namei: path_init() calling conventions change
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 } *stack, internal[EMBEDDED_LEVELS];
511 };
512
513 static struct nameidata *set_nameidata(struct nameidata *p)
514 {
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->total_link_count = old ? old->total_link_count : 0;
518 current->nameidata = p;
519 return old;
520 }
521
522 static void restore_nameidata(struct nameidata *old)
523 {
524 struct nameidata *now = current->nameidata;
525
526 current->nameidata = old;
527 if (old)
528 old->total_link_count = now->total_link_count;
529 if (now->stack != now->internal) {
530 kfree(now->stack);
531 now->stack = now->internal;
532 }
533 }
534
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 struct saved *p = kmalloc(MAXSYMLINKS * sizeof(struct saved),
538 GFP_KERNEL);
539 if (unlikely(!p))
540 return -ENOMEM;
541 memcpy(p, nd->internal, sizeof(nd->internal));
542 nd->stack = p;
543 return 0;
544 }
545
546 static inline int nd_alloc_stack(struct nameidata *nd)
547 {
548 if (likely(nd->depth != EMBEDDED_LEVELS))
549 return 0;
550 if (likely(nd->stack != nd->internal))
551 return 0;
552 return __nd_alloc_stack(nd);
553 }
554
555 /*
556 * Path walking has 2 modes, rcu-walk and ref-walk (see
557 * Documentation/filesystems/path-lookup.txt). In situations when we can't
558 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
559 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
560 * mode. Refcounts are grabbed at the last known good point before rcu-walk
561 * got stuck, so ref-walk may continue from there. If this is not successful
562 * (eg. a seqcount has changed), then failure is returned and it's up to caller
563 * to restart the path walk from the beginning in ref-walk mode.
564 */
565
566 static void terminate_walk(struct nameidata *nd);
567
568 /**
569 * unlazy_walk - try to switch to ref-walk mode.
570 * @nd: nameidata pathwalk data
571 * @dentry: child of nd->path.dentry or NULL
572 * Returns: 0 on success, -ECHILD on failure
573 *
574 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
575 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
576 * @nd or NULL. Must be called from rcu-walk context.
577 */
578 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
579 {
580 struct fs_struct *fs = current->fs;
581 struct dentry *parent = nd->path.dentry;
582
583 BUG_ON(!(nd->flags & LOOKUP_RCU));
584
585 /*
586 * After legitimizing the bastards, terminate_walk()
587 * will do the right thing for non-RCU mode, and all our
588 * subsequent exit cases should rcu_read_unlock()
589 * before returning. Do vfsmount first; if dentry
590 * can't be legitimized, just set nd->path.dentry to NULL
591 * and rely on dput(NULL) being a no-op.
592 */
593 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
594 return -ECHILD;
595 nd->flags &= ~LOOKUP_RCU;
596
597 if (!lockref_get_not_dead(&parent->d_lockref)) {
598 nd->path.dentry = NULL;
599 goto out;
600 }
601
602 /*
603 * For a negative lookup, the lookup sequence point is the parents
604 * sequence point, and it only needs to revalidate the parent dentry.
605 *
606 * For a positive lookup, we need to move both the parent and the
607 * dentry from the RCU domain to be properly refcounted. And the
608 * sequence number in the dentry validates *both* dentry counters,
609 * since we checked the sequence number of the parent after we got
610 * the child sequence number. So we know the parent must still
611 * be valid if the child sequence number is still valid.
612 */
613 if (!dentry) {
614 if (read_seqcount_retry(&parent->d_seq, nd->seq))
615 goto out;
616 BUG_ON(nd->inode != parent->d_inode);
617 } else {
618 if (!lockref_get_not_dead(&dentry->d_lockref))
619 goto out;
620 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
621 goto drop_dentry;
622 }
623
624 /*
625 * Sequence counts matched. Now make sure that the root is
626 * still valid and get it if required.
627 */
628 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
629 spin_lock(&fs->lock);
630 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
631 goto unlock_and_drop_dentry;
632 path_get(&nd->root);
633 spin_unlock(&fs->lock);
634 }
635
636 rcu_read_unlock();
637 return 0;
638
639 unlock_and_drop_dentry:
640 spin_unlock(&fs->lock);
641 drop_dentry:
642 rcu_read_unlock();
643 dput(dentry);
644 goto drop_root_mnt;
645 out:
646 rcu_read_unlock();
647 drop_root_mnt:
648 if (!(nd->flags & LOOKUP_ROOT))
649 nd->root.mnt = NULL;
650 return -ECHILD;
651 }
652
653 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
654 {
655 return dentry->d_op->d_revalidate(dentry, flags);
656 }
657
658 /**
659 * complete_walk - successful completion of path walk
660 * @nd: pointer nameidata
661 *
662 * If we had been in RCU mode, drop out of it and legitimize nd->path.
663 * Revalidate the final result, unless we'd already done that during
664 * the path walk or the filesystem doesn't ask for it. Return 0 on
665 * success, -error on failure. In case of failure caller does not
666 * need to drop nd->path.
667 */
668 static int complete_walk(struct nameidata *nd)
669 {
670 struct dentry *dentry = nd->path.dentry;
671 int status;
672
673 if (nd->flags & LOOKUP_RCU) {
674 if (!(nd->flags & LOOKUP_ROOT))
675 nd->root.mnt = NULL;
676 if (unlikely(unlazy_walk(nd, NULL))) {
677 terminate_walk(nd);
678 return -ECHILD;
679 }
680 }
681
682 if (likely(!(nd->flags & LOOKUP_JUMPED)))
683 return 0;
684
685 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
686 return 0;
687
688 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
689 if (status > 0)
690 return 0;
691
692 if (!status)
693 status = -ESTALE;
694
695 terminate_walk(nd);
696 return status;
697 }
698
699 static __always_inline void set_root(struct nameidata *nd)
700 {
701 get_fs_root(current->fs, &nd->root);
702 }
703
704 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
705 {
706 struct fs_struct *fs = current->fs;
707 unsigned seq, res;
708
709 do {
710 seq = read_seqcount_begin(&fs->seq);
711 nd->root = fs->root;
712 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
713 } while (read_seqcount_retry(&fs->seq, seq));
714 return res;
715 }
716
717 static void path_put_conditional(struct path *path, struct nameidata *nd)
718 {
719 dput(path->dentry);
720 if (path->mnt != nd->path.mnt)
721 mntput(path->mnt);
722 }
723
724 static inline void path_to_nameidata(const struct path *path,
725 struct nameidata *nd)
726 {
727 if (!(nd->flags & LOOKUP_RCU)) {
728 dput(nd->path.dentry);
729 if (nd->path.mnt != path->mnt)
730 mntput(nd->path.mnt);
731 }
732 nd->path.mnt = path->mnt;
733 nd->path.dentry = path->dentry;
734 }
735
736 /*
737 * Helper to directly jump to a known parsed path from ->follow_link,
738 * caller must have taken a reference to path beforehand.
739 */
740 void nd_jump_link(struct path *path)
741 {
742 struct nameidata *nd = current->nameidata;
743 path_put(&nd->path);
744
745 nd->path = *path;
746 nd->inode = nd->path.dentry->d_inode;
747 nd->flags |= LOOKUP_JUMPED;
748 }
749
750 static inline void put_link(struct nameidata *nd)
751 {
752 struct saved *last = nd->stack + --nd->depth;
753 struct inode *inode = last->link.dentry->d_inode;
754 if (last->cookie && inode->i_op->put_link)
755 inode->i_op->put_link(last->link.dentry, last->cookie);
756 path_put(&last->link);
757 }
758
759 int sysctl_protected_symlinks __read_mostly = 0;
760 int sysctl_protected_hardlinks __read_mostly = 0;
761
762 /**
763 * may_follow_link - Check symlink following for unsafe situations
764 * @nd: nameidata pathwalk data
765 *
766 * In the case of the sysctl_protected_symlinks sysctl being enabled,
767 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
768 * in a sticky world-writable directory. This is to protect privileged
769 * processes from failing races against path names that may change out
770 * from under them by way of other users creating malicious symlinks.
771 * It will permit symlinks to be followed only when outside a sticky
772 * world-writable directory, or when the uid of the symlink and follower
773 * match, or when the directory owner matches the symlink's owner.
774 *
775 * Returns 0 if following the symlink is allowed, -ve on error.
776 */
777 static inline int may_follow_link(struct nameidata *nd)
778 {
779 const struct inode *inode;
780 const struct inode *parent;
781
782 if (!sysctl_protected_symlinks)
783 return 0;
784
785 /* Allowed if owner and follower match. */
786 inode = nd->stack[0].link.dentry->d_inode;
787 if (uid_eq(current_cred()->fsuid, inode->i_uid))
788 return 0;
789
790 /* Allowed if parent directory not sticky and world-writable. */
791 parent = nd->path.dentry->d_inode;
792 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
793 return 0;
794
795 /* Allowed if parent directory and link owner match. */
796 if (uid_eq(parent->i_uid, inode->i_uid))
797 return 0;
798
799 audit_log_link_denied("follow_link", &nd->stack[0].link);
800 return -EACCES;
801 }
802
803 /**
804 * safe_hardlink_source - Check for safe hardlink conditions
805 * @inode: the source inode to hardlink from
806 *
807 * Return false if at least one of the following conditions:
808 * - inode is not a regular file
809 * - inode is setuid
810 * - inode is setgid and group-exec
811 * - access failure for read and write
812 *
813 * Otherwise returns true.
814 */
815 static bool safe_hardlink_source(struct inode *inode)
816 {
817 umode_t mode = inode->i_mode;
818
819 /* Special files should not get pinned to the filesystem. */
820 if (!S_ISREG(mode))
821 return false;
822
823 /* Setuid files should not get pinned to the filesystem. */
824 if (mode & S_ISUID)
825 return false;
826
827 /* Executable setgid files should not get pinned to the filesystem. */
828 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
829 return false;
830
831 /* Hardlinking to unreadable or unwritable sources is dangerous. */
832 if (inode_permission(inode, MAY_READ | MAY_WRITE))
833 return false;
834
835 return true;
836 }
837
838 /**
839 * may_linkat - Check permissions for creating a hardlink
840 * @link: the source to hardlink from
841 *
842 * Block hardlink when all of:
843 * - sysctl_protected_hardlinks enabled
844 * - fsuid does not match inode
845 * - hardlink source is unsafe (see safe_hardlink_source() above)
846 * - not CAP_FOWNER
847 *
848 * Returns 0 if successful, -ve on error.
849 */
850 static int may_linkat(struct path *link)
851 {
852 const struct cred *cred;
853 struct inode *inode;
854
855 if (!sysctl_protected_hardlinks)
856 return 0;
857
858 cred = current_cred();
859 inode = link->dentry->d_inode;
860
861 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
862 * otherwise, it must be a safe source.
863 */
864 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
865 capable(CAP_FOWNER))
866 return 0;
867
868 audit_log_link_denied("linkat", link);
869 return -EPERM;
870 }
871
872 static __always_inline
873 const char *get_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + nd->depth - 1;
876 struct dentry *dentry = last->link.dentry;
877 struct inode *inode = dentry->d_inode;
878 int error;
879 const char *res;
880
881 BUG_ON(nd->flags & LOOKUP_RCU);
882
883 cond_resched();
884
885 touch_atime(&last->link);
886
887 error = security_inode_follow_link(dentry);
888 if (error)
889 return ERR_PTR(error);
890
891 nd->last_type = LAST_BIND;
892 res = inode->i_link;
893 if (!res) {
894 res = inode->i_op->follow_link(dentry, &last->cookie);
895 if (IS_ERR_OR_NULL(res)) {
896 last->cookie = NULL;
897 return res;
898 }
899 }
900 if (*res == '/') {
901 if (!nd->root.mnt)
902 set_root(nd);
903 path_put(&nd->path);
904 nd->path = nd->root;
905 path_get(&nd->root);
906 nd->inode = nd->path.dentry->d_inode;
907 nd->flags |= LOOKUP_JUMPED;
908 while (unlikely(*++res == '/'))
909 ;
910 }
911 if (!*res)
912 res = NULL;
913 return res;
914 }
915
916 static int follow_up_rcu(struct path *path)
917 {
918 struct mount *mnt = real_mount(path->mnt);
919 struct mount *parent;
920 struct dentry *mountpoint;
921
922 parent = mnt->mnt_parent;
923 if (&parent->mnt == path->mnt)
924 return 0;
925 mountpoint = mnt->mnt_mountpoint;
926 path->dentry = mountpoint;
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930
931 /*
932 * follow_up - Find the mountpoint of path's vfsmount
933 *
934 * Given a path, find the mountpoint of its source file system.
935 * Replace @path with the path of the mountpoint in the parent mount.
936 * Up is towards /.
937 *
938 * Return 1 if we went up a level and 0 if we were already at the
939 * root.
940 */
941 int follow_up(struct path *path)
942 {
943 struct mount *mnt = real_mount(path->mnt);
944 struct mount *parent;
945 struct dentry *mountpoint;
946
947 read_seqlock_excl(&mount_lock);
948 parent = mnt->mnt_parent;
949 if (parent == mnt) {
950 read_sequnlock_excl(&mount_lock);
951 return 0;
952 }
953 mntget(&parent->mnt);
954 mountpoint = dget(mnt->mnt_mountpoint);
955 read_sequnlock_excl(&mount_lock);
956 dput(path->dentry);
957 path->dentry = mountpoint;
958 mntput(path->mnt);
959 path->mnt = &parent->mnt;
960 return 1;
961 }
962 EXPORT_SYMBOL(follow_up);
963
964 /*
965 * Perform an automount
966 * - return -EISDIR to tell follow_managed() to stop and return the path we
967 * were called with.
968 */
969 static int follow_automount(struct path *path, struct nameidata *nd,
970 bool *need_mntput)
971 {
972 struct vfsmount *mnt;
973 int err;
974
975 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
976 return -EREMOTE;
977
978 /* We don't want to mount if someone's just doing a stat -
979 * unless they're stat'ing a directory and appended a '/' to
980 * the name.
981 *
982 * We do, however, want to mount if someone wants to open or
983 * create a file of any type under the mountpoint, wants to
984 * traverse through the mountpoint or wants to open the
985 * mounted directory. Also, autofs may mark negative dentries
986 * as being automount points. These will need the attentions
987 * of the daemon to instantiate them before they can be used.
988 */
989 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
990 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
991 path->dentry->d_inode)
992 return -EISDIR;
993
994 nd->total_link_count++;
995 if (nd->total_link_count >= 40)
996 return -ELOOP;
997
998 mnt = path->dentry->d_op->d_automount(path);
999 if (IS_ERR(mnt)) {
1000 /*
1001 * The filesystem is allowed to return -EISDIR here to indicate
1002 * it doesn't want to automount. For instance, autofs would do
1003 * this so that its userspace daemon can mount on this dentry.
1004 *
1005 * However, we can only permit this if it's a terminal point in
1006 * the path being looked up; if it wasn't then the remainder of
1007 * the path is inaccessible and we should say so.
