141 kernfs_seq_stop_active(sf, next);
142 return next;
143 } else {
144 /*
145 * The same behavior and code as single_open(), always
146 * terminate after the initial read.
147 */
148 ++*ppos;
149 return NULL;
150 }
151 }
152
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 {
155 struct kernfs_open_file *of = sf->private;
156
157 if (v != ERR_PTR(-ENODEV))
158 kernfs_seq_stop_active(sf, v);
159 mutex_unlock(&of->mutex);
160 }
161
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 {
164 struct kernfs_open_file *of = sf->private;
165
166 of->event = atomic_read(&of->kn->attr.open->event);
167
168 return of->kn->attr.ops->seq_show(sf, v);
169 }
170
171 static const struct seq_operations kernfs_seq_ops = {
172 .start = kernfs_seq_start,
173 .next = kernfs_seq_next,
174 .stop = kernfs_seq_stop,
175 .show = kernfs_seq_show,
176 };
177
178 /*
179 * As reading a bin file can have side-effects, the exact offset and bytes
180 * specified in read(2) call should be passed to the read callback making
181 * it difficult to use seq_file. Implement simplistic custom buffering for
182 * bin files.
183 */
184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185 char __user *user_buf, size_t count,
186 loff_t *ppos)
187 {
188 ssize_t len = min_t(size_t, count, PAGE_SIZE);
189 const struct kernfs_ops *ops;
190 char *buf;
191
192 buf = of->prealloc_buf;
193 if (!buf)
194 buf = kmalloc(len, GFP_KERNEL);
195 if (!buf)
196 return -ENOMEM;
197
198 /*
199 * @of->mutex nests outside active ref and is used both to ensure that
200 * the ops aren't called concurrently for the same open file, and
201 * to provide exclusive access to ->prealloc_buf (when that exists).
202 */
203 mutex_lock(&of->mutex);
204 if (!kernfs_get_active(of->kn)) {
205 len = -ENODEV;
206 mutex_unlock(&of->mutex);
207 goto out_free;
208 }
209
210 ops = kernfs_ops(of->kn);
211 if (ops->read)
212 len = ops->read(of, buf, len, *ppos);
213 else
214 len = -EINVAL;
215
216 if (len < 0)
217 goto out_unlock;
218
219 if (copy_to_user(user_buf, buf, len)) {
220 len = -EFAULT;
221 goto out_unlock;
222 }
223
224 *ppos += len;
225
226 out_unlock:
227 kernfs_put_active(of->kn);
228 mutex_unlock(&of->mutex);
229 out_free:
230 if (buf != of->prealloc_buf)
231 kfree(buf);
232 return len;
233 }
234
235 /**
236 * kernfs_fop_read - kernfs vfs read callback
237 * @file: file pointer
238 * @user_buf: data to write
239 * @count: number of bytes
240 * @ppos: starting offset
241 */
242 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
243 size_t count, loff_t *ppos)
244 {
245 struct kernfs_open_file *of = kernfs_of(file);
246
247 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
248 return seq_read(file, user_buf, count, ppos);
249 else
250 return kernfs_file_direct_read(of, user_buf, count, ppos);
251 }
252
253 /**
254 * kernfs_fop_write - kernfs vfs write callback
255 * @file: file pointer
256 * @user_buf: data to write
257 * @count: number of bytes
258 * @ppos: starting offset
259 *
260 * Copy data in from userland and pass it to the matching kernfs write
261 * operation.
262 *
263 * There is no easy way for us to know if userspace is only doing a partial
264 * write, so we don't support them. We expect the entire buffer to come on
265 * the first write. Hint: if you're writing a value, first read the file,
266 * modify only the the value you're changing, then write entire buffer
267 * back.
