powerpc: Speed up clear_page by unrolling it
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203
204 error:
205 final_putname(result);
206 return err;
207 }
208
209 struct filename *
210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 /*
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218 */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 struct filename *result;
223 char *kname;
224 int len;
225
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
229
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
233
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
239
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
242 }
243
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
250 }
251 #endif
252
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
257
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 }
267
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
275 }
276 #endif
277
278 return -EAGAIN;
279 }
280
281 /*
282 * This does the basic permission checking
283 */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 unsigned int mode = inode->i_mode;
287
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
295 }
296
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
299 }
300
301 /*
302 * If the DACs are ok we don't need any capability check.
303 */
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
307 }
308
309 /**
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 *
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
318 *
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
322 */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 int ret;
326
327 /*
328 * Do the basic permission checks.
329 */
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
333
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
343 }
344 /*
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
348 */
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360
361 return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364
365 /*
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
370 */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(inode->i_op->permission))
375 return inode->i_op->permission(inode, mask);
376
377 /* This gets set once for the inode lifetime */
378 spin_lock(&inode->i_lock);
379 inode->i_opflags |= IOP_FASTPERM;
380 spin_unlock(&inode->i_lock);
381 }
382 return generic_permission(inode, mask);
383 }
384
385 /**
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389 *
390 * Check for read/write/execute permissions on an inode.
391 *
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393 *
394 * This does not check for a read-only file system. You probably want
395 * inode_permission().
396 */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 int retval;
400
401 if (unlikely(mask & MAY_WRITE)) {
402 /*
403 * Nobody gets write access to an immutable file.
404 */
405 if (IS_IMMUTABLE(inode))
406 return -EACCES;
407 }
408
409 retval = do_inode_permission(inode, mask);
410 if (retval)
411 return retval;
412
413 retval = devcgroup_inode_permission(inode, mask);
414 if (retval)
415 return retval;
416
417 return security_inode_permission(inode, mask);
418 }
419
420 /**
421 * sb_permission - Check superblock-level permissions
422 * @sb: Superblock of inode to check permission on
423 * @inode: Inode to check permission on
424 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
425 *
426 * Separate out file-system wide checks from inode-specific permission checks.
427 */
428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
429 {
430 if (unlikely(mask & MAY_WRITE)) {
431 umode_t mode = inode->i_mode;
432
433 /* Nobody gets write access to a read-only fs. */
434 if ((sb->s_flags & MS_RDONLY) &&
435 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
436 return -EROFS;
437 }
438 return 0;
439 }
440
441 /**
442 * inode_permission - Check for access rights to a given inode
443 * @inode: Inode to check permission on
444 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
445 *
446 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
447 * this, letting us set arbitrary permissions for filesystem access without
448 * changing the "normal" UIDs which are used for other things.
449 *
450 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
451 */
452 int inode_permission(struct inode *inode, int mask)
453 {
454 int retval;
455
456 retval = sb_permission(inode->i_sb, inode, mask);
457 if (retval)
458 return retval;
459 return __inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
466 *
467 * Given a path increment the reference count to the dentry and the vfsmount.
468 */
469 void path_get(const struct path *path)
470 {
471 mntget(path->mnt);
472 dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
479 *
480 * Given a path decrement the reference count to the dentry and the vfsmount.
481 */
482 void path_put(const struct path *path)
483 {
484 dput(path->dentry);
485 mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 /*
490 * Path walking has 2 modes, rcu-walk and ref-walk (see
491 * Documentation/filesystems/path-lookup.txt). In situations when we can't
492 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
493 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
494 * mode. Refcounts are grabbed at the last known good point before rcu-walk
495 * got stuck, so ref-walk may continue from there. If this is not successful
496 * (eg. a seqcount has changed), then failure is returned and it's up to caller
497 * to restart the path walk from the beginning in ref-walk mode.
498 */
499
500 /**
501 * unlazy_walk - try to switch to ref-walk mode.