1008 */
1009 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1010 return -EREMOTE;
1011 return PTR_ERR(mnt);
1012 }
1013
1014 if (!mnt) /* mount collision */
1015 return 0;
1016
1017 if (!*need_mntput) {
1018 /* lock_mount() may release path->mnt on error */
1019 mntget(path->mnt);
1020 *need_mntput = true;
1021 }
1022 err = finish_automount(mnt, path);
1023
1024 switch (err) {
1025 case -EBUSY:
1026 /* Someone else made a mount here whilst we were busy */
1027 return 0;
1028 case 0:
1029 path_put(path);
1030 path->mnt = mnt;
1031 path->dentry = dget(mnt->mnt_root);
1032 return 0;
1033 default:
1034 return err;
1035 }
1036
1037 }
1038
1039 /*
1040 * Handle a dentry that is managed in some way.
1041 * - Flagged for transit management (autofs)
1042 * - Flagged as mountpoint
1043 * - Flagged as automount point
1044 *
1045 * This may only be called in refwalk mode.
1046 *
1047 * Serialization is taken care of in namespace.c
1048 */
1049 static int follow_managed(struct path *path, struct nameidata *nd)
1050 {
1051 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1052 unsigned managed;
1053 bool need_mntput = false;
1054 int ret = 0;
1055
1056 /* Given that we're not holding a lock here, we retain the value in a
1057 * local variable for each dentry as we look at it so that we don't see
1058 * the components of that value change under us */
1059 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1060 managed &= DCACHE_MANAGED_DENTRY,
1061 unlikely(managed != 0)) {
1062 /* Allow the filesystem to manage the transit without i_mutex
1063 * being held. */
1064 if (managed & DCACHE_MANAGE_TRANSIT) {
1065 BUG_ON(!path->dentry->d_op);
1066 BUG_ON(!path->dentry->d_op->d_manage);
1067 ret = path->dentry->d_op->d_manage(path->dentry, false);
1068 if (ret < 0)
1069 break;
1070 }
1071
1072 /* Transit to a mounted filesystem. */
1073 if (managed & DCACHE_MOUNTED) {
1074 struct vfsmount *mounted = lookup_mnt(path);
1075 if (mounted) {
1076 dput(path->dentry);
1077 if (need_mntput)
1078 mntput(path->mnt);
1079 path->mnt = mounted;
1080 path->dentry = dget(mounted->mnt_root);
1081 need_mntput = true;
1082 continue;
1083 }
1084
1085 /* Something is mounted on this dentry in another
1086 * namespace and/or whatever was mounted there in this
1087 * namespace got unmounted before lookup_mnt() could
1088 * get it */
1089 }
1090
1091 /* Handle an automount point */
1092 if (managed & DCACHE_NEED_AUTOMOUNT) {
1093 ret = follow_automount(path, nd, &need_mntput);
1094 if (ret < 0)
1095 break;
1096 continue;
1097 }
1098
1099 /* We didn't change the current path point */
1100 break;
1101 }
1102
1103 if (need_mntput && path->mnt == mnt)
1104 mntput(path->mnt);
1105 if (ret == -EISDIR)
1106 ret = 0;
1107 if (need_mntput)
1108 nd->flags |= LOOKUP_JUMPED;
1109 if (unlikely(ret < 0))
1110 path_put_conditional(path, nd);
1111 return ret;
1112 }
1113
1114 int follow_down_one(struct path *path)
1115 {
1116 struct vfsmount *mounted;
1117
1118 mounted = lookup_mnt(path);
1119 if (mounted) {
1120 dput(path->dentry);
1121 mntput(path->mnt);
1122 path->mnt = mounted;
1123 path->dentry = dget(mounted->mnt_root);
1124 return 1;
1125 }
1126 return 0;
1127 }
1128 EXPORT_SYMBOL(follow_down_one);
1129
1130 static inline int managed_dentry_rcu(struct dentry *dentry)
1131 {
1132 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1133 dentry->d_op->d_manage(dentry, true) : 0;
1134 }
1135
1136 /*
1137 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1138 * we meet a managed dentry that would need blocking.
1139 */
1140 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1141 struct inode **inode)
1142 {
1143 for (;;) {
1144 struct mount *mounted;
1145 /*
1146 * Don't forget we might have a non-mountpoint managed dentry
1147 * that wants to block transit.
1148 */
1149 switch (managed_dentry_rcu(path->dentry)) {
1150 case -ECHILD:
1151 default:
1152 return false;
1153 case -EISDIR:
1154 return true;
1155 case 0:
1156 break;
1157 }
1158
1159 if (!d_mountpoint(path->dentry))
1160 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1161
1162 mounted = __lookup_mnt(path->mnt, path->dentry);
1163 if (!mounted)
1164 break;
1165 path->mnt = &mounted->mnt;
1166 path->dentry = mounted->mnt.mnt_root;
1167 nd->flags |= LOOKUP_JUMPED;
1168 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1169 /*
1170 * Update the inode too. We don't need to re-check the
1171 * dentry sequence number here after this d_inode read,
1172 * because a mount-point is always pinned.
1173 */
1174 *inode = path->dentry->d_inode;
1175 }
1176 return !read_seqretry(&mount_lock, nd->m_seq) &&
1177 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1178 }
1179
1180 static int follow_dotdot_rcu(struct nameidata *nd)
1181 {
1182 struct inode *inode = nd->inode;
1183 if (!nd->root.mnt)
1184 set_root_rcu(nd);
1185
1186 while (1) {
1187 if (nd->path.dentry == nd->root.dentry &&
1188 nd->path.mnt == nd->root.mnt) {
1189 break;
1190 }
1191 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1192 struct dentry *old = nd->path.dentry;
1193 struct dentry *parent = old->d_parent;
1194 unsigned seq;
1195
1196 inode = parent->d_inode;
1197 seq = read_seqcount_begin(&parent->d_seq);
1198 if (read_seqcount_retry(&old->d_seq, nd->seq))
1199 goto failed;
1200 nd->path.dentry = parent;
1201 nd->seq = seq;
1202 break;
1203 }
1204 if (!follow_up_rcu(&nd->path))
1205 break;
1206 inode = nd->path.dentry->d_inode;
1207 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1208 }
1209 while (d_mountpoint(nd->path.dentry)) {
1210 struct mount *mounted;
1211 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1212 if (!mounted)
1213 break;
1214 nd->path.mnt = &mounted->mnt;
1215 nd->path.dentry = mounted->mnt.mnt_root;
1216 inode = nd->path.dentry->d_inode;
1217 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1218 if (read_seqretry(&mount_lock, nd->m_seq))
1219 goto failed;
1220 }
1221 nd->inode = inode;
1222 return 0;
1223
1224 failed:
1225 return -ECHILD;
1226 }
1227
1228 /*
1229 * Follow down to the covering mount currently visible to userspace. At each
1230 * point, the filesystem owning that dentry may be queried as to whether the
1231 * caller is permitted to proceed or not.
1232 */
1233 int follow_down(struct path *path)
1234 {
1235 unsigned managed;
1236 int ret;
1237
1238 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1239 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1240 /* Allow the filesystem to manage the transit without i_mutex
1241 * being held.
1242 *
1243 * We indicate to the filesystem if someone is trying to mount
1244 * something here. This gives autofs the chance to deny anyone
1245 * other than its daemon the right to mount on its
1246 * superstructure.
1247 *
1248 * The filesystem may sleep at this point.
1249 */
1250 if (managed & DCACHE_MANAGE_TRANSIT) {
1251 BUG_ON(!path->dentry->d_op);
1252 BUG_ON(!path->dentry->d_op->d_manage);
1253 ret = path->dentry->d_op->d_manage(
1254 path->dentry, false);
1255 if (ret < 0)
1256 return ret == -EISDIR ? 0 : ret;
1257 }
1258
1259 /* Transit to a mounted filesystem. */
1260 if (managed & DCACHE_MOUNTED) {
1261 struct vfsmount *mounted = lookup_mnt(path);
1262 if (!mounted)
1263 break;
1264 dput(path->dentry);
1265 mntput(path->mnt);
1266 path->mnt = mounted;
1267 path->dentry = dget(mounted->mnt_root);
1268 continue;
1269 }
1270
1271 /* Don't handle automount points here */
1272 break;
1273 }
1274 return 0;
1275 }
1276 EXPORT_SYMBOL(follow_down);
1277
1278 /*
1279 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1280 */
1281 static void follow_mount(struct path *path)
1282 {
1283 while (d_mountpoint(path->dentry)) {
1284 struct vfsmount *mounted = lookup_mnt(path);
1285 if (!mounted)
1286 break;
1287 dput(path->dentry);
1288 mntput(path->mnt);
1289 path->mnt = mounted;
1290 path->dentry = dget(mounted->mnt_root);
1291 }
1292 }
1293
1294 static void follow_dotdot(struct nameidata *nd)
1295 {
1296 if (!nd->root.mnt)
1297 set_root(nd);
1298
1299 while(1) {
1300 struct dentry *old = nd->path.dentry;
1301
1302 if (nd->path.dentry == nd->root.dentry &&
1303 nd->path.mnt == nd->root.mnt) {
1304 break;
1305 }
1306 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 /* rare case of legitimate dget_parent()... */
1308 nd->path.dentry = dget_parent(nd->path.dentry);
1309 dput(old);
1310 break;
1311 }
1312 if (!follow_up(&nd->path))
1313 break;
1314 }
1315 follow_mount(&nd->path);
1316 nd->inode = nd->path.dentry->d_inode;
1317 }
1318
1319 /*
1320 * This looks up the name in dcache, possibly revalidates the old dentry and
1321 * allocates a new one if not found or not valid. In the need_lookup argument
1322 * returns whether i_op->lookup is necessary.
1323 *
1324 * dir->d_inode->i_mutex must be held
1325 */
1326 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1327 unsigned int flags, bool *need_lookup)
1328 {
1329 struct dentry *dentry;
1330 int error;
1331
1332 *need_lookup = false;
1333 dentry = d_lookup(dir, name);
1334 if (dentry) {
1335 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1336 error = d_revalidate(dentry, flags);
1337 if (unlikely(error <= 0)) {
1338 if (error < 0) {
1339 dput(dentry);
1340 return ERR_PTR(error);
1341 } else {
1342 d_invalidate(dentry);
1343 dput(dentry);
1344 dentry = NULL;
1345 }
1346 }
1347 }
1348 }
1349
1350 if (!dentry) {
1351 dentry = d_alloc(dir, name);
1352 if (unlikely(!dentry))
1353 return ERR_PTR(-ENOMEM);
1354
1355 *need_lookup = true;
1356 }
1357 return dentry;
1358 }
1359
1360 /*
1361 * Call i_op->lookup on the dentry. The dentry must be negative and
1362 * unhashed.
1363 *
1364 * dir->d_inode->i_mutex must be held
1365 */
1366 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1367 unsigned int flags)
1368 {
1369 struct dentry *old;
1370
1371 /* Don't create child dentry for a dead directory. */
1372 if (unlikely(IS_DEADDIR(dir))) {
1373 dput(dentry);
1374 return ERR_PTR(-ENOENT);
1375 }
1376
1377 old = dir->i_op->lookup(dir, dentry, flags);
1378 if (unlikely(old)) {
1379 dput(dentry);
1380 dentry = old;
1381 }
1382 return dentry;
1383 }
1384
1385 static struct dentry *__lookup_hash(struct qstr *name,
1386 struct dentry *base, unsigned int flags)
1387 {
1388 bool need_lookup;
1389 struct dentry *dentry;
1390
1391 dentry = lookup_dcache(name, base, flags, &need_lookup);
1392 if (!need_lookup)
1393 return dentry;
1394
1395 return lookup_real(base->d_inode, dentry, flags);
1396 }
1397
1398 /*
1399 * It's more convoluted than I'd like it to be, but... it's still fairly
1400 * small and for now I'd prefer to have fast path as straight as possible.
1401 * It _is_ time-critical.
1402 */
1403 static int lookup_fast(struct nameidata *nd,
1404 struct path *path, struct inode **inode)
1405 {
1406 struct vfsmount *mnt = nd->path.mnt;
1407 struct dentry *dentry, *parent = nd->path.dentry;
1408 int need_reval = 1;
1409 int status = 1;
1410 int err;
1411
1412 /*
1413 * Rename seqlock is not required here because in the off chance
1414 * of a false negative due to a concurrent rename, we're going to
1415 * do the non-racy lookup, below.
1416 */
1417 if (nd->flags & LOOKUP_RCU) {
1418 unsigned seq;
1419 bool negative;
1420 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1421 if (!dentry)
1422 goto unlazy;
1423
1424 /*
1425 * This sequence count validates that the inode matches
1426 * the dentry name information from lookup.
1427 */
1428 *inode = dentry->d_inode;
1429 negative = d_is_negative(dentry);
1430 if (read_seqcount_retry(&dentry->d_seq, seq))
1431 return -ECHILD;
1432 if (negative)
1433 return -ENOENT;
1434
1435 /*
1436 * This sequence count validates that the parent had no
1437 * changes while we did the lookup of the dentry above.
1438 *
1439 * The memory barrier in read_seqcount_begin of child is
1440 * enough, we can use __read_seqcount_retry here.
1441 */
1442 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1443 return -ECHILD;
1444 nd->seq = seq;
1445
1446 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1447 status = d_revalidate(dentry, nd->flags);
1448 if (unlikely(status <= 0)) {
1449 if (status != -ECHILD)
1450 need_reval = 0;
1451 goto unlazy;
1452 }
1453 }
1454 path->mnt = mnt;
1455 path->dentry = dentry;
1456 if (likely(__follow_mount_rcu(nd, path, inode)))
1457 return 0;
1458 unlazy:
1459 if (unlazy_walk(nd, dentry))
1460 return -ECHILD;
1461 } else {
1462 dentry = __d_lookup(parent, &nd->last);
1463 }
1464
1465 if (unlikely(!dentry))
1466 goto need_lookup;
1467
1468 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1469 status = d_revalidate(dentry, nd->flags);
1470 if (unlikely(status <= 0)) {
1471 if (status < 0) {
1472 dput(dentry);
1473 return status;
1474 }
1475 d_invalidate(dentry);
1476 dput(dentry);
1477 goto need_lookup;
1478 }
1479
1480 if (unlikely(d_is_negative(dentry))) {
1481 dput(dentry);
1482 return -ENOENT;
1483 }
1484 path->mnt = mnt;
1485 path->dentry = dentry;
1486 err = follow_managed(path, nd);
1487 if (likely(!err))
1488 *inode = path->dentry->d_inode;
1489 return err;
1490
1491 need_lookup:
1492 return 1;
1493 }
1494
1495 /* Fast lookup failed, do it the slow way */
1496 static int lookup_slow(struct nameidata *nd, struct path *path)
1497 {
1498 struct dentry *dentry, *parent;
1499
1500 parent = nd->path.dentry;
1501 BUG_ON(nd->inode != parent->d_inode);
1502
1503 mutex_lock(&parent->d_inode->i_mutex);
1504 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1505 mutex_unlock(&parent->d_inode->i_mutex);
1506 if (IS_ERR(dentry))
1507 return PTR_ERR(dentry);
1508 path->mnt = nd->path.mnt;
1509 path->dentry = dentry;
1510 return follow_managed(path, nd);
1511 }
1512
1513 static inline int may_lookup(struct nameidata *nd)
1514 {
1515 if (nd->flags & LOOKUP_RCU) {
1516 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1517 if (err != -ECHILD)
1518 return err;
1519 if (unlazy_walk(nd, NULL))
1520 return -ECHILD;
1521 }
1522 return inode_permission(nd->inode, MAY_EXEC);
1523 }
1524
1525 static inline int handle_dots(struct nameidata *nd, int type)
1526 {
1527 if (type == LAST_DOTDOT) {
1528 if (nd->flags & LOOKUP_RCU) {
1529 return follow_dotdot_rcu(nd);
1530 } else
1531 follow_dotdot(nd);
1532 }
1533 return 0;
1534 }
1535
1536 static void terminate_walk(struct nameidata *nd)
1537 {
1538 if (!(nd->flags & LOOKUP_RCU)) {
1539 path_put(&nd->path);
1540 } else {
1541 nd->flags &= ~LOOKUP_RCU;
1542 if (!(nd->flags & LOOKUP_ROOT))
1543 nd->root.mnt = NULL;
1544 rcu_read_unlock();
1545 }
1546 while (unlikely(nd->depth))
1547 put_link(nd);
1548 }
1549
1550 static int pick_link(struct nameidata *nd, struct path *link)
1551 {
1552 int error;
1553 struct saved *last;
1554 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1555 path_to_nameidata(link, nd);
1556 return -ELOOP;
1557 }
1558 if (nd->flags & LOOKUP_RCU) {
1559 if (unlikely(nd->path.mnt != link->mnt ||
1560 unlazy_walk(nd, link->dentry))) {
1561 return -ECHILD;
1562 }
1563 }
1564 if (link->mnt == nd->path.mnt)
1565 mntget(link->mnt);
1566 error = nd_alloc_stack(nd);
1567 if (unlikely(error)) {
1568 path_put(link);
1569 return error;
1570 }
1571
1572 last = nd->stack + nd->depth++;
1573 last->link = *link;
1574 last->cookie = NULL;
1575 return 1;
1576 }
1577
1578 /*
1579 * Do we need to follow links? We _really_ want to be able
1580 * to do this check without having to look at inode->i_op,
1581 * so we keep a cache of "no, this doesn't need follow_link"
1582 * for the common case.