268 */
269 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
270 size_t count, loff_t *ppos)
271 {
272 struct kernfs_open_file *of = kernfs_of(file);
273 const struct kernfs_ops *ops;
274 size_t len;
275 char *buf;
276
277 if (of->atomic_write_len) {
278 len = count;
279 if (len > of->atomic_write_len)
280 return -E2BIG;
281 } else {
282 len = min_t(size_t, count, PAGE_SIZE);
283 }
284
285 buf = of->prealloc_buf;
286 if (!buf)
287 buf = kmalloc(len + 1, GFP_KERNEL);
288 if (!buf)
289 return -ENOMEM;
290
291 /*
292 * @of->mutex nests outside active ref and is used both to ensure that
293 * the ops aren't called concurrently for the same open file, and
294 * to provide exclusive access to ->prealloc_buf (when that exists).
295 */
296 mutex_lock(&of->mutex);
297 if (!kernfs_get_active(of->kn)) {
298 mutex_unlock(&of->mutex);
299 len = -ENODEV;
300 goto out_free;
301 }
302
303 if (copy_from_user(buf, user_buf, len)) {
304 len = -EFAULT;
305 goto out_unlock;
306 }
307 buf[len] = '\0'; /* guarantee string termination */
308
309 ops = kernfs_ops(of->kn);
310 if (ops->write)
311 len = ops->write(of, buf, len, *ppos);
312 else
313 len = -EINVAL;
314
315 if (len > 0)
316 *ppos += len;
317
318 out_unlock:
319 kernfs_put_active(of->kn);
320 mutex_unlock(&of->mutex);
321 out_free:
322 if (buf != of->prealloc_buf)
323 kfree(buf);
324 return len;
325 }
326
327 static void kernfs_vma_open(struct vm_area_struct *vma)
328 {
329 struct file *file = vma->vm_file;
330 struct kernfs_open_file *of = kernfs_of(file);
331
332 if (!of->vm_ops)
333 return;
334
335 if (!kernfs_get_active(of->kn))
336 return;
337
338 if (of->vm_ops->open)
339 of->vm_ops->open(vma);
340
341 kernfs_put_active(of->kn);
342 }
343
344 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
345 {
346 struct file *file = vma->vm_file;
347 struct kernfs_open_file *of = kernfs_of(file);
348 int ret;
349
350 if (!of->vm_ops)
351 return VM_FAULT_SIGBUS;
352
353 if (!kernfs_get_active(of->kn))
354 return VM_FAULT_SIGBUS;
355
356 ret = VM_FAULT_SIGBUS;
357 if (of->vm_ops->fault)
358 ret = of->vm_ops->fault(vma, vmf);
359
360 kernfs_put_active(of->kn);
361 return ret;
362 }
363
364 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
365 struct vm_fault *vmf)
366 {
367 struct file *file = vma->vm_file;
368 struct kernfs_open_file *of = kernfs_of(file);
369 int ret;
370
371 if (!of->vm_ops)
372 return VM_FAULT_SIGBUS;
373
374 if (!kernfs_get_active(of->kn))
375 return VM_FAULT_SIGBUS;
376
377 ret = 0;
378 if (of->vm_ops->page_mkwrite)
379 ret = of->vm_ops->page_mkwrite(vma, vmf);
380 else
381 file_update_time(file);
382
383 kernfs_put_active(of->kn);
384 return ret;
385 }
386
387 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
388 void *buf, int len, int write)
389 {
390 struct file *file = vma->vm_file;
391 struct kernfs_open_file *of = kernfs_of(file);
392 int ret;
393
394 if (!of->vm_ops)
395 return -EINVAL;
396
397 if (!kernfs_get_active(of->kn))
398 return -EINVAL;
399
400 ret = -EINVAL;
401 if (of->vm_ops->access)
402 ret = of->vm_ops->access(vma, addr, buf, len, write);
403
404 kernfs_put_active(of->kn);
405 return ret;
406 }
407
408 #ifdef CONFIG_NUMA
409 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
410 struct mempolicy *new)
411 {
412 struct file *file = vma->vm_file;
413 struct kernfs_open_file *of = kernfs_of(file);
414 int ret;
415
416 if (!of->vm_ops)
417 return 0;
418
419 if (!kernfs_get_active(of->kn))
420 return -EINVAL;
421
422 ret = 0;
423 if (of->vm_ops->set_policy)
424 ret = of->vm_ops->set_policy(vma, new);
425
426 kernfs_put_active(of->kn);
427 return ret;
428 }
429
430 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
431 unsigned long addr)
432 {
433 struct file *file = vma->vm_file;
434 struct kernfs_open_file *of = kernfs_of(file);
