19e5c8a27ea4fe51b84936137406c62fe5a4fcba
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 union {
499 struct qstr last;
500 struct path link;
501 };
502 struct path root;
503 struct inode *inode; /* path.dentry.d_inode */
504 unsigned int flags;
505 unsigned seq, m_seq;
506 int last_type;
507 unsigned depth;
508 struct file *base;
509 struct saved {
510 struct path link;
511 void *cookie;
512 const char *name;
513 } *stack, internal[EMBEDDED_LEVELS];
514 };
515
516 static void set_nameidata(struct nameidata *nd)
517 {
518 nd->stack = nd->internal;
519 }
520
521 static void restore_nameidata(struct nameidata *nd)
522 {
523 if (nd->stack != nd->internal) {
524 kfree(nd->stack);
525 nd->stack = nd->internal;
526 }
527 }
528
529 static int __nd_alloc_stack(struct nameidata *nd)
530 {
531 struct saved *p = kmalloc(MAXSYMLINKS * sizeof(struct saved),
532 GFP_KERNEL);
533 if (unlikely(!p))
534 return -ENOMEM;
535 memcpy(p, nd->internal, sizeof(nd->internal));
536 nd->stack = p;
537 return 0;
538 }
539
540 static inline int nd_alloc_stack(struct nameidata *nd)
541 {
542 if (likely(nd->depth != EMBEDDED_LEVELS))
543 return 0;
544 if (likely(nd->stack != nd->internal))
545 return 0;
546 return __nd_alloc_stack(nd);
547 }
548
549 /*
550 * Path walking has 2 modes, rcu-walk and ref-walk (see
551 * Documentation/filesystems/path-lookup.txt). In situations when we can't
552 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
553 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
554 * mode. Refcounts are grabbed at the last known good point before rcu-walk
555 * got stuck, so ref-walk may continue from there. If this is not successful
556 * (eg. a seqcount has changed), then failure is returned and it's up to caller
557 * to restart the path walk from the beginning in ref-walk mode.
558 */
559
560 /**
561 * unlazy_walk - try to switch to ref-walk mode.
562 * @nd: nameidata pathwalk data
563 * @dentry: child of nd->path.dentry or NULL
564 * Returns: 0 on success, -ECHILD on failure
565 *
566 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
567 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
568 * @nd or NULL. Must be called from rcu-walk context.
569 */
570 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
571 {
572 struct fs_struct *fs = current->fs;
573 struct dentry *parent = nd->path.dentry;
574
575 BUG_ON(!(nd->flags & LOOKUP_RCU));
576
577 /*
578 * After legitimizing the bastards, terminate_walk()
579 * will do the right thing for non-RCU mode, and all our
580 * subsequent exit cases should rcu_read_unlock()
581 * before returning. Do vfsmount first; if dentry
582 * can't be legitimized, just set nd->path.dentry to NULL
583 * and rely on dput(NULL) being a no-op.
584 */
585 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
586 return -ECHILD;
587 nd->flags &= ~LOOKUP_RCU;
588
589 if (!lockref_get_not_dead(&parent->d_lockref)) {
590 nd->path.dentry = NULL;
591 goto out;
592 }
593
594 /*
595 * For a negative lookup, the lookup sequence point is the parents
596 * sequence point, and it only needs to revalidate the parent dentry.
597 *
598 * For a positive lookup, we need to move both the parent and the
599 * dentry from the RCU domain to be properly refcounted. And the
600 * sequence number in the dentry validates *both* dentry counters,
601 * since we checked the sequence number of the parent after we got
602 * the child sequence number. So we know the parent must still
603 * be valid if the child sequence number is still valid.
604 */
605 if (!dentry) {
606 if (read_seqcount_retry(&parent->d_seq, nd->seq))
607 goto out;
608 BUG_ON(nd->inode != parent->d_inode);
609 } else {
610 if (!lockref_get_not_dead(&dentry->d_lockref))
611 goto out;
612 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
613 goto drop_dentry;
614 }
615
616 /*
617 * Sequence counts matched. Now make sure that the root is
618 * still valid and get it if required.
619 */
620 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
621 spin_lock(&fs->lock);
622 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
623 goto unlock_and_drop_dentry;
624 path_get(&nd->root);
625 spin_unlock(&fs->lock);
626 }
627
628 rcu_read_unlock();
629 return 0;
630
631 unlock_and_drop_dentry:
632 spin_unlock(&fs->lock);
633 drop_dentry:
634 rcu_read_unlock();
635 dput(dentry);
636 goto drop_root_mnt;
637 out:
638 rcu_read_unlock();
639 drop_root_mnt:
640 if (!(nd->flags & LOOKUP_ROOT))
641 nd->root.mnt = NULL;
642 return -ECHILD;
643 }
644
645 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
646 {
647 return dentry->d_op->d_revalidate(dentry, flags);
648 }
649
650 /**
651 * complete_walk - successful completion of path walk
652 * @nd: pointer nameidata
653 *
654 * If we had been in RCU mode, drop out of it and legitimize nd->path.
655 * Revalidate the final result, unless we'd already done that during
656 * the path walk or the filesystem doesn't ask for it. Return 0 on
657 * success, -error on failure. In case of failure caller does not
658 * need to drop nd->path.
659 */
660 static int complete_walk(struct nameidata *nd)
661 {
662 struct dentry *dentry = nd->path.dentry;
663 int status;
664
665 if (nd->flags & LOOKUP_RCU) {
666 nd->flags &= ~LOOKUP_RCU;
667 if (!(nd->flags & LOOKUP_ROOT))
668 nd->root.mnt = NULL;
669
670 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
671 rcu_read_unlock();
672 return -ECHILD;
673 }
674 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
675 rcu_read_unlock();
676 mntput(nd->path.mnt);
677 return -ECHILD;
678 }
679 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
680 rcu_read_unlock();
681 dput(dentry);
682 mntput(nd->path.mnt);
683 return -ECHILD;
684 }
685 rcu_read_unlock();
686 }
687
688 if (likely(!(nd->flags & LOOKUP_JUMPED)))
689 return 0;
690
691 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
692 return 0;
693
694 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
695 if (status > 0)
696 return 0;
697
698 if (!status)
699 status = -ESTALE;
700
701 path_put(&nd->path);
702 return status;
703 }
704
705 static __always_inline void set_root(struct nameidata *nd)
706 {
707 get_fs_root(current->fs, &nd->root);
708 }
709
710 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
711 {
712 struct fs_struct *fs = current->fs;
713 unsigned seq, res;
714
715 do {
716 seq = read_seqcount_begin(&fs->seq);
717 nd->root = fs->root;
718 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
719 } while (read_seqcount_retry(&fs->seq, seq));
720 return res;
721 }
722
723 static void path_put_conditional(struct path *path, struct nameidata *nd)
724 {
725 dput(path->dentry);
726 if (path->mnt != nd->path.mnt)
727 mntput(path->mnt);
728 }
729
730 static inline void path_to_nameidata(const struct path *path,
731 struct nameidata *nd)
732 {
733 if (!(nd->flags & LOOKUP_RCU)) {
734 dput(nd->path.dentry);
735 if (nd->path.mnt != path->mnt)
736 mntput(nd->path.mnt);
737 }
738 nd->path.mnt = path->mnt;
739 nd->path.dentry = path->dentry;
740 }
741
742 /*
743 * Helper to directly jump to a known parsed path from ->follow_link,
744 * caller must have taken a reference to path beforehand.
745 */
746 void nd_jump_link(struct nameidata *nd, struct path *path)
747 {
748 path_put(&nd->path);
749
750 nd->path = *path;
751 nd->inode = nd->path.dentry->d_inode;
752 nd->flags |= LOOKUP_JUMPED;
753 }
754
755 static inline void put_link(struct nameidata *nd)
756 {
757 struct saved *last = nd->stack + --nd->depth;
758 struct inode *inode = last->link.dentry->d_inode;
759 if (last->cookie && inode->i_op->put_link)
760 inode->i_op->put_link(last->link.dentry, last->cookie);
761 path_put(&last->link);
762 }
763
764 int sysctl_protected_symlinks __read_mostly = 0;
765 int sysctl_protected_hardlinks __read_mostly = 0;
766
767 /**
768 * may_follow_link - Check symlink following for unsafe situations
769 * @link: The path of the symlink
770 * @nd: nameidata pathwalk data
771 *
772 * In the case of the sysctl_protected_symlinks sysctl being enabled,
773 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
774 * in a sticky world-writable directory. This is to protect privileged
775 * processes from failing races against path names that may change out
776 * from under them by way of other users creating malicious symlinks.
777 * It will permit symlinks to be followed only when outside a sticky
778 * world-writable directory, or when the uid of the symlink and follower
779 * match, or when the directory owner matches the symlink's owner.
780 *
781 * Returns 0 if following the symlink is allowed, -ve on error.
782 */
783 static inline int may_follow_link(struct path *link, struct nameidata *nd)
784 {
785 const struct inode *inode;
786 const struct inode *parent;
787
788 if (!sysctl_protected_symlinks)
789 return 0;
790
791 /* Allowed if owner and follower match. */
792 inode = link->dentry->d_inode;
793 if (uid_eq(current_cred()->fsuid, inode->i_uid))
794 return 0;
795
796 /* Allowed if parent directory not sticky and world-writable. */
797 parent = nd->path.dentry->d_inode;
798 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
799 return 0;
800
801 /* Allowed if parent directory and link owner match. */
802 if (uid_eq(parent->i_uid, inode->i_uid))
803 return 0;
804
805 audit_log_link_denied("follow_link", link);
806 path_put_conditional(link, nd);
807 path_put(&nd->path);
808 return -EACCES;
809 }
810
811 /**
812 * safe_hardlink_source - Check for safe hardlink conditions
813 * @inode: the source inode to hardlink from
814 *
815 * Return false if at least one of the following conditions:
816 * - inode is not a regular file
817 * - inode is setuid
818 * - inode is setgid and group-exec
819 * - access failure for read and write
820 *
821 * Otherwise returns true.
822 */
823 static bool safe_hardlink_source(struct inode *inode)
824 {
825 umode_t mode = inode->i_mode;
826
827 /* Special files should not get pinned to the filesystem. */
828 if (!S_ISREG(mode))
829 return false;
830
831 /* Setuid files should not get pinned to the filesystem. */
832 if (mode & S_ISUID)
833 return false;
834
835 /* Executable setgid files should not get pinned to the filesystem. */
836 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
837 return false;
838
839 /* Hardlinking to unreadable or unwritable sources is dangerous. */
840 if (inode_permission(inode, MAY_READ | MAY_WRITE))
841 return false;
842
843 return true;
844 }
845
846 /**
847 * may_linkat - Check permissions for creating a hardlink
848 * @link: the source to hardlink from
849 *
850 * Block hardlink when all of:
851 * - sysctl_protected_hardlinks enabled
852 * - fsuid does not match inode
853 * - hardlink source is unsafe (see safe_hardlink_source() above)
854 * - not CAP_FOWNER
855 *
856 * Returns 0 if successful, -ve on error.
857 */
858 static int may_linkat(struct path *link)
859 {
860 const struct cred *cred;
861 struct inode *inode;
862
863 if (!sysctl_protected_hardlinks)
864 return 0;
865
866 cred = current_cred();
867 inode = link->dentry->d_inode;
868
869 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
870 * otherwise, it must be a safe source.
871 */
872 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
873 capable(CAP_FOWNER))
874 return 0;
875
876 audit_log_link_denied("linkat", link);
877 return -EPERM;
878 }
879
880 static __always_inline
881 const char *get_link(struct nameidata *nd)
882 {
883 struct saved *last = nd->stack + nd->depth;
884 struct dentry *dentry = nd->link.dentry;
885 struct inode *inode = dentry->d_inode;
886 int error;
887 const char *res;
888
889 BUG_ON(nd->flags & LOOKUP_RCU);
890
891 if (nd->link.mnt == nd->path.mnt)
892 mntget(nd->link.mnt);
893
894 if (unlikely(current->total_link_count >= MAXSYMLINKS)) {
895 path_put(&nd->link);
896 return ERR_PTR(-ELOOP);
897 }
898
899 last->link = nd->link;
900 last->cookie = NULL;
901
902 cond_resched();
903 current->total_link_count++;
904
905 touch_atime(&last->link);
906
907 error = security_inode_follow_link(dentry);
908 res = ERR_PTR(error);
909 if (error)
910 goto out;
911
912 nd->last_type = LAST_BIND;
913 res = inode->i_link;
914 if (!res) {
915 res = inode->i_op->follow_link(dentry, &last->cookie, nd);
916 if (IS_ERR(res)) {
917 out:
918 path_put(&last->link);
919 return res;
920 }
921 }
922 nd->depth++;
923 return res;
924 }
925
926 static int follow_up_rcu(struct path *path)
927 {
928 struct mount *mnt = real_mount(path->mnt);
929 struct mount *parent;
930 struct dentry *mountpoint;
931
932 parent = mnt->mnt_parent;
933 if (&parent->mnt == path->mnt)
934 return 0;
935 mountpoint = mnt->mnt_mountpoint;
936 path->dentry = mountpoint;
937 path->mnt = &parent->mnt;
938 return 1;
939 }
940
941 /*
942 * follow_up - Find the mountpoint of path's vfsmount
943 *
944 * Given a path, find the mountpoint of its source file system.
945 * Replace @path with the path of the mountpoint in the parent mount.
946 * Up is towards /.
947 *
948 * Return 1 if we went up a level and 0 if we were already at the
949 * root.
950 */
951 int follow_up(struct path *path)
952 {
953 struct mount *mnt = real_mount(path->mnt);
954 struct mount *parent;
955 struct dentry *mountpoint;
956
957 read_seqlock_excl(&mount_lock);
958 parent = mnt->mnt_parent;
959 if (parent == mnt) {
960 read_sequnlock_excl(&mount_lock);
961 return 0;
962 }
963 mntget(&parent->mnt);
964 mountpoint = dget(mnt->mnt_mountpoint);
965 read_sequnlock_excl(&mount_lock);
966 dput(path->dentry);
967 path->dentry = mountpoint;
968 mntput(path->mnt);
969 path->mnt = &parent->mnt;
970 return 1;
971 }
972 EXPORT_SYMBOL(follow_up);
973
974 /*
975 * Perform an automount
976 * - return -EISDIR to tell follow_managed() to stop and return the path we
977 * were called with.
978 */
979 static int follow_automount(struct path *path, unsigned flags,
980 bool *need_mntput)
981 {
982 struct vfsmount *mnt;
983 int err;
984
985 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
986 return -EREMOTE;
987
988 /* We don't want to mount if someone's just doing a stat -
989 * unless they're stat'ing a directory and appended a '/' to
990 * the name.
991 *
992 * We do, however, want to mount if someone wants to open or
993 * create a file of any type under the mountpoint, wants to
994 * traverse through the mountpoint or wants to open the
995 * mounted directory. Also, autofs may mark negative dentries
996 * as being automount points. These will need the attentions
997 * of the daemon to instantiate them before they can be used.
998 */
999 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1000 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1001 path->dentry->d_inode)
1002 return -EISDIR;
1003
1004 current->total_link_count++;
1005 if (current->total_link_count >= 40)
1006 return -ELOOP;
1007
1008 mnt = path->dentry->d_op->d_automount(path);
1009 if (IS_ERR(mnt)) {
1010 /*
1011 * The filesystem is allowed to return -EISDIR here to indicate
1012 * it doesn't want to automount. For instance, autofs would do
1013 * this so that its userspace daemon can mount on this dentry.