1583 */
1584 static inline int should_follow_link(struct nameidata *nd, struct path *link, int follow)
1585 {
1586 if (likely(!d_is_symlink(link->dentry)))
1587 return 0;
1588 if (!follow)
1589 return 0;
1590 return pick_link(nd, link);
1591 }
1592
1593 enum {WALK_GET = 1, WALK_PUT = 2};
1594
1595 static int walk_component(struct nameidata *nd, int flags)
1596 {
1597 struct path path;
1598 struct inode *inode;
1599 int err;
1600 /*
1601 * "." and ".." are special - ".." especially so because it has
1602 * to be able to know about the current root directory and
1603 * parent relationships.
1604 */
1605 if (unlikely(nd->last_type != LAST_NORM)) {
1606 err = handle_dots(nd, nd->last_type);
1607 if (flags & WALK_PUT)
1608 put_link(nd);
1609 return err;
1610 }
1611 err = lookup_fast(nd, &path, &inode);
1612 if (unlikely(err)) {
1613 if (err < 0)
1614 return err;
1615
1616 err = lookup_slow(nd, &path);
1617 if (err < 0)
1618 return err;
1619
1620 inode = path.dentry->d_inode;
1621 err = -ENOENT;
1622 if (d_is_negative(path.dentry))
1623 goto out_path_put;
1624 }
1625
1626 if (flags & WALK_PUT)
1627 put_link(nd);
1628 err = should_follow_link(nd, &path, flags & WALK_GET);
1629 if (unlikely(err))
1630 return err;
1631 path_to_nameidata(&path, nd);
1632 nd->inode = inode;
1633 return 0;
1634
1635 out_path_put:
1636 path_to_nameidata(&path, nd);
1637 return err;
1638 }
1639
1640 /*
1641 * We can do the critical dentry name comparison and hashing
1642 * operations one word at a time, but we are limited to:
1643 *
1644 * - Architectures with fast unaligned word accesses. We could
1645 * do a "get_unaligned()" if this helps and is sufficiently
1646 * fast.
1647 *
1648 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1649 * do not trap on the (extremely unlikely) case of a page
1650 * crossing operation.
1651 *
1652 * - Furthermore, we need an efficient 64-bit compile for the
1653 * 64-bit case in order to generate the "number of bytes in
1654 * the final mask". Again, that could be replaced with a
1655 * efficient population count instruction or similar.
1656 */
1657 #ifdef CONFIG_DCACHE_WORD_ACCESS
1658
1659 #include <asm/word-at-a-time.h>
1660
1661 #ifdef CONFIG_64BIT
1662
1663 static inline unsigned int fold_hash(unsigned long hash)
1664 {
1665 return hash_64(hash, 32);
1666 }
1667
1668 #else /* 32-bit case */
1669
1670 #define fold_hash(x) (x)
1671
1672 #endif
1673
1674 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1675 {
1676 unsigned long a, mask;
1677 unsigned long hash = 0;
1678
1679 for (;;) {
1680 a = load_unaligned_zeropad(name);
1681 if (len < sizeof(unsigned long))
1682 break;
1683 hash += a;
1684 hash *= 9;
1685 name += sizeof(unsigned long);
1686 len -= sizeof(unsigned long);
1687 if (!len)
1688 goto done;
1689 }
1690 mask = bytemask_from_count(len);
1691 hash += mask & a;
1692 done:
1693 return fold_hash(hash);
1694 }
1695 EXPORT_SYMBOL(full_name_hash);
1696
1697 /*
1698 * Calculate the length and hash of the path component, and
1699 * return the "hash_len" as the result.
1700 */
1701 static inline u64 hash_name(const char *name)
1702 {
1703 unsigned long a, b, adata, bdata, mask, hash, len;
1704 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1705
1706 hash = a = 0;
1707 len = -sizeof(unsigned long);
1708 do {
1709 hash = (hash + a) * 9;
1710 len += sizeof(unsigned long);
1711 a = load_unaligned_zeropad(name+len);
1712 b = a ^ REPEAT_BYTE('/');
1713 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1714
1715 adata = prep_zero_mask(a, adata, &constants);
1716 bdata = prep_zero_mask(b, bdata, &constants);
1717
1718 mask = create_zero_mask(adata | bdata);
1719
1720 hash += a & zero_bytemask(mask);
1721 len += find_zero(mask);
1722 return hashlen_create(fold_hash(hash), len);
1723 }
1724
1725 #else
1726
1727 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1728 {
1729 unsigned long hash = init_name_hash();
1730 while (len--)
1731 hash = partial_name_hash(*name++, hash);
1732 return end_name_hash(hash);
1733 }
1734 EXPORT_SYMBOL(full_name_hash);
1735
1736 /*
1737 * We know there's a real path component here of at least
1738 * one character.
1739 */
1740 static inline u64 hash_name(const char *name)
1741 {
1742 unsigned long hash = init_name_hash();
1743 unsigned long len = 0, c;
1744
1745 c = (unsigned char)*name;
1746 do {
1747 len++;
1748 hash = partial_name_hash(c, hash);
1749 c = (unsigned char)name[len];
1750 } while (c && c != '/');
1751 return hashlen_create(end_name_hash(hash), len);
1752 }
1753
1754 #endif
1755
1756 /*
1757 * Name resolution.
1758 * This is the basic name resolution function, turning a pathname into
1759 * the final dentry. We expect 'base' to be positive and a directory.
1760 *
1761 * Returns 0 and nd will have valid dentry and mnt on success.
1762 * Returns error and drops reference to input namei data on failure.
1763 */
1764 static int link_path_walk(const char *name, struct nameidata *nd)
1765 {
1766 int err;
1767
1768 while (*name=='/')
1769 name++;
1770 if (!*name)
1771 return 0;
1772
1773 /* At this point we know we have a real path component. */
1774 for(;;) {
1775 u64 hash_len;
1776 int type;
1777
1778 err = may_lookup(nd);
1779 if (err)
1780 break;
1781
1782 hash_len = hash_name(name);
1783
1784 type = LAST_NORM;
1785 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1786 case 2:
1787 if (name[1] == '.') {
1788 type = LAST_DOTDOT;
1789 nd->flags |= LOOKUP_JUMPED;
1790 }
1791 break;
1792 case 1:
1793 type = LAST_DOT;
1794 }
1795 if (likely(type == LAST_NORM)) {
1796 struct dentry *parent = nd->path.dentry;
1797 nd->flags &= ~LOOKUP_JUMPED;
1798 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1799 struct qstr this = { { .hash_len = hash_len }, .name = name };
1800 err = parent->d_op->d_hash(parent, &this);
1801 if (err < 0)
1802 break;
1803 hash_len = this.hash_len;
1804 name = this.name;
1805 }
1806 }
1807
1808 nd->last.hash_len = hash_len;
1809 nd->last.name = name;
1810 nd->last_type = type;
1811
1812 name += hashlen_len(hash_len);
1813 if (!*name)
1814 goto OK;
1815 /*
1816 * If it wasn't NUL, we know it was '/'. Skip that
1817 * slash, and continue until no more slashes.
1818 */
1819 do {
1820 name++;
1821 } while (unlikely(*name == '/'));
1822 if (unlikely(!*name)) {
1823 OK:
1824 /* pathname body, done */
1825 if (!nd->depth)
1826 return 0;
1827 name = nd->stack[nd->depth - 1].name;
1828 /* trailing symlink, done */
1829 if (!name)
1830 return 0;
1831 /* last component of nested symlink */
1832 err = walk_component(nd, WALK_GET | WALK_PUT);
1833 } else {
1834 err = walk_component(nd, WALK_GET);
1835 }
1836 if (err < 0)
1837 break;
1838
1839 if (err) {
1840 const char *s = get_link(nd);
1841
1842 if (unlikely(IS_ERR(s))) {
1843 err = PTR_ERR(s);
1844 break;
1845 }
1846 err = 0;
1847 if (unlikely(!s)) {
1848 /* jumped */
1849 put_link(nd);
1850 } else {
1851 nd->stack[nd->depth - 1].name = name;
1852 name = s;
1853 continue;
1854 }
1855 }
1856 if (!d_can_lookup(nd->path.dentry)) {
1857 err = -ENOTDIR;
1858 break;
1859 }
1860 }
1861 terminate_walk(nd);
1862 return err;
1863 }
1864
1865 static const char *path_init(int dfd, const struct filename *name,
1866 unsigned int flags, struct nameidata *nd)
1867 {
1868 int retval = 0;
1869 const char *s = name->name;
1870
1871 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1872 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1873 nd->depth = 0;
1874 nd->total_link_count = 0;
1875 if (flags & LOOKUP_ROOT) {
1876 struct dentry *root = nd->root.dentry;
1877 struct inode *inode = root->d_inode;
1878 if (*s) {
1879 if (!d_can_lookup(root))
1880 return ERR_PTR(-ENOTDIR);
1881 retval = inode_permission(inode, MAY_EXEC);
1882 if (retval)
1883 return ERR_PTR(retval);
1884 }
1885 nd->path = nd->root;
1886 nd->inode = inode;
1887 if (flags & LOOKUP_RCU) {
1888 rcu_read_lock();
1889 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1890 nd->m_seq = read_seqbegin(&mount_lock);
1891 } else {
1892 path_get(&nd->path);
1893 }
1894 return s;
1895 }
1896
1897 nd->root.mnt = NULL;
1898
1899 nd->m_seq = read_seqbegin(&mount_lock);
1900 if (*s == '/') {
1901 if (flags & LOOKUP_RCU) {
1902 rcu_read_lock();
1903 nd->seq = set_root_rcu(nd);
1904 } else {
1905 set_root(nd);
1906 path_get(&nd->root);
1907 }
1908 nd->path = nd->root;
1909 } else if (dfd == AT_FDCWD) {
1910 if (flags & LOOKUP_RCU) {
1911 struct fs_struct *fs = current->fs;
1912 unsigned seq;
1913
1914 rcu_read_lock();
1915
1916 do {
1917 seq = read_seqcount_begin(&fs->seq);
1918 nd->path = fs->pwd;
1919 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1920 } while (read_seqcount_retry(&fs->seq, seq));
1921 } else {
1922 get_fs_pwd(current->fs, &nd->path);
1923 }
1924 } else {
1925 /* Caller must check execute permissions on the starting path component */
1926 struct fd f = fdget_raw(dfd);
1927 struct dentry *dentry;
1928
1929 if (!f.file)
1930 return ERR_PTR(-EBADF);
1931
1932 dentry = f.file->f_path.dentry;
1933
1934 if (*s) {
1935 if (!d_can_lookup(dentry)) {
1936 fdput(f);
1937 return ERR_PTR(-ENOTDIR);
1938 }
1939 }
1940
1941 nd->path = f.file->f_path;
1942 if (flags & LOOKUP_RCU) {
1943 rcu_read_lock();
1944 nd->inode = nd->path.dentry->d_inode;
1945 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1946 } else {
1947 path_get(&nd->path);
1948 nd->inode = nd->path.dentry->d_inode;
1949 }
1950 fdput(f);
1951 return s;
1952 }
1953
1954 nd->inode = nd->path.dentry->d_inode;
1955 if (!(flags & LOOKUP_RCU))
1956 return s;
1957 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1958 return s;
1959 if (!(nd->flags & LOOKUP_ROOT))
1960 nd->root.mnt = NULL;
1961 rcu_read_unlock();
1962 return ERR_PTR(-ECHILD);
1963 }
1964
1965 static void path_cleanup(struct nameidata *nd)
1966 {
1967 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1968 path_put(&nd->root);
1969 nd->root.mnt = NULL;
1970 }
1971 }
1972
1973 static int trailing_symlink(struct nameidata *nd)
1974 {
1975 const char *s;
1976 int error = may_follow_link(nd);
1977 if (unlikely(error)) {
1978 terminate_walk(nd);
1979 return error;
1980 }
1981 nd->flags |= LOOKUP_PARENT;
1982 nd->stack[0].name = NULL;
1983 s = get_link(nd);
1984 if (unlikely(IS_ERR(s))) {
1985 terminate_walk(nd);
1986 return PTR_ERR(s);
1987 }
1988 if (unlikely(!s))
1989 return 0;
1990 return link_path_walk(s, nd);
1991 }
1992
1993 static inline int lookup_last(struct nameidata *nd)
1994 {
1995 int err;
1996 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1997 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1998
1999 nd->flags &= ~LOOKUP_PARENT;
2000 err = walk_component(nd,
2001 nd->flags & LOOKUP_FOLLOW
2002 ? nd->depth
2003 ? WALK_PUT | WALK_GET
2004 : WALK_GET
2005 : 0);
2006 if (err < 0)
2007 terminate_walk(nd);
2008 return err;
2009 }
2010
2011 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2012 static int path_lookupat(int dfd, const struct filename *name,
2013 unsigned int flags, struct nameidata *nd)
2014 {
2015 const char *s = path_init(dfd, name, flags, nd);
2016 int err;
2017
2018 if (IS_ERR(s))
2019 return PTR_ERR(s);
2020 err = link_path_walk(s, nd);
2021 if (!err) {
2022 while ((err = lookup_last(nd)) > 0) {
2023 err = trailing_symlink(nd);
2024 if (err)
2025 break;
2026 }
2027 }
2028
2029 if (!err)
2030 err = complete_walk(nd);
2031
2032 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2033 if (!d_can_lookup(nd->path.dentry)) {
2034 path_put(&nd->path);
2035 err = -ENOTDIR;
2036 }
2037 }
2038
2039 path_cleanup(nd);
2040 return err;
2041 }
2042
2043 static int filename_lookup(int dfd, struct filename *name,
2044 unsigned int flags, struct nameidata *nd)
2045 {
2046 int retval;
2047 struct nameidata *saved_nd = set_nameidata(nd);
2048
2049 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2050 if (unlikely(retval == -ECHILD))
2051 retval = path_lookupat(dfd, name, flags, nd);
2052 if (unlikely(retval == -ESTALE))
2053 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2054
2055 if (likely(!retval))
2056 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2057 restore_nameidata(saved_nd);
2058 return retval;
2059 }
2060
2061 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2062 static int path_parentat(int dfd, const struct filename *name,
2063 unsigned int flags, struct nameidata *nd)
2064 {
2065 const char *s = path_init(dfd, name, flags, nd);
2066 int err;
2067 if (IS_ERR(s))
2068 return PTR_ERR(s);
2069 err = link_path_walk(s, nd);
2070 if (!err)
2071 err = complete_walk(nd);
2072 path_cleanup(nd);
2073 return err;
2074 }
2075
2076 static int filename_parentat(int dfd, struct filename *name,
2077 unsigned int flags, struct nameidata *nd)
2078 {
2079 int retval;
2080 struct nameidata *saved_nd = set_nameidata(nd);
2081
2082 retval = path_parentat(dfd, name, flags | LOOKUP_RCU, nd);
2083 if (unlikely(retval == -ECHILD))
2084 retval = path_parentat(dfd, name, flags, nd);
2085 if (unlikely(retval == -ESTALE))
2086 retval = path_parentat(dfd, name, flags | LOOKUP_REVAL, nd);
2087
2088 if (likely(!retval))
2089 audit_inode(name, nd->path.dentry, LOOKUP_PARENT);
