fs: Use rename lock and RCU for multi-step operations
[deliverable/linux.git] / fs / libfs.c
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
16
17 #include <asm/uaccess.h>
18
19 static inline int simple_positive(struct dentry *dentry)
20 {
21 return dentry->d_inode && !d_unhashed(dentry);
22 }
23
24 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
25 struct kstat *stat)
26 {
27 struct inode *inode = dentry->d_inode;
28 generic_fillattr(inode, stat);
29 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
30 return 0;
31 }
32
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_CACHE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
39 }
40
41 /*
42 * Retaining negative dentries for an in-memory filesystem just wastes
43 * memory and lookup time: arrange for them to be deleted immediately.
44 */
45 static int simple_delete_dentry(const struct dentry *dentry)
46 {
47 return 1;
48 }
49
50 /*
51 * Lookup the data. This is trivial - if the dentry didn't already
52 * exist, we know it is negative. Set d_op to delete negative dentries.
53 */
54 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
55 {
56 static const struct dentry_operations simple_dentry_operations = {
57 .d_delete = simple_delete_dentry,
58 };
59
60 if (dentry->d_name.len > NAME_MAX)
61 return ERR_PTR(-ENAMETOOLONG);
62 dentry->d_op = &simple_dentry_operations;
63 d_add(dentry, NULL);
64 return NULL;
65 }
66
67 int dcache_dir_open(struct inode *inode, struct file *file)
68 {
69 static struct qstr cursor_name = {.len = 1, .name = "."};
70
71 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
72
73 return file->private_data ? 0 : -ENOMEM;
74 }
75
76 int dcache_dir_close(struct inode *inode, struct file *file)
77 {
78 dput(file->private_data);
79 return 0;
80 }
81
82 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
83 {
84 struct dentry *dentry = file->f_path.dentry;
85 mutex_lock(&dentry->d_inode->i_mutex);
86 switch (origin) {
87 case 1:
88 offset += file->f_pos;
89 case 0:
90 if (offset >= 0)
91 break;
92 default:
93 mutex_unlock(&dentry->d_inode->i_mutex);
94 return -EINVAL;
95 }
96 if (offset != file->f_pos) {
97 file->f_pos = offset;
98 if (file->f_pos >= 2) {
99 struct list_head *p;
100 struct dentry *cursor = file->private_data;
101 loff_t n = file->f_pos - 2;
102
103 spin_lock(&dcache_lock);
104 spin_lock(&dentry->d_lock);
105 /* d_lock not required for cursor */
106 list_del(&cursor->d_u.d_child);
107 p = dentry->d_subdirs.next;
108 while (n && p != &dentry->d_subdirs) {
109 struct dentry *next;
110 next = list_entry(p, struct dentry, d_u.d_child);
111 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
112 if (simple_positive(next))
113 n--;
114 spin_unlock(&next->d_lock);
115 p = p->next;
116 }
117 list_add_tail(&cursor->d_u.d_child, p);
118 spin_unlock(&dentry->d_lock);
119 spin_unlock(&dcache_lock);
120 }
121 }
122 mutex_unlock(&dentry->d_inode->i_mutex);
123 return offset;
124 }
125
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode *inode)
128 {
129 return (inode->i_mode >> 12) & 15;
130 }
131
132 /*
133 * Directory is locked and all positive dentries in it are safe, since
134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
135 * both impossible due to the lock on directory.