1014 *
1015 * However, we can only permit this if it's a terminal point in
1016 * the path being looked up; if it wasn't then the remainder of
1017 * the path is inaccessible and we should say so.
1018 */
1019 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1020 return -EREMOTE;
1021 return PTR_ERR(mnt);
1022 }
1023
1024 if (!mnt) /* mount collision */
1025 return 0;
1026
1027 if (!*need_mntput) {
1028 /* lock_mount() may release path->mnt on error */
1029 mntget(path->mnt);
1030 *need_mntput = true;
1031 }
1032 err = finish_automount(mnt, path);
1033
1034 switch (err) {
1035 case -EBUSY:
1036 /* Someone else made a mount here whilst we were busy */
1037 return 0;
1038 case 0:
1039 path_put(path);
1040 path->mnt = mnt;
1041 path->dentry = dget(mnt->mnt_root);
1042 return 0;
1043 default:
1044 return err;
1045 }
1046
1047 }
1048
1049 /*
1050 * Handle a dentry that is managed in some way.
1051 * - Flagged for transit management (autofs)
1052 * - Flagged as mountpoint
1053 * - Flagged as automount point
1054 *
1055 * This may only be called in refwalk mode.
1056 *
1057 * Serialization is taken care of in namespace.c
1058 */
1059 static int follow_managed(struct path *path, unsigned flags)
1060 {
1061 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1062 unsigned managed;
1063 bool need_mntput = false;
1064 int ret = 0;
1065
1066 /* Given that we're not holding a lock here, we retain the value in a
1067 * local variable for each dentry as we look at it so that we don't see
1068 * the components of that value change under us */
1069 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1070 managed &= DCACHE_MANAGED_DENTRY,
1071 unlikely(managed != 0)) {
1072 /* Allow the filesystem to manage the transit without i_mutex
1073 * being held. */
1074 if (managed & DCACHE_MANAGE_TRANSIT) {
1075 BUG_ON(!path->dentry->d_op);
1076 BUG_ON(!path->dentry->d_op->d_manage);
1077 ret = path->dentry->d_op->d_manage(path->dentry, false);
1078 if (ret < 0)
1079 break;
1080 }
1081
1082 /* Transit to a mounted filesystem. */
1083 if (managed & DCACHE_MOUNTED) {
1084 struct vfsmount *mounted = lookup_mnt(path);
1085 if (mounted) {
1086 dput(path->dentry);
1087 if (need_mntput)
1088 mntput(path->mnt);
1089 path->mnt = mounted;
1090 path->dentry = dget(mounted->mnt_root);
1091 need_mntput = true;
1092 continue;
1093 }
1094
1095 /* Something is mounted on this dentry in another
1096 * namespace and/or whatever was mounted there in this
1097 * namespace got unmounted before lookup_mnt() could
1098 * get it */
1099 }
1100
1101 /* Handle an automount point */
1102 if (managed & DCACHE_NEED_AUTOMOUNT) {
1103 ret = follow_automount(path, flags, &need_mntput);
1104 if (ret < 0)
1105 break;
1106 continue;
1107 }
1108
1109 /* We didn't change the current path point */
1110 break;
1111 }
1112
1113 if (need_mntput && path->mnt == mnt)
1114 mntput(path->mnt);
1115 if (ret == -EISDIR)
1116 ret = 0;
1117 return ret < 0 ? ret : need_mntput;
1118 }
1119
1120 int follow_down_one(struct path *path)
1121 {
1122 struct vfsmount *mounted;
1123
1124 mounted = lookup_mnt(path);
1125 if (mounted) {
1126 dput(path->dentry);
1127 mntput(path->mnt);
1128 path->mnt = mounted;
1129 path->dentry = dget(mounted->mnt_root);
1130 return 1;
1131 }
1132 return 0;
1133 }
1134 EXPORT_SYMBOL(follow_down_one);
1135
1136 static inline int managed_dentry_rcu(struct dentry *dentry)
1137 {
1138 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1139 dentry->d_op->d_manage(dentry, true) : 0;
1140 }
1141
1142 /*
1143 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1144 * we meet a managed dentry that would need blocking.
1145 */
1146 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1147 struct inode **inode)
1148 {
1149 for (;;) {
1150 struct mount *mounted;
1151 /*
1152 * Don't forget we might have a non-mountpoint managed dentry
1153 * that wants to block transit.
1154 */
1155 switch (managed_dentry_rcu(path->dentry)) {
1156 case -ECHILD:
1157 default:
1158 return false;
1159 case -EISDIR:
1160 return true;
1161 case 0:
1162 break;
1163 }
1164
1165 if (!d_mountpoint(path->dentry))
1166 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1167
1168 mounted = __lookup_mnt(path->mnt, path->dentry);
1169 if (!mounted)
1170 break;
1171 path->mnt = &mounted->mnt;
1172 path->dentry = mounted->mnt.mnt_root;
1173 nd->flags |= LOOKUP_JUMPED;
1174 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1175 /*
1176 * Update the inode too. We don't need to re-check the
1177 * dentry sequence number here after this d_inode read,
1178 * because a mount-point is always pinned.
1179 */
1180 *inode = path->dentry->d_inode;
1181 }
1182 return !read_seqretry(&mount_lock, nd->m_seq) &&
1183 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1184 }
1185
1186 static int follow_dotdot_rcu(struct nameidata *nd)
1187 {
1188 struct inode *inode = nd->inode;
1189 if (!nd->root.mnt)
1190 set_root_rcu(nd);
1191
1192 while (1) {
1193 if (nd->path.dentry == nd->root.dentry &&
1194 nd->path.mnt == nd->root.mnt) {
1195 break;
1196 }
1197 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1198 struct dentry *old = nd->path.dentry;
1199 struct dentry *parent = old->d_parent;
1200 unsigned seq;
1201
1202 inode = parent->d_inode;
1203 seq = read_seqcount_begin(&parent->d_seq);
1204 if (read_seqcount_retry(&old->d_seq, nd->seq))
1205 goto failed;
1206 nd->path.dentry = parent;
1207 nd->seq = seq;
1208 break;
1209 }
1210 if (!follow_up_rcu(&nd->path))
1211 break;
1212 inode = nd->path.dentry->d_inode;
1213 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1214 }
1215 while (d_mountpoint(nd->path.dentry)) {
1216 struct mount *mounted;
1217 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1218 if (!mounted)
1219 break;
1220 nd->path.mnt = &mounted->mnt;
1221 nd->path.dentry = mounted->mnt.mnt_root;
1222 inode = nd->path.dentry->d_inode;
1223 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1224 if (read_seqretry(&mount_lock, nd->m_seq))
1225 goto failed;
1226 }
1227 nd->inode = inode;
1228 return 0;
1229
1230 failed:
1231 return -ECHILD;
1232 }
1233
1234 /*
1235 * Follow down to the covering mount currently visible to userspace. At each
1236 * point, the filesystem owning that dentry may be queried as to whether the
1237 * caller is permitted to proceed or not.
1238 */
1239 int follow_down(struct path *path)
1240 {
1241 unsigned managed;
1242 int ret;
1243
1244 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1245 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1246 /* Allow the filesystem to manage the transit without i_mutex
1247 * being held.
1248 *
1249 * We indicate to the filesystem if someone is trying to mount
1250 * something here. This gives autofs the chance to deny anyone
1251 * other than its daemon the right to mount on its
1252 * superstructure.
1253 *
1254 * The filesystem may sleep at this point.
1255 */
1256 if (managed & DCACHE_MANAGE_TRANSIT) {
1257 BUG_ON(!path->dentry->d_op);
1258 BUG_ON(!path->dentry->d_op->d_manage);
1259 ret = path->dentry->d_op->d_manage(
1260 path->dentry, false);
1261 if (ret < 0)
1262 return ret == -EISDIR ? 0 : ret;
1263 }
1264
1265 /* Transit to a mounted filesystem. */
1266 if (managed & DCACHE_MOUNTED) {
1267 struct vfsmount *mounted = lookup_mnt(path);
1268 if (!mounted)
1269 break;
1270 dput(path->dentry);
1271 mntput(path->mnt);
1272 path->mnt = mounted;
1273 path->dentry = dget(mounted->mnt_root);
1274 continue;
1275 }
1276
1277 /* Don't handle automount points here */
1278 break;
1279 }
1280 return 0;
1281 }
1282 EXPORT_SYMBOL(follow_down);
1283
1284 /*
1285 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1286 */
1287 static void follow_mount(struct path *path)
1288 {
1289 while (d_mountpoint(path->dentry)) {
1290 struct vfsmount *mounted = lookup_mnt(path);
1291 if (!mounted)
1292 break;
1293 dput(path->dentry);
1294 mntput(path->mnt);
1295 path->mnt = mounted;
1296 path->dentry = dget(mounted->mnt_root);
1297 }
1298 }
1299
1300 static void follow_dotdot(struct nameidata *nd)
1301 {
1302 if (!nd->root.mnt)
1303 set_root(nd);
1304
1305 while(1) {
1306 struct dentry *old = nd->path.dentry;
1307
1308 if (nd->path.dentry == nd->root.dentry &&
1309 nd->path.mnt == nd->root.mnt) {
1310 break;
1311 }
1312 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1313 /* rare case of legitimate dget_parent()... */
1314 nd->path.dentry = dget_parent(nd->path.dentry);
1315 dput(old);
1316 break;
1317 }
1318 if (!follow_up(&nd->path))
1319 break;
1320 }
1321 follow_mount(&nd->path);
1322 nd->inode = nd->path.dentry->d_inode;
1323 }
1324
1325 /*
1326 * This looks up the name in dcache, possibly revalidates the old dentry and
1327 * allocates a new one if not found or not valid. In the need_lookup argument
1328 * returns whether i_op->lookup is necessary.
1329 *
1330 * dir->d_inode->i_mutex must be held
1331 */
1332 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1333 unsigned int flags, bool *need_lookup)
1334 {
1335 struct dentry *dentry;
1336 int error;
1337
1338 *need_lookup = false;
1339 dentry = d_lookup(dir, name);
1340 if (dentry) {
1341 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1342 error = d_revalidate(dentry, flags);
1343 if (unlikely(error <= 0)) {
1344 if (error < 0) {
1345 dput(dentry);
1346 return ERR_PTR(error);
1347 } else {
1348 d_invalidate(dentry);
1349 dput(dentry);
1350 dentry = NULL;
1351 }
1352 }
1353 }
1354 }
1355
1356 if (!dentry) {
1357 dentry = d_alloc(dir, name);
1358 if (unlikely(!dentry))
1359 return ERR_PTR(-ENOMEM);
1360
1361 *need_lookup = true;
1362 }
1363 return dentry;
1364 }
1365
1366 /*
1367 * Call i_op->lookup on the dentry. The dentry must be negative and
1368 * unhashed.
1369 *
1370 * dir->d_inode->i_mutex must be held
1371 */
1372 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1373 unsigned int flags)
1374 {
1375 struct dentry *old;
1376
1377 /* Don't create child dentry for a dead directory. */
1378 if (unlikely(IS_DEADDIR(dir))) {
1379 dput(dentry);
1380 return ERR_PTR(-ENOENT);
1381 }
1382
1383 old = dir->i_op->lookup(dir, dentry, flags);
1384 if (unlikely(old)) {
1385 dput(dentry);
1386 dentry = old;
1387 }
1388 return dentry;
1389 }
1390
1391 static struct dentry *__lookup_hash(struct qstr *name,
1392 struct dentry *base, unsigned int flags)
1393 {
1394 bool need_lookup;
1395 struct dentry *dentry;
1396
1397 dentry = lookup_dcache(name, base, flags, &need_lookup);
1398 if (!need_lookup)
1399 return dentry;
1400
1401 return lookup_real(base->d_inode, dentry, flags);
1402 }
1403
1404 /*
1405 * It's more convoluted than I'd like it to be, but... it's still fairly
1406 * small and for now I'd prefer to have fast path as straight as possible.
1407 * It _is_ time-critical.
1408 */
1409 static int lookup_fast(struct nameidata *nd,
1410 struct path *path, struct inode **inode)
1411 {
1412 struct vfsmount *mnt = nd->path.mnt;
1413 struct dentry *dentry, *parent = nd->path.dentry;
1414 int need_reval = 1;
1415 int status = 1;
1416 int err;
1417
1418 /*
1419 * Rename seqlock is not required here because in the off chance
1420 * of a false negative due to a concurrent rename, we're going to
1421 * do the non-racy lookup, below.
1422 */
1423 if (nd->flags & LOOKUP_RCU) {
1424 unsigned seq;
1425 bool negative;
1426 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1427 if (!dentry)
1428 goto unlazy;
1429
1430 /*
1431 * This sequence count validates that the inode matches
1432 * the dentry name information from lookup.
1433 */
1434 *inode = dentry->d_inode;
1435 negative = d_is_negative(dentry);
1436 if (read_seqcount_retry(&dentry->d_seq, seq))
1437 return -ECHILD;
1438 if (negative)
1439 return -ENOENT;
1440
1441 /*
1442 * This sequence count validates that the parent had no
1443 * changes while we did the lookup of the dentry above.
1444 *
1445 * The memory barrier in read_seqcount_begin of child is
1446 * enough, we can use __read_seqcount_retry here.