2090 restore_nameidata(saved_nd);
2091 return retval;
2092 }
2093
2094 /* does lookup, returns the object with parent locked */
2095 struct dentry *kern_path_locked(const char *name, struct path *path)
2096 {
2097 struct filename *filename = getname_kernel(name);
2098 struct nameidata nd;
2099 struct dentry *d;
2100 int err;
2101
2102 if (IS_ERR(filename))
2103 return ERR_CAST(filename);
2104
2105 err = filename_parentat(AT_FDCWD, filename, 0, &nd);
2106 if (err) {
2107 d = ERR_PTR(err);
2108 goto out;
2109 }
2110 if (nd.last_type != LAST_NORM) {
2111 path_put(&nd.path);
2112 d = ERR_PTR(-EINVAL);
2113 goto out;
2114 }
2115 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2116 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2117 if (IS_ERR(d)) {
2118 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2119 path_put(&nd.path);
2120 goto out;
2121 }
2122 *path = nd.path;
2123 out:
2124 putname(filename);
2125 return d;
2126 }
2127
2128 int kern_path(const char *name, unsigned int flags, struct path *path)
2129 {
2130 struct nameidata nd;
2131 struct filename *filename = getname_kernel(name);
2132 int res = PTR_ERR(filename);
2133
2134 if (!IS_ERR(filename)) {
2135 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2136 putname(filename);
2137 if (!res)
2138 *path = nd.path;
2139 }
2140 return res;
2141 }
2142 EXPORT_SYMBOL(kern_path);
2143
2144 /**
2145 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2146 * @dentry: pointer to dentry of the base directory
2147 * @mnt: pointer to vfs mount of the base directory
2148 * @name: pointer to file name
2149 * @flags: lookup flags
2150 * @path: pointer to struct path to fill
2151 */
2152 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2153 const char *name, unsigned int flags,
2154 struct path *path)
2155 {
2156 struct filename *filename = getname_kernel(name);
2157 int err = PTR_ERR(filename);
2158
2159 BUG_ON(flags & LOOKUP_PARENT);
2160
2161 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2162 if (!IS_ERR(filename)) {
2163 struct nameidata nd;
2164 nd.root.dentry = dentry;
2165 nd.root.mnt = mnt;
2166 err = filename_lookup(AT_FDCWD, filename,
2167 flags | LOOKUP_ROOT, &nd);
2168 if (!err)
2169 *path = nd.path;
2170 putname(filename);
2171 }
2172 return err;
2173 }
2174 EXPORT_SYMBOL(vfs_path_lookup);
2175
2176 /**
2177 * lookup_one_len - filesystem helper to lookup single pathname component
2178 * @name: pathname component to lookup
2179 * @base: base directory to lookup from
2180 * @len: maximum length @len should be interpreted to
2181 *
2182 * Note that this routine is purely a helper for filesystem usage and should
2183 * not be called by generic code.
2184 */
2185 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2186 {
2187 struct qstr this;
2188 unsigned int c;
2189 int err;
2190
2191 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2192
2193 this.name = name;
2194 this.len = len;
2195 this.hash = full_name_hash(name, len);
2196 if (!len)
2197 return ERR_PTR(-EACCES);
2198
2199 if (unlikely(name[0] == '.')) {
2200 if (len < 2 || (len == 2 && name[1] == '.'))
2201 return ERR_PTR(-EACCES);
2202 }
2203
2204 while (len--) {
2205 c = *(const unsigned char *)name++;
2206 if (c == '/' || c == '\0')
2207 return ERR_PTR(-EACCES);
2208 }
2209 /*
2210 * See if the low-level filesystem might want
2211 * to use its own hash..
2212 */
2213 if (base->d_flags & DCACHE_OP_HASH) {
2214 int err = base->d_op->d_hash(base, &this);
2215 if (err < 0)
2216 return ERR_PTR(err);
2217 }
2218
2219 err = inode_permission(base->d_inode, MAY_EXEC);
2220 if (err)
2221 return ERR_PTR(err);
2222
2223 return __lookup_hash(&this, base, 0);
2224 }
2225 EXPORT_SYMBOL(lookup_one_len);
2226
2227 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2228 struct path *path, int *empty)
2229 {
2230 struct nameidata nd;
2231 struct filename *tmp = getname_flags(name, flags, empty);
2232 int err = PTR_ERR(tmp);
2233 if (!IS_ERR(tmp)) {
2234
2235 BUG_ON(flags & LOOKUP_PARENT);
2236
2237 err = filename_lookup(dfd, tmp, flags, &nd);
2238 putname(tmp);
2239 if (!err)
2240 *path = nd.path;
2241 }
2242 return err;
2243 }
2244
2245 int user_path_at(int dfd, const char __user *name, unsigned flags,
2246 struct path *path)
2247 {
2248 return user_path_at_empty(dfd, name, flags, path, NULL);
2249 }
2250 EXPORT_SYMBOL(user_path_at);
2251
2252 /*
2253 * NB: most callers don't do anything directly with the reference to the
2254 * to struct filename, but the nd->last pointer points into the name string
2255 * allocated by getname. So we must hold the reference to it until all
2256 * path-walking is complete.
2257 */
2258 static struct filename *
2259 user_path_parent(int dfd, const char __user *path,
2260 struct path *parent,
2261 struct qstr *last,
2262 int *type,
2263 unsigned int flags)
2264 {
2265 struct nameidata nd;
2266 struct filename *s = getname(path);
2267 int error;
2268
2269 /* only LOOKUP_REVAL is allowed in extra flags */
2270 flags &= LOOKUP_REVAL;
2271
2272 if (IS_ERR(s))
2273 return s;
2274
2275 error = filename_parentat(dfd, s, flags, &nd);
2276 if (error) {
2277 putname(s);
2278 return ERR_PTR(error);
2279 }
2280 *parent = nd.path;
2281 *last = nd.last;
2282 *type = nd.last_type;
2283
2284 return s;
2285 }
2286
2287 /**
2288 * mountpoint_last - look up last component for umount
2289 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2290 * @path: pointer to container for result
2291 *
2292 * This is a special lookup_last function just for umount. In this case, we
2293 * need to resolve the path without doing any revalidation.
2294 *
2295 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2296 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2297 * in almost all cases, this lookup will be served out of the dcache. The only
2298 * cases where it won't are if nd->last refers to a symlink or the path is
2299 * bogus and it doesn't exist.
2300 *
2301 * Returns:
2302 * -error: if there was an error during lookup. This includes -ENOENT if the
2303 * lookup found a negative dentry. The nd->path reference will also be
2304 * put in this case.
2305 *
2306 * 0: if we successfully resolved nd->path and found it to not to be a
2307 * symlink that needs to be followed. "path" will also be populated.
2308 * The nd->path reference will also be put.
2309 *
2310 * 1: if we successfully resolved nd->last and found it to be a symlink
2311 * that needs to be followed. "path" will be populated with the path
2312 * to the link, and nd->path will *not* be put.
2313 */
2314 static int
2315 mountpoint_last(struct nameidata *nd, struct path *path)
2316 {
2317 int error = 0;
2318 struct dentry *dentry;
2319 struct dentry *dir = nd->path.dentry;
2320
2321 /* If we're in rcuwalk, drop out of it to handle last component */
2322 if (nd->flags & LOOKUP_RCU) {
2323 if (unlazy_walk(nd, NULL)) {
2324 error = -ECHILD;
2325 goto out;
2326 }
2327 }
2328
2329 nd->flags &= ~LOOKUP_PARENT;
2330
2331 if (unlikely(nd->last_type != LAST_NORM)) {
2332 error = handle_dots(nd, nd->last_type);
2333 if (error)
2334 goto out;
2335 dentry = dget(nd->path.dentry);
2336 goto done;
2337 }
2338
2339 mutex_lock(&dir->d_inode->i_mutex);
2340 dentry = d_lookup(dir, &nd->last);
2341 if (!dentry) {
2342 /*
2343 * No cached dentry. Mounted dentries are pinned in the cache,
2344 * so that means that this dentry is probably a symlink or the
2345 * path doesn't actually point to a mounted dentry.
2346 */
2347 dentry = d_alloc(dir, &nd->last);
2348 if (!dentry) {
2349 error = -ENOMEM;
2350 mutex_unlock(&dir->d_inode->i_mutex);
2351 goto out;
2352 }
2353 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2354 error = PTR_ERR(dentry);
2355 if (IS_ERR(dentry)) {
2356 mutex_unlock(&dir->d_inode->i_mutex);
2357 goto out;
2358 }
2359 }
2360 mutex_unlock(&dir->d_inode->i_mutex);
2361
2362 done:
2363 if (d_is_negative(dentry)) {
2364 error = -ENOENT;
2365 dput(dentry);
2366 goto out;
2367 }
2368 if (nd->depth)
2369 put_link(nd);
2370 path->dentry = dentry;
2371 path->mnt = nd->path.mnt;
2372 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW);
2373 if (unlikely(error)) {
2374 if (error < 0)
2375 goto out;
2376 return error;
2377 }
2378 mntget(path->mnt);
2379 follow_mount(path);
2380 error = 0;
2381 out:
2382 terminate_walk(nd);
2383 return error;
2384 }
2385
2386 /**
2387 * path_mountpoint - look up a path to be umounted
2388 * @dfd: directory file descriptor to start walk from
2389 * @name: full pathname to walk
2390 * @path: pointer to container for result
2391 * @flags: lookup flags
2392 *
2393 * Look up the given name, but don't attempt to revalidate the last component.
2394 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2395 */
2396 static int
2397 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2398 struct nameidata *nd, unsigned int flags)
2399 {
2400 const char *s = path_init(dfd, name, flags, nd);
2401 int err;
2402 if (IS_ERR(s))
2403 return PTR_ERR(s);
2404 err = link_path_walk(s, nd);
2405 if (unlikely(err))
2406 goto out;
2407
2408 while ((err = mountpoint_last(nd, path)) > 0) {
2409 err = trailing_symlink(nd);
2410 if (err)
2411 break;
2412 }
2413 out:
2414 path_cleanup(nd);
2415 return err;
2416 }
2417
2418 static int
2419 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2420 unsigned int flags)
2421 {
2422 struct nameidata nd, *saved;
2423 int error;
2424 if (IS_ERR(name))
2425 return PTR_ERR(name);
2426 saved = set_nameidata(&nd);
2427 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2428 if (unlikely(error == -ECHILD))
2429 error = path_mountpoint(dfd, name, path, &nd, flags);
2430 if (unlikely(error == -ESTALE))
2431 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2432 if (likely(!error))
2433 audit_inode(name, path->dentry, 0);
2434 restore_nameidata(saved);
2435 putname(name);
2436 return error;
2437 }
2438
2439 /**
2440 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2441 * @dfd: directory file descriptor
2442 * @name: pathname from userland
2443 * @flags: lookup flags
2444 * @path: pointer to container to hold result
2445 *
2446 * A umount is a special case for path walking. We're not actually interested
2447 * in the inode in this situation, and ESTALE errors can be a problem. We
2448 * simply want track down the dentry and vfsmount attached at the mountpoint
2449 * and avoid revalidating the last component.
2450 *
2451 * Returns 0 and populates "path" on success.
2452 */
2453 int
2454 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2455 struct path *path)
2456 {
2457 return filename_mountpoint(dfd, getname(name), path, flags);
2458 }
2459
2460 int
2461 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2462 unsigned int flags)
2463 {
2464 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2465 }
2466 EXPORT_SYMBOL(kern_path_mountpoint);
2467
2468 int __check_sticky(struct inode *dir, struct inode *inode)
2469 {
2470 kuid_t fsuid = current_fsuid();
2471
2472 if (uid_eq(inode->i_uid, fsuid))
2473 return 0;
2474 if (uid_eq(dir->i_uid, fsuid))
2475 return 0;
2476 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2477 }
2478 EXPORT_SYMBOL(__check_sticky);
2479
2480 /*
2481 * Check whether we can remove a link victim from directory dir, check
2482 * whether the type of victim is right.
2483 * 1. We can't do it if dir is read-only (done in permission())
2484 * 2. We should have write and exec permissions on dir
2485 * 3. We can't remove anything from append-only dir
2486 * 4. We can't do anything with immutable dir (done in permission())
2487 * 5. If the sticky bit on dir is set we should either
2488 * a. be owner of dir, or
2489 * b. be owner of victim, or
2490 * c. have CAP_FOWNER capability
2491 * 6. If the victim is append-only or immutable we can't do antyhing with
2492 * links pointing to it.
2493 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2494 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2495 * 9. We can't remove a root or mountpoint.
2496 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2497 * nfs_async_unlink().
2498 */
2499 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2500 {
2501 struct inode *inode = victim->d_inode;
2502 int error;
2503
2504 if (d_is_negative(victim))
2505 return -ENOENT;
2506 BUG_ON(!inode);
2507
2508 BUG_ON(victim->d_parent->d_inode != dir);
2509 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2510
2511 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2512 if (error)
2513 return error;
2514 if (IS_APPEND(dir))
2515 return -EPERM;
2516
2517 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2518 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2519 return -EPERM;
2520 if (isdir) {
2521 if (!d_is_dir(victim))
2522 return -ENOTDIR;
2523 if (IS_ROOT(victim))
2524 return -EBUSY;
2525 } else if (d_is_dir(victim))
2526 return -EISDIR;
2527 if (IS_DEADDIR(dir))
2528 return -ENOENT;
2529 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2530 return -EBUSY;
2531 return 0;
2532 }
2533
2534 /* Check whether we can create an object with dentry child in directory
2535 * dir.