136 */
137
138 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
139 {
140 struct dentry *dentry = filp->f_path.dentry;
141 struct dentry *cursor = filp->private_data;
142 struct list_head *p, *q = &cursor->d_u.d_child;
143 ino_t ino;
144 int i = filp->f_pos;
145
146 switch (i) {
147 case 0:
148 ino = dentry->d_inode->i_ino;
149 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
150 break;
151 filp->f_pos++;
152 i++;
153 /* fallthrough */
154 case 1:
155 ino = parent_ino(dentry);
156 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
157 break;
158 filp->f_pos++;
159 i++;
160 /* fallthrough */
161 default:
162 spin_lock(&dcache_lock);
163 spin_lock(&dentry->d_lock);
164 if (filp->f_pos == 2)
165 list_move(q, &dentry->d_subdirs);
166
167 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
168 struct dentry *next;
169 next = list_entry(p, struct dentry, d_u.d_child);
170 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
171 if (!simple_positive(next)) {
172 spin_unlock(&next->d_lock);
173 continue;
174 }
175
176 spin_unlock(&next->d_lock);
177 spin_unlock(&dentry->d_lock);
178 spin_unlock(&dcache_lock);
179 if (filldir(dirent, next->d_name.name,
180 next->d_name.len, filp->f_pos,
181 next->d_inode->i_ino,
182 dt_type(next->d_inode)) < 0)
183 return 0;
184 spin_lock(&dcache_lock);
185 spin_lock(&dentry->d_lock);
186 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
187 /* next is still alive */
188 list_move(q, p);
189 spin_unlock(&next->d_lock);
190 p = q;
191 filp->f_pos++;
192 }
193 spin_unlock(&dentry->d_lock);
194 spin_unlock(&dcache_lock);
195 }
196 return 0;
197 }
198
199 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
200 {
201 return -EISDIR;
202 }
203
204 const struct file_operations simple_dir_operations = {
205 .open = dcache_dir_open,
206 .release = dcache_dir_close,
207 .llseek = dcache_dir_lseek,
208 .read = generic_read_dir,
209 .readdir = dcache_readdir,
210 .fsync = noop_fsync,
211 };
212
213 const struct inode_operations simple_dir_inode_operations = {
214 .lookup = simple_lookup,
215 };
216
217 static const struct super_operations simple_super_operations = {
218 .statfs = simple_statfs,
219 };
220
221 /*
222 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
223 * will never be mountable)
224 */
225 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
226 const struct super_operations *ops, unsigned long magic)
227 {
228 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
229 struct dentry *dentry;
230 struct inode *root;
231 struct qstr d_name = {.name = name, .len = strlen(name)};
232
233 if (IS_ERR(s))
234 return ERR_CAST(s);
235
236 s->s_flags = MS_NOUSER;
237 s->s_maxbytes = MAX_LFS_FILESIZE;
238 s->s_blocksize = PAGE_SIZE;
239 s->s_blocksize_bits = PAGE_SHIFT;
240 s->s_magic = magic;
241 s->s_op = ops ? ops : &simple_super_operations;
242 s->s_time_gran = 1;
243 root = new_inode(s);
244 if (!root)
245 goto Enomem;
246 /*
247 * since this is the first inode, make it number 1. New inodes created
248 * after this must take care not to collide with it (by passing
249 * max_reserved of 1 to iunique).
250 */
251 root->i_ino = 1;
252 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
253 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
254 dentry = d_alloc(NULL, &d_name);
255 if (!dentry) {
256 iput(root);
257 goto Enomem;
258 }
259 dentry->d_sb = s;
260 dentry->d_parent = dentry;
261 d_instantiate(dentry, root);
262 s->s_root = dentry;
263 s->s_flags |= MS_ACTIVE;
264 return dget(s->s_root);
265
266 Enomem:
267 deactivate_locked_super(s);
268 return ERR_PTR(-ENOMEM);
269 }
270
271 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
272 {
273 struct inode *inode = old_dentry->d_inode;
274
275 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
276 inc_nlink(inode);
277 ihold(inode);
278 dget(dentry);
279 d_instantiate(dentry, inode);
280 return 0;
281 }
282
283 int simple_empty(struct dentry *dentry)
284 {
285 struct dentry *child;
286 int ret = 0;
287
288 spin_lock(&dcache_lock);
289 spin_lock(&dentry->d_lock);
290 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
291 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
292 if (simple_positive(child)) {
293 spin_unlock(&child->d_lock);
294 goto out;
295 }
296 spin_unlock(&child->d_lock);
297 }
298 ret = 1;
299 out:
300 spin_unlock(&dentry->d_lock);
301 spin_unlock(&dcache_lock);
302 return ret;
303 }
304
305 int simple_unlink(struct inode *dir, struct dentry *dentry)
306 {
307 struct inode *inode = dentry->d_inode;
308
309 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
310 drop_nlink(inode);
311 dput(dentry);
312 return 0;
313 }
314
315 int simple_rmdir(struct inode *dir, struct dentry *dentry)
316 {
317 if (!simple_empty(dentry))
318 return -ENOTEMPTY;
319
320 drop_nlink(dentry->d_inode);
321 simple_unlink(dir, dentry);
322 drop_nlink(dir);
323 return 0;
324 }
325
326 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
327 struct inode *new_dir, struct dentry *new_dentry)
328 {
329 struct inode *inode = old_dentry->d_inode;
330 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
331
332 if (!simple_empty(new_dentry))
333 return -ENOTEMPTY;
334
335 if (new_dentry->d_inode) {
336 simple_unlink(new_dir, new_dentry);
337 if (they_are_dirs)
338 drop_nlink(old_dir);
339 } else if (they_are_dirs) {
340 drop_nlink(old_dir);
341 inc_nlink(new_dir);
342 }
343
344 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
345 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
346
347 return 0;
348 }
349
350 /**
351 * simple_setattr - setattr for simple filesystem
352 * @dentry: dentry
353 * @iattr: iattr structure
354 *
355 * Returns 0 on success, -error on failure.