502 * @nd: nameidata pathwalk data
503 * @dentry: child of nd->path.dentry or NULL
504 * Returns: 0 on success, -ECHILD on failure
505 *
506 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
507 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
508 * @nd or NULL. Must be called from rcu-walk context.
509 */
510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
511 {
512 struct fs_struct *fs = current->fs;
513 struct dentry *parent = nd->path.dentry;
514
515 BUG_ON(!(nd->flags & LOOKUP_RCU));
516
517 /*
518 * After legitimizing the bastards, terminate_walk()
519 * will do the right thing for non-RCU mode, and all our
520 * subsequent exit cases should rcu_read_unlock()
521 * before returning. Do vfsmount first; if dentry
522 * can't be legitimized, just set nd->path.dentry to NULL
523 * and rely on dput(NULL) being a no-op.
524 */
525 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
526 return -ECHILD;
527 nd->flags &= ~LOOKUP_RCU;
528
529 if (!lockref_get_not_dead(&parent->d_lockref)) {
530 nd->path.dentry = NULL;
531 goto out;
532 }
533
534 /*
535 * For a negative lookup, the lookup sequence point is the parents
536 * sequence point, and it only needs to revalidate the parent dentry.
537 *
538 * For a positive lookup, we need to move both the parent and the
539 * dentry from the RCU domain to be properly refcounted. And the
540 * sequence number in the dentry validates *both* dentry counters,
541 * since we checked the sequence number of the parent after we got
542 * the child sequence number. So we know the parent must still
543 * be valid if the child sequence number is still valid.
544 */
545 if (!dentry) {
546 if (read_seqcount_retry(&parent->d_seq, nd->seq))
547 goto out;
548 BUG_ON(nd->inode != parent->d_inode);
549 } else {
550 if (!lockref_get_not_dead(&dentry->d_lockref))
551 goto out;
552 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 goto drop_dentry;
554 }
555
556 /*
557 * Sequence counts matched. Now make sure that the root is
558 * still valid and get it if required.
559 */
560 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
561 spin_lock(&fs->lock);
562 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
563 goto unlock_and_drop_dentry;
564 path_get(&nd->root);
565 spin_unlock(&fs->lock);
566 }
567
568 rcu_read_unlock();
569 return 0;
570
571 unlock_and_drop_dentry:
572 spin_unlock(&fs->lock);
573 drop_dentry:
574 rcu_read_unlock();
575 dput(dentry);
576 goto drop_root_mnt;
577 out:
578 rcu_read_unlock();
579 drop_root_mnt:
580 if (!(nd->flags & LOOKUP_ROOT))
581 nd->root.mnt = NULL;
582 return -ECHILD;
583 }
584
585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
586 {
587 return dentry->d_op->d_revalidate(dentry, flags);
588 }
589
590 /**
591 * complete_walk - successful completion of path walk
592 * @nd: pointer nameidata
593 *
594 * If we had been in RCU mode, drop out of it and legitimize nd->path.
595 * Revalidate the final result, unless we'd already done that during
596 * the path walk or the filesystem doesn't ask for it. Return 0 on
597 * success, -error on failure. In case of failure caller does not
598 * need to drop nd->path.