1447 */
1448 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1449 return -ECHILD;
1450 nd->seq = seq;
1451
1452 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1453 status = d_revalidate(dentry, nd->flags);
1454 if (unlikely(status <= 0)) {
1455 if (status != -ECHILD)
1456 need_reval = 0;
1457 goto unlazy;
1458 }
1459 }
1460 path->mnt = mnt;
1461 path->dentry = dentry;
1462 if (likely(__follow_mount_rcu(nd, path, inode)))
1463 return 0;
1464 unlazy:
1465 if (unlazy_walk(nd, dentry))
1466 return -ECHILD;
1467 } else {
1468 dentry = __d_lookup(parent, &nd->last);
1469 }
1470
1471 if (unlikely(!dentry))
1472 goto need_lookup;
1473
1474 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1475 status = d_revalidate(dentry, nd->flags);
1476 if (unlikely(status <= 0)) {
1477 if (status < 0) {
1478 dput(dentry);
1479 return status;
1480 }
1481 d_invalidate(dentry);
1482 dput(dentry);
1483 goto need_lookup;
1484 }
1485
1486 if (unlikely(d_is_negative(dentry))) {
1487 dput(dentry);
1488 return -ENOENT;
1489 }
1490 path->mnt = mnt;
1491 path->dentry = dentry;
1492 err = follow_managed(path, nd->flags);
1493 if (unlikely(err < 0)) {
1494 path_put_conditional(path, nd);
1495 return err;
1496 }
1497 if (err)
1498 nd->flags |= LOOKUP_JUMPED;
1499 *inode = path->dentry->d_inode;
1500 return 0;
1501
1502 need_lookup:
1503 return 1;
1504 }
1505
1506 /* Fast lookup failed, do it the slow way */
1507 static int lookup_slow(struct nameidata *nd, struct path *path)
1508 {
1509 struct dentry *dentry, *parent;
1510 int err;
1511
1512 parent = nd->path.dentry;
1513 BUG_ON(nd->inode != parent->d_inode);
1514
1515 mutex_lock(&parent->d_inode->i_mutex);
1516 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1517 mutex_unlock(&parent->d_inode->i_mutex);
1518 if (IS_ERR(dentry))
1519 return PTR_ERR(dentry);
1520 path->mnt = nd->path.mnt;
1521 path->dentry = dentry;
1522 err = follow_managed(path, nd->flags);
1523 if (unlikely(err < 0)) {
1524 path_put_conditional(path, nd);
1525 return err;
1526 }
1527 if (err)
1528 nd->flags |= LOOKUP_JUMPED;
1529 return 0;
1530 }
1531
1532 static inline int may_lookup(struct nameidata *nd)
1533 {
1534 if (nd->flags & LOOKUP_RCU) {
1535 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1536 if (err != -ECHILD)
1537 return err;
1538 if (unlazy_walk(nd, NULL))
1539 return -ECHILD;
1540 }
1541 return inode_permission(nd->inode, MAY_EXEC);
1542 }
1543
1544 static inline int handle_dots(struct nameidata *nd, int type)
1545 {
1546 if (type == LAST_DOTDOT) {
1547 if (nd->flags & LOOKUP_RCU) {
1548 return follow_dotdot_rcu(nd);
1549 } else
1550 follow_dotdot(nd);
1551 }
1552 return 0;
1553 }
1554
1555 static void terminate_walk(struct nameidata *nd)
1556 {
1557 if (!(nd->flags & LOOKUP_RCU)) {
1558 path_put(&nd->path);
1559 } else {
1560 nd->flags &= ~LOOKUP_RCU;
1561 if (!(nd->flags & LOOKUP_ROOT))
1562 nd->root.mnt = NULL;
1563 rcu_read_unlock();
1564 }
1565 while (unlikely(nd->depth))
1566 put_link(nd);
1567 }
1568
1569 /*
1570 * Do we need to follow links? We _really_ want to be able
1571 * to do this check without having to look at inode->i_op,
1572 * so we keep a cache of "no, this doesn't need follow_link"
1573 * for the common case.
1574 */
1575 static inline int should_follow_link(struct dentry *dentry, int follow)
1576 {
1577 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1578 }
1579
1580 static int walk_component(struct nameidata *nd, int follow)
1581 {
1582 struct path path;
1583 struct inode *inode;
1584 int err;
1585 /*
1586 * "." and ".." are special - ".." especially so because it has
1587 * to be able to know about the current root directory and
1588 * parent relationships.
1589 */
1590 if (unlikely(nd->last_type != LAST_NORM))
1591 return handle_dots(nd, nd->last_type);
1592 err = lookup_fast(nd, &path, &inode);
1593 if (unlikely(err)) {
1594 if (err < 0)
1595 return err;
1596
1597 err = lookup_slow(nd, &path);
1598 if (err < 0)
1599 return err;
1600
1601 inode = path.dentry->d_inode;
1602 err = -ENOENT;
1603 if (d_is_negative(path.dentry))
1604 goto out_path_put;
1605 }
1606
1607 if (should_follow_link(path.dentry, follow)) {
1608 if (nd->flags & LOOKUP_RCU) {
1609 if (unlikely(nd->path.mnt != path.mnt ||
1610 unlazy_walk(nd, path.dentry))) {
1611 return -ECHILD;
1612 }
1613 }
1614 BUG_ON(inode != path.dentry->d_inode);
1615 nd->link = path;
1616 return 1;
1617 }
1618 path_to_nameidata(&path, nd);
1619 nd->inode = inode;
1620 return 0;
1621
1622 out_path_put:
1623 path_to_nameidata(&path, nd);
1624 return err;
1625 }
1626
1627 /*
1628 * We can do the critical dentry name comparison and hashing
1629 * operations one word at a time, but we are limited to:
1630 *
1631 * - Architectures with fast unaligned word accesses. We could
1632 * do a "get_unaligned()" if this helps and is sufficiently
1633 * fast.
1634 *
1635 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1636 * do not trap on the (extremely unlikely) case of a page
1637 * crossing operation.
1638 *
1639 * - Furthermore, we need an efficient 64-bit compile for the
1640 * 64-bit case in order to generate the "number of bytes in
1641 * the final mask". Again, that could be replaced with a
1642 * efficient population count instruction or similar.
1643 */
1644 #ifdef CONFIG_DCACHE_WORD_ACCESS
1645
1646 #include <asm/word-at-a-time.h>
1647
1648 #ifdef CONFIG_64BIT
1649
1650 static inline unsigned int fold_hash(unsigned long hash)
1651 {
1652 return hash_64(hash, 32);
1653 }
1654
1655 #else /* 32-bit case */
1656
1657 #define fold_hash(x) (x)
1658
1659 #endif
1660
1661 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1662 {
1663 unsigned long a, mask;
1664 unsigned long hash = 0;
1665
1666 for (;;) {
1667 a = load_unaligned_zeropad(name);
1668 if (len < sizeof(unsigned long))
1669 break;
1670 hash += a;
1671 hash *= 9;
1672 name += sizeof(unsigned long);
1673 len -= sizeof(unsigned long);
1674 if (!len)
1675 goto done;
1676 }
1677 mask = bytemask_from_count(len);
1678 hash += mask & a;
1679 done:
1680 return fold_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683
1684 /*
1685 * Calculate the length and hash of the path component, and
1686 * return the "hash_len" as the result.
1687 */
1688 static inline u64 hash_name(const char *name)
1689 {
1690 unsigned long a, b, adata, bdata, mask, hash, len;
1691 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1692
1693 hash = a = 0;
1694 len = -sizeof(unsigned long);
1695 do {
1696 hash = (hash + a) * 9;
1697 len += sizeof(unsigned long);
1698 a = load_unaligned_zeropad(name+len);
1699 b = a ^ REPEAT_BYTE('/');
1700 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1701
1702 adata = prep_zero_mask(a, adata, &constants);
1703 bdata = prep_zero_mask(b, bdata, &constants);
1704
1705 mask = create_zero_mask(adata | bdata);
1706
1707 hash += a & zero_bytemask(mask);
1708 len += find_zero(mask);
1709 return hashlen_create(fold_hash(hash), len);
1710 }
1711
1712 #else
1713
1714 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1715 {
1716 unsigned long hash = init_name_hash();
1717 while (len--)
1718 hash = partial_name_hash(*name++, hash);
1719 return end_name_hash(hash);
1720 }
1721 EXPORT_SYMBOL(full_name_hash);
1722
1723 /*
1724 * We know there's a real path component here of at least
1725 * one character.
1726 */
1727 static inline u64 hash_name(const char *name)
1728 {
1729 unsigned long hash = init_name_hash();
1730 unsigned long len = 0, c;
1731
1732 c = (unsigned char)*name;
1733 do {
1734 len++;
1735 hash = partial_name_hash(c, hash);
1736 c = (unsigned char)name[len];
1737 } while (c && c != '/');
1738 return hashlen_create(end_name_hash(hash), len);
1739 }
1740
1741 #endif
1742
1743 /*
1744 * Name resolution.
1745 * This is the basic name resolution function, turning a pathname into
1746 * the final dentry. We expect 'base' to be positive and a directory.
1747 *
1748 * Returns 0 and nd will have valid dentry and mnt on success.
1749 * Returns error and drops reference to input namei data on failure.
1750 */
1751 static int link_path_walk(const char *name, struct nameidata *nd)
1752 {
1753 int err;
1754
1755 while (*name=='/')
1756 name++;
1757 if (!*name)
1758 return 0;
1759
1760 /* At this point we know we have a real path component. */
1761 for(;;) {
1762 u64 hash_len;
1763 int type;
1764
1765 err = may_lookup(nd);
1766 if (err)
1767 break;
1768
1769 hash_len = hash_name(name);
1770
1771 type = LAST_NORM;
1772 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1773 case 2:
1774 if (name[1] == '.') {
1775 type = LAST_DOTDOT;
1776 nd->flags |= LOOKUP_JUMPED;
1777 }
1778 break;
1779 case 1:
1780 type = LAST_DOT;
1781 }
1782 if (likely(type == LAST_NORM)) {
1783 struct dentry *parent = nd->path.dentry;
1784 nd->flags &= ~LOOKUP_JUMPED;
1785 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1786 struct qstr this = { { .hash_len = hash_len }, .name = name };
1787 err = parent->d_op->d_hash(parent, &this);
1788 if (err < 0)
1789 break;
1790 hash_len = this.hash_len;
1791 name = this.name;
1792 }
1793 }
1794
1795 nd->last.hash_len = hash_len;
1796 nd->last.name = name;
1797 nd->last_type = type;
1798
1799 name += hashlen_len(hash_len);
1800 if (!*name)
1801 goto OK;
1802 /*
1803 * If it wasn't NUL, we know it was '/'. Skip that
1804 * slash, and continue until no more slashes.
1805 */
1806 do {
1807 name++;
1808 } while (unlikely(*name == '/'));
1809 if (unlikely(!*name)) {
1810 OK:
1811 /* called from path_init(), done */
1812 if (!nd->depth)
1813 return 0;
1814 name = nd->stack[nd->depth - 1].name;
1815 /* called from trailing_symlink(), done */
1816 if (!name)
1817 return 0;
1818 /* last component of nested symlink */
1819 err = walk_component(nd, LOOKUP_FOLLOW);
1820 put_link(nd);
1821 } else {
1822 err = walk_component(nd, LOOKUP_FOLLOW);
1823 }
1824 if (err < 0)
1825 break;
1826
1827 if (err) {
1828 const char *s;
1829
1830 err = nd_alloc_stack(nd);
1831 if (unlikely(err)) {
1832 path_to_nameidata(&nd->link, nd);
1833 break;
1834 }
1835
1836 s = get_link(nd);
1837
1838 if (unlikely(IS_ERR(s))) {
1839 err = PTR_ERR(s);
1840 break;
1841 }
1842 err = 0;
1843 if (unlikely(!s)) {
1844 /* jumped */
1845 put_link(nd);
1846 } else {
1847 if (*s == '/') {
1848 if (!nd->root.mnt)
1849 set_root(nd);
1850 path_put(&nd->path);
1851 nd->path = nd->root;
1852 path_get(&nd->root);
1853 nd->flags |= LOOKUP_JUMPED;
1854 while (unlikely(*++s == '/'))
1855 ;
1856 }
1857 nd->inode = nd->path.dentry->d_inode;
1858 nd->stack[nd->depth - 1].name = name;
1859 if (!*s)
1860 goto OK;
1861 name = s;
1862 continue;
1863 }
1864 }
1865 if (!d_can_lookup(nd->path.dentry)) {
1866 err = -ENOTDIR;
1867 break;
1868 }
1869 }
1870 terminate_walk(nd);
1871 return err;
1872 }
1873
1874 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1875 struct nameidata *nd)
1876 {
1877 int retval = 0;
1878 const char *s = name->name;
1879
1880 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1881 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1882 nd->depth = 0;
1883 nd->base = NULL;
1884 if (flags & LOOKUP_ROOT) {
1885 struct dentry *root = nd->root.dentry;
1886 struct inode *inode = root->d_inode;
1887 if (*s) {
1888 if (!d_can_lookup(root))
1889 return -ENOTDIR;
1890 retval = inode_permission(inode, MAY_EXEC);
1891 if (retval)
1892 return retval;
1893 }
1894 nd->path = nd->root;
1895 nd->inode = inode;
1896 if (flags & LOOKUP_RCU) {
1897 rcu_read_lock();
1898 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1899 nd->m_seq = read_seqbegin(&mount_lock);
1900 } else {
1901 path_get(&nd->path);
1902 }
1903 goto done;
1904 }
1905
1906 nd->root.mnt = NULL;
1907
1908 nd->m_seq = read_seqbegin(&mount_lock);
1909 if (*s == '/') {
1910 if (flags & LOOKUP_RCU) {
1911 rcu_read_lock();
1912 nd->seq = set_root_rcu(nd);
1913 } else {
1914 set_root(nd);
1915 path_get(&nd->root);
1916 }
1917 nd->path = nd->root;
1918 } else if (dfd == AT_FDCWD) {
1919 if (flags & LOOKUP_RCU) {
1920 struct fs_struct *fs = current->fs;
1921 unsigned seq;
1922
1923 rcu_read_lock();
1924
1925 do {
1926 seq = read_seqcount_begin(&fs->seq);
1927 nd->path = fs->pwd;
1928 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1929 } while (read_seqcount_retry(&fs->seq, seq));
1930 } else {
1931 get_fs_pwd(current->fs, &nd->path);
1932 }
1933 } else {
1934 /* Caller must check execute permissions on the starting path component */
1935 struct fd f = fdget_raw(dfd);
1936 struct dentry *dentry;
1937
1938 if (!f.file)
1939 return -EBADF;
1940
1941 dentry = f.file->f_path.dentry;
1942
1943 if (*s) {
1944 if (!d_can_lookup(dentry)) {
1945 fdput(f);
1946 return -ENOTDIR;
1947 }
1948 }
1949
1950 nd->path = f.file->f_path;
1951 if (flags & LOOKUP_RCU) {
1952 if (f.flags & FDPUT_FPUT)
1953 nd->base = f.file;
1954 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1955 rcu_read_lock();
1956 } else {
1957 path_get(&nd->path);
1958 fdput(f);
1959 }
1960 }
1961
1962 nd->inode = nd->path.dentry->d_inode;
1963 if (!(flags & LOOKUP_RCU))
1964 goto done;
1965 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1966 goto done;
1967 if (!(nd->flags & LOOKUP_ROOT))
1968 nd->root.mnt = NULL;
1969 rcu_read_unlock();
1970 return -ECHILD;
1971 done:
1972 current->total_link_count = 0;
1973 return link_path_walk(s, nd);
1974 }
1975
1976 static void path_cleanup(struct nameidata *nd)
1977 {
1978 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1979 path_put(&nd->root);
1980 nd->root.mnt = NULL;
1981 }
1982 if (unlikely(nd->base))
1983 fput(nd->base);
1984 }
1985
1986 static int trailing_symlink(struct nameidata *nd)
1987 {
1988 const char *s;
1989 int error = may_follow_link(&nd->link, nd);
1990 if (unlikely(error))
1991 return error;
1992 nd->flags |= LOOKUP_PARENT;
1993 s = get_link(nd);
1994 if (unlikely(IS_ERR(s))) {
1995 terminate_walk(nd);
1996 return PTR_ERR(s);
1997 }
1998 if (unlikely(!s))
1999 return 0;
2000 if (*s == '/') {
2001 if (!nd->root.mnt)
2002 set_root(nd);
2003 path_put(&nd->path);
2004 nd->path = nd->root;
2005 path_get(&nd->root);
2006 nd->flags |= LOOKUP_JUMPED;
2007 }
2008 nd->inode = nd->path.dentry->d_inode;
2009 nd->stack[0].name = NULL;
2010 return link_path_walk(s, nd);
2011 }
2012
2013 static inline int lookup_last(struct nameidata *nd)
2014 {
2015 int err;
2016 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2017 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2018
2019 nd->flags &= ~LOOKUP_PARENT;
2020 err = walk_component(nd, nd->flags & LOOKUP_FOLLOW);
2021 if (nd->depth)
2022 put_link(nd);
2023 if (err < 0)
2024 terminate_walk(nd);
2025 return err;
2026 }
2027
2028 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2029 static int path_lookupat(int dfd, const struct filename *name,
2030 unsigned int flags, struct nameidata *nd)
2031 {
2032 int err;
2033
2034 /*
2035 * Path walking is largely split up into 2 different synchronisation
2036 * schemes, rcu-walk and ref-walk (explained in
2037 * Documentation/filesystems/path-lookup.txt). These share much of the
2038 * path walk code, but some things particularly setup, cleanup, and
2039 * following mounts are sufficiently divergent that functions are
2040 * duplicated. Typically there is a function foo(), and its RCU
2041 * analogue, foo_rcu().