356 *
357 * simple_setattr is a simple ->setattr implementation without a proper
358 * implementation of size changes.
359 *
360 * It can either be used for in-memory filesystems or special files
361 * on simple regular filesystems. Anything that needs to change on-disk
362 * or wire state on size changes needs its own setattr method.
363 */
364 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
365 {
366 struct inode *inode = dentry->d_inode;
367 int error;
368
369 WARN_ON_ONCE(inode->i_op->truncate);
370
371 error = inode_change_ok(inode, iattr);
372 if (error)
373 return error;
374
375 if (iattr->ia_valid & ATTR_SIZE)
376 truncate_setsize(inode, iattr->ia_size);
377 setattr_copy(inode, iattr);
378 mark_inode_dirty(inode);
379 return 0;
380 }
381 EXPORT_SYMBOL(simple_setattr);
382
383 int simple_readpage(struct file *file, struct page *page)
384 {
385 clear_highpage(page);
386 flush_dcache_page(page);
387 SetPageUptodate(page);
388 unlock_page(page);
389 return 0;
390 }
391
392 int simple_write_begin(struct file *file, struct address_space *mapping,
393 loff_t pos, unsigned len, unsigned flags,
394 struct page **pagep, void **fsdata)
395 {
396 struct page *page;
397 pgoff_t index;
398
399 index = pos >> PAGE_CACHE_SHIFT;
400
401 page = grab_cache_page_write_begin(mapping, index, flags);
402 if (!page)
403 return -ENOMEM;
404
405 *pagep = page;
406
407 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
408 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
409
410 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
411 }
412 return 0;
413 }
414
415 /**
416 * simple_write_end - .write_end helper for non-block-device FSes
417 * @available: See .write_end of address_space_operations
418 * @file: "
419 * @mapping: "
420 * @pos: "
421 * @len: "
422 * @copied: "
423 * @page: "
424 * @fsdata: "
425 *
426 * simple_write_end does the minimum needed for updating a page after writing is
427 * done. It has the same API signature as the .write_end of
428 * address_space_operations vector. So it can just be set onto .write_end for
429 * FSes that don't need any other processing. i_mutex is assumed to be held.
430 * Block based filesystems should use generic_write_end().
431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
432 * is not called, so a filesystem that actually does store data in .write_inode
433 * should extend on what's done here with a call to mark_inode_dirty() in the
434 * case that i_size has changed.
435 */
436 int simple_write_end(struct file *file, struct address_space *mapping,
437 loff_t pos, unsigned len, unsigned copied,
438 struct page *page, void *fsdata)
439 {
440 struct inode *inode = page->mapping->host;
441 loff_t last_pos = pos + copied;
442
443 /* zero the stale part of the page if we did a short copy */
444 if (copied < len) {
445 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
446
447 zero_user(page, from + copied, len - copied);
448 }
449
450 if (!PageUptodate(page))
451 SetPageUptodate(page);
452 /*
453 * No need to use i_size_read() here, the i_size
454 * cannot change under us because we hold the i_mutex.