435 struct mempolicy *pol;
436
437 if (!of->vm_ops)
438 return vma->vm_policy;
439
440 if (!kernfs_get_active(of->kn))
441 return vma->vm_policy;
442
443 pol = vma->vm_policy;
444 if (of->vm_ops->get_policy)
445 pol = of->vm_ops->get_policy(vma, addr);
446
447 kernfs_put_active(of->kn);
448 return pol;
449 }
450
451 #endif
452
453 static const struct vm_operations_struct kernfs_vm_ops = {
454 .open = kernfs_vma_open,
455 .fault = kernfs_vma_fault,
456 .page_mkwrite = kernfs_vma_page_mkwrite,
457 .access = kernfs_vma_access,
458 #ifdef CONFIG_NUMA
459 .set_policy = kernfs_vma_set_policy,
460 .get_policy = kernfs_vma_get_policy,
461 #endif
462 };
463
464 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
465 {
466 struct kernfs_open_file *of = kernfs_of(file);
467 const struct kernfs_ops *ops;
468 int rc;
469
470 /*
471 * mmap path and of->mutex are prone to triggering spurious lockdep
472 * warnings and we don't want to add spurious locking dependency
473 * between the two. Check whether mmap is actually implemented
474 * without grabbing @of->mutex by testing HAS_MMAP flag. See the
475 * comment in kernfs_file_open() for more details.
476 */
477 if (!(of->kn->flags & KERNFS_HAS_MMAP))
478 return -ENODEV;
479
480 mutex_lock(&of->mutex);
481
482 rc = -ENODEV;
483 if (!kernfs_get_active(of->kn))
484 goto out_unlock;
485
486 ops = kernfs_ops(of->kn);
487 rc = ops->mmap(of, vma);
488 if (rc)
489 goto out_put;
490
491 /*
492 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
493 * to satisfy versions of X which crash if the mmap fails: that
494 * substitutes a new vm_file, and we don't then want bin_vm_ops.
495 */
496 if (vma->vm_file != file)
497 goto out_put;
498
499 rc = -EINVAL;
500 if (of->mmapped && of->vm_ops != vma->vm_ops)
501 goto out_put;
502
503 /*
504 * It is not possible to successfully wrap close.
505 * So error if someone is trying to use close.
506 */
507 rc = -EINVAL;
508 if (vma->vm_ops && vma->vm_ops->close)
509 goto out_put;
510
511 rc = 0;
512 of->mmapped = 1;
513 of->vm_ops = vma->vm_ops;
514 vma->vm_ops = &kernfs_vm_ops;
515 out_put:
516 kernfs_put_active(of->kn);
517 out_unlock:
518 mutex_unlock(&of->mutex);
519
520 return rc;
521 }
522
523 /**
524 * kernfs_get_open_node - get or create kernfs_open_node
525 * @kn: target kernfs_node
526 * @of: kernfs_open_file for this instance of open
527 *
528 * If @kn->attr.open exists, increment its reference count; otherwise,
529 * create one. @of is chained to the files list.
530 *
531 * LOCKING:
532 * Kernel thread context (may sleep).
533 *
534 * RETURNS:
535 * 0 on success, -errno on failure.
536 */
537 static int kernfs_get_open_node(struct kernfs_node *kn,
538 struct kernfs_open_file *of)
539 {
540 struct kernfs_open_node *on, *new_on = NULL;
541
542 retry:
543 mutex_lock(&kernfs_open_file_mutex);
544 spin_lock_irq(&kernfs_open_node_lock);
545
546 if (!kn->attr.open && new_on) {
547 kn->attr.open = new_on;
548 new_on = NULL;
549 }
550
551 on = kn->attr.open;
552 if (on) {
553 atomic_inc(&on->refcnt);
554 list_add_tail(&of->list, &on->files);
555 }
556
557 spin_unlock_irq(&kernfs_open_node_lock);
558 mutex_unlock(&kernfs_open_file_mutex);
559
560 if (on) {
561 kfree(new_on);
562 return 0;
563 }
564
565 /* not there, initialize a new one and retry */
566 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
567 if (!new_on)
568 return -ENOMEM;
569
570 atomic_set(&new_on->refcnt, 0);
571 atomic_set(&new_on->event, 1);
572 init_waitqueue_head(&new_on->poll);
573 INIT_LIST_HEAD(&new_on->files);
574 goto retry;
575 }
576
577 /**
578 * kernfs_put_open_node - put kernfs_open_node
579 * @kn: target kernfs_nodet
580 * @of: associated kernfs_open_file
581 *
582 * Put @kn->attr.open and unlink @of from the files list. If
583 * reference count reaches zero, disassociate and free it.