2042 *
2043 * -ECHILD is the error number of choice (just to avoid clashes) that
2044 * is returned if some aspect of an rcu-walk fails. Such an error must
2045 * be handled by restarting a traditional ref-walk (which will always
2046 * be able to complete).
2047 */
2048 err = path_init(dfd, name, flags, nd);
2049 if (!err && !(flags & LOOKUP_PARENT)) {
2050 while ((err = lookup_last(nd)) > 0) {
2051 err = trailing_symlink(nd);
2052 if (err)
2053 break;
2054 }
2055 }
2056
2057 if (!err)
2058 err = complete_walk(nd);
2059
2060 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2061 if (!d_can_lookup(nd->path.dentry)) {
2062 path_put(&nd->path);
2063 err = -ENOTDIR;
2064 }
2065 }
2066
2067 path_cleanup(nd);
2068 return err;
2069 }
2070
2071 static int filename_lookup(int dfd, struct filename *name,
2072 unsigned int flags, struct nameidata *nd)
2073 {
2074 int retval;
2075
2076 set_nameidata(nd);
2077 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2078
2079 if (unlikely(retval == -ECHILD))
2080 retval = path_lookupat(dfd, name, flags, nd);
2081 if (unlikely(retval == -ESTALE))
2082 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2083
2084 if (likely(!retval))
2085 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2086 restore_nameidata(nd);
2087 return retval;
2088 }
2089
2090 /* does lookup, returns the object with parent locked */
2091 struct dentry *kern_path_locked(const char *name, struct path *path)
2092 {
2093 struct filename *filename = getname_kernel(name);
2094 struct nameidata nd;
2095 struct dentry *d;
2096 int err;
2097
2098 if (IS_ERR(filename))
2099 return ERR_CAST(filename);
2100
2101 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2102 if (err) {
2103 d = ERR_PTR(err);
2104 goto out;
2105 }
2106 if (nd.last_type != LAST_NORM) {
2107 path_put(&nd.path);
2108 d = ERR_PTR(-EINVAL);
2109 goto out;
2110 }
2111 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2112 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2113 if (IS_ERR(d)) {
2114 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2115 path_put(&nd.path);
2116 goto out;
2117 }
2118 *path = nd.path;
2119 out:
2120 putname(filename);
2121 return d;
2122 }
2123
2124 int kern_path(const char *name, unsigned int flags, struct path *path)
2125 {
2126 struct nameidata nd;
2127 struct filename *filename = getname_kernel(name);
2128 int res = PTR_ERR(filename);
2129
2130 if (!IS_ERR(filename)) {
2131 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2132 putname(filename);
2133 if (!res)
2134 *path = nd.path;
2135 }
2136 return res;
2137 }
2138 EXPORT_SYMBOL(kern_path);
2139
2140 /**
2141 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2142 * @dentry: pointer to dentry of the base directory
2143 * @mnt: pointer to vfs mount of the base directory
2144 * @name: pointer to file name
2145 * @flags: lookup flags
2146 * @path: pointer to struct path to fill
2147 */
2148 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2149 const char *name, unsigned int flags,
2150 struct path *path)
2151 {
2152 struct filename *filename = getname_kernel(name);
2153 int err = PTR_ERR(filename);
2154
2155 BUG_ON(flags & LOOKUP_PARENT);
2156
2157 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2158 if (!IS_ERR(filename)) {
2159 struct nameidata nd;
2160 nd.root.dentry = dentry;
2161 nd.root.mnt = mnt;
2162 err = filename_lookup(AT_FDCWD, filename,
2163 flags | LOOKUP_ROOT, &nd);
2164 if (!err)
2165 *path = nd.path;
2166 putname(filename);
2167 }
2168 return err;
2169 }
2170 EXPORT_SYMBOL(vfs_path_lookup);
2171
2172 /**
2173 * lookup_one_len - filesystem helper to lookup single pathname component
2174 * @name: pathname component to lookup
2175 * @base: base directory to lookup from
2176 * @len: maximum length @len should be interpreted to
2177 *
2178 * Note that this routine is purely a helper for filesystem usage and should
2179 * not be called by generic code.
2180 */
2181 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2182 {
2183 struct qstr this;
2184 unsigned int c;
2185 int err;
2186
2187 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2188
2189 this.name = name;
2190 this.len = len;
2191 this.hash = full_name_hash(name, len);
2192 if (!len)
2193 return ERR_PTR(-EACCES);
2194
2195 if (unlikely(name[0] == '.')) {
2196 if (len < 2 || (len == 2 && name[1] == '.'))
2197 return ERR_PTR(-EACCES);
2198 }
2199
2200 while (len--) {
2201 c = *(const unsigned char *)name++;
2202 if (c == '/' || c == '\0')
2203 return ERR_PTR(-EACCES);
2204 }
2205 /*
2206 * See if the low-level filesystem might want
2207 * to use its own hash..
2208 */
2209 if (base->d_flags & DCACHE_OP_HASH) {
2210 int err = base->d_op->d_hash(base, &this);
2211 if (err < 0)
2212 return ERR_PTR(err);
2213 }
2214
2215 err = inode_permission(base->d_inode, MAY_EXEC);
2216 if (err)
2217 return ERR_PTR(err);
2218
2219 return __lookup_hash(&this, base, 0);
2220 }
2221 EXPORT_SYMBOL(lookup_one_len);
2222
2223 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2224 struct path *path, int *empty)
2225 {
2226 struct nameidata nd;
2227 struct filename *tmp = getname_flags(name, flags, empty);
2228 int err = PTR_ERR(tmp);
2229 if (!IS_ERR(tmp)) {
2230
2231 BUG_ON(flags & LOOKUP_PARENT);
2232
2233 err = filename_lookup(dfd, tmp, flags, &nd);
2234 putname(tmp);
2235 if (!err)
2236 *path = nd.path;
2237 }
2238 return err;
2239 }
2240
2241 int user_path_at(int dfd, const char __user *name, unsigned flags,
2242 struct path *path)
2243 {
2244 return user_path_at_empty(dfd, name, flags, path, NULL);
2245 }
2246 EXPORT_SYMBOL(user_path_at);
2247
2248 /*
2249 * NB: most callers don't do anything directly with the reference to the
2250 * to struct filename, but the nd->last pointer points into the name string
2251 * allocated by getname. So we must hold the reference to it until all
2252 * path-walking is complete.
2253 */
2254 static struct filename *
2255 user_path_parent(int dfd, const char __user *path,
2256 struct path *parent,
2257 struct qstr *last,
2258 int *type,
2259 unsigned int flags)
2260 {
2261 struct nameidata nd;
2262 struct filename *s = getname(path);
2263 int error;
2264
2265 /* only LOOKUP_REVAL is allowed in extra flags */
2266 flags &= LOOKUP_REVAL;
2267
2268 if (IS_ERR(s))
2269 return s;
2270
2271 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2272 if (error) {
2273 putname(s);
2274 return ERR_PTR(error);
2275 }
2276 *parent = nd.path;
2277 *last = nd.last;
2278 *type = nd.last_type;
2279
2280 return s;
2281 }
2282
2283 /**
2284 * mountpoint_last - look up last component for umount
2285 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2286 * @path: pointer to container for result
2287 *
2288 * This is a special lookup_last function just for umount. In this case, we
2289 * need to resolve the path without doing any revalidation.
2290 *
2291 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2292 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2293 * in almost all cases, this lookup will be served out of the dcache. The only
2294 * cases where it won't are if nd->last refers to a symlink or the path is
2295 * bogus and it doesn't exist.
2296 *
2297 * Returns:
2298 * -error: if there was an error during lookup. This includes -ENOENT if the
2299 * lookup found a negative dentry. The nd->path reference will also be
2300 * put in this case.
2301 *
2302 * 0: if we successfully resolved nd->path and found it to not to be a
2303 * symlink that needs to be followed. "path" will also be populated.
2304 * The nd->path reference will also be put.
2305 *
2306 * 1: if we successfully resolved nd->last and found it to be a symlink
2307 * that needs to be followed. "path" will be populated with the path
2308 * to the link, and nd->path will *not* be put.
2309 */
2310 static int
2311 mountpoint_last(struct nameidata *nd, struct path *path)
2312 {
2313 int error = 0;
2314 struct dentry *dentry;
2315 struct dentry *dir = nd->path.dentry;
2316
2317 /* If we're in rcuwalk, drop out of it to handle last component */
2318 if (nd->flags & LOOKUP_RCU) {
2319 if (unlazy_walk(nd, NULL)) {
2320 error = -ECHILD;
2321 goto out;
2322 }
2323 }
2324
2325 nd->flags &= ~LOOKUP_PARENT;
2326
2327 if (unlikely(nd->last_type != LAST_NORM)) {
2328 error = handle_dots(nd, nd->last_type);
2329 if (error)
2330 goto out;
2331 dentry = dget(nd->path.dentry);
2332 goto done;
2333 }
2334
2335 mutex_lock(&dir->d_inode->i_mutex);
2336 dentry = d_lookup(dir, &nd->last);
2337 if (!dentry) {
2338 /*
2339 * No cached dentry. Mounted dentries are pinned in the cache,
2340 * so that means that this dentry is probably a symlink or the
2341 * path doesn't actually point to a mounted dentry.
2342 */
2343 dentry = d_alloc(dir, &nd->last);
2344 if (!dentry) {
2345 error = -ENOMEM;
2346 mutex_unlock(&dir->d_inode->i_mutex);
2347 goto out;
2348 }
2349 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2350 error = PTR_ERR(dentry);
2351 if (IS_ERR(dentry)) {
2352 mutex_unlock(&dir->d_inode->i_mutex);
2353 goto out;
2354 }
2355 }
2356 mutex_unlock(&dir->d_inode->i_mutex);
2357
2358 done:
2359 if (d_is_negative(dentry)) {
2360 error = -ENOENT;
2361 dput(dentry);
2362 goto out;
2363 }
2364 if (nd->depth)
2365 put_link(nd);
2366 path->dentry = dentry;
2367 path->mnt = nd->path.mnt;
2368 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2369 nd->link = *path;
2370 return 1;
2371 }
2372 mntget(path->mnt);
2373 follow_mount(path);
2374 error = 0;
2375 out:
2376 terminate_walk(nd);
2377 return error;
2378 }
2379
2380 /**
2381 * path_mountpoint - look up a path to be umounted
2382 * @dfd: directory file descriptor to start walk from
2383 * @name: full pathname to walk
2384 * @path: pointer to container for result
2385 * @flags: lookup flags
2386 *
2387 * Look up the given name, but don't attempt to revalidate the last component.
2388 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2389 */
2390 static int
2391 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2392 struct nameidata *nd, unsigned int flags)
2393 {
2394 int err = path_init(dfd, name, flags, nd);
2395 if (unlikely(err))
2396 goto out;
2397
2398 while ((err = mountpoint_last(nd, path)) > 0) {
2399 err = trailing_symlink(nd);
2400 if (err)
2401 break;
2402 }
2403 out:
2404 path_cleanup(nd);
2405 return err;
2406 }
2407
2408 static int
2409 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2410 unsigned int flags)
2411 {
2412 struct nameidata nd;
2413 int error;
2414 if (IS_ERR(name))
2415 return PTR_ERR(name);
2416 set_nameidata(&nd);
2417 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2418 if (unlikely(error == -ECHILD))
2419 error = path_mountpoint(dfd, name, path, &nd, flags);
2420 if (unlikely(error == -ESTALE))
2421 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2422 if (likely(!error))
2423 audit_inode(name, path->dentry, 0);
2424 restore_nameidata(&nd);
2425 putname(name);
2426 return error;
2427 }
2428
2429 /**
2430 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2431 * @dfd: directory file descriptor
2432 * @name: pathname from userland
2433 * @flags: lookup flags
2434 * @path: pointer to container to hold result
2435 *
2436 * A umount is a special case for path walking. We're not actually interested
2437 * in the inode in this situation, and ESTALE errors can be a problem. We
2438 * simply want track down the dentry and vfsmount attached at the mountpoint
2439 * and avoid revalidating the last component.
2440 *
2441 * Returns 0 and populates "path" on success.
2442 */
2443 int
2444 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2445 struct path *path)
2446 {
2447 return filename_mountpoint(dfd, getname(name), path, flags);
2448 }
2449
2450 int
2451 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2452 unsigned int flags)
2453 {
2454 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2455 }
2456 EXPORT_SYMBOL(kern_path_mountpoint);
2457
2458 int __check_sticky(struct inode *dir, struct inode *inode)
2459 {
2460 kuid_t fsuid = current_fsuid();
2461
2462 if (uid_eq(inode->i_uid, fsuid))
2463 return 0;
2464 if (uid_eq(dir->i_uid, fsuid))
2465 return 0;
2466 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2467 }
2468 EXPORT_SYMBOL(__check_sticky);
2469
2470 /*
2471 * Check whether we can remove a link victim from directory dir, check
2472 * whether the type of victim is right.
2473 * 1. We can't do it if dir is read-only (done in permission())
2474 * 2. We should have write and exec permissions on dir
2475 * 3. We can't remove anything from append-only dir
2476 * 4. We can't do anything with immutable dir (done in permission())
2477 * 5. If the sticky bit on dir is set we should either
2478 * a. be owner of dir, or
2479 * b. be owner of victim, or
2480 * c. have CAP_FOWNER capability
2481 * 6. If the victim is append-only or immutable we can't do antyhing with
2482 * links pointing to it.
2483 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2484 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2485 * 9. We can't remove a root or mountpoint.
2486 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2487 * nfs_async_unlink().
2488 */
2489 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2490 {
2491 struct inode *inode = victim->d_inode;
2492 int error;
2493
2494 if (d_is_negative(victim))
2495 return -ENOENT;
2496 BUG_ON(!inode);
2497
2498 BUG_ON(victim->d_parent->d_inode != dir);
2499 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2500
2501 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2502 if (error)
2503 return error;
2504 if (IS_APPEND(dir))
2505 return -EPERM;
2506
2507 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2508 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2509 return -EPERM;
2510 if (isdir) {
2511 if (!d_is_dir(victim))
2512 return -ENOTDIR;
2513 if (IS_ROOT(victim))
2514 return -EBUSY;
2515 } else if (d_is_dir(victim))
2516 return -EISDIR;
2517 if (IS_DEADDIR(dir))
2518 return -ENOENT;
2519 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2520 return -EBUSY;
2521 return 0;
2522 }
2523
2524 /* Check whether we can create an object with dentry child in directory
2525 * dir.