455 */
456 if (last_pos > inode->i_size)
457 i_size_write(inode, last_pos);
458
459 set_page_dirty(page);
460 unlock_page(page);
461 page_cache_release(page);
462
463 return copied;
464 }
465
466 /*
467 * the inodes created here are not hashed. If you use iunique to generate
468 * unique inode values later for this filesystem, then you must take care
469 * to pass it an appropriate max_reserved value to avoid collisions.
470 */
471 int simple_fill_super(struct super_block *s, unsigned long magic,
472 struct tree_descr *files)
473 {
474 struct inode *inode;
475 struct dentry *root;
476 struct dentry *dentry;
477 int i;
478
479 s->s_blocksize = PAGE_CACHE_SIZE;
480 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
481 s->s_magic = magic;
482 s->s_op = &simple_super_operations;
483 s->s_time_gran = 1;
484
485 inode = new_inode(s);
486 if (!inode)
487 return -ENOMEM;
488 /*
489 * because the root inode is 1, the files array must not contain an
490 * entry at index 1
491 */
492 inode->i_ino = 1;
493 inode->i_mode = S_IFDIR | 0755;
494 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
495 inode->i_op = &simple_dir_inode_operations;
496 inode->i_fop = &simple_dir_operations;
497 inode->i_nlink = 2;
498 root = d_alloc_root(inode);
499 if (!root) {
500 iput(inode);
501 return -ENOMEM;
502 }
503 for (i = 0; !files->name || files->name[0]; i++, files++) {
504 if (!files->name)
505 continue;
506
507 /* warn if it tries to conflict with the root inode */
508 if (unlikely(i == 1))
509 printk(KERN_WARNING "%s: %s passed in a files array"
510 "with an index of 1!\n", __func__,
511 s->s_type->name);
512
513 dentry = d_alloc_name(root, files->name);
514 if (!dentry)
515 goto out;
516 inode = new_inode(s);
517 if (!inode)
518 goto out;
519 inode->i_mode = S_IFREG | files->mode;
520 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
521 inode->i_fop = files->ops;
522 inode->i_ino = i;
523 d_add(dentry, inode);
524 }
525 s->s_root = root;
526 return 0;
527 out:
528 d_genocide(root);
529 dput(root);
530 return -ENOMEM;
531 }
532
533 static DEFINE_SPINLOCK(pin_fs_lock);
534
535 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
536 {
537 struct vfsmount *mnt = NULL;
538 spin_lock(&pin_fs_lock);
539 if (unlikely(!*mount)) {
540 spin_unlock(&pin_fs_lock);
541 mnt = vfs_kern_mount(type, 0, type->name, NULL);
542 if (IS_ERR(mnt))
543 return PTR_ERR(mnt);
544 spin_lock(&pin_fs_lock);
545 if (!*mount)
546 *mount = mnt;
547 }
548 mntget(*mount);
549 ++*count;
550 spin_unlock(&pin_fs_lock);
551 mntput(mnt);
552 return 0;
553 }
554
555 void simple_release_fs(struct vfsmount **mount, int *count)
556 {
557 struct vfsmount *mnt;
558 spin_lock(&pin_fs_lock);
559 mnt = *mount;
560 if (!--*count)
561 *mount = NULL;
562 spin_unlock(&pin_fs_lock);
563 mntput(mnt);
564 }
565
566 /**
567 * simple_read_from_buffer - copy data from the buffer to user space
568 * @to: the user space buffer to read to
569 * @count: the maximum number of bytes to read
570 * @ppos: the current position in the buffer
571 * @from: the buffer to read from
572 * @available: the size of the buffer
573 *
574 * The simple_read_from_buffer() function reads up to @count bytes from the
575 * buffer @from at offset @ppos into the user space address starting at @to.
576 *
577 * On success, the number of bytes read is returned and the offset @ppos is
578 * advanced by this number, or negative value is returned on error.
579 **/
580 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
581 const void *from, size_t available)
582 {
583 loff_t pos = *ppos;
584 size_t ret;
585
586 if (pos < 0)
587 return -EINVAL;
588 if (pos >= available || !count)
589 return 0;
590 if (count > available - pos)
591 count = available - pos;
592 ret = copy_to_user(to, from + pos, count);
593 if (ret == count)
594 return -EFAULT;
595 count -= ret;
596 *ppos = pos + count;
597 return count;
598 }
599
600 /**
601 * simple_write_to_buffer - copy data from user space to the buffer
602 * @to: the buffer to write to
603 * @available: the size of the buffer
604 * @ppos: the current position in the buffer
605 * @from: the user space buffer to read from
606 * @count: the maximum number of bytes to read
607 *
608 * The simple_write_to_buffer() function reads up to @count bytes from the user
609 * space address starting at @from into the buffer @to at offset @ppos.