599 */
600 static int complete_walk(struct nameidata *nd)
601 {
602 struct dentry *dentry = nd->path.dentry;
603 int status;
604
605 if (nd->flags & LOOKUP_RCU) {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609
610 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
611 rcu_read_unlock();
612 return -ECHILD;
613 }
614 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
615 rcu_read_unlock();
616 mntput(nd->path.mnt);
617 return -ECHILD;
618 }
619 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
620 rcu_read_unlock();
621 dput(dentry);
622 mntput(nd->path.mnt);
623 return -ECHILD;
624 }
625 rcu_read_unlock();
626 }
627
628 if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 return 0;
630
631 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
632 return 0;
633
634 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
635 if (status > 0)
636 return 0;
637
638 if (!status)
639 status = -ESTALE;
640
641 path_put(&nd->path);
642 return status;
643 }
644
645 static __always_inline void set_root(struct nameidata *nd)
646 {
647 get_fs_root(current->fs, &nd->root);
648 }
649
650 static int link_path_walk(const char *, struct nameidata *);
651
652 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
653 {
654 struct fs_struct *fs = current->fs;
655 unsigned seq, res;
656
657 do {
658 seq = read_seqcount_begin(&fs->seq);
659 nd->root = fs->root;
660 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 } while (read_seqcount_retry(&fs->seq, seq));
662 return res;
663 }
664
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 dput(path->dentry);
668 if (path->mnt != nd->path.mnt)
669 mntput(path->mnt);
670 }
671
672 static inline void path_to_nameidata(const struct path *path,
673 struct nameidata *nd)
674 {
675 if (!(nd->flags & LOOKUP_RCU)) {
676 dput(nd->path.dentry);
677 if (nd->path.mnt != path->mnt)
678 mntput(nd->path.mnt);
679 }
680 nd->path.mnt = path->mnt;
681 nd->path.dentry = path->dentry;
682 }
683
684 /*
685 * Helper to directly jump to a known parsed path from ->follow_link,
686 * caller must have taken a reference to path beforehand.
687 */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 path_put(&nd->path);
691
692 nd->path = *path;
693 nd->inode = nd->path.dentry->d_inode;
694 nd->flags |= LOOKUP_JUMPED;
695 }
696
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 struct inode *inode = link->dentry->d_inode;
700 if (inode->i_op->put_link)
701 inode->i_op->put_link(link->dentry, nd, cookie);
702 path_put(link);
703 }
704
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707
708 /**
709 * may_follow_link - Check symlink following for unsafe situations
710 * @link: The path of the symlink
711 * @nd: nameidata pathwalk data
712 *
713 * In the case of the sysctl_protected_symlinks sysctl being enabled,
714 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715 * in a sticky world-writable directory. This is to protect privileged
716 * processes from failing races against path names that may change out
717 * from under them by way of other users creating malicious symlinks.
718 * It will permit symlinks to be followed only when outside a sticky
719 * world-writable directory, or when the uid of the symlink and follower
720 * match, or when the directory owner matches the symlink's owner.
721 *
722 * Returns 0 if following the symlink is allowed, -ve on error.
723 */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 const struct inode *inode;
727 const struct inode *parent;
728
729 if (!sysctl_protected_symlinks)
730 return 0;
731
732 /* Allowed if owner and follower match. */
733 inode = link->dentry->d_inode;
734 if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 return 0;
736
737 /* Allowed if parent directory not sticky and world-writable. */
738 parent = nd->path.dentry->d_inode;
739 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 return 0;
741
742 /* Allowed if parent directory and link owner match. */
743 if (uid_eq(parent->i_uid, inode->i_uid))
744 return 0;
745
746 audit_log_link_denied("follow_link", link);
747 path_put_conditional(link, nd);
748 path_put(&nd->path);
749 return -EACCES;
750 }
751
752 /**
753 * safe_hardlink_source - Check for safe hardlink conditions
754 * @inode: the source inode to hardlink from
755 *
756 * Return false if at least one of the following conditions:
757 * - inode is not a regular file
758 * - inode is setuid
759 * - inode is setgid and group-exec
760 * - access failure for read and write
761 *
762 * Otherwise returns true.
763 */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 umode_t mode = inode->i_mode;
767
768 /* Special files should not get pinned to the filesystem. */
769 if (!S_ISREG(mode))
770 return false;
771
772 /* Setuid files should not get pinned to the filesystem. */
773 if (mode & S_ISUID)
774 return false;
775
776 /* Executable setgid files should not get pinned to the filesystem. */
777 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 return false;
779
780 /* Hardlinking to unreadable or unwritable sources is dangerous. */
781 if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 return false;
783
784 return true;
785 }
786
787 /**
788 * may_linkat - Check permissions for creating a hardlink
789 * @link: the source to hardlink from
790 *
791 * Block hardlink when all of:
792 * - sysctl_protected_hardlinks enabled
793 * - fsuid does not match inode
794 * - hardlink source is unsafe (see safe_hardlink_source() above)
795 * - not CAP_FOWNER
796 *
797 * Returns 0 if successful, -ve on error.