2526 * 1. We can't do it if child already exists (open has special treatment for
2527 * this case, but since we are inlined it's OK)
2528 * 2. We can't do it if dir is read-only (done in permission())
2529 * 3. We should have write and exec permissions on dir
2530 * 4. We can't do it if dir is immutable (done in permission())
2531 */
2532 static inline int may_create(struct inode *dir, struct dentry *child)
2533 {
2534 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2535 if (child->d_inode)
2536 return -EEXIST;
2537 if (IS_DEADDIR(dir))
2538 return -ENOENT;
2539 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2540 }
2541
2542 /*
2543 * p1 and p2 should be directories on the same fs.
2544 */
2545 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2546 {
2547 struct dentry *p;
2548
2549 if (p1 == p2) {
2550 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2551 return NULL;
2552 }
2553
2554 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2555
2556 p = d_ancestor(p2, p1);
2557 if (p) {
2558 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2559 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2560 return p;
2561 }
2562
2563 p = d_ancestor(p1, p2);
2564 if (p) {
2565 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2566 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2567 return p;
2568 }
2569
2570 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2571 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2572 return NULL;
2573 }
2574 EXPORT_SYMBOL(lock_rename);
2575
2576 void unlock_rename(struct dentry *p1, struct dentry *p2)
2577 {
2578 mutex_unlock(&p1->d_inode->i_mutex);
2579 if (p1 != p2) {
2580 mutex_unlock(&p2->d_inode->i_mutex);
2581 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2582 }
2583 }
2584 EXPORT_SYMBOL(unlock_rename);
2585
2586 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2587 bool want_excl)
2588 {
2589 int error = may_create(dir, dentry);
2590 if (error)
2591 return error;
2592
2593 if (!dir->i_op->create)
2594 return -EACCES; /* shouldn't it be ENOSYS? */
2595 mode &= S_IALLUGO;
2596 mode |= S_IFREG;
2597 error = security_inode_create(dir, dentry, mode);
2598 if (error)
2599 return error;
2600 error = dir->i_op->create(dir, dentry, mode, want_excl);
2601 if (!error)
2602 fsnotify_create(dir, dentry);
2603 return error;
2604 }
2605 EXPORT_SYMBOL(vfs_create);
2606
2607 static int may_open(struct path *path, int acc_mode, int flag)
2608 {
2609 struct dentry *dentry = path->dentry;
2610 struct inode *inode = dentry->d_inode;
2611 int error;
2612
2613 /* O_PATH? */
2614 if (!acc_mode)
2615 return 0;
2616
2617 if (!inode)
2618 return -ENOENT;
2619
2620 switch (inode->i_mode & S_IFMT) {
2621 case S_IFLNK:
2622 return -ELOOP;
2623 case S_IFDIR:
2624 if (acc_mode & MAY_WRITE)
2625 return -EISDIR;
2626 break;
2627 case S_IFBLK:
2628 case S_IFCHR:
2629 if (path->mnt->mnt_flags & MNT_NODEV)
2630 return -EACCES;
2631 /*FALLTHRU*/
2632 case S_IFIFO:
2633 case S_IFSOCK:
2634 flag &= ~O_TRUNC;
2635 break;
2636 }
2637
2638 error = inode_permission(inode, acc_mode);
2639 if (error)
2640 return error;
2641
2642 /*
2643 * An append-only file must be opened in append mode for writing.
2644 */
2645 if (IS_APPEND(inode)) {
2646 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2647 return -EPERM;
2648 if (flag & O_TRUNC)
2649 return -EPERM;
2650 }
2651
2652 /* O_NOATIME can only be set by the owner or superuser */
2653 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2654 return -EPERM;
2655
2656 return 0;
2657 }
2658
2659 static int handle_truncate(struct file *filp)
2660 {
2661 struct path *path = &filp->f_path;
2662 struct inode *inode = path->dentry->d_inode;
2663 int error = get_write_access(inode);
2664 if (error)
2665 return error;
2666 /*
2667 * Refuse to truncate files with mandatory locks held on them.
2668 */
2669 error = locks_verify_locked(filp);
2670 if (!error)
2671 error = security_path_truncate(path);
2672 if (!error) {
2673 error = do_truncate(path->dentry, 0,
2674 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2675 filp);
2676 }
2677 put_write_access(inode);
2678 return error;
2679 }
2680
2681 static inline int open_to_namei_flags(int flag)
2682 {
2683 if ((flag & O_ACCMODE) == 3)
2684 flag--;
2685 return flag;
2686 }
2687
2688 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2689 {
2690 int error = security_path_mknod(dir, dentry, mode, 0);
2691 if (error)
2692 return error;
2693
2694 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2695 if (error)
2696 return error;
2697
2698 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2699 }
2700
2701 /*
2702 * Attempt to atomically look up, create and open a file from a negative
2703 * dentry.
2704 *
2705 * Returns 0 if successful. The file will have been created and attached to
2706 * @file by the filesystem calling finish_open().
2707 *
2708 * Returns 1 if the file was looked up only or didn't need creating. The
2709 * caller will need to perform the open themselves. @path will have been
2710 * updated to point to the new dentry. This may be negative.
2711 *
2712 * Returns an error code otherwise.
2713 */
2714 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2715 struct path *path, struct file *file,
2716 const struct open_flags *op,
2717 bool got_write, bool need_lookup,
2718 int *opened)
2719 {
2720 struct inode *dir = nd->path.dentry->d_inode;
2721 unsigned open_flag = open_to_namei_flags(op->open_flag);
2722 umode_t mode;
2723 int error;
2724 int acc_mode;
2725 int create_error = 0;
2726 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2727 bool excl;
2728
2729 BUG_ON(dentry->d_inode);
2730
2731 /* Don't create child dentry for a dead directory. */
2732 if (unlikely(IS_DEADDIR(dir))) {
2733 error = -ENOENT;
2734 goto out;
2735 }
2736
2737 mode = op->mode;
2738 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2739 mode &= ~current_umask();
2740
2741 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2742 if (excl)
2743 open_flag &= ~O_TRUNC;
2744
2745 /*
2746 * Checking write permission is tricky, bacuse we don't know if we are
2747 * going to actually need it: O_CREAT opens should work as long as the
2748 * file exists. But checking existence breaks atomicity. The trick is
2749 * to check access and if not granted clear O_CREAT from the flags.
2750 *
2751 * Another problem is returing the "right" error value (e.g. for an
2752 * O_EXCL open we want to return EEXIST not EROFS).
2753 */
2754 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2755 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2756 if (!(open_flag & O_CREAT)) {
2757 /*
2758 * No O_CREATE -> atomicity not a requirement -> fall
2759 * back to lookup + open
2760 */
2761 goto no_open;
2762 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2763 /* Fall back and fail with the right error */
2764 create_error = -EROFS;
2765 goto no_open;
2766 } else {
2767 /* No side effects, safe to clear O_CREAT */
2768 create_error = -EROFS;
2769 open_flag &= ~O_CREAT;
2770 }
2771 }
2772
2773 if (open_flag & O_CREAT) {
2774 error = may_o_create(&nd->path, dentry, mode);
2775 if (error) {
2776 create_error = error;
2777 if (open_flag & O_EXCL)
2778 goto no_open;
2779 open_flag &= ~O_CREAT;
2780 }
2781 }
2782
2783 if (nd->flags & LOOKUP_DIRECTORY)
2784 open_flag |= O_DIRECTORY;
2785
2786 file->f_path.dentry = DENTRY_NOT_SET;
2787 file->f_path.mnt = nd->path.mnt;
2788 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2789 opened);
2790 if (error < 0) {
2791 if (create_error && error == -ENOENT)
2792 error = create_error;
2793 goto out;
2794 }
2795
2796 if (error) { /* returned 1, that is */
2797 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2798 error = -EIO;
2799 goto out;
2800 }
2801 if (file->f_path.dentry) {
2802 dput(dentry);
2803 dentry = file->f_path.dentry;
2804 }
2805 if (*opened & FILE_CREATED)
2806 fsnotify_create(dir, dentry);
2807 if (!dentry->d_inode) {
2808 WARN_ON(*opened & FILE_CREATED);
2809 if (create_error) {
2810 error = create_error;
2811 goto out;
2812 }
2813 } else {
2814 if (excl && !(*opened & FILE_CREATED)) {
2815 error = -EEXIST;
2816 goto out;
2817 }
2818 }
2819 goto looked_up;
2820 }
2821
2822 /*
2823 * We didn't have the inode before the open, so check open permission
2824 * here.
2825 */
2826 acc_mode = op->acc_mode;
2827 if (*opened & FILE_CREATED) {
2828 WARN_ON(!(open_flag & O_CREAT));
2829 fsnotify_create(dir, dentry);
2830 acc_mode = MAY_OPEN;
2831 }
2832 error = may_open(&file->f_path, acc_mode, open_flag);
2833 if (error)
2834 fput(file);
2835
2836 out:
2837 dput(dentry);
2838 return error;
2839
2840 no_open:
2841 if (need_lookup) {
2842 dentry = lookup_real(dir, dentry, nd->flags);
2843 if (IS_ERR(dentry))
2844 return PTR_ERR(dentry);
2845
2846 if (create_error) {
2847 int open_flag = op->open_flag;
2848
2849 error = create_error;
2850 if ((open_flag & O_EXCL)) {
2851 if (!dentry->d_inode)
2852 goto out;
2853 } else if (!dentry->d_inode) {
2854 goto out;
2855 } else if ((open_flag & O_TRUNC) &&
2856 d_is_reg(dentry)) {
2857 goto out;
2858 }
2859 /* will fail later, go on to get the right error */
2860 }
2861 }
2862 looked_up:
2863 path->dentry = dentry;
2864 path->mnt = nd->path.mnt;
2865 return 1;
2866 }
2867
2868 /*
2869 * Look up and maybe create and open the last component.
2870 *
2871 * Must be called with i_mutex held on parent.
2872 *
2873 * Returns 0 if the file was successfully atomically created (if necessary) and
2874 * opened. In this case the file will be returned attached to @file.
2875 *
2876 * Returns 1 if the file was not completely opened at this time, though lookups
2877 * and creations will have been performed and the dentry returned in @path will
2878 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2879 * specified then a negative dentry may be returned.
2880 *
2881 * An error code is returned otherwise.
2882 *
2883 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2884 * cleared otherwise prior to returning.
2885 */
2886 static int lookup_open(struct nameidata *nd, struct path *path,
2887 struct file *file,
2888 const struct open_flags *op,
2889 bool got_write, int *opened)
2890 {
2891 struct dentry *dir = nd->path.dentry;
2892 struct inode *dir_inode = dir->d_inode;
2893 struct dentry *dentry;
2894 int error;
2895 bool need_lookup;
2896
2897 *opened &= ~FILE_CREATED;
2898 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2899 if (IS_ERR(dentry))
2900 return PTR_ERR(dentry);
2901
2902 /* Cached positive dentry: will open in f_op->open */
2903 if (!need_lookup && dentry->d_inode)
2904 goto out_no_open;
2905
2906 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2907 return atomic_open(nd, dentry, path, file, op, got_write,
2908 need_lookup, opened);
2909 }
2910
2911 if (need_lookup) {
2912 BUG_ON(dentry->d_inode);
2913
2914 dentry = lookup_real(dir_inode, dentry, nd->flags);
2915 if (IS_ERR(dentry))
2916 return PTR_ERR(dentry);
2917 }
2918
2919 /* Negative dentry, just create the file */
2920 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2921 umode_t mode = op->mode;
2922 if (!IS_POSIXACL(dir->d_inode))
2923 mode &= ~current_umask();
2924 /*
2925 * This write is needed to ensure that a
2926 * rw->ro transition does not occur between
2927 * the time when the file is created and when
2928 * a permanent write count is taken through
2929 * the 'struct file' in finish_open().
2930 */
2931 if (!got_write) {
2932 error = -EROFS;
2933 goto out_dput;
2934 }
2935 *opened |= FILE_CREATED;
2936 error = security_path_mknod(&nd->path, dentry, mode, 0);
2937 if (error)
2938 goto out_dput;
2939 error = vfs_create(dir->d_inode, dentry, mode,
2940 nd->flags & LOOKUP_EXCL);
2941 if (error)
2942 goto out_dput;
2943 }
2944 out_no_open:
2945 path->dentry = dentry;
2946 path->mnt = nd->path.mnt;
2947 return 1;
2948
2949 out_dput:
2950 dput(dentry);
2951 return error;
2952 }
2953
2954 /*
2955 * Handle the last step of open()
2956 */
2957 static int do_last(struct nameidata *nd,
2958 struct file *file, const struct open_flags *op,
2959 int *opened, struct filename *name)
2960 {
2961 struct dentry *dir = nd->path.dentry;
2962 int open_flag = op->open_flag;
2963 bool will_truncate = (open_flag & O_TRUNC) != 0;
2964 bool got_write = false;
2965 int acc_mode = op->acc_mode;
2966 struct inode *inode;
2967 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2968 struct path path;
2969 bool retried = false;
2970 int error;
2971
2972 nd->flags &= ~LOOKUP_PARENT;
2973 nd->flags |= op->intent;
2974
2975 if (nd->last_type != LAST_NORM) {
2976 error = handle_dots(nd, nd->last_type);
2977 if (unlikely(error)) {
2978 terminate_walk(nd);
2979 return error;
2980 }
2981 goto finish_open;
2982 }
2983
2984 if (!(open_flag & O_CREAT)) {
2985 if (nd->last.name[nd->last.len])
2986 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2987 /* we _can_ be in RCU mode here */
2988 error = lookup_fast(nd, &path, &inode);
2989 if (likely(!error))
2990 goto finish_lookup;
2991
2992 if (error < 0)
2993 goto out;
2994
2995 BUG_ON(nd->inode != dir->d_inode);
2996 } else {
2997 /* create side of things */
2998 /*
2999 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3000 * has been cleared when we got to the last component we are
3001 * about to look up
3002 */
3003 error = complete_walk(nd);
3004 if (error) {
3005 if (nd->depth)
3006 put_link(nd);
3007 return error;
3008 }
3009
3010 audit_inode(name, dir, LOOKUP_PARENT);
3011 error = -EISDIR;
3012 /* trailing slashes? */
3013 if (nd->last.name[nd->last.len])
3014 goto out;
3015 }
3016
3017 retry_lookup:
3018 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3019 error = mnt_want_write(nd->path.mnt);
3020 if (!error)
3021 got_write = true;
3022 /*
3023 * do _not_ fail yet - we might not need that or fail with
3024 * a different error; let lookup_open() decide; we'll be
3025 * dropping this one anyway.
3026 */
3027 }
3028 mutex_lock(&dir->d_inode->i_mutex);
3029 error = lookup_open(nd, &path, file, op, got_write, opened);
3030 mutex_unlock(&dir->d_inode->i_mutex);
3031
3032 if (error <= 0) {
3033 if (error)
3034 goto out;
3035
3036 if ((*opened & FILE_CREATED) ||
3037 !S_ISREG(file_inode(file)->i_mode))
3038 will_truncate = false;
3039
3040 audit_inode(name, file->f_path.dentry, 0);
3041 goto opened;
3042 }
3043
3044 if (*opened & FILE_CREATED) {
3045 /* Don't check for write permission, don't truncate */
3046 open_flag &= ~O_TRUNC;
3047 will_truncate = false;
3048 acc_mode = MAY_OPEN;
3049 path_to_nameidata(&path, nd);
3050 goto finish_open_created;
3051 }
3052
3053 /*
3054 * create/update audit record if it already exists.