610 *
611 * On success, the number of bytes written is returned and the offset @ppos is
612 * advanced by this number, or negative value is returned on error.
613 **/
614 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
615 const void __user *from, size_t count)
616 {
617 loff_t pos = *ppos;
618 size_t res;
619
620 if (pos < 0)
621 return -EINVAL;
622 if (pos >= available || !count)
623 return 0;
624 if (count > available - pos)
625 count = available - pos;
626 res = copy_from_user(to + pos, from, count);
627 if (res == count)
628 return -EFAULT;
629 count -= res;
630 *ppos = pos + count;
631 return count;
632 }
633
634 /**
635 * memory_read_from_buffer - copy data from the buffer
636 * @to: the kernel space buffer to read to
637 * @count: the maximum number of bytes to read
638 * @ppos: the current position in the buffer
639 * @from: the buffer to read from
640 * @available: the size of the buffer
641 *
642 * The memory_read_from_buffer() function reads up to @count bytes from the
643 * buffer @from at offset @ppos into the kernel space address starting at @to.
644 *
645 * On success, the number of bytes read is returned and the offset @ppos is
646 * advanced by this number, or negative value is returned on error.
647 **/
648 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
649 const void *from, size_t available)
650 {
651 loff_t pos = *ppos;
652
653 if (pos < 0)
654 return -EINVAL;
655 if (pos >= available)
656 return 0;
657 if (count > available - pos)
658 count = available - pos;
659 memcpy(to, from + pos, count);
660 *ppos = pos + count;
661
662 return count;
663 }
664
665 /*
666 * Transaction based IO.
667 * The file expects a single write which triggers the transaction, and then
668 * possibly a read which collects the result - which is stored in a
669 * file-local buffer.
670 */
671
672 void simple_transaction_set(struct file *file, size_t n)
673 {
674 struct simple_transaction_argresp *ar = file->private_data;
675
676 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
677
678 /*
679 * The barrier ensures that ar->size will really remain zero until
680 * ar->data is ready for reading.
681 */
682 smp_mb();
683 ar->size = n;
684 }
685
686 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
687 {
688 struct simple_transaction_argresp *ar;
689 static DEFINE_SPINLOCK(simple_transaction_lock);
690
691 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
692 return ERR_PTR(-EFBIG);
693
694 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
695 if (!ar)
696 return ERR_PTR(-ENOMEM);
697
698 spin_lock(&simple_transaction_lock);
699
700 /* only one write allowed per open */
701 if (file->private_data) {
702 spin_unlock(&simple_transaction_lock);
703 free_page((unsigned long)ar);
704 return ERR_PTR(-EBUSY);
705 }
706
707 file->private_data = ar;
708
709 spin_unlock(&simple_transaction_lock);
710
711 if (copy_from_user(ar->data, buf, size))
712 return ERR_PTR(-EFAULT);
713
714 return ar->data;
715 }
716
717 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
718 {
719 struct simple_transaction_argresp *ar = file->private_data;
720
721 if (!ar)
722 return 0;
723 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
724 }
725
726 int simple_transaction_release(struct inode *inode, struct file *file)
727 {
728 free_page((unsigned long)file->private_data);
729 return 0;
730 }
731
732 /* Simple attribute files */
733
734 struct simple_attr {
735 int (*get)(void *, u64 *);
736 int (*set)(void *, u64);
737 char get_buf[24]; /* enough to store a u64 and "\n\0" */
738 char set_buf[24];
739 void *data;
740 const char *fmt; /* format for read operation */
741 struct mutex mutex; /* protects access to these buffers */
742 };
743
744 /* simple_attr_open is called by an actual attribute open file operation
745 * to set the attribute specific access operations. */