2536 * 1. We can't do it if child already exists (open has special treatment for
2537 * this case, but since we are inlined it's OK)
2538 * 2. We can't do it if dir is read-only (done in permission())
2539 * 3. We should have write and exec permissions on dir
2540 * 4. We can't do it if dir is immutable (done in permission())
2541 */
2542 static inline int may_create(struct inode *dir, struct dentry *child)
2543 {
2544 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2545 if (child->d_inode)
2546 return -EEXIST;
2547 if (IS_DEADDIR(dir))
2548 return -ENOENT;
2549 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2550 }
2551
2552 /*
2553 * p1 and p2 should be directories on the same fs.
2554 */
2555 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2556 {
2557 struct dentry *p;
2558
2559 if (p1 == p2) {
2560 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2561 return NULL;
2562 }
2563
2564 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2565
2566 p = d_ancestor(p2, p1);
2567 if (p) {
2568 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2569 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2570 return p;
2571 }
2572
2573 p = d_ancestor(p1, p2);
2574 if (p) {
2575 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2576 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2577 return p;
2578 }
2579
2580 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2581 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2582 return NULL;
2583 }
2584 EXPORT_SYMBOL(lock_rename);
2585
2586 void unlock_rename(struct dentry *p1, struct dentry *p2)
2587 {
2588 mutex_unlock(&p1->d_inode->i_mutex);
2589 if (p1 != p2) {
2590 mutex_unlock(&p2->d_inode->i_mutex);
2591 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2592 }
2593 }
2594 EXPORT_SYMBOL(unlock_rename);
2595
2596 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2597 bool want_excl)
2598 {
2599 int error = may_create(dir, dentry);
2600 if (error)
2601 return error;
2602
2603 if (!dir->i_op->create)
2604 return -EACCES; /* shouldn't it be ENOSYS? */
2605 mode &= S_IALLUGO;
2606 mode |= S_IFREG;
2607 error = security_inode_create(dir, dentry, mode);
2608 if (error)
2609 return error;
2610 error = dir->i_op->create(dir, dentry, mode, want_excl);
2611 if (!error)
2612 fsnotify_create(dir, dentry);
2613 return error;
2614 }
2615 EXPORT_SYMBOL(vfs_create);
2616
2617 static int may_open(struct path *path, int acc_mode, int flag)
2618 {
2619 struct dentry *dentry = path->dentry;
2620 struct inode *inode = dentry->d_inode;
2621 int error;
2622
2623 /* O_PATH? */
2624 if (!acc_mode)
2625 return 0;
2626
2627 if (!inode)
2628 return -ENOENT;
2629
2630 switch (inode->i_mode & S_IFMT) {
2631 case S_IFLNK:
2632 return -ELOOP;
2633 case S_IFDIR:
2634 if (acc_mode & MAY_WRITE)
2635 return -EISDIR;
2636 break;
2637 case S_IFBLK:
2638 case S_IFCHR:
2639 if (path->mnt->mnt_flags & MNT_NODEV)
2640 return -EACCES;
2641 /*FALLTHRU*/
2642 case S_IFIFO:
2643 case S_IFSOCK:
2644 flag &= ~O_TRUNC;
2645 break;
2646 }
2647
2648 error = inode_permission(inode, acc_mode);
2649 if (error)
2650 return error;
2651
2652 /*
2653 * An append-only file must be opened in append mode for writing.
2654 */
2655 if (IS_APPEND(inode)) {
2656 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2657 return -EPERM;
2658 if (flag & O_TRUNC)
2659 return -EPERM;
2660 }
2661
2662 /* O_NOATIME can only be set by the owner or superuser */
2663 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2664 return -EPERM;
2665
2666 return 0;
2667 }
2668
2669 static int handle_truncate(struct file *filp)
2670 {
2671 struct path *path = &filp->f_path;
2672 struct inode *inode = path->dentry->d_inode;
2673 int error = get_write_access(inode);
2674 if (error)
2675 return error;
2676 /*
2677 * Refuse to truncate files with mandatory locks held on them.
2678 */
2679 error = locks_verify_locked(filp);
2680 if (!error)
2681 error = security_path_truncate(path);
2682 if (!error) {
2683 error = do_truncate(path->dentry, 0,
2684 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2685 filp);
2686 }
2687 put_write_access(inode);
2688 return error;
2689 }
2690
2691 static inline int open_to_namei_flags(int flag)
2692 {
2693 if ((flag & O_ACCMODE) == 3)
2694 flag--;
2695 return flag;
2696 }
2697
2698 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2699 {
2700 int error = security_path_mknod(dir, dentry, mode, 0);
2701 if (error)
2702 return error;
2703
2704 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2705 if (error)
2706 return error;
2707
2708 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2709 }
2710
2711 /*
2712 * Attempt to atomically look up, create and open a file from a negative
2713 * dentry.
2714 *
2715 * Returns 0 if successful. The file will have been created and attached to
2716 * @file by the filesystem calling finish_open().
2717 *
2718 * Returns 1 if the file was looked up only or didn't need creating. The
2719 * caller will need to perform the open themselves. @path will have been
2720 * updated to point to the new dentry. This may be negative.
2721 *
2722 * Returns an error code otherwise.
2723 */
2724 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2725 struct path *path, struct file *file,
2726 const struct open_flags *op,
2727 bool got_write, bool need_lookup,
2728 int *opened)
2729 {
2730 struct inode *dir = nd->path.dentry->d_inode;
2731 unsigned open_flag = open_to_namei_flags(op->open_flag);
2732 umode_t mode;
2733 int error;
2734 int acc_mode;
2735 int create_error = 0;
2736 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2737 bool excl;
2738
2739 BUG_ON(dentry->d_inode);
2740
2741 /* Don't create child dentry for a dead directory. */
2742 if (unlikely(IS_DEADDIR(dir))) {
2743 error = -ENOENT;
2744 goto out;
2745 }
2746
2747 mode = op->mode;
2748 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2749 mode &= ~current_umask();
2750
2751 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2752 if (excl)
2753 open_flag &= ~O_TRUNC;
2754
2755 /*
2756 * Checking write permission is tricky, bacuse we don't know if we are
2757 * going to actually need it: O_CREAT opens should work as long as the
2758 * file exists. But checking existence breaks atomicity. The trick is
2759 * to check access and if not granted clear O_CREAT from the flags.
2760 *
2761 * Another problem is returing the "right" error value (e.g. for an
2762 * O_EXCL open we want to return EEXIST not EROFS).
2763 */
2764 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2765 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2766 if (!(open_flag & O_CREAT)) {
2767 /*
2768 * No O_CREATE -> atomicity not a requirement -> fall
2769 * back to lookup + open
2770 */
2771 goto no_open;
2772 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2773 /* Fall back and fail with the right error */
2774 create_error = -EROFS;
2775 goto no_open;
2776 } else {
2777 /* No side effects, safe to clear O_CREAT */
2778 create_error = -EROFS;
2779 open_flag &= ~O_CREAT;
2780 }
2781 }
2782
2783 if (open_flag & O_CREAT) {
2784 error = may_o_create(&nd->path, dentry, mode);
2785 if (error) {
2786 create_error = error;
2787 if (open_flag & O_EXCL)
2788 goto no_open;
2789 open_flag &= ~O_CREAT;
2790 }
2791 }
2792
2793 if (nd->flags & LOOKUP_DIRECTORY)
2794 open_flag |= O_DIRECTORY;
2795
2796 file->f_path.dentry = DENTRY_NOT_SET;
2797 file->f_path.mnt = nd->path.mnt;
2798 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2799 opened);
2800 if (error < 0) {
2801 if (create_error && error == -ENOENT)
2802 error = create_error;
2803 goto out;
2804 }
2805
2806 if (error) { /* returned 1, that is */
2807 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2808 error = -EIO;
2809 goto out;
2810 }
2811 if (file->f_path.dentry) {
2812 dput(dentry);
2813 dentry = file->f_path.dentry;
2814 }
2815 if (*opened & FILE_CREATED)
2816 fsnotify_create(dir, dentry);
2817 if (!dentry->d_inode) {
2818 WARN_ON(*opened & FILE_CREATED);
2819 if (create_error) {
2820 error = create_error;
2821 goto out;
2822 }
2823 } else {
2824 if (excl && !(*opened & FILE_CREATED)) {
2825 error = -EEXIST;
2826 goto out;
2827 }
2828 }
2829 goto looked_up;
2830 }
2831
2832 /*
2833 * We didn't have the inode before the open, so check open permission
2834 * here.
2835 */
2836 acc_mode = op->acc_mode;
2837 if (*opened & FILE_CREATED) {
2838 WARN_ON(!(open_flag & O_CREAT));
2839 fsnotify_create(dir, dentry);
2840 acc_mode = MAY_OPEN;
2841 }
2842 error = may_open(&file->f_path, acc_mode, open_flag);
2843 if (error)
2844 fput(file);
2845
2846 out:
2847 dput(dentry);
2848 return error;
2849
2850 no_open:
2851 if (need_lookup) {
2852 dentry = lookup_real(dir, dentry, nd->flags);
2853 if (IS_ERR(dentry))
2854 return PTR_ERR(dentry);
2855
2856 if (create_error) {
2857 int open_flag = op->open_flag;
2858
2859 error = create_error;
2860 if ((open_flag & O_EXCL)) {
2861 if (!dentry->d_inode)
2862 goto out;
2863 } else if (!dentry->d_inode) {
2864 goto out;
2865 } else if ((open_flag & O_TRUNC) &&
2866 d_is_reg(dentry)) {
2867 goto out;
2868 }
2869 /* will fail later, go on to get the right error */
2870 }
2871 }
2872 looked_up:
2873 path->dentry = dentry;
2874 path->mnt = nd->path.mnt;
2875 return 1;
2876 }
2877
2878 /*
2879 * Look up and maybe create and open the last component.
2880 *
2881 * Must be called with i_mutex held on parent.
2882 *
2883 * Returns 0 if the file was successfully atomically created (if necessary) and
2884 * opened. In this case the file will be returned attached to @file.
2885 *
2886 * Returns 1 if the file was not completely opened at this time, though lookups
2887 * and creations will have been performed and the dentry returned in @path will
2888 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2889 * specified then a negative dentry may be returned.
2890 *
2891 * An error code is returned otherwise.
2892 *
2893 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2894 * cleared otherwise prior to returning.
2895 */
2896 static int lookup_open(struct nameidata *nd, struct path *path,
2897 struct file *file,
2898 const struct open_flags *op,
2899 bool got_write, int *opened)
2900 {
2901 struct dentry *dir = nd->path.dentry;
2902 struct inode *dir_inode = dir->d_inode;
2903 struct dentry *dentry;
2904 int error;
2905 bool need_lookup;
2906
2907 *opened &= ~FILE_CREATED;
2908 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2909 if (IS_ERR(dentry))
2910 return PTR_ERR(dentry);
2911
2912 /* Cached positive dentry: will open in f_op->open */
2913 if (!need_lookup && dentry->d_inode)
2914 goto out_no_open;
2915
2916 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2917 return atomic_open(nd, dentry, path, file, op, got_write,
2918 need_lookup, opened);
2919 }
2920
2921 if (need_lookup) {
2922 BUG_ON(dentry->d_inode);
2923
2924 dentry = lookup_real(dir_inode, dentry, nd->flags);
2925 if (IS_ERR(dentry))
2926 return PTR_ERR(dentry);
2927 }
2928
2929 /* Negative dentry, just create the file */
2930 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2931 umode_t mode = op->mode;
2932 if (!IS_POSIXACL(dir->d_inode))
2933 mode &= ~current_umask();
2934 /*
2935 * This write is needed to ensure that a
2936 * rw->ro transition does not occur between
2937 * the time when the file is created and when
2938 * a permanent write count is taken through
2939 * the 'struct file' in finish_open().
2940 */
2941 if (!got_write) {
2942 error = -EROFS;
2943 goto out_dput;
2944 }
2945 *opened |= FILE_CREATED;
2946 error = security_path_mknod(&nd->path, dentry, mode, 0);
2947 if (error)
2948 goto out_dput;
2949 error = vfs_create(dir->d_inode, dentry, mode,
2950 nd->flags & LOOKUP_EXCL);
2951 if (error)
2952 goto out_dput;
2953 }
2954 out_no_open:
2955 path->dentry = dentry;
2956 path->mnt = nd->path.mnt;
2957 return 1;
2958
2959 out_dput:
2960 dput(dentry);
2961 return error;
2962 }
2963
2964 /*
2965 * Handle the last step of open()
2966 */
2967 static int do_last(struct nameidata *nd,
2968 struct file *file, const struct open_flags *op,
2969 int *opened, struct filename *name)
2970 {
2971 struct dentry *dir = nd->path.dentry;
2972 int open_flag = op->open_flag;
2973 bool will_truncate = (open_flag & O_TRUNC) != 0;
2974 bool got_write = false;
2975 int acc_mode = op->acc_mode;
2976 struct inode *inode;
2977 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2978 struct path path;
2979 bool retried = false;
2980 int error;
2981
2982 nd->flags &= ~LOOKUP_PARENT;
2983 nd->flags |= op->intent;
2984
2985 if (nd->last_type != LAST_NORM) {
2986 error = handle_dots(nd, nd->last_type);
2987 if (unlikely(error)) {
2988 terminate_walk(nd);
2989 return error;
2990 }
2991 goto finish_open;
2992 }
2993
2994 if (!(open_flag & O_CREAT)) {
2995 if (nd->last.name[nd->last.len])
2996 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2997 /* we _can_ be in RCU mode here */
2998 error = lookup_fast(nd, &path, &inode);
2999 if (likely(!error))
3000 goto finish_lookup;
3001
3002 if (error < 0)
3003 goto out;
3004
3005 BUG_ON(nd->inode != dir->d_inode);
3006 } else {
3007 /* create side of things */
3008 /*
3009 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3010 * has been cleared when we got to the last component we are
3011 * about to look up
3012 */
3013 error = complete_walk(nd);
3014 if (error)
3015 return error;
3016
3017 audit_inode(name, dir, LOOKUP_PARENT);
3018 error = -EISDIR;
3019 /* trailing slashes? */
3020 if (nd->last.name[nd->last.len])
3021 goto out;
3022 }
3023
3024 retry_lookup:
3025 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3026 error = mnt_want_write(nd->path.mnt);
3027 if (!error)
3028 got_write = true;
3029 /*
3030 * do _not_ fail yet - we might not need that or fail with
3031 * a different error; let lookup_open() decide; we'll be
3032 * dropping this one anyway.
3033 */
3034 }
3035 mutex_lock(&dir->d_inode->i_mutex);
3036 error = lookup_open(nd, &path, file, op, got_write, opened);
3037 mutex_unlock(&dir->d_inode->i_mutex);
3038
3039 if (error <= 0) {
3040 if (error)
3041 goto out;
3042
3043 if ((*opened & FILE_CREATED) ||
3044 !S_ISREG(file_inode(file)->i_mode))
3045 will_truncate = false;
3046
3047 audit_inode(name, file->f_path.dentry, 0);
3048 goto opened;
3049 }
3050
3051 if (*opened & FILE_CREATED) {
3052 /* Don't check for write permission, don't truncate */
3053 open_flag &= ~O_TRUNC;
3054 will_truncate = false;
3055 acc_mode = MAY_OPEN;
3056 path_to_nameidata(&path, nd);
3057 goto finish_open_created;
3058 }
3059
3060 /*
3061 * create/update audit record if it already exists.