3055 */
3056 if (d_is_positive(path.dentry))
3057 audit_inode(name, path.dentry, 0);
3058
3059 /*
3060 * If atomic_open() acquired write access it is dropped now due to
3061 * possible mount and symlink following (this might be optimized away if
3062 * necessary...)
3063 */
3064 if (got_write) {
3065 mnt_drop_write(nd->path.mnt);
3066 got_write = false;
3067 }
3068
3069 error = -EEXIST;
3070 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3071 goto exit_dput;
3072
3073 error = follow_managed(&path, nd->flags);
3074 if (error < 0)
3075 goto exit_dput;
3076
3077 if (error)
3078 nd->flags |= LOOKUP_JUMPED;
3079
3080 BUG_ON(nd->flags & LOOKUP_RCU);
3081 inode = path.dentry->d_inode;
3082 error = -ENOENT;
3083 if (d_is_negative(path.dentry)) {
3084 path_to_nameidata(&path, nd);
3085 goto out;
3086 }
3087 finish_lookup:
3088 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3089 if (nd->flags & LOOKUP_RCU) {
3090 if (unlikely(nd->path.mnt != path.mnt ||
3091 unlazy_walk(nd, path.dentry))) {
3092 error = -ECHILD;
3093 goto out;
3094 }
3095 }
3096 BUG_ON(inode != path.dentry->d_inode);
3097 if (nd->depth)
3098 put_link(nd);
3099 nd->link = path;
3100 return 1;
3101 }
3102
3103 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3104 path_to_nameidata(&path, nd);
3105 error = -ELOOP;
3106 goto out;
3107 }
3108
3109 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3110 path_to_nameidata(&path, nd);
3111 } else {
3112 save_parent.dentry = nd->path.dentry;
3113 save_parent.mnt = mntget(path.mnt);
3114 nd->path.dentry = path.dentry;
3115
3116 }
3117 nd->inode = inode;
3118 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3119 finish_open:
3120 error = complete_walk(nd);
3121 if (error) {
3122 if (nd->depth)
3123 put_link(nd);
3124 path_put(&save_parent);
3125 return error;
3126 }
3127 audit_inode(name, nd->path.dentry, 0);
3128 error = -EISDIR;
3129 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3130 goto out;
3131 error = -ENOTDIR;
3132 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3133 goto out;
3134 if (!d_is_reg(nd->path.dentry))
3135 will_truncate = false;
3136
3137 if (will_truncate) {
3138 error = mnt_want_write(nd->path.mnt);
3139 if (error)
3140 goto out;
3141 got_write = true;
3142 }
3143 finish_open_created:
3144 error = may_open(&nd->path, acc_mode, open_flag);
3145 if (error)
3146 goto out;
3147
3148 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3149 error = vfs_open(&nd->path, file, current_cred());
3150 if (!error) {
3151 *opened |= FILE_OPENED;
3152 } else {
3153 if (error == -EOPENSTALE)
3154 goto stale_open;
3155 goto out;
3156 }
3157 opened:
3158 error = open_check_o_direct(file);
3159 if (error)
3160 goto exit_fput;
3161 error = ima_file_check(file, op->acc_mode, *opened);
3162 if (error)
3163 goto exit_fput;
3164
3165 if (will_truncate) {
3166 error = handle_truncate(file);
3167 if (error)
3168 goto exit_fput;
3169 }
3170 out:
3171 if (got_write)
3172 mnt_drop_write(nd->path.mnt);
3173 path_put(&save_parent);
3174 terminate_walk(nd);
3175 return error;
3176
3177 exit_dput:
3178 path_put_conditional(&path, nd);
3179 goto out;
3180 exit_fput:
3181 fput(file);
3182 goto out;
3183
3184 stale_open:
3185 /* If no saved parent or already retried then can't retry */
3186 if (!save_parent.dentry || retried)
3187 goto out;
3188
3189 BUG_ON(save_parent.dentry != dir);
3190 path_put(&nd->path);
3191 nd->path = save_parent;
3192 nd->inode = dir->d_inode;
3193 save_parent.mnt = NULL;
3194 save_parent.dentry = NULL;
3195 if (got_write) {
3196 mnt_drop_write(nd->path.mnt);
3197 got_write = false;
3198 }
3199 retried = true;
3200 goto retry_lookup;
3201 }
3202
3203 static int do_tmpfile(int dfd, struct filename *pathname,
3204 struct nameidata *nd, int flags,
3205 const struct open_flags *op,
3206 struct file *file, int *opened)
3207 {
3208 static const struct qstr name = QSTR_INIT("/", 1);
3209 struct dentry *dentry, *child;
3210 struct inode *dir;
3211 int error = path_lookupat(dfd, pathname,
3212 flags | LOOKUP_DIRECTORY, nd);
3213 if (unlikely(error))
3214 return error;
3215 error = mnt_want_write(nd->path.mnt);
3216 if (unlikely(error))
3217 goto out;
3218 /* we want directory to be writable */
3219 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3220 if (error)
3221 goto out2;
3222 dentry = nd->path.dentry;
3223 dir = dentry->d_inode;
3224 if (!dir->i_op->tmpfile) {
3225 error = -EOPNOTSUPP;
3226 goto out2;
3227 }
3228 child = d_alloc(dentry, &name);
3229 if (unlikely(!child)) {
3230 error = -ENOMEM;
3231 goto out2;
3232 }
3233 nd->flags &= ~LOOKUP_DIRECTORY;
3234 nd->flags |= op->intent;
3235 dput(nd->path.dentry);
3236 nd->path.dentry = child;
3237 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3238 if (error)
3239 goto out2;
3240 audit_inode(pathname, nd->path.dentry, 0);
3241 /* Don't check for other permissions, the inode was just created */
3242 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3243 if (error)
3244 goto out2;
3245 file->f_path.mnt = nd->path.mnt;
3246 error = finish_open(file, nd->path.dentry, NULL, opened);
3247 if (error)
3248 goto out2;
3249 error = open_check_o_direct(file);
3250 if (error) {
3251 fput(file);
3252 } else if (!(op->open_flag & O_EXCL)) {
3253 struct inode *inode = file_inode(file);
3254 spin_lock(&inode->i_lock);
3255 inode->i_state |= I_LINKABLE;
3256 spin_unlock(&inode->i_lock);
3257 }
3258 out2:
3259 mnt_drop_write(nd->path.mnt);
3260 out:
3261 path_put(&nd->path);
3262 return error;
3263 }
3264
3265 static struct file *path_openat(int dfd, struct filename *pathname,
3266 struct nameidata *nd, const struct open_flags *op, int flags)
3267 {
3268 struct file *file;
3269 int opened = 0;
3270 int error;
3271
3272 file = get_empty_filp();
3273 if (IS_ERR(file))
3274 return file;
3275
3276 file->f_flags = op->open_flag;
3277
3278 if (unlikely(file->f_flags & __O_TMPFILE)) {
3279 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3280 goto out2;
3281 }
3282
3283 error = path_init(dfd, pathname, flags, nd);
3284 if (unlikely(error))
3285 goto out;
3286
3287 while ((error = do_last(nd, file, op, &opened, pathname)) > 0) {
3288 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3289 error = trailing_symlink(nd);
3290 if (unlikely(error))
3291 break;
3292 }
3293 out:
3294 path_cleanup(nd);
3295 out2:
3296 if (!(opened & FILE_OPENED)) {
3297 BUG_ON(!error);
3298 put_filp(file);
3299 }
3300 if (unlikely(error)) {
3301 if (error == -EOPENSTALE) {
3302 if (flags & LOOKUP_RCU)
3303 error = -ECHILD;
3304 else
3305 error = -ESTALE;
3306 }
3307 file = ERR_PTR(error);
3308 }
3309 return file;
3310 }
3311
3312 struct file *do_filp_open(int dfd, struct filename *pathname,
3313 const struct open_flags *op)
3314 {
3315 struct nameidata nd;
3316 int flags = op->lookup_flags;
3317 struct file *filp;
3318
3319 set_nameidata(&nd);
3320 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3321 if (unlikely(filp == ERR_PTR(-ECHILD)))
3322 filp = path_openat(dfd, pathname, &nd, op, flags);
3323 if (unlikely(filp == ERR_PTR(-ESTALE)))
3324 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3325 restore_nameidata(&nd);
3326 return filp;
3327 }
3328
3329 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3330 const char *name, const struct open_flags *op)
3331 {
3332 struct nameidata nd;
3333 struct file *file;
3334 struct filename *filename;
3335 int flags = op->lookup_flags | LOOKUP_ROOT;
3336
3337 nd.root.mnt = mnt;
3338 nd.root.dentry = dentry;
3339 set_nameidata(&nd);
3340
3341 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3342 return ERR_PTR(-ELOOP);
3343
3344 filename = getname_kernel(name);
3345 if (unlikely(IS_ERR(filename)))
3346 return ERR_CAST(filename);
3347
3348 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3349 if (unlikely(file == ERR_PTR(-ECHILD)))
3350 file = path_openat(-1, filename, &nd, op, flags);
3351 if (unlikely(file == ERR_PTR(-ESTALE)))
3352 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3353 restore_nameidata(&nd);
3354 putname(filename);
3355 return file;
3356 }
3357
3358 static struct dentry *filename_create(int dfd, struct filename *name,
3359 struct path *path, unsigned int lookup_flags)
3360 {
3361 struct dentry *dentry = ERR_PTR(-EEXIST);
3362 struct nameidata nd;
3363 int err2;
3364 int error;
3365 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3366
3367 /*
3368 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3369 * other flags passed in are ignored!
3370 */
3371 lookup_flags &= LOOKUP_REVAL;
3372
3373 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3374 if (error)
3375 return ERR_PTR(error);
3376
3377 /*
3378 * Yucky last component or no last component at all?
3379 * (foo/., foo/.., /////)
3380 */
3381 if (nd.last_type != LAST_NORM)
3382 goto out;
3383 nd.flags &= ~LOOKUP_PARENT;
3384 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3385
3386 /* don't fail immediately if it's r/o, at least try to report other errors */
3387 err2 = mnt_want_write(nd.path.mnt);
3388 /*
3389 * Do the final lookup.
3390 */
3391 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3392 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3393 if (IS_ERR(dentry))
3394 goto unlock;
3395
3396 error = -EEXIST;
3397 if (d_is_positive(dentry))
3398 goto fail;
3399
3400 /*
3401 * Special case - lookup gave negative, but... we had foo/bar/
3402 * From the vfs_mknod() POV we just have a negative dentry -
3403 * all is fine. Let's be bastards - you had / on the end, you've
3404 * been asking for (non-existent) directory. -ENOENT for you.
3405 */
3406 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3407 error = -ENOENT;
3408 goto fail;
3409 }
3410 if (unlikely(err2)) {
3411 error = err2;
3412 goto fail;
3413 }
3414 *path = nd.path;
3415 return dentry;
3416 fail:
3417 dput(dentry);
3418 dentry = ERR_PTR(error);
3419 unlock:
3420 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3421 if (!err2)
3422 mnt_drop_write(nd.path.mnt);
3423 out:
3424 path_put(&nd.path);
3425 return dentry;
3426 }
3427
3428 struct dentry *kern_path_create(int dfd, const char *pathname,
3429 struct path *path, unsigned int lookup_flags)
3430 {
3431 struct filename *filename = getname_kernel(pathname);
3432 struct dentry *res;
3433
3434 if (IS_ERR(filename))
3435 return ERR_CAST(filename);
3436 res = filename_create(dfd, filename, path, lookup_flags);
3437 putname(filename);
3438 return res;
3439 }
3440 EXPORT_SYMBOL(kern_path_create);
3441
3442 void done_path_create(struct path *path, struct dentry *dentry)
3443 {
3444 dput(dentry);
3445 mutex_unlock(&path->dentry->d_inode->i_mutex);
3446 mnt_drop_write(path->mnt);
3447 path_put(path);
3448 }
3449 EXPORT_SYMBOL(done_path_create);
3450
3451 struct dentry *user_path_create(int dfd, const char __user *pathname,
3452 struct path *path, unsigned int lookup_flags)
3453 {
3454 struct filename *tmp = getname(pathname);
3455 struct dentry *res;
3456 if (IS_ERR(tmp))
3457 return ERR_CAST(tmp);
3458 res = filename_create(dfd, tmp, path, lookup_flags);
3459 putname(tmp);
3460 return res;
3461 }
3462 EXPORT_SYMBOL(user_path_create);
3463
3464 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3465 {
3466 int error = may_create(dir, dentry);
3467
3468 if (error)
3469 return error;
3470
3471 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3472 return -EPERM;
3473
3474 if (!dir->i_op->mknod)
3475 return -EPERM;
3476
3477 error = devcgroup_inode_mknod(mode, dev);
3478 if (error)
3479 return error;
3480
3481 error = security_inode_mknod(dir, dentry, mode, dev);
3482 if (error)
3483 return error;
3484
3485 error = dir->i_op->mknod(dir, dentry, mode, dev);
3486 if (!error)
3487 fsnotify_create(dir, dentry);
3488 return error;
3489 }
3490 EXPORT_SYMBOL(vfs_mknod);
3491
3492 static int may_mknod(umode_t mode)
3493 {
3494 switch (mode & S_IFMT) {
3495 case S_IFREG:
3496 case S_IFCHR:
3497 case S_IFBLK:
3498 case S_IFIFO:
3499 case S_IFSOCK:
3500 case 0: /* zero mode translates to S_IFREG */
3501 return 0;
3502 case S_IFDIR:
3503 return -EPERM;
3504 default:
3505 return -EINVAL;
3506 }
3507 }
3508
3509 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3510 unsigned, dev)
3511 {
3512 struct dentry *dentry;
3513 struct path path;
3514 int error;
3515 unsigned int lookup_flags = 0;
3516
3517 error = may_mknod(mode);
3518 if (error)
3519 return error;
3520 retry:
3521 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3522 if (IS_ERR(dentry))
3523 return PTR_ERR(dentry);
3524
3525 if (!IS_POSIXACL(path.dentry->d_inode))
3526 mode &= ~current_umask();
3527 error = security_path_mknod(&path, dentry, mode, dev);
3528 if (error)
3529 goto out;
3530 switch (mode & S_IFMT) {
3531 case 0: case S_IFREG:
3532 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3533 break;
3534 case S_IFCHR: case S_IFBLK:
3535 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3536 new_decode_dev(dev));
3537 break;
3538 case S_IFIFO: case S_IFSOCK:
3539 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3540 break;
3541 }
3542 out:
3543 done_path_create(&path, dentry);
3544 if (retry_estale(error, lookup_flags)) {
3545 lookup_flags |= LOOKUP_REVAL;
3546 goto retry;
3547 }
3548 return error;
3549 }
3550
3551 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3552 {
3553 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3554 }
3555
3556 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3557 {
3558 int error = may_create(dir, dentry);
3559 unsigned max_links = dir->i_sb->s_max_links;
3560
3561 if (error)
3562 return error;
3563
3564 if (!dir->i_op->mkdir)
3565 return -EPERM;
3566
3567 mode &= (S_IRWXUGO|S_ISVTX);
3568 error = security_inode_mkdir(dir, dentry, mode);
3569 if (error)
3570 return error;
3571
3572 if (max_links && dir->i_nlink >= max_links)
3573 return -EMLINK;
3574
3575 error = dir->i_op->mkdir(dir, dentry, mode);
3576 if (!error)
3577 fsnotify_mkdir(dir, dentry);
3578 return error;
3579 }
3580 EXPORT_SYMBOL(vfs_mkdir);
3581
3582 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3583 {
3584 struct dentry *dentry;
3585 struct path path;
3586 int error;
3587 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3588
3589 retry:
3590 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3591 if (IS_ERR(dentry))
3592 return PTR_ERR(dentry);
3593
3594 if (!IS_POSIXACL(path.dentry->d_inode))
3595 mode &= ~current_umask();
3596 error = security_path_mkdir(&path, dentry, mode);
3597 if (!error)
3598 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3599 done_path_create(&path, dentry);
3600 if (retry_estale(error, lookup_flags)) {
3601 lookup_flags |= LOOKUP_REVAL;
3602 goto retry;
3603 }
3604 return error;
3605 }
3606
3607 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3608 {
3609 return sys_mkdirat(AT_FDCWD, pathname, mode);
3610 }
3611
3612 /*
3613 * The dentry_unhash() helper will try to drop the dentry early: we
3614 * should have a usage count of 1 if we're the only user of this
3615 * dentry, and if that is true (possibly after pruning the dcache),
3616 * then we drop the dentry now.