746 int simple_attr_open(struct inode *inode, struct file *file,
747 int (*get)(void *, u64 *), int (*set)(void *, u64),
748 const char *fmt)
749 {
750 struct simple_attr *attr;
751
752 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
753 if (!attr)
754 return -ENOMEM;
755
756 attr->get = get;
757 attr->set = set;
758 attr->data = inode->i_private;
759 attr->fmt = fmt;
760 mutex_init(&attr->mutex);
761
762 file->private_data = attr;
763
764 return nonseekable_open(inode, file);
765 }
766
767 int simple_attr_release(struct inode *inode, struct file *file)
768 {
769 kfree(file->private_data);
770 return 0;
771 }
772
773 /* read from the buffer that is filled with the get function */
774 ssize_t simple_attr_read(struct file *file, char __user *buf,
775 size_t len, loff_t *ppos)
776 {
777 struct simple_attr *attr;
778 size_t size;
779 ssize_t ret;
780
781 attr = file->private_data;
782
783 if (!attr->get)
784 return -EACCES;
785
786 ret = mutex_lock_interruptible(&attr->mutex);
787 if (ret)
788 return ret;
789
790 if (*ppos) { /* continued read */
791 size = strlen(attr->get_buf);
792 } else { /* first read */
793 u64 val;
794 ret = attr->get(attr->data, &val);
795 if (ret)
796 goto out;
797
798 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
799 attr->fmt, (unsigned long long)val);
800 }
801
802 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
803 out:
804 mutex_unlock(&attr->mutex);
805 return ret;
806 }
807
808 /* interpret the buffer as a number to call the set function with */
809 ssize_t simple_attr_write(struct file *file, const char __user *buf,
810 size_t len, loff_t *ppos)
811 {
812 struct simple_attr *attr;
813 u64 val;
814 size_t size;
815 ssize_t ret;
816
817 attr = file->private_data;
818 if (!attr->set)
819 return -EACCES;
820
821 ret = mutex_lock_interruptible(&attr->mutex);
822 if (ret)
823 return ret;
824
825 ret = -EFAULT;
826 size = min(sizeof(attr->set_buf) - 1, len);
827 if (copy_from_user(attr->set_buf, buf, size))
828 goto out;
829
830 attr->set_buf[size] = '\0';
831 val = simple_strtol(attr->set_buf, NULL, 0);
832 ret = attr->set(attr->data, val);
833 if (ret == 0)
834 ret = len; /* on success, claim we got the whole input */
835 out:
836 mutex_unlock(&attr->mutex);
837 return ret;
838 }
839
840 /**
841 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
842 * @sb: filesystem to do the file handle conversion on
843 * @fid: file handle to convert
844 * @fh_len: length of the file handle in bytes
845 * @fh_type: type of file handle
846 * @get_inode: filesystem callback to retrieve inode
847 *
848 * This function decodes @fid as long as it has one of the well-known
849 * Linux filehandle types and calls @get_inode on it to retrieve the
850 * inode for the object specified in the file handle.
851 */
852 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
853 int fh_len, int fh_type, struct inode *(*get_inode)
854 (struct super_block *sb, u64 ino, u32 gen))
855 {
856 struct inode *inode = NULL;
857
858 if (fh_len < 2)
859 return NULL;
860
861 switch (fh_type) {
862 case FILEID_INO32_GEN:
863 case FILEID_INO32_GEN_PARENT:
864 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
865 break;
866 }
867
868 return d_obtain_alias(inode);
869 }
870 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
871
872 /**
873 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
874 * @sb: filesystem to do the file handle conversion on
875 * @fid: file handle to convert
876 * @fh_len: length of the file handle in bytes
877 * @fh_type: type of file handle
878 * @get_inode: filesystem callback to retrieve inode
879 *
880 * This function decodes @fid as long as it has one of the well-known
881 * Linux filehandle types and calls @get_inode on it to retrieve the
882 * inode for the _parent_ object specified in the file handle if it
883 * is specified in the file handle, or NULL otherwise.