584 *
585 * LOCKING:
586 * None.
587 */
588 static void kernfs_put_open_node(struct kernfs_node *kn,
589 struct kernfs_open_file *of)
590 {
591 struct kernfs_open_node *on = kn->attr.open;
592 unsigned long flags;
593
594 mutex_lock(&kernfs_open_file_mutex);
595 spin_lock_irqsave(&kernfs_open_node_lock, flags);
596
597 if (of)
598 list_del(&of->list);
599
600 if (atomic_dec_and_test(&on->refcnt))
601 kn->attr.open = NULL;
602 else
603 on = NULL;
604
605 spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
606 mutex_unlock(&kernfs_open_file_mutex);
607
608 kfree(on);
609 }
610
611 static int kernfs_fop_open(struct inode *inode, struct file *file)
612 {
613 struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
614 struct kernfs_root *root = kernfs_root(kn);
615 const struct kernfs_ops *ops;
616 struct kernfs_open_file *of;
617 bool has_read, has_write, has_mmap;
618 int error = -EACCES;
619
620 if (!kernfs_get_active(kn))
621 return -ENODEV;
622
623 ops = kernfs_ops(kn);
624
625 has_read = ops->seq_show || ops->read || ops->mmap;
626 has_write = ops->write || ops->mmap;
627 has_mmap = ops->mmap;
628
629 /* see the flag definition for details */
630 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
631 if ((file->f_mode & FMODE_WRITE) &&
632 (!(inode->i_mode & S_IWUGO) || !has_write))
633 goto err_out;
634
635 if ((file->f_mode & FMODE_READ) &&
636 (!(inode->i_mode & S_IRUGO) || !has_read))
637 goto err_out;
638 }
639
640 /* allocate a kernfs_open_file for the file */
641 error = -ENOMEM;
642 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
643 if (!of)
644 goto err_out;
645
646 /*
647 * The following is done to give a different lockdep key to
648 * @of->mutex for files which implement mmap. This is a rather
649 * crude way to avoid false positive lockdep warning around
650 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
651 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
652 * which mm->mmap_sem nests, while holding @of->mutex. As each
653 * open file has a separate mutex, it's okay as long as those don't
654 * happen on the same file. At this point, we can't easily give
655 * each file a separate locking class. Let's differentiate on
656 * whether the file has mmap or not for now.
657 *
658 * Both paths of the branch look the same. They're supposed to
659 * look that way and give @of->mutex different static lockdep keys.
660 */
661 if (has_mmap)
662 mutex_init(&of->mutex);
663 else
664 mutex_init(&of->mutex);
665
666 of->kn = kn;
667 of->file = file;
668
669 /*
670 * Write path needs to atomic_write_len outside active reference.
671 * Cache it in open_file. See kernfs_fop_write() for details.
672 */
673 of->atomic_write_len = ops->atomic_write_len;
674
675 error = -EINVAL;
676 /*
677 * ->seq_show is incompatible with ->prealloc,
678 * as seq_read does its own allocation.
679 * ->read must be used instead.
680 */
681 if (ops->prealloc && ops->seq_show)
682 goto err_free;
683 if (ops->prealloc) {
684 int len = of->atomic_write_len ?: PAGE_SIZE;
685 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
686 error = -ENOMEM;
687 if (!of->prealloc_buf)
688 goto err_free;
689 }
690
691 /*
692 * Always instantiate seq_file even if read access doesn't use
693 * seq_file or is not requested. This unifies private data access
694 * and readable regular files are the vast majority anyway.