3617 *
3618 * A low-level filesystem can, if it choses, legally
3619 * do a
3620 *
3621 * if (!d_unhashed(dentry))
3622 * return -EBUSY;
3623 *
3624 * if it cannot handle the case of removing a directory
3625 * that is still in use by something else..
3626 */
3627 void dentry_unhash(struct dentry *dentry)
3628 {
3629 shrink_dcache_parent(dentry);
3630 spin_lock(&dentry->d_lock);
3631 if (dentry->d_lockref.count == 1)
3632 __d_drop(dentry);
3633 spin_unlock(&dentry->d_lock);
3634 }
3635 EXPORT_SYMBOL(dentry_unhash);
3636
3637 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3638 {
3639 int error = may_delete(dir, dentry, 1);
3640
3641 if (error)
3642 return error;
3643
3644 if (!dir->i_op->rmdir)
3645 return -EPERM;
3646
3647 dget(dentry);
3648 mutex_lock(&dentry->d_inode->i_mutex);
3649
3650 error = -EBUSY;
3651 if (is_local_mountpoint(dentry))
3652 goto out;
3653
3654 error = security_inode_rmdir(dir, dentry);
3655 if (error)
3656 goto out;
3657
3658 shrink_dcache_parent(dentry);
3659 error = dir->i_op->rmdir(dir, dentry);
3660 if (error)
3661 goto out;
3662
3663 dentry->d_inode->i_flags |= S_DEAD;
3664 dont_mount(dentry);
3665 detach_mounts(dentry);
3666
3667 out:
3668 mutex_unlock(&dentry->d_inode->i_mutex);
3669 dput(dentry);
3670 if (!error)
3671 d_delete(dentry);
3672 return error;
3673 }
3674 EXPORT_SYMBOL(vfs_rmdir);
3675
3676 static long do_rmdir(int dfd, const char __user *pathname)
3677 {
3678 int error = 0;
3679 struct filename *name;
3680 struct dentry *dentry;
3681 struct path path;
3682 struct qstr last;
3683 int type;
3684 unsigned int lookup_flags = 0;
3685 retry:
3686 name = user_path_parent(dfd, pathname,
3687 &path, &last, &type, lookup_flags);
3688 if (IS_ERR(name))
3689 return PTR_ERR(name);
3690
3691 switch (type) {
3692 case LAST_DOTDOT:
3693 error = -ENOTEMPTY;
3694 goto exit1;
3695 case LAST_DOT:
3696 error = -EINVAL;
3697 goto exit1;
3698 case LAST_ROOT:
3699 error = -EBUSY;
3700 goto exit1;
3701 }
3702
3703 error = mnt_want_write(path.mnt);
3704 if (error)
3705 goto exit1;
3706
3707 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3708 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3709 error = PTR_ERR(dentry);
3710 if (IS_ERR(dentry))
3711 goto exit2;
3712 if (!dentry->d_inode) {
3713 error = -ENOENT;
3714 goto exit3;
3715 }
3716 error = security_path_rmdir(&path, dentry);
3717 if (error)
3718 goto exit3;
3719 error = vfs_rmdir(path.dentry->d_inode, dentry);
3720 exit3:
3721 dput(dentry);
3722 exit2:
3723 mutex_unlock(&path.dentry->d_inode->i_mutex);
3724 mnt_drop_write(path.mnt);
3725 exit1:
3726 path_put(&path);
3727 putname(name);
3728 if (retry_estale(error, lookup_flags)) {
3729 lookup_flags |= LOOKUP_REVAL;
3730 goto retry;
3731 }
3732 return error;
3733 }
3734
3735 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3736 {
3737 return do_rmdir(AT_FDCWD, pathname);
3738 }
3739
3740 /**
3741 * vfs_unlink - unlink a filesystem object
3742 * @dir: parent directory
3743 * @dentry: victim
3744 * @delegated_inode: returns victim inode, if the inode is delegated.
3745 *
3746 * The caller must hold dir->i_mutex.
3747 *
3748 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3749 * return a reference to the inode in delegated_inode. The caller
3750 * should then break the delegation on that inode and retry. Because
3751 * breaking a delegation may take a long time, the caller should drop
3752 * dir->i_mutex before doing so.
3753 *
3754 * Alternatively, a caller may pass NULL for delegated_inode. This may
3755 * be appropriate for callers that expect the underlying filesystem not
3756 * to be NFS exported.
3757 */
3758 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3759 {
3760 struct inode *target = dentry->d_inode;
3761 int error = may_delete(dir, dentry, 0);
3762
3763 if (error)
3764 return error;
3765
3766 if (!dir->i_op->unlink)
3767 return -EPERM;
3768
3769 mutex_lock(&target->i_mutex);
3770 if (is_local_mountpoint(dentry))
3771 error = -EBUSY;
3772 else {
3773 error = security_inode_unlink(dir, dentry);
3774 if (!error) {
3775 error = try_break_deleg(target, delegated_inode);
3776 if (error)
3777 goto out;
3778 error = dir->i_op->unlink(dir, dentry);
3779 if (!error) {
3780 dont_mount(dentry);
3781 detach_mounts(dentry);
3782 }
3783 }
3784 }
3785 out:
3786 mutex_unlock(&target->i_mutex);
3787
3788 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3789 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3790 fsnotify_link_count(target);
3791 d_delete(dentry);
3792 }
3793
3794 return error;
3795 }
3796 EXPORT_SYMBOL(vfs_unlink);
3797
3798 /*
3799 * Make sure that the actual truncation of the file will occur outside its
3800 * directory's i_mutex. Truncate can take a long time if there is a lot of
3801 * writeout happening, and we don't want to prevent access to the directory
3802 * while waiting on the I/O.
3803 */
3804 static long do_unlinkat(int dfd, const char __user *pathname)
3805 {
3806 int error;
3807 struct filename *name;
3808 struct dentry *dentry;
3809 struct path path;
3810 struct qstr last;
3811 int type;
3812 struct inode *inode = NULL;
3813 struct inode *delegated_inode = NULL;
3814 unsigned int lookup_flags = 0;
3815 retry:
3816 name = user_path_parent(dfd, pathname,
3817 &path, &last, &type, lookup_flags);
3818 if (IS_ERR(name))
3819 return PTR_ERR(name);
3820
3821 error = -EISDIR;
3822 if (type != LAST_NORM)
3823 goto exit1;
3824
3825 error = mnt_want_write(path.mnt);
3826 if (error)
3827 goto exit1;
3828 retry_deleg:
3829 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3830 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3831 error = PTR_ERR(dentry);
3832 if (!IS_ERR(dentry)) {
3833 /* Why not before? Because we want correct error value */
3834 if (last.name[last.len])
3835 goto slashes;
3836 inode = dentry->d_inode;
3837 if (d_is_negative(dentry))
3838 goto slashes;
3839 ihold(inode);
3840 error = security_path_unlink(&path, dentry);
3841 if (error)
3842 goto exit2;
3843 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3844 exit2:
3845 dput(dentry);
3846 }
3847 mutex_unlock(&path.dentry->d_inode->i_mutex);
3848 if (inode)
3849 iput(inode); /* truncate the inode here */
3850 inode = NULL;
3851 if (delegated_inode) {
3852 error = break_deleg_wait(&delegated_inode);
3853 if (!error)
3854 goto retry_deleg;
3855 }
3856 mnt_drop_write(path.mnt);
3857 exit1:
3858 path_put(&path);
3859 putname(name);
3860 if (retry_estale(error, lookup_flags)) {
3861 lookup_flags |= LOOKUP_REVAL;
3862 inode = NULL;
3863 goto retry;
3864 }
3865 return error;
3866
3867 slashes:
3868 if (d_is_negative(dentry))
3869 error = -ENOENT;
3870 else if (d_is_dir(dentry))
3871 error = -EISDIR;
3872 else
3873 error = -ENOTDIR;
3874 goto exit2;
3875 }
3876
3877 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3878 {
3879 if ((flag & ~AT_REMOVEDIR) != 0)
3880 return -EINVAL;
3881
3882 if (flag & AT_REMOVEDIR)
3883 return do_rmdir(dfd, pathname);
3884
3885 return do_unlinkat(dfd, pathname);
3886 }
3887
3888 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3889 {
3890 return do_unlinkat(AT_FDCWD, pathname);
3891 }
3892
3893 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3894 {
3895 int error = may_create(dir, dentry);
3896
3897 if (error)
3898 return error;
3899
3900 if (!dir->i_op->symlink)
3901 return -EPERM;
3902
3903 error = security_inode_symlink(dir, dentry, oldname);
3904 if (error)
3905 return error;
3906
3907 error = dir->i_op->symlink(dir, dentry, oldname);
3908 if (!error)
3909 fsnotify_create(dir, dentry);
3910 return error;
3911 }
3912 EXPORT_SYMBOL(vfs_symlink);
3913
3914 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3915 int, newdfd, const char __user *, newname)
3916 {
3917 int error;
3918 struct filename *from;
3919 struct dentry *dentry;
3920 struct path path;
3921 unsigned int lookup_flags = 0;
3922
3923 from = getname(oldname);
3924 if (IS_ERR(from))
3925 return PTR_ERR(from);
3926 retry:
3927 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3928 error = PTR_ERR(dentry);
3929 if (IS_ERR(dentry))
3930 goto out_putname;
3931
3932 error = security_path_symlink(&path, dentry, from->name);
3933 if (!error)
3934 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3935 done_path_create(&path, dentry);
3936 if (retry_estale(error, lookup_flags)) {
3937 lookup_flags |= LOOKUP_REVAL;
3938 goto retry;
3939 }
3940 out_putname:
3941 putname(from);
3942 return error;
3943 }
3944
3945 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3946 {
3947 return sys_symlinkat(oldname, AT_FDCWD, newname);
3948 }
3949
3950 /**
3951 * vfs_link - create a new link
3952 * @old_dentry: object to be linked
3953 * @dir: new parent
3954 * @new_dentry: where to create the new link
3955 * @delegated_inode: returns inode needing a delegation break
3956 *
3957 * The caller must hold dir->i_mutex
3958 *
3959 * If vfs_link discovers a delegation on the to-be-linked file in need
3960 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3961 * inode in delegated_inode. The caller should then break the delegation
3962 * and retry. Because breaking a delegation may take a long time, the
3963 * caller should drop the i_mutex before doing so.
3964 *
3965 * Alternatively, a caller may pass NULL for delegated_inode. This may
3966 * be appropriate for callers that expect the underlying filesystem not
3967 * to be NFS exported.
3968 */
3969 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3970 {
3971 struct inode *inode = old_dentry->d_inode;
3972 unsigned max_links = dir->i_sb->s_max_links;
3973 int error;
3974
3975 if (!inode)
3976 return -ENOENT;
3977
3978 error = may_create(dir, new_dentry);
3979 if (error)
3980 return error;
3981
3982 if (dir->i_sb != inode->i_sb)
3983 return -EXDEV;
3984
3985 /*
3986 * A link to an append-only or immutable file cannot be created.
3987 */
3988 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3989 return -EPERM;
3990 if (!dir->i_op->link)
3991 return -EPERM;
3992 if (S_ISDIR(inode->i_mode))
3993 return -EPERM;
3994
3995 error = security_inode_link(old_dentry, dir, new_dentry);
3996 if (error)
3997 return error;
3998
3999 mutex_lock(&inode->i_mutex);
4000 /* Make sure we don't allow creating hardlink to an unlinked file */
4001 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4002 error = -ENOENT;
4003 else if (max_links && inode->i_nlink >= max_links)
4004 error = -EMLINK;
4005 else {
4006 error = try_break_deleg(inode, delegated_inode);
4007 if (!error)
4008 error = dir->i_op->link(old_dentry, dir, new_dentry);
4009 }
4010
4011 if (!error && (inode->i_state & I_LINKABLE)) {
4012 spin_lock(&inode->i_lock);
4013 inode->i_state &= ~I_LINKABLE;
4014 spin_unlock(&inode->i_lock);
4015 }
4016 mutex_unlock(&inode->i_mutex);
4017 if (!error)
4018 fsnotify_link(dir, inode, new_dentry);
4019 return error;
4020 }
4021 EXPORT_SYMBOL(vfs_link);
4022
4023 /*
4024 * Hardlinks are often used in delicate situations. We avoid
4025 * security-related surprises by not following symlinks on the
4026 * newname. --KAB
4027 *
4028 * We don't follow them on the oldname either to be compatible
4029 * with linux 2.0, and to avoid hard-linking to directories
4030 * and other special files. --ADM
4031 */
4032 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4033 int, newdfd, const char __user *, newname, int, flags)
4034 {
4035 struct dentry *new_dentry;
4036 struct path old_path, new_path;
4037 struct inode *delegated_inode = NULL;
4038 int how = 0;
4039 int error;
4040
4041 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4042 return -EINVAL;
4043 /*
4044 * To use null names we require CAP_DAC_READ_SEARCH
4045 * This ensures that not everyone will be able to create
4046 * handlink using the passed filedescriptor.