798 */
799 static int may_linkat(struct path *link)
800 {
801 const struct cred *cred;
802 struct inode *inode;
803
804 if (!sysctl_protected_hardlinks)
805 return 0;
806
807 cred = current_cred();
808 inode = link->dentry->d_inode;
809
810 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 * otherwise, it must be a safe source.
812 */
813 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 capable(CAP_FOWNER))
815 return 0;
816
817 audit_log_link_denied("linkat", link);
818 return -EPERM;
819 }
820
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 struct dentry *dentry = link->dentry;
825 int error;
826 char *s;
827
828 BUG_ON(nd->flags & LOOKUP_RCU);
829
830 if (link->mnt == nd->path.mnt)
831 mntget(link->mnt);
832
833 error = -ELOOP;
834 if (unlikely(current->total_link_count >= 40))
835 goto out_put_nd_path;
836
837 cond_resched();
838 current->total_link_count++;
839
840 touch_atime(link);
841 nd_set_link(nd, NULL);
842
843 error = security_inode_follow_link(link->dentry, nd);
844 if (error)
845 goto out_put_nd_path;
846
847 nd->last_type = LAST_BIND;
848 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 error = PTR_ERR(*p);
850 if (IS_ERR(*p))
851 goto out_put_nd_path;
852
853 error = 0;
854 s = nd_get_link(nd);
855 if (s) {
856 if (unlikely(IS_ERR(s))) {
857 path_put(&nd->path);
858 put_link(nd, link, *p);
859 return PTR_ERR(s);
860 }
861 if (*s == '/') {
862 if (!nd->root.mnt)
863 set_root(nd);
864 path_put(&nd->path);
865 nd->path = nd->root;
866 path_get(&nd->root);
867 nd->flags |= LOOKUP_JUMPED;
868 }
869 nd->inode = nd->path.dentry->d_inode;
870 error = link_path_walk(s, nd);
871 if (unlikely(error))
872 put_link(nd, link, *p);
873 }
874
875 return error;
876
877 out_put_nd_path:
878 *p = NULL;
879 path_put(&nd->path);
880 path_put(link);
881 return error;
882 }
883
884 static int follow_up_rcu(struct path *path)
885 {
886 struct mount *mnt = real_mount(path->mnt);
887 struct mount *parent;
888 struct dentry *mountpoint;
889
890 parent = mnt->mnt_parent;
891 if (&parent->mnt == path->mnt)
892 return 0;
893 mountpoint = mnt->mnt_mountpoint;
894 path->dentry = mountpoint;
895 path->mnt = &parent->mnt;
896 return 1;
897 }
898
899 /*
900 * follow_up - Find the mountpoint of path's vfsmount
901 *
902 * Given a path, find the mountpoint of its source file system.
903 * Replace @path with the path of the mountpoint in the parent mount.
904 * Up is towards /.
905 *
906 * Return 1 if we went up a level and 0 if we were already at the
907 * root.
908 */
909 int follow_up(struct path *path)
910 {
911 struct mount *mnt = real_mount(path->mnt);
912 struct mount *parent;
913 struct dentry *mountpoint;
914
915 read_seqlock_excl(&mount_lock);
916 parent = mnt->mnt_parent;
917 if (parent == mnt) {
918 read_sequnlock_excl(&mount_lock);
919 return 0;
920 }
921 mntget(&parent->mnt);
922 mountpoint = dget(mnt->mnt_mountpoint);
923 read_sequnlock_excl(&mount_lock);
924 dput(path->dentry);
925 path->dentry = mountpoint;
926 mntput(path->mnt);
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931
932 /*
933 * Perform an automount
934 * - return -EISDIR to tell follow_managed() to stop and return the path we
935 * were called with.
936 */
937 static int follow_automount(struct path *path, unsigned flags,
938 bool *need_mntput)
939 {
940 struct vfsmount *mnt;
941 int err;
942
943 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 return -EREMOTE;
945
946 /* We don't want to mount if someone's just doing a stat -
947 * unless they're stat'ing a directory and appended a '/' to
948 * the name.