3062 */
3063 if (d_is_positive(path.dentry))
3064 audit_inode(name, path.dentry, 0);
3065
3066 /*
3067 * If atomic_open() acquired write access it is dropped now due to
3068 * possible mount and symlink following (this might be optimized away if
3069 * necessary...)
3070 */
3071 if (got_write) {
3072 mnt_drop_write(nd->path.mnt);
3073 got_write = false;
3074 }
3075
3076 error = -EEXIST;
3077 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3078 goto exit_dput;
3079
3080 error = follow_managed(&path, nd);
3081 if (error < 0)
3082 goto out;
3083
3084 BUG_ON(nd->flags & LOOKUP_RCU);
3085 inode = path.dentry->d_inode;
3086 error = -ENOENT;
3087 if (d_is_negative(path.dentry)) {
3088 path_to_nameidata(&path, nd);
3089 goto out;
3090 }
3091 finish_lookup:
3092 if (nd->depth)
3093 put_link(nd);
3094 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW);
3095 if (unlikely(error)) {
3096 if (error < 0)
3097 goto out;
3098 return error;
3099 }
3100
3101 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3102 path_to_nameidata(&path, nd);
3103 error = -ELOOP;
3104 goto out;
3105 }
3106
3107 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3108 path_to_nameidata(&path, nd);
3109 } else {
3110 save_parent.dentry = nd->path.dentry;
3111 save_parent.mnt = mntget(path.mnt);
3112 nd->path.dentry = path.dentry;
3113
3114 }
3115 nd->inode = inode;
3116 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3117 finish_open:
3118 error = complete_walk(nd);
3119 if (error) {
3120 path_put(&save_parent);
3121 return error;
3122 }
3123 audit_inode(name, nd->path.dentry, 0);
3124 error = -EISDIR;
3125 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3126 goto out;
3127 error = -ENOTDIR;
3128 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3129 goto out;
3130 if (!d_is_reg(nd->path.dentry))
3131 will_truncate = false;
3132
3133 if (will_truncate) {
3134 error = mnt_want_write(nd->path.mnt);
3135 if (error)
3136 goto out;
3137 got_write = true;
3138 }
3139 finish_open_created:
3140 error = may_open(&nd->path, acc_mode, open_flag);
3141 if (error)
3142 goto out;
3143
3144 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3145 error = vfs_open(&nd->path, file, current_cred());
3146 if (!error) {
3147 *opened |= FILE_OPENED;
3148 } else {
3149 if (error == -EOPENSTALE)
3150 goto stale_open;
3151 goto out;
3152 }
3153 opened:
3154 error = open_check_o_direct(file);
3155 if (error)
3156 goto exit_fput;
3157 error = ima_file_check(file, op->acc_mode, *opened);
3158 if (error)
3159 goto exit_fput;
3160
3161 if (will_truncate) {
3162 error = handle_truncate(file);
3163 if (error)
3164 goto exit_fput;
3165 }
3166 out:
3167 if (got_write)
3168 mnt_drop_write(nd->path.mnt);
3169 path_put(&save_parent);
3170 terminate_walk(nd);
3171 return error;
3172
3173 exit_dput:
3174 path_put_conditional(&path, nd);
3175 goto out;
3176 exit_fput:
3177 fput(file);
3178 goto out;
3179
3180 stale_open:
3181 /* If no saved parent or already retried then can't retry */
3182 if (!save_parent.dentry || retried)
3183 goto out;
3184
3185 BUG_ON(save_parent.dentry != dir);
3186 path_put(&nd->path);
3187 nd->path = save_parent;
3188 nd->inode = dir->d_inode;
3189 save_parent.mnt = NULL;
3190 save_parent.dentry = NULL;
3191 if (got_write) {
3192 mnt_drop_write(nd->path.mnt);
3193 got_write = false;
3194 }
3195 retried = true;
3196 goto retry_lookup;
3197 }
3198
3199 static int do_tmpfile(int dfd, struct filename *pathname,
3200 struct nameidata *nd, int flags,
3201 const struct open_flags *op,
3202 struct file *file, int *opened)
3203 {
3204 static const struct qstr name = QSTR_INIT("/", 1);
3205 struct dentry *dentry, *child;
3206 struct inode *dir;
3207 int error = path_lookupat(dfd, pathname,
3208 flags | LOOKUP_DIRECTORY, nd);
3209 if (unlikely(error))
3210 return error;
3211 error = mnt_want_write(nd->path.mnt);
3212 if (unlikely(error))
3213 goto out;
3214 /* we want directory to be writable */
3215 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3216 if (error)
3217 goto out2;
3218 dentry = nd->path.dentry;
3219 dir = dentry->d_inode;
3220 if (!dir->i_op->tmpfile) {
3221 error = -EOPNOTSUPP;
3222 goto out2;
3223 }
3224 child = d_alloc(dentry, &name);
3225 if (unlikely(!child)) {
3226 error = -ENOMEM;
3227 goto out2;
3228 }
3229 nd->flags &= ~LOOKUP_DIRECTORY;
3230 nd->flags |= op->intent;
3231 dput(nd->path.dentry);
3232 nd->path.dentry = child;
3233 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3234 if (error)
3235 goto out2;
3236 audit_inode(pathname, nd->path.dentry, 0);
3237 /* Don't check for other permissions, the inode was just created */
3238 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3239 if (error)
3240 goto out2;
3241 file->f_path.mnt = nd->path.mnt;
3242 error = finish_open(file, nd->path.dentry, NULL, opened);
3243 if (error)
3244 goto out2;
3245 error = open_check_o_direct(file);
3246 if (error) {
3247 fput(file);
3248 } else if (!(op->open_flag & O_EXCL)) {
3249 struct inode *inode = file_inode(file);
3250 spin_lock(&inode->i_lock);
3251 inode->i_state |= I_LINKABLE;
3252 spin_unlock(&inode->i_lock);
3253 }
3254 out2:
3255 mnt_drop_write(nd->path.mnt);
3256 out:
3257 path_put(&nd->path);
3258 return error;
3259 }
3260
3261 static struct file *path_openat(int dfd, struct filename *pathname,
3262 struct nameidata *nd, const struct open_flags *op, int flags)
3263 {
3264 const char *s;
3265 struct file *file;
3266 int opened = 0;
3267 int error;
3268
3269 file = get_empty_filp();
3270 if (IS_ERR(file))
3271 return file;
3272
3273 file->f_flags = op->open_flag;
3274
3275 if (unlikely(file->f_flags & __O_TMPFILE)) {
3276 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3277 goto out2;
3278 }
3279
3280 s = path_init(dfd, pathname, flags, nd);
3281 if (IS_ERR(s)) {
3282 put_filp(file);
3283 return ERR_CAST(s);
3284 }
3285 error = link_path_walk(s, nd);
3286 if (unlikely(error))
3287 goto out;
3288
3289 while ((error = do_last(nd, file, op, &opened, pathname)) > 0) {
3290 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3291 error = trailing_symlink(nd);
3292 if (unlikely(error))
3293 break;
3294 }
3295 out:
3296 path_cleanup(nd);
3297 out2:
3298 if (!(opened & FILE_OPENED)) {
3299 BUG_ON(!error);
3300 put_filp(file);
3301 }
3302 if (unlikely(error)) {
3303 if (error == -EOPENSTALE) {
3304 if (flags & LOOKUP_RCU)
3305 error = -ECHILD;
3306 else
3307 error = -ESTALE;
3308 }
3309 file = ERR_PTR(error);
3310 }
3311 return file;
3312 }
3313
3314 struct file *do_filp_open(int dfd, struct filename *pathname,
3315 const struct open_flags *op)
3316 {
3317 struct nameidata nd, *saved_nd = set_nameidata(&nd);
3318 int flags = op->lookup_flags;
3319 struct file *filp;
3320
3321 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3322 if (unlikely(filp == ERR_PTR(-ECHILD)))
3323 filp = path_openat(dfd, pathname, &nd, op, flags);
3324 if (unlikely(filp == ERR_PTR(-ESTALE)))
3325 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3326 restore_nameidata(saved_nd);
3327 return filp;
3328 }
3329
3330 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3331 const char *name, const struct open_flags *op)
3332 {
3333 struct nameidata nd, *saved_nd;
3334 struct file *file;
3335 struct filename *filename;
3336 int flags = op->lookup_flags | LOOKUP_ROOT;
3337
3338 nd.root.mnt = mnt;
3339 nd.root.dentry = dentry;
3340
3341 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3342 return ERR_PTR(-ELOOP);
3343
3344 filename = getname_kernel(name);
3345 if (unlikely(IS_ERR(filename)))
3346 return ERR_CAST(filename);
3347
3348 saved_nd = set_nameidata(&nd);
3349 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3350 if (unlikely(file == ERR_PTR(-ECHILD)))
3351 file = path_openat(-1, filename, &nd, op, flags);
3352 if (unlikely(file == ERR_PTR(-ESTALE)))
3353 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3354 restore_nameidata(saved_nd);
3355 putname(filename);
3356 return file;
3357 }
3358
3359 static struct dentry *filename_create(int dfd, struct filename *name,
3360 struct path *path, unsigned int lookup_flags)
3361 {
3362 struct dentry *dentry = ERR_PTR(-EEXIST);
3363 struct nameidata nd;
3364 int err2;
3365 int error;
3366 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3367
3368 /*
3369 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3370 * other flags passed in are ignored!
3371 */
3372 lookup_flags &= LOOKUP_REVAL;
3373
3374 error = filename_parentat(dfd, name, lookup_flags, &nd);
3375 if (error)
3376 return ERR_PTR(error);
3377
3378 /*
3379 * Yucky last component or no last component at all?
3380 * (foo/., foo/.., /////)
3381 */
3382 if (nd.last_type != LAST_NORM)
3383 goto out;
3384 nd.flags &= ~LOOKUP_PARENT;
3385 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3386
3387 /* don't fail immediately if it's r/o, at least try to report other errors */
3388 err2 = mnt_want_write(nd.path.mnt);
3389 /*
3390 * Do the final lookup.
3391 */
3392 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3393 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3394 if (IS_ERR(dentry))
3395 goto unlock;
3396
3397 error = -EEXIST;
3398 if (d_is_positive(dentry))
3399 goto fail;
3400
3401 /*
3402 * Special case - lookup gave negative, but... we had foo/bar/
3403 * From the vfs_mknod() POV we just have a negative dentry -
3404 * all is fine. Let's be bastards - you had / on the end, you've
3405 * been asking for (non-existent) directory. -ENOENT for you.
3406 */
3407 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3408 error = -ENOENT;
3409 goto fail;
3410 }
3411 if (unlikely(err2)) {
3412 error = err2;
3413 goto fail;
3414 }
3415 *path = nd.path;
3416 return dentry;
3417 fail:
3418 dput(dentry);
3419 dentry = ERR_PTR(error);
3420 unlock:
3421 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3422 if (!err2)
3423 mnt_drop_write(nd.path.mnt);
3424 out:
3425 path_put(&nd.path);
3426 return dentry;
3427 }
3428
3429 struct dentry *kern_path_create(int dfd, const char *pathname,
3430 struct path *path, unsigned int lookup_flags)
3431 {
3432 struct filename *filename = getname_kernel(pathname);
3433 struct dentry *res;
3434
3435 if (IS_ERR(filename))
3436 return ERR_CAST(filename);
3437 res = filename_create(dfd, filename, path, lookup_flags);
3438 putname(filename);
3439 return res;
3440 }
3441 EXPORT_SYMBOL(kern_path_create);
3442
3443 void done_path_create(struct path *path, struct dentry *dentry)
3444 {
3445 dput(dentry);
3446 mutex_unlock(&path->dentry->d_inode->i_mutex);
3447 mnt_drop_write(path->mnt);
3448 path_put(path);
3449 }
3450 EXPORT_SYMBOL(done_path_create);
3451
3452 struct dentry *user_path_create(int dfd, const char __user *pathname,
3453 struct path *path, unsigned int lookup_flags)
3454 {
3455 struct filename *tmp = getname(pathname);
3456 struct dentry *res;
3457 if (IS_ERR(tmp))
3458 return ERR_CAST(tmp);
3459 res = filename_create(dfd, tmp, path, lookup_flags);
3460 putname(tmp);
3461 return res;
3462 }
3463 EXPORT_SYMBOL(user_path_create);
3464
3465 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3466 {
3467 int error = may_create(dir, dentry);
3468
3469 if (error)
3470 return error;
3471
3472 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3473 return -EPERM;
3474
3475 if (!dir->i_op->mknod)
3476 return -EPERM;
3477
3478 error = devcgroup_inode_mknod(mode, dev);
3479 if (error)
3480 return error;
3481
3482 error = security_inode_mknod(dir, dentry, mode, dev);
3483 if (error)
3484 return error;
3485
3486 error = dir->i_op->mknod(dir, dentry, mode, dev);
3487 if (!error)
3488 fsnotify_create(dir, dentry);
3489 return error;
3490 }
3491 EXPORT_SYMBOL(vfs_mknod);
3492
3493 static int may_mknod(umode_t mode)
3494 {
3495 switch (mode & S_IFMT) {
3496 case S_IFREG:
3497 case S_IFCHR:
3498 case S_IFBLK:
3499 case S_IFIFO:
3500 case S_IFSOCK:
3501 case 0: /* zero mode translates to S_IFREG */
3502 return 0;
3503 case S_IFDIR:
3504 return -EPERM;
3505 default:
3506 return -EINVAL;
3507 }
3508 }
3509
3510 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3511 unsigned, dev)
3512 {
3513 struct dentry *dentry;
3514 struct path path;
3515 int error;
3516 unsigned int lookup_flags = 0;
3517
3518 error = may_mknod(mode);
3519 if (error)
3520 return error;
3521 retry:
3522 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3523 if (IS_ERR(dentry))
3524 return PTR_ERR(dentry);
3525
3526 if (!IS_POSIXACL(path.dentry->d_inode))
3527 mode &= ~current_umask();
3528 error = security_path_mknod(&path, dentry, mode, dev);
3529 if (error)
3530 goto out;
3531 switch (mode & S_IFMT) {
3532 case 0: case S_IFREG:
3533 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3534 break;
3535 case S_IFCHR: case S_IFBLK:
3536 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3537 new_decode_dev(dev));
3538 break;
3539 case S_IFIFO: case S_IFSOCK:
3540 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3541 break;
3542 }
3543 out:
3544 done_path_create(&path, dentry);
3545 if (retry_estale(error, lookup_flags)) {
3546 lookup_flags |= LOOKUP_REVAL;
3547 goto retry;
3548 }
3549 return error;
3550 }
3551
3552 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3553 {
3554 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3555 }
3556
3557 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3558 {
3559 int error = may_create(dir, dentry);
3560 unsigned max_links = dir->i_sb->s_max_links;
3561
3562 if (error)
3563 return error;
3564
3565 if (!dir->i_op->mkdir)
3566 return -EPERM;
3567
3568 mode &= (S_IRWXUGO|S_ISVTX);
3569 error = security_inode_mkdir(dir, dentry, mode);
3570 if (error)
3571 return error;
3572
3573 if (max_links && dir->i_nlink >= max_links)
3574 return -EMLINK;
3575
3576 error = dir->i_op->mkdir(dir, dentry, mode);
3577 if (!error)
3578 fsnotify_mkdir(dir, dentry);
3579 return error;
3580 }
3581 EXPORT_SYMBOL(vfs_mkdir);
3582
3583 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3584 {
3585 struct dentry *dentry;
3586 struct path path;
3587 int error;
3588 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3589
3590 retry:
3591 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3592 if (IS_ERR(dentry))
3593 return PTR_ERR(dentry);
3594
3595 if (!IS_POSIXACL(path.dentry->d_inode))
3596 mode &= ~current_umask();
3597 error = security_path_mkdir(&path, dentry, mode);
3598 if (!error)
3599 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3600 done_path_create(&path, dentry);
3601 if (retry_estale(error, lookup_flags)) {
3602 lookup_flags |= LOOKUP_REVAL;
3603 goto retry;
3604 }
3605 return error;
3606 }
3607
3608 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3609 {
3610 return sys_mkdirat(AT_FDCWD, pathname, mode);
3611 }
3612
3613 /*
3614 * The dentry_unhash() helper will try to drop the dentry early: we
3615 * should have a usage count of 1 if we're the only user of this
3616 * dentry, and if that is true (possibly after pruning the dcache),
3617 * then we drop the dentry now.