695 */
696 if (ops->seq_show)
697 error = seq_open(file, &kernfs_seq_ops);
698 else
699 error = seq_open(file, NULL);
700 if (error)
701 goto err_free;
702
703 ((struct seq_file *)file->private_data)->private = of;
704
705 /* seq_file clears PWRITE unconditionally, restore it if WRITE */
706 if (file->f_mode & FMODE_WRITE)
707 file->f_mode |= FMODE_PWRITE;
708
709 /* make sure we have open node struct */
710 error = kernfs_get_open_node(kn, of);
711 if (error)
712 goto err_close;
713
714 /* open succeeded, put active references */
715 kernfs_put_active(kn);
716 return 0;
717
718 err_close:
719 seq_release(inode, file);
720 err_free:
721 kfree(of->prealloc_buf);
722 kfree(of);
723 err_out:
724 kernfs_put_active(kn);
725 return error;
726 }
727
728 static int kernfs_fop_release(struct inode *inode, struct file *filp)
729 {
730 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
731 struct kernfs_open_file *of = kernfs_of(filp);
732
733 kernfs_put_open_node(kn, of);
734 seq_release(inode, filp);
735 kfree(of->prealloc_buf);
736 kfree(of);
737
738 return 0;
739 }
740
741 void kernfs_unmap_bin_file(struct kernfs_node *kn)
742 {
743 struct kernfs_open_node *on;
744 struct kernfs_open_file *of;
745
746 if (!(kn->flags & KERNFS_HAS_MMAP))
747 return;
748
749 spin_lock_irq(&kernfs_open_node_lock);
750 on = kn->attr.open;
751 if (on)
752 atomic_inc(&on->refcnt);
753 spin_unlock_irq(&kernfs_open_node_lock);
754 if (!on)
755 return;
756
757 mutex_lock(&kernfs_open_file_mutex);
758 list_for_each_entry(of, &on->files, list) {
759 struct inode *inode = file_inode(of->file);
760 unmap_mapping_range(inode->i_mapping, 0, 0, 1);
761 }
762 mutex_unlock(&kernfs_open_file_mutex);
763
764 kernfs_put_open_node(kn, NULL);
765 }
766
767 /*
768 * Kernfs attribute files are pollable. The idea is that you read
769 * the content and then you use 'poll' or 'select' to wait for
770 * the content to change. When the content changes (assuming the
771 * manager for the kobject supports notification), poll will
772 * return POLLERR|POLLPRI, and select will return the fd whether
773 * it is waiting for read, write, or exceptions.
774 * Once poll/select indicates that the value has changed, you
775 * need to close and re-open the file, or seek to 0 and read again.
776 * Reminder: this only works for attributes which actively support
777 * it, and it is not possible to test an attribute from userspace
778 * to see if it supports poll (Neither 'poll' nor 'select' return
779 * an appropriate error code). When in doubt, set a suitable timeout value.