884 */
885 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
886 int fh_len, int fh_type, struct inode *(*get_inode)
887 (struct super_block *sb, u64 ino, u32 gen))
888 {
889 struct inode *inode = NULL;
890
891 if (fh_len <= 2)
892 return NULL;
893
894 switch (fh_type) {
895 case FILEID_INO32_GEN_PARENT:
896 inode = get_inode(sb, fid->i32.parent_ino,
897 (fh_len > 3 ? fid->i32.parent_gen : 0));
898 break;
899 }
900
901 return d_obtain_alias(inode);
902 }
903 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
904
905 /**
906 * generic_file_fsync - generic fsync implementation for simple filesystems
907 * @file: file to synchronize
908 * @datasync: only synchronize essential metadata if true
909 *
910 * This is a generic implementation of the fsync method for simple
911 * filesystems which track all non-inode metadata in the buffers list
912 * hanging off the address_space structure.
913 */
914 int generic_file_fsync(struct file *file, int datasync)
915 {
916 struct inode *inode = file->f_mapping->host;
917 int err;
918 int ret;
919
920 ret = sync_mapping_buffers(inode->i_mapping);
921 if (!(inode->i_state & I_DIRTY))
922 return ret;
923 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
924 return ret;
925
926 err = sync_inode_metadata(inode, 1);
927 if (ret == 0)
928 ret = err;
929 return ret;
930 }
931 EXPORT_SYMBOL(generic_file_fsync);
932
933 /**
934 * generic_check_addressable - Check addressability of file system
935 * @blocksize_bits: log of file system block size
936 * @num_blocks: number of blocks in file system
937 *
938 * Determine whether a file system with @num_blocks blocks (and a
939 * block size of 2**@blocksize_bits) is addressable by the sector_t
940 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
941 */
942 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
943 {
944 u64 last_fs_block = num_blocks - 1;
945 u64 last_fs_page =
946 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
947
948 if (unlikely(num_blocks == 0))
949 return 0;
950
951 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
952 return -EINVAL;
953
954 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
955 (last_fs_page > (pgoff_t)(~0ULL))) {
956 return -EFBIG;
957 }
958 return 0;
959 }
960 EXPORT_SYMBOL(generic_check_addressable);
961
962 /*
963 * No-op implementation of ->fsync for in-memory filesystems.
964 */
965 int noop_fsync(struct file *file, int datasync)
966 {
967 return 0;
968 }
969
970 EXPORT_SYMBOL(dcache_dir_close);
971 EXPORT_SYMBOL(dcache_dir_lseek);
972 EXPORT_SYMBOL(dcache_dir_open);
973 EXPORT_SYMBOL(dcache_readdir);
974 EXPORT_SYMBOL(generic_read_dir);
975 EXPORT_SYMBOL(mount_pseudo);
976 EXPORT_SYMBOL(simple_write_begin);
977 EXPORT_SYMBOL(simple_write_end);
978 EXPORT_SYMBOL(simple_dir_inode_operations);
979 EXPORT_SYMBOL(simple_dir_operations);
980 EXPORT_SYMBOL(simple_empty);
981 EXPORT_SYMBOL(simple_fill_super);
982 EXPORT_SYMBOL(simple_getattr);
983 EXPORT_SYMBOL(simple_link);
984 EXPORT_SYMBOL(simple_lookup);
985 EXPORT_SYMBOL(simple_pin_fs);
986 EXPORT_SYMBOL(simple_readpage);
987 EXPORT_SYMBOL(simple_release_fs);
988 EXPORT_SYMBOL(simple_rename);
989 EXPORT_SYMBOL(simple_rmdir);
990 EXPORT_SYMBOL(simple_statfs);
991 EXPORT_SYMBOL(noop_fsync);
992 EXPORT_SYMBOL(simple_unlink);
993 EXPORT_SYMBOL(simple_read_from_buffer);
994 EXPORT_SYMBOL(simple_write_to_buffer);
995 EXPORT_SYMBOL(memory_read_from_buffer);
996 EXPORT_SYMBOL(simple_transaction_set);
997 EXPORT_SYMBOL(simple_transaction_get);
998 EXPORT_SYMBOL(simple_transaction_read);
999 EXPORT_SYMBOL(simple_transaction_release);
1000 EXPORT_SYMBOL_GPL(simple_attr_open);
1001 EXPORT_SYMBOL_GPL(simple_attr_release);
1002 EXPORT_SYMBOL_GPL(simple_attr_read);
1003 EXPORT_SYMBOL_GPL(simple_attr_write);
This page took 0.066554 seconds and 5 git commands to generate.