3618 *
3619 * A low-level filesystem can, if it choses, legally
3620 * do a
3621 *
3622 * if (!d_unhashed(dentry))
3623 * return -EBUSY;
3624 *
3625 * if it cannot handle the case of removing a directory
3626 * that is still in use by something else..
3627 */
3628 void dentry_unhash(struct dentry *dentry)
3629 {
3630 shrink_dcache_parent(dentry);
3631 spin_lock(&dentry->d_lock);
3632 if (dentry->d_lockref.count == 1)
3633 __d_drop(dentry);
3634 spin_unlock(&dentry->d_lock);
3635 }
3636 EXPORT_SYMBOL(dentry_unhash);
3637
3638 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3639 {
3640 int error = may_delete(dir, dentry, 1);
3641
3642 if (error)
3643 return error;
3644
3645 if (!dir->i_op->rmdir)
3646 return -EPERM;
3647
3648 dget(dentry);
3649 mutex_lock(&dentry->d_inode->i_mutex);
3650
3651 error = -EBUSY;
3652 if (is_local_mountpoint(dentry))
3653 goto out;
3654
3655 error = security_inode_rmdir(dir, dentry);
3656 if (error)
3657 goto out;
3658
3659 shrink_dcache_parent(dentry);
3660 error = dir->i_op->rmdir(dir, dentry);
3661 if (error)
3662 goto out;
3663
3664 dentry->d_inode->i_flags |= S_DEAD;
3665 dont_mount(dentry);
3666 detach_mounts(dentry);
3667
3668 out:
3669 mutex_unlock(&dentry->d_inode->i_mutex);
3670 dput(dentry);
3671 if (!error)
3672 d_delete(dentry);
3673 return error;
3674 }
3675 EXPORT_SYMBOL(vfs_rmdir);
3676
3677 static long do_rmdir(int dfd, const char __user *pathname)
3678 {
3679 int error = 0;
3680 struct filename *name;
3681 struct dentry *dentry;
3682 struct path path;
3683 struct qstr last;
3684 int type;
3685 unsigned int lookup_flags = 0;
3686 retry:
3687 name = user_path_parent(dfd, pathname,
3688 &path, &last, &type, lookup_flags);
3689 if (IS_ERR(name))
3690 return PTR_ERR(name);
3691
3692 switch (type) {
3693 case LAST_DOTDOT:
3694 error = -ENOTEMPTY;
3695 goto exit1;
3696 case LAST_DOT:
3697 error = -EINVAL;
3698 goto exit1;
3699 case LAST_ROOT:
3700 error = -EBUSY;
3701 goto exit1;
3702 }
3703
3704 error = mnt_want_write(path.mnt);
3705 if (error)
3706 goto exit1;
3707
3708 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3709 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3710 error = PTR_ERR(dentry);
3711 if (IS_ERR(dentry))
3712 goto exit2;
3713 if (!dentry->d_inode) {
3714 error = -ENOENT;
3715 goto exit3;
3716 }
3717 error = security_path_rmdir(&path, dentry);
3718 if (error)
3719 goto exit3;
3720 error = vfs_rmdir(path.dentry->d_inode, dentry);
3721 exit3:
3722 dput(dentry);
3723 exit2:
3724 mutex_unlock(&path.dentry->d_inode->i_mutex);
3725 mnt_drop_write(path.mnt);
3726 exit1:
3727 path_put(&path);
3728 putname(name);
3729 if (retry_estale(error, lookup_flags)) {
3730 lookup_flags |= LOOKUP_REVAL;
3731 goto retry;
3732 }
3733 return error;
3734 }
3735
3736 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3737 {
3738 return do_rmdir(AT_FDCWD, pathname);
3739 }
3740
3741 /**
3742 * vfs_unlink - unlink a filesystem object
3743 * @dir: parent directory
3744 * @dentry: victim
3745 * @delegated_inode: returns victim inode, if the inode is delegated.
3746 *
3747 * The caller must hold dir->i_mutex.
3748 *
3749 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3750 * return a reference to the inode in delegated_inode. The caller
3751 * should then break the delegation on that inode and retry. Because
3752 * breaking a delegation may take a long time, the caller should drop
3753 * dir->i_mutex before doing so.
3754 *
3755 * Alternatively, a caller may pass NULL for delegated_inode. This may
3756 * be appropriate for callers that expect the underlying filesystem not
3757 * to be NFS exported.
3758 */
3759 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3760 {
3761 struct inode *target = dentry->d_inode;
3762 int error = may_delete(dir, dentry, 0);
3763
3764 if (error)
3765 return error;
3766
3767 if (!dir->i_op->unlink)
3768 return -EPERM;
3769
3770 mutex_lock(&target->i_mutex);
3771 if (is_local_mountpoint(dentry))
3772 error = -EBUSY;
3773 else {
3774 error = security_inode_unlink(dir, dentry);
3775 if (!error) {
3776 error = try_break_deleg(target, delegated_inode);
3777 if (error)
3778 goto out;
3779 error = dir->i_op->unlink(dir, dentry);
3780 if (!error) {
3781 dont_mount(dentry);
3782 detach_mounts(dentry);
3783 }
3784 }
3785 }
3786 out:
3787 mutex_unlock(&target->i_mutex);
3788
3789 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3790 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3791 fsnotify_link_count(target);
3792 d_delete(dentry);
3793 }
3794
3795 return error;
3796 }
3797 EXPORT_SYMBOL(vfs_unlink);
3798
3799 /*
3800 * Make sure that the actual truncation of the file will occur outside its
3801 * directory's i_mutex. Truncate can take a long time if there is a lot of
3802 * writeout happening, and we don't want to prevent access to the directory
3803 * while waiting on the I/O.
3804 */
3805 static long do_unlinkat(int dfd, const char __user *pathname)
3806 {
3807 int error;
3808 struct filename *name;
3809 struct dentry *dentry;
3810 struct path path;
3811 struct qstr last;
3812 int type;
3813 struct inode *inode = NULL;
3814 struct inode *delegated_inode = NULL;
3815 unsigned int lookup_flags = 0;
3816 retry:
3817 name = user_path_parent(dfd, pathname,
3818 &path, &last, &type, lookup_flags);
3819 if (IS_ERR(name))
3820 return PTR_ERR(name);
3821
3822 error = -EISDIR;
3823 if (type != LAST_NORM)
3824 goto exit1;
3825
3826 error = mnt_want_write(path.mnt);
3827 if (error)
3828 goto exit1;
3829 retry_deleg:
3830 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3831 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3832 error = PTR_ERR(dentry);
3833 if (!IS_ERR(dentry)) {
3834 /* Why not before? Because we want correct error value */
3835 if (last.name[last.len])
3836 goto slashes;
3837 inode = dentry->d_inode;
3838 if (d_is_negative(dentry))
3839 goto slashes;
3840 ihold(inode);
3841 error = security_path_unlink(&path, dentry);
3842 if (error)
3843 goto exit2;
3844 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3845 exit2:
3846 dput(dentry);
3847 }
3848 mutex_unlock(&path.dentry->d_inode->i_mutex);
3849 if (inode)
3850 iput(inode); /* truncate the inode here */
3851 inode = NULL;
3852 if (delegated_inode) {
3853 error = break_deleg_wait(&delegated_inode);
3854 if (!error)
3855 goto retry_deleg;
3856 }
3857 mnt_drop_write(path.mnt);
3858 exit1:
3859 path_put(&path);
3860 putname(name);
3861 if (retry_estale(error, lookup_flags)) {
3862 lookup_flags |= LOOKUP_REVAL;
3863 inode = NULL;
3864 goto retry;
3865 }
3866 return error;
3867
3868 slashes:
3869 if (d_is_negative(dentry))
3870 error = -ENOENT;
3871 else if (d_is_dir(dentry))
3872 error = -EISDIR;
3873 else
3874 error = -ENOTDIR;
3875 goto exit2;
3876 }
3877
3878 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3879 {
3880 if ((flag & ~AT_REMOVEDIR) != 0)
3881 return -EINVAL;
3882
3883 if (flag & AT_REMOVEDIR)
3884 return do_rmdir(dfd, pathname);
3885
3886 return do_unlinkat(dfd, pathname);
3887 }
3888
3889 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3890 {
3891 return do_unlinkat(AT_FDCWD, pathname);
3892 }
3893
3894 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3895 {
3896 int error = may_create(dir, dentry);
3897
3898 if (error)
3899 return error;
3900
3901 if (!dir->i_op->symlink)
3902 return -EPERM;
3903
3904 error = security_inode_symlink(dir, dentry, oldname);
3905 if (error)
3906 return error;
3907
3908 error = dir->i_op->symlink(dir, dentry, oldname);
3909 if (!error)
3910 fsnotify_create(dir, dentry);
3911 return error;
3912 }
3913 EXPORT_SYMBOL(vfs_symlink);
3914
3915 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3916 int, newdfd, const char __user *, newname)
3917 {
3918 int error;
3919 struct filename *from;
3920 struct dentry *dentry;
3921 struct path path;
3922 unsigned int lookup_flags = 0;
3923
3924 from = getname(oldname);
3925 if (IS_ERR(from))
3926 return PTR_ERR(from);
3927 retry:
3928 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3929 error = PTR_ERR(dentry);
3930 if (IS_ERR(dentry))
3931 goto out_putname;
3932
3933 error = security_path_symlink(&path, dentry, from->name);
3934 if (!error)
3935 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3936 done_path_create(&path, dentry);
3937 if (retry_estale(error, lookup_flags)) {
3938 lookup_flags |= LOOKUP_REVAL;
3939 goto retry;
3940 }
3941 out_putname:
3942 putname(from);
3943 return error;
3944 }
3945
3946 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3947 {
3948 return sys_symlinkat(oldname, AT_FDCWD, newname);
3949 }
3950
3951 /**
3952 * vfs_link - create a new link
3953 * @old_dentry: object to be linked
3954 * @dir: new parent
3955 * @new_dentry: where to create the new link
3956 * @delegated_inode: returns inode needing a delegation break
3957 *
3958 * The caller must hold dir->i_mutex
3959 *
3960 * If vfs_link discovers a delegation on the to-be-linked file in need
3961 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3962 * inode in delegated_inode. The caller should then break the delegation
3963 * and retry. Because breaking a delegation may take a long time, the
3964 * caller should drop the i_mutex before doing so.
3965 *
3966 * Alternatively, a caller may pass NULL for delegated_inode. This may
3967 * be appropriate for callers that expect the underlying filesystem not
3968 * to be NFS exported.
3969 */
3970 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3971 {
3972 struct inode *inode = old_dentry->d_inode;
3973 unsigned max_links = dir->i_sb->s_max_links;
3974 int error;
3975
3976 if (!inode)
3977 return -ENOENT;
3978
3979 error = may_create(dir, new_dentry);
3980 if (error)
3981 return error;
3982
3983 if (dir->i_sb != inode->i_sb)
3984 return -EXDEV;
3985
3986 /*
3987 * A link to an append-only or immutable file cannot be created.
3988 */
3989 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3990 return -EPERM;
3991 if (!dir->i_op->link)
3992 return -EPERM;
3993 if (S_ISDIR(inode->i_mode))
3994 return -EPERM;
3995
3996 error = security_inode_link(old_dentry, dir, new_dentry);
3997 if (error)
3998 return error;
3999
4000 mutex_lock(&inode->i_mutex);
4001 /* Make sure we don't allow creating hardlink to an unlinked file */
4002 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4003 error = -ENOENT;
4004 else if (max_links && inode->i_nlink >= max_links)
4005 error = -EMLINK;
4006 else {
4007 error = try_break_deleg(inode, delegated_inode);
4008 if (!error)
4009 error = dir->i_op->link(old_dentry, dir, new_dentry);
4010 }
4011
4012 if (!error && (inode->i_state & I_LINKABLE)) {
4013 spin_lock(&inode->i_lock);
4014 inode->i_state &= ~I_LINKABLE;
4015 spin_unlock(&inode->i_lock);
4016 }
4017 mutex_unlock(&inode->i_mutex);
4018 if (!error)
4019 fsnotify_link(dir, inode, new_dentry);
4020 return error;
4021 }
4022 EXPORT_SYMBOL(vfs_link);
4023
4024 /*
4025 * Hardlinks are often used in delicate situations. We avoid
4026 * security-related surprises by not following symlinks on the
4027 * newname. --KAB
4028 *
4029 * We don't follow them on the oldname either to be compatible
4030 * with linux 2.0, and to avoid hard-linking to directories
4031 * and other special files. --ADM
4032 */
4033 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4034 int, newdfd, const char __user *, newname, int, flags)
4035 {
4036 struct dentry *new_dentry;
4037 struct path old_path, new_path;
4038 struct inode *delegated_inode = NULL;
4039 int how = 0;
4040 int error;
4041
4042 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4043 return -EINVAL;
4044 /*
4045 * To use null names we require CAP_DAC_READ_SEARCH
4046 * This ensures that not everyone will be able to create
4047 * handlink using the passed filedescriptor.