949 *
950 * We do, however, want to mount if someone wants to open or
951 * create a file of any type under the mountpoint, wants to
952 * traverse through the mountpoint or wants to open the
953 * mounted directory. Also, autofs may mark negative dentries
954 * as being automount points. These will need the attentions
955 * of the daemon to instantiate them before they can be used.
956 */
957 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 path->dentry->d_inode)
960 return -EISDIR;
961
962 current->total_link_count++;
963 if (current->total_link_count >= 40)
964 return -ELOOP;
965
966 mnt = path->dentry->d_op->d_automount(path);
967 if (IS_ERR(mnt)) {
968 /*
969 * The filesystem is allowed to return -EISDIR here to indicate
970 * it doesn't want to automount. For instance, autofs would do
971 * this so that its userspace daemon can mount on this dentry.
972 *
973 * However, we can only permit this if it's a terminal point in
974 * the path being looked up; if it wasn't then the remainder of
975 * the path is inaccessible and we should say so.
976 */
977 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 return -EREMOTE;
979 return PTR_ERR(mnt);
980 }
981
982 if (!mnt) /* mount collision */
983 return 0;
984
985 if (!*need_mntput) {
986 /* lock_mount() may release path->mnt on error */
987 mntget(path->mnt);
988 *need_mntput = true;
989 }
990 err = finish_automount(mnt, path);
991
992 switch (err) {
993 case -EBUSY:
994 /* Someone else made a mount here whilst we were busy */
995 return 0;
996 case 0:
997 path_put(path);
998 path->mnt = mnt;
999 path->dentry = dget(mnt->mnt_root);
1000 return 0;
1001 default:
1002 return err;
1003 }
1004
1005 }
1006
1007 /*
1008 * Handle a dentry that is managed in some way.
1009 * - Flagged for transit management (autofs)
1010 * - Flagged as mountpoint
1011 * - Flagged as automount point
1012 *
1013 * This may only be called in refwalk mode.
1014 *
1015 * Serialization is taken care of in namespace.c
1016 */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 unsigned managed;
1021 bool need_mntput = false;
1022 int ret = 0;
1023
1024 /* Given that we're not holding a lock here, we retain the value in a
1025 * local variable for each dentry as we look at it so that we don't see
1026 * the components of that value change under us */
1027 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 managed &= DCACHE_MANAGED_DENTRY,
1029 unlikely(managed != 0)) {
1030 /* Allow the filesystem to manage the transit without i_mutex
1031 * being held. */
1032 if (managed & DCACHE_MANAGE_TRANSIT) {
1033 BUG_ON(!path->dentry->d_op);
1034 BUG_ON(!path->dentry->d_op->d_manage);
1035 ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 if (ret < 0)
1037 break;
1038 }
1039
1040 /* Transit to a mounted filesystem. */
1041 if (managed & DCACHE_MOUNTED) {
1042 struct vfsmount *mounted = lookup_mnt(path);
1043 if (mounted) {
1044 dput(path->dentry);
1045 if (need_mntput)
1046 mntput(path->mnt);
1047 path->mnt = mounted;
1048 path->dentry = dget(mounted->mnt_root);
1049 need_mntput = true;
1050 continue;
1051 }
1052
1053 /* Something is mounted on this dentry in another
1054 * namespace and/or whatever was mounted there in this
1055 * namespace got unmounted before lookup_mnt() could
1056 * get it */
1057 }
1058
1059 /* Handle an automount point */
1060 if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 ret = follow_automount(path, flags, &need_mntput);
1062 if (ret < 0)
1063 break;
1064 continue;
1065 }
1066
1067 /* We didn't change the current path point */
1068 break;
1069 }
1070
1071 if (need_mntput && path->mnt == mnt)
1072 mntput(path->mnt);
1073 if (ret == -EISDIR)
1074 ret = 0;
1075 return ret < 0 ? ret : need_mntput;
1076 }
1077
1078 int follow_down_one(struct path *path)
1079 {
1080 struct vfsmount *mounted;
1081
1082 mounted = lookup_mnt(path);
1083 if (mounted) {
1084 dput(path->dentry);
1085 mntput(path->mnt);
1086 path->mnt = mounted;
1087 path->dentry = dget(mounted->mnt_root);
1088 return 1;
1089 }
1090 return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099
1100 /*
1101 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1102 * we meet a managed dentry that would need blocking.