4047 */
4048 if (flags & AT_EMPTY_PATH) {
4049 if (!capable(CAP_DAC_READ_SEARCH))
4050 return -ENOENT;
4051 how = LOOKUP_EMPTY;
4052 }
4053
4054 if (flags & AT_SYMLINK_FOLLOW)
4055 how |= LOOKUP_FOLLOW;
4056 retry:
4057 error = user_path_at(olddfd, oldname, how, &old_path);
4058 if (error)
4059 return error;
4060
4061 new_dentry = user_path_create(newdfd, newname, &new_path,
4062 (how & LOOKUP_REVAL));
4063 error = PTR_ERR(new_dentry);
4064 if (IS_ERR(new_dentry))
4065 goto out;
4066
4067 error = -EXDEV;
4068 if (old_path.mnt != new_path.mnt)
4069 goto out_dput;
4070 error = may_linkat(&old_path);
4071 if (unlikely(error))
4072 goto out_dput;
4073 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4074 if (error)
4075 goto out_dput;
4076 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4077 out_dput:
4078 done_path_create(&new_path, new_dentry);
4079 if (delegated_inode) {
4080 error = break_deleg_wait(&delegated_inode);
4081 if (!error) {
4082 path_put(&old_path);
4083 goto retry;
4084 }
4085 }
4086 if (retry_estale(error, how)) {
4087 path_put(&old_path);
4088 how |= LOOKUP_REVAL;
4089 goto retry;
4090 }
4091 out:
4092 path_put(&old_path);
4093
4094 return error;
4095 }
4096
4097 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4098 {
4099 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4100 }
4101
4102 /**
4103 * vfs_rename - rename a filesystem object
4104 * @old_dir: parent of source
4105 * @old_dentry: source
4106 * @new_dir: parent of destination
4107 * @new_dentry: destination
4108 * @delegated_inode: returns an inode needing a delegation break
4109 * @flags: rename flags
4110 *
4111 * The caller must hold multiple mutexes--see lock_rename()).
4112 *
4113 * If vfs_rename discovers a delegation in need of breaking at either
4114 * the source or destination, it will return -EWOULDBLOCK and return a
4115 * reference to the inode in delegated_inode. The caller should then
4116 * break the delegation and retry. Because breaking a delegation may
4117 * take a long time, the caller should drop all locks before doing
4118 * so.
4119 *
4120 * Alternatively, a caller may pass NULL for delegated_inode. This may
4121 * be appropriate for callers that expect the underlying filesystem not
4122 * to be NFS exported.
4123 *
4124 * The worst of all namespace operations - renaming directory. "Perverted"
4125 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4126 * Problems:
4127 * a) we can get into loop creation.
4128 * b) race potential - two innocent renames can create a loop together.
4129 * That's where 4.4 screws up. Current fix: serialization on
4130 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4131 * story.
4132 * c) we have to lock _four_ objects - parents and victim (if it exists),
4133 * and source (if it is not a directory).
4134 * And that - after we got ->i_mutex on parents (until then we don't know
4135 * whether the target exists). Solution: try to be smart with locking
4136 * order for inodes. We rely on the fact that tree topology may change
4137 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4138 * move will be locked. Thus we can rank directories by the tree
4139 * (ancestors first) and rank all non-directories after them.
4140 * That works since everybody except rename does "lock parent, lookup,
4141 * lock child" and rename is under ->s_vfs_rename_mutex.
4142 * HOWEVER, it relies on the assumption that any object with ->lookup()
4143 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4144 * we'd better make sure that there's no link(2) for them.
4145 * d) conversion from fhandle to dentry may come in the wrong moment - when
4146 * we are removing the target. Solution: we will have to grab ->i_mutex
4147 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4148 * ->i_mutex on parents, which works but leads to some truly excessive
4149 * locking].
4150 */
4151 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4152 struct inode *new_dir, struct dentry *new_dentry,
4153 struct inode **delegated_inode, unsigned int flags)
4154 {
4155 int error;
4156 bool is_dir = d_is_dir(old_dentry);
4157 const unsigned char *old_name;
4158 struct inode *source = old_dentry->d_inode;
4159 struct inode *target = new_dentry->d_inode;
4160 bool new_is_dir = false;
4161 unsigned max_links = new_dir->i_sb->s_max_links;
4162
4163 if (source == target)
4164 return 0;
4165
4166 error = may_delete(old_dir, old_dentry, is_dir);
4167 if (error)
4168 return error;
4169
4170 if (!target) {
4171 error = may_create(new_dir, new_dentry);
4172 } else {
4173 new_is_dir = d_is_dir(new_dentry);
4174
4175 if (!(flags & RENAME_EXCHANGE))
4176 error = may_delete(new_dir, new_dentry, is_dir);
4177 else
4178 error = may_delete(new_dir, new_dentry, new_is_dir);
4179 }
4180 if (error)
4181 return error;
4182
4183 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4184 return -EPERM;
4185
4186 if (flags && !old_dir->i_op->rename2)
4187 return -EINVAL;
4188
4189 /*
4190 * If we are going to change the parent - check write permissions,
4191 * we'll need to flip '..'.
4192 */
4193 if (new_dir != old_dir) {
4194 if (is_dir) {
4195 error = inode_permission(source, MAY_WRITE);
4196 if (error)
4197 return error;
4198 }
4199 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4200 error = inode_permission(target, MAY_WRITE);
4201 if (error)
4202 return error;
4203 }
4204 }
4205
4206 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4207 flags);
4208 if (error)
4209 return error;
4210
4211 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4212 dget(new_dentry);
4213 if (!is_dir || (flags & RENAME_EXCHANGE))
4214 lock_two_nondirectories(source, target);
4215 else if (target)
4216 mutex_lock(&target->i_mutex);
4217
4218 error = -EBUSY;
4219 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4220 goto out;
4221
4222 if (max_links && new_dir != old_dir) {
4223 error = -EMLINK;
4224 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4225 goto out;
4226 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4227 old_dir->i_nlink >= max_links)
4228 goto out;
4229 }
4230 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4231 shrink_dcache_parent(new_dentry);
4232 if (!is_dir) {
4233 error = try_break_deleg(source, delegated_inode);
4234 if (error)
4235 goto out;
4236 }
4237 if (target && !new_is_dir) {
4238 error = try_break_deleg(target, delegated_inode);
4239 if (error)
4240 goto out;
4241 }
4242 if (!old_dir->i_op->rename2) {
4243 error = old_dir->i_op->rename(old_dir, old_dentry,
4244 new_dir, new_dentry);
4245 } else {
4246 WARN_ON(old_dir->i_op->rename != NULL);
4247 error = old_dir->i_op->rename2(old_dir, old_dentry,
4248 new_dir, new_dentry, flags);
4249 }
4250 if (error)
4251 goto out;
4252
4253 if (!(flags & RENAME_EXCHANGE) && target) {
4254 if (is_dir)
4255 target->i_flags |= S_DEAD;
4256 dont_mount(new_dentry);
4257 detach_mounts(new_dentry);
4258 }
4259 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4260 if (!(flags & RENAME_EXCHANGE))
4261 d_move(old_dentry, new_dentry);
4262 else
4263 d_exchange(old_dentry, new_dentry);
4264 }
4265 out:
4266 if (!is_dir || (flags & RENAME_EXCHANGE))
4267 unlock_two_nondirectories(source, target);
4268 else if (target)
4269 mutex_unlock(&target->i_mutex);
4270 dput(new_dentry);
4271 if (!error) {
4272 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4273 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4274 if (flags & RENAME_EXCHANGE) {
4275 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4276 new_is_dir, NULL, new_dentry);
4277 }
4278 }
4279 fsnotify_oldname_free(old_name);
4280
4281 return error;
4282 }
4283 EXPORT_SYMBOL(vfs_rename);
4284
4285 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4286 int, newdfd, const char __user *, newname, unsigned int, flags)
4287 {
4288 struct dentry *old_dentry, *new_dentry;
4289 struct dentry *trap;
4290 struct path old_path, new_path;
4291 struct qstr old_last, new_last;
4292 int old_type, new_type;
4293 struct inode *delegated_inode = NULL;
4294 struct filename *from;
4295 struct filename *to;
4296 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4297 bool should_retry = false;
4298 int error;
4299
4300 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4301 return -EINVAL;
4302
4303 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4304 (flags & RENAME_EXCHANGE))
4305 return -EINVAL;
4306
4307 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4308 return -EPERM;
4309
4310 if (flags & RENAME_EXCHANGE)
4311 target_flags = 0;
4312
4313 retry:
4314 from = user_path_parent(olddfd, oldname,
4315 &old_path, &old_last, &old_type, lookup_flags);
4316 if (IS_ERR(from)) {
4317 error = PTR_ERR(from);
4318 goto exit;
4319 }
4320
4321 to = user_path_parent(newdfd, newname,
4322 &new_path, &new_last, &new_type, lookup_flags);
4323 if (IS_ERR(to)) {
4324 error = PTR_ERR(to);
4325 goto exit1;
4326 }
4327
4328 error = -EXDEV;
4329 if (old_path.mnt != new_path.mnt)
4330 goto exit2;
4331
4332 error = -EBUSY;
4333 if (old_type != LAST_NORM)
4334 goto exit2;
4335
4336 if (flags & RENAME_NOREPLACE)
4337 error = -EEXIST;
4338 if (new_type != LAST_NORM)
4339 goto exit2;
4340
4341 error = mnt_want_write(old_path.mnt);
4342 if (error)
4343 goto exit2;
4344
4345 retry_deleg:
4346 trap = lock_rename(new_path.dentry, old_path.dentry);
4347
4348 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4349 error = PTR_ERR(old_dentry);
4350 if (IS_ERR(old_dentry))
4351 goto exit3;
4352 /* source must exist */
4353 error = -ENOENT;
4354 if (d_is_negative(old_dentry))
4355 goto exit4;
4356 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4357 error = PTR_ERR(new_dentry);
4358 if (IS_ERR(new_dentry))
4359 goto exit4;
4360 error = -EEXIST;
4361 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4362 goto exit5;
4363 if (flags & RENAME_EXCHANGE) {
4364 error = -ENOENT;
4365 if (d_is_negative(new_dentry))
4366 goto exit5;
4367
4368 if (!d_is_dir(new_dentry)) {
4369 error = -ENOTDIR;
4370 if (new_last.name[new_last.len])
4371 goto exit5;
4372 }
4373 }
4374 /* unless the source is a directory trailing slashes give -ENOTDIR */
4375 if (!d_is_dir(old_dentry)) {
4376 error = -ENOTDIR;
4377 if (old_last.name[old_last.len])
4378 goto exit5;
4379 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4380 goto exit5;
4381 }
4382 /* source should not be ancestor of target */
4383 error = -EINVAL;
4384 if (old_dentry == trap)
4385 goto exit5;
4386 /* target should not be an ancestor of source */
4387 if (!(flags & RENAME_EXCHANGE))
4388 error = -ENOTEMPTY;
4389 if (new_dentry == trap)
4390 goto exit5;
4391
4392 error = security_path_rename(&old_path, old_dentry,
4393 &new_path, new_dentry, flags);
4394 if (error)
4395 goto exit5;
4396 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4397 new_path.dentry->d_inode, new_dentry,
4398 &delegated_inode, flags);
4399 exit5:
4400 dput(new_dentry);
4401 exit4:
4402 dput(old_dentry);
4403 exit3:
4404 unlock_rename(new_path.dentry, old_path.dentry);
4405 if (delegated_inode) {
4406 error = break_deleg_wait(&delegated_inode);
4407 if (!error)
4408 goto retry_deleg;
4409 }
4410 mnt_drop_write(old_path.mnt);
4411 exit2:
4412 if (retry_estale(error, lookup_flags))
4413 should_retry = true;
4414 path_put(&new_path);
4415 putname(to);
4416 exit1:
4417 path_put(&old_path);
4418 putname(from);
4419 if (should_retry) {
4420 should_retry = false;
4421 lookup_flags |= LOOKUP_REVAL;
4422 goto retry;
4423 }
4424 exit:
4425 return error;
4426 }
4427
4428 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4429 int, newdfd, const char __user *, newname)
4430 {
4431 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4432 }
4433
4434 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4435 {
4436 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4437 }
4438
4439 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4440 {
4441 int error = may_create(dir, dentry);
4442 if (error)
4443 return error;
4444
4445 if (!dir->i_op->mknod)
4446 return -EPERM;
4447
4448 return dir->i_op->mknod(dir, dentry,
4449 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4450 }
4451 EXPORT_SYMBOL(vfs_whiteout);
4452
4453 int readlink_copy(char __user *buffer, int buflen, const char *link)
4454 {
4455 int len = PTR_ERR(link);
4456 if (IS_ERR(link))
4457 goto out;
4458
4459 len = strlen(link);
4460 if (len > (unsigned) buflen)
4461 len = buflen;
4462 if (copy_to_user(buffer, link, len))
4463 len = -EFAULT;
4464 out:
4465 return len;
4466 }
4467 EXPORT_SYMBOL(readlink_copy);
4468
4469 /*
4470 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4471 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4472 * using) it for any given inode is up to filesystem.
4473 */
4474 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4475 {
4476 void *cookie;
4477 const char *link = dentry->d_inode->i_link;
4478 int res;
4479
4480 if (!link) {
4481 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4482 if (IS_ERR(link))
4483 return PTR_ERR(link);
4484 }
4485 res = readlink_copy(buffer, buflen, link);
4486 if (cookie && dentry->d_inode->i_op->put_link)
4487 dentry->d_inode->i_op->put_link(dentry, cookie);
4488 return res;
4489 }
4490 EXPORT_SYMBOL(generic_readlink);
4491
4492 /* get the link contents into pagecache */
4493 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4494 {
4495 char *kaddr;
4496 struct page *page;
4497 struct address_space *mapping = dentry->d_inode->i_mapping;
4498 page = read_mapping_page(mapping, 0, NULL);
4499 if (IS_ERR(page))
4500 return (char*)page;
4501 *ppage = page;
4502 kaddr = kmap(page);
4503 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4504 return kaddr;
4505 }
4506
4507 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4508 {
4509 struct page *page = NULL;
4510 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4511 if (page) {
4512 kunmap(page);
4513 page_cache_release(page);
4514 }
4515 return res;
4516 }
4517 EXPORT_SYMBOL(page_readlink);
4518
4519 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4520 {
4521 struct page *page = NULL;
4522 char *res = page_getlink(dentry, &page);
4523 if (!IS_ERR(res))
4524 *cookie = page;
4525 return res;
4526 }
4527 EXPORT_SYMBOL(page_follow_link_light);
4528
4529 void page_put_link(struct dentry *dentry, void *cookie)
4530 {
4531 struct page *page = cookie;
4532 kunmap(page);
4533 page_cache_release(page);
4534 }
4535 EXPORT_SYMBOL(page_put_link);
4536
4537 /*
4538 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4539 */
4540 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4541 {
4542 struct address_space *mapping = inode->i_mapping;
4543 struct page *page;
4544 void *fsdata;
4545 int err;
4546 char *kaddr;
4547 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4548 if (nofs)
4549 flags |= AOP_FLAG_NOFS;
4550
4551 retry:
4552 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4553 flags, &page, &fsdata);
4554 if (err)
4555 goto fail;
4556
4557 kaddr = kmap_atomic(page);
4558 memcpy(kaddr, symname, len-1);
4559 kunmap_atomic(kaddr);
4560
4561 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4562 page, fsdata);
4563 if (err < 0)
4564 goto fail;
4565 if (err < len-1)
4566 goto retry;
4567
4568 mark_inode_dirty(inode);
4569 return 0;
4570 fail:
4571 return err;
4572 }
4573 EXPORT_SYMBOL(__page_symlink);
4574
4575 int page_symlink(struct inode *inode, const char *symname, int len)
4576 {
4577 return __page_symlink(inode, symname, len,
4578 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4579 }
4580 EXPORT_SYMBOL(page_symlink);
4581
4582 const struct inode_operations page_symlink_inode_operations = {
4583 .readlink = generic_readlink,
4584 .follow_link = page_follow_link_light,
4585 .put_link = page_put_link,
4586 };
4587 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.123795 seconds and 5 git commands to generate.