780 */
781 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
782 {
783 struct kernfs_open_file *of = kernfs_of(filp);
784 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
785 struct kernfs_open_node *on = kn->attr.open;
786
787 /* need parent for the kobj, grab both */
788 if (!kernfs_get_active(kn))
789 goto trigger;
790
791 poll_wait(filp, &on->poll, wait);
792
793 kernfs_put_active(kn);
794
795 if (of->event != atomic_read(&on->event))
796 goto trigger;
797
798 return DEFAULT_POLLMASK;
799
800 trigger:
801 return DEFAULT_POLLMASK|POLLERR|POLLPRI;
802 }
803
804 static void kernfs_notify_workfn(struct work_struct *work)
805 {
806 struct kernfs_node *kn;
807 struct kernfs_open_node *on;
808 struct kernfs_super_info *info;
809 repeat:
810 /* pop one off the notify_list */
811 spin_lock_irq(&kernfs_notify_lock);
812 kn = kernfs_notify_list;
813 if (kn == KERNFS_NOTIFY_EOL) {
814 spin_unlock_irq(&kernfs_notify_lock);
815 return;
816 }
817 kernfs_notify_list = kn->attr.notify_next;
818 kn->attr.notify_next = NULL;
819 spin_unlock_irq(&kernfs_notify_lock);
820
821 /* kick poll */
822 spin_lock_irq(&kernfs_open_node_lock);
823
824 on = kn->attr.open;
825 if (on) {
826 atomic_inc(&on->event);
827 wake_up_interruptible(&on->poll);
828 }
829
830 spin_unlock_irq(&kernfs_open_node_lock);
831
832 /* kick fsnotify */
833 mutex_lock(&kernfs_mutex);
834
835 list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
836 struct inode *inode;
837 struct dentry *dentry;
838
839 inode = ilookup(info->sb, kn->ino);
840 if (!inode)
841 continue;
842
843 dentry = d_find_any_alias(inode);
844 if (dentry) {
845 fsnotify_parent(NULL, dentry, FS_MODIFY);
846 fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
847 NULL, 0);
848 dput(dentry);
849 }
850
851 iput(inode);
852 }
853
854 mutex_unlock(&kernfs_mutex);
855 kernfs_put(kn);
856 goto repeat;
857 }
858
859 /**
860 * kernfs_notify - notify a kernfs file
861 * @kn: file to notify
862 *
863 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any
864 * context.
865 */
866 void kernfs_notify(struct kernfs_node *kn)
867 {
868 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
869 unsigned long flags;
870
871 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
872 return;
873
874 spin_lock_irqsave(&kernfs_notify_lock, flags);
875 if (!kn->attr.notify_next) {
876 kernfs_get(kn);
877 kn->attr.notify_next = kernfs_notify_list;
878 kernfs_notify_list = kn;
879 schedule_work(&kernfs_notify_work);
880 }
881 spin_unlock_irqrestore(&kernfs_notify_lock, flags);
882 }
883 EXPORT_SYMBOL_GPL(kernfs_notify);
884
885 const struct file_operations kernfs_file_fops = {
886 .read = kernfs_fop_read,
887 .write = kernfs_fop_write,
888 .llseek = generic_file_llseek,
889 .mmap = kernfs_fop_mmap,
890 .open = kernfs_fop_open,
891 .release = kernfs_fop_release,
892 .poll = kernfs_fop_poll,
893 };
894
895 /**
896 * __kernfs_create_file - kernfs internal function to create a file
897 * @parent: directory to create the file in
898 * @name: name of the file
899 * @mode: mode of the file
900 * @size: size of the file
901 * @ops: kernfs operations for the file
902 * @priv: private data for the file
903 * @ns: optional namespace tag of the file
904 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
905 *
906 * Returns the created node on success, ERR_PTR() value on error.
907 */
908 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
909 const char *name,
910 umode_t mode, loff_t size,
911 const struct kernfs_ops *ops,
912 void *priv, const void *ns,
913 struct lock_class_key *key)
914 {
915 struct kernfs_node *kn;
916 unsigned flags;
917 int rc;
918
919 flags = KERNFS_FILE;
920
921 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
922 if (!kn)
923 return ERR_PTR(-ENOMEM);
924
925 kn->attr.ops = ops;
926 kn->attr.size = size;
927 kn->ns = ns;
928 kn->priv = priv;
929
930 #ifdef CONFIG_DEBUG_LOCK_ALLOC
931 if (key) {
932 lockdep_init_map(&kn->dep_map, "s_active", key, 0);
933 kn->flags |= KERNFS_LOCKDEP;
934 }
935 #endif
936
937 /*
938 * kn->attr.ops is accesible only while holding active ref. We
939 * need to know whether some ops are implemented outside active
940 * ref. Cache their existence in flags.
941 */
942 if (ops->seq_show)
943 kn->flags |= KERNFS_HAS_SEQ_SHOW;
944 if (ops->mmap)
945 kn->flags |= KERNFS_HAS_MMAP;
946
947 rc = kernfs_add_one(kn);
948 if (rc) {
949 kernfs_put(kn);
950 return ERR_PTR(rc);
951 }
952 return kn;
953 }
This page took 0.051336 seconds and 5 git commands to generate.