1103 */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 struct inode **inode)
1106 {
1107 for (;;) {
1108 struct mount *mounted;
1109 /*
1110 * Don't forget we might have a non-mountpoint managed dentry
1111 * that wants to block transit.
1112 */
1113 switch (managed_dentry_rcu(path->dentry)) {
1114 case -ECHILD:
1115 default:
1116 return false;
1117 case -EISDIR:
1118 return true;
1119 case 0:
1120 break;
1121 }
1122
1123 if (!d_mountpoint(path->dentry))
1124 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125
1126 mounted = __lookup_mnt(path->mnt, path->dentry);
1127 if (!mounted)
1128 break;
1129 path->mnt = &mounted->mnt;
1130 path->dentry = mounted->mnt.mnt_root;
1131 nd->flags |= LOOKUP_JUMPED;
1132 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 /*
1134 * Update the inode too. We don't need to re-check the
1135 * dentry sequence number here after this d_inode read,
1136 * because a mount-point is always pinned.
1137 */
1138 *inode = path->dentry->d_inode;
1139 }
1140 return !read_seqretry(&mount_lock, nd->m_seq) &&
1141 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 struct inode *inode = nd->inode;
1147 if (!nd->root.mnt)
1148 set_root_rcu(nd);
1149
1150 while (1) {
1151 if (nd->path.dentry == nd->root.dentry &&
1152 nd->path.mnt == nd->root.mnt) {
1153 break;
1154 }
1155 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1156 struct dentry *old = nd->path.dentry;
1157 struct dentry *parent = old->d_parent;
1158 unsigned seq;
1159
1160 inode = parent->d_inode;
1161 seq = read_seqcount_begin(&parent->d_seq);
1162 if (read_seqcount_retry(&old->d_seq, nd->seq))
1163 goto failed;
1164 nd->path.dentry = parent;
1165 nd->seq = seq;
1166 break;
1167 }
1168 if (!follow_up_rcu(&nd->path))
1169 break;
1170 inode = nd->path.dentry->d_inode;
1171 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1172 }
1173 while (d_mountpoint(nd->path.dentry)) {
1174 struct mount *mounted;
1175 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1176 if (!mounted)
1177 break;
1178 nd->path.mnt = &mounted->mnt;
1179 nd->path.dentry = mounted->mnt.mnt_root;
1180 inode = nd->path.dentry->d_inode;
1181 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1182 if (read_seqretry(&mount_lock, nd->m_seq))
1183 goto failed;
1184 }
1185 nd->inode = inode;
1186 return 0;
1187
1188 failed:
1189 nd->flags &= ~LOOKUP_RCU;
1190 if (!(nd->flags & LOOKUP_ROOT))
1191 nd->root.mnt = NULL;
1192 rcu_read_unlock();
1193 return -ECHILD;
1194 }
1195
1196 /*
1197 * Follow down to the covering mount currently visible to userspace. At each
1198 * point, the filesystem owning that dentry may be queried as to whether the
1199 * caller is permitted to proceed or not.
1200 */
1201 int follow_down(struct path *path)
1202 {
1203 unsigned managed;
1204 int ret;
1205
1206 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1207 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1208 /* Allow the filesystem to manage the transit without i_mutex
1209 * being held.
1210 *
1211 * We indicate to the filesystem if someone is trying to mount
1212 * something here. This gives autofs the chance to deny anyone
1213 * other than its daemon the right to mount on its
1214 * superstructure.
1215 *
1216 * The filesystem may sleep at this point.
1217 */
1218 if (managed & DCACHE_MANAGE_TRANSIT) {
1219 BUG_ON