4048 */
4049 if (flags & AT_EMPTY_PATH) {
4050 if (!capable(CAP_DAC_READ_SEARCH))
4051 return -ENOENT;
4052 how = LOOKUP_EMPTY;
4053 }
4054
4055 if (flags & AT_SYMLINK_FOLLOW)
4056 how |= LOOKUP_FOLLOW;
4057 retry:
4058 error = user_path_at(olddfd, oldname, how, &old_path);
4059 if (error)
4060 return error;
4061
4062 new_dentry = user_path_create(newdfd, newname, &new_path,
4063 (how & LOOKUP_REVAL));
4064 error = PTR_ERR(new_dentry);
4065 if (IS_ERR(new_dentry))
4066 goto out;
4067
4068 error = -EXDEV;
4069 if (old_path.mnt != new_path.mnt)
4070 goto out_dput;
4071 error = may_linkat(&old_path);
4072 if (unlikely(error))
4073 goto out_dput;
4074 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4075 if (error)
4076 goto out_dput;
4077 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4078 out_dput:
4079 done_path_create(&new_path, new_dentry);
4080 if (delegated_inode) {
4081 error = break_deleg_wait(&delegated_inode);
4082 if (!error) {
4083 path_put(&old_path);
4084 goto retry;
4085 }
4086 }
4087 if (retry_estale(error, how)) {
4088 path_put(&old_path);
4089 how |= LOOKUP_REVAL;
4090 goto retry;
4091 }
4092 out:
4093 path_put(&old_path);
4094
4095 return error;
4096 }
4097
4098 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4099 {
4100 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4101 }
4102
4103 /**
4104 * vfs_rename - rename a filesystem object
4105 * @old_dir: parent of source
4106 * @old_dentry: source
4107 * @new_dir: parent of destination
4108 * @new_dentry: destination
4109 * @delegated_inode: returns an inode needing a delegation break
4110 * @flags: rename flags
4111 *
4112 * The caller must hold multiple mutexes--see lock_rename()).
4113 *
4114 * If vfs_rename discovers a delegation in need of breaking at either
4115 * the source or destination, it will return -EWOULDBLOCK and return a
4116 * reference to the inode in delegated_inode. The caller should then
4117 * break the delegation and retry. Because breaking a delegation may
4118 * take a long time, the caller should drop all locks before doing
4119 * so.
4120 *
4121 * Alternatively, a caller may pass NULL for delegated_inode. This may
4122 * be appropriate for callers that expect the underlying filesystem not
4123 * to be NFS exported.
4124 *
4125 * The worst of all namespace operations - renaming directory. "Perverted"
4126 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4127 * Problems:
4128 * a) we can get into loop creation.
4129 * b) race potential - two innocent renames can create a loop together.
4130 * That's where 4.4 screws up. Current fix: serialization on
4131 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4132 * story.
4133 * c) we have to lock _four_ objects - parents and victim (if it exists),
4134 * and source (if it is not a directory).
4135 * And that - after we got ->i_mutex on parents (until then we don't know
4136 * whether the target exists). Solution: try to be smart with locking
4137 * order for inodes. We rely on the fact that tree topology may change
4138 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4139 * move will be locked. Thus we can rank directories by the tree
4140 * (ancestors first) and rank all non-directories after them.
4141 * That works since everybody except rename does "lock parent, lookup,
4142 * lock child" and rename is under ->s_vfs_rename_mutex.
4143 * HOWEVER, it relies on the assumption that any object with ->lookup()
4144 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4145 * we'd better make sure that there's no link(2) for them.
4146 * d) conversion from fhandle to dentry may come in the wrong moment - when
4147 * we are removing the target. Solution: we will have to grab ->i_mutex
4148 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4149 * ->i_mutex on parents, which works but leads to some truly excessive
4150 * locking].
4151 */
4152 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4153 struct inode *new_dir, struct dentry *new_dentry,
4154 struct inode **delegated_inode, unsigned int flags)
4155 {
4156 int error;
4157 bool is_dir = d_is_dir(old_dentry);
4158 const unsigned char *old_name;
4159 struct inode *source = old_dentry->d_inode;
4160 struct inode *target = new_dentry->d_inode;
4161 bool new_is_dir = false;
4162 unsigned max_links = new_dir->i_sb->s_max_links;
4163
4164 if (source == target)
4165 return 0;
4166
4167 error = may_delete(old_dir, old_dentry, is_dir);
4168 if (error)
4169 return error;
4170
4171 if (!target) {
4172 error = may_create(new_dir, new_dentry);
4173 } else {
4174 new_is_dir = d_is_dir(new_dentry);
4175
4176 if (!(flags & RENAME_EXCHANGE))
4177 error = may_delete(new_dir, new_dentry, is_dir);
4178 else
4179 error = may_delete(new_dir, new_dentry, new_is_dir);
4180 }
4181 if (error)
4182 return error;
4183
4184 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4185 return -EPERM;
4186
4187 if (flags && !old_dir->i_op->rename2)
4188 return -EINVAL;
4189
4190 /*
4191 * If we are going to change the parent - check write permissions,
4192 * we'll need to flip '..'.
4193 */
4194 if (new_dir != old_dir) {
4195 if (is_dir) {
4196 error = inode_permission(source, MAY_WRITE);
4197 if (error)
4198 return error;
4199 }
4200 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4201 error = inode_permission(target, MAY_WRITE);
4202 if (error)
4203 return error;
4204 }
4205 }
4206
4207 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4208 flags);
4209 if (error)
4210 return error;
4211
4212 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4213 dget(new_dentry);
4214 if (!is_dir || (flags & RENAME_EXCHANGE))
4215 lock_two_nondirectories(source, target);
4216 else if (target)
4217 mutex_lock(&target->i_mutex);
4218
4219 error = -EBUSY;
4220 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4221 goto out;
4222
4223 if (max_links && new_dir != old_dir) {
4224 error = -EMLINK;
4225 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4226 goto out;
4227 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4228 old_dir->i_nlink >= max_links)
4229 goto out;
4230 }
4231 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4232 shrink_dcache_parent(new_dentry);
4233 if (!is_dir) {
4234 error = try_break_deleg(source, delegated_inode);
4235 if (error)
4236 goto out;
4237 }
4238 if (target && !new_is_dir) {
4239 error = try_break_deleg(target, delegated_inode);
4240 if (error)
4241 goto out;
4242 }
4243 if (!old_dir->i_op->rename2) {
4244 error = old_dir->i_op->rename(old_dir, old_dentry,
4245 new_dir, new_dentry);
4246 } else {
4247 WARN_ON(old_dir->i_op->rename != NULL);
4248 error = old_dir->i_op->rename2(old_dir, old_dentry,
4249 new_dir, new_dentry, flags);
4250 }
4251 if (error)
4252 goto out;
4253
4254 if (!(flags & RENAME_EXCHANGE) && target) {
4255 if (is_dir)
4256 target->i_flags |= S_DEAD;
4257 dont_mount(new_dentry);
4258 detach_mounts(new_dentry);
4259 }
4260 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4261 if (!(flags & RENAME_EXCHANGE))
4262 d_move(old_dentry, new_dentry);
4263 else
4264 d_exchange(old_dentry, new_dentry);
4265 }
4266 out:
4267 if (!is_dir || (flags & RENAME_EXCHANGE))
4268 unlock_two_nondirectories(source, target);
4269 else if (target)
4270 mutex_unlock(&target->i_mutex);
4271 dput(new_dentry);
4272 if (!error) {
4273 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4274 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4275 if (flags & RENAME_EXCHANGE) {
4276 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4277 new_is_dir, NULL, new_dentry);
4278 }
4279 }
4280 fsnotify_oldname_free(old_name);
4281
4282 return error;
4283 }
4284 EXPORT_SYMBOL(vfs_rename);
4285
4286 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4287 int, newdfd, const char __user *, newname, unsigned int, flags)
4288 {
4289 struct dentry *old_dentry, *new_dentry;
4290 struct dentry *trap;
4291 struct path old_path, new_path;
4292 struct qstr old_last, new_last;
4293 int old_type, new_type;
4294 struct inode *delegated_inode = NULL;
4295 struct filename *from;
4296 struct filename *to;
4297 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4298 bool should_retry = false;
4299 int error;
4300
4301 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4302 return -EINVAL;
4303
4304 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4305 (flags & RENAME_EXCHANGE))
4306 return -EINVAL;
4307
4308 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4309 return -EPERM;
4310
4311 if (flags & RENAME_EXCHANGE)
4312 target_flags = 0;
4313
4314 retry:
4315 from = user_path_parent(olddfd, oldname,
4316 &old_path, &old_last, &old_type, lookup_flags);
4317 if (IS_ERR(from)) {
4318 error = PTR_ERR(from);
4319 goto exit;
4320 }
4321
4322 to = user_path_parent(newdfd, newname,
4323 &new_path, &new_last, &new_type, lookup_flags);
4324 if (IS_ERR(to)) {
4325 error = PTR_ERR(to);
4326 goto exit1;
4327 }
4328
4329 error = -EXDEV;
4330 if (old_path.mnt != new_path.mnt)
4331 goto exit2;
4332
4333 error = -EBUSY;
4334 if (old_type != LAST_NORM)
4335 goto exit2;
4336
4337 if (flags & RENAME_NOREPLACE)
4338 error = -EEXIST;
4339 if (new_type != LAST_NORM)
4340 goto exit2;
4341
4342 error = mnt_want_write(old_path.mnt);
4343 if (error)
4344 goto exit2;
4345
4346 retry_deleg:
4347 trap = lock_rename(new_path.dentry, old_path.dentry);
4348
4349 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4350 error = PTR_ERR(old_dentry);
4351 if (IS_ERR(old_dentry))
4352 goto exit3;
4353 /* source must exist */
4354 error = -ENOENT;
4355 if (d_is_negative(old_dentry))
4356 goto exit4;
4357 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4358 error = PTR_ERR(new_dentry);
4359 if (IS_ERR(new_dentry))
4360 goto exit4;
4361 error = -EEXIST;
4362 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4363 goto exit5;
4364 if (flags & RENAME_EXCHANGE) {
4365 error = -ENOENT;
4366 if (d_is_negative(new_dentry))
4367 goto exit5;
4368
4369 if (!d_is_dir(new_dentry)) {
4370 error = -ENOTDIR;
4371 if (new_last.name[new_last.len])
4372 goto exit5;
4373 }
4374 }
4375 /* unless the source is a directory trailing slashes give -ENOTDIR */
4376 if (!d_is_dir(old_dentry)) {
4377 error = -ENOTDIR;
4378 if (old_last.name[old_last.len])
4379 goto exit5;
4380 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4381 goto exit5;
4382 }
4383 /* source should not be ancestor of target */
4384 error = -EINVAL;
4385 if (old_dentry == trap)
4386 goto exit5;
4387 /* target should not be an ancestor of source */
4388 if (!(flags & RENAME_EXCHANGE))
4389 error = -ENOTEMPTY;
4390 if (new_dentry == trap)
4391 goto exit5;
4392
4393 error = security_path_rename(&old_path, old_dentry,
4394 &new_path, new_dentry, flags);
4395 if (error)
4396 goto exit5;
4397 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4398 new_path.dentry->d_inode, new_dentry,
4399 &delegated_inode, flags);
4400 exit5:
4401 dput(new_dentry);
4402 exit4:
4403 dput(old_dentry);
4404 exit3:
4405 unlock_rename(new_path.dentry, old_path.dentry);
4406 if (delegated_inode) {
4407 error = break_deleg_wait(&delegated_inode);
4408 if (!error)
4409 goto retry_deleg;
4410 }
4411 mnt_drop_write(old_path.mnt);
4412 exit2:
4413 if (retry_estale(error, lookup_flags))
4414 should_retry = true;
4415 path_put(&new_path);
4416 putname(to);
4417 exit1:
4418 path_put(&old_path);
4419 putname(from);
4420 if (should_retry) {
4421 should_retry = false;
4422 lookup_flags |= LOOKUP_REVAL;
4423 goto retry;
4424 }
4425 exit:
4426 return error;
4427 }
4428
4429 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4430 int, newdfd, const char __user *, newname)
4431 {
4432 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4433 }
4434
4435 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4436 {
4437 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4438 }
4439
4440 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4441 {
4442 int error = may_create(dir, dentry);
4443 if (error)
4444 return error;
4445
4446 if (!dir->i_op->mknod)
4447 return -EPERM;
4448
4449 return dir->i_op->mknod(dir, dentry,
4450 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4451 }
4452 EXPORT_SYMBOL(vfs_whiteout);
4453
4454 int readlink_copy(char __user *buffer, int buflen, const char *link)
4455 {
4456 int len = PTR_ERR(link);
4457 if (IS_ERR(link))
4458 goto out;
4459
4460 len = strlen(link);
4461 if (len > (unsigned) buflen)
4462 len = buflen;
4463 if (copy_to_user(buffer, link, len))
4464 len = -EFAULT;
4465 out:
4466 return len;
4467 }
4468 EXPORT_SYMBOL(readlink_copy);
4469
4470 /*
4471 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4472 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4473 * using) it for any given inode is up to filesystem.
4474 */
4475 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4476 {
4477 void *cookie;
4478 const char *link = dentry->d_inode->i_link;
4479 int res;
4480
4481 if (!link) {
4482 link = dentry->d_inode->i_op->follow_link(dentry, &cookie);
4483 if (IS_ERR(link))
4484 return PTR_ERR(link);
4485 }
4486 res = readlink_copy(buffer, buflen, link);
4487 if (dentry->d_inode->i_op->put_link)
4488 dentry->d_inode->i_op->put_link(dentry, cookie);
4489 return res;
4490 }
4491 EXPORT_SYMBOL(generic_readlink);
4492
4493 /* get the link contents into pagecache */
4494 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4495 {
4496 char *kaddr;
4497 struct page *page;
4498 struct address_space *mapping = dentry->d_inode->i_mapping;
4499 page = read_mapping_page(mapping, 0, NULL);
4500 if (IS_ERR(page))
4501 return (char*)page;
4502 *ppage = page;
4503 kaddr = kmap(page);
4504 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4505 return kaddr;
4506 }
4507
4508 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4509 {
4510 struct page *page = NULL;
4511 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4512 if (page) {
4513 kunmap(page);
4514 page_cache_release(page);
4515 }
4516 return res;
4517 }
4518 EXPORT_SYMBOL(page_readlink);
4519
4520 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4521 {
4522 struct page *page = NULL;
4523 char *res = page_getlink(dentry, &page);
4524 if (!IS_ERR(res))
4525 *cookie = page;
4526 return res;
4527 }
4528 EXPORT_SYMBOL(page_follow_link_light);
4529
4530 void page_put_link(struct dentry *dentry, void *cookie)
4531 {
4532 struct page *page = cookie;
4533 kunmap(page);
4534 page_cache_release(page);
4535 }
4536 EXPORT_SYMBOL(page_put_link);
4537
4538 /*
4539 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4540 */
4541 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4542 {
4543 struct address_space *mapping = inode->i_mapping;
4544 struct page *page;
4545 void *fsdata;
4546 int err;
4547 char *kaddr;
4548 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4549 if (nofs)
4550 flags |= AOP_FLAG_NOFS;
4551
4552 retry:
4553 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4554 flags, &page, &fsdata);
4555 if (err)
4556 goto fail;
4557
4558 kaddr = kmap_atomic(page);
4559 memcpy(kaddr, symname, len-1);
4560 kunmap_atomic(kaddr);
4561
4562 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4563 page, fsdata);
4564 if (err < 0)
4565 goto fail;
4566 if (err < len-1)
4567 goto retry;
4568
4569 mark_inode_dirty(inode);
4570 return 0;
4571 fail:
4572 return err;
4573 }
4574 EXPORT_SYMBOL(__page_symlink);
4575
4576 int page_symlink(struct inode *inode, const char *symname, int len)
4577 {
4578 return __page_symlink(inode, symname, len,
4579 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4580 }
4581 EXPORT_SYMBOL(page_symlink);
4582
4583 const struct inode_operations page_symlink_inode_operations = {
4584 .readlink = generic_readlink,
4585 .follow_link = page_follow_link_light,
4586 .put_link = page_put_link,
4587 };
4588 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.19563 seconds and 5 git commands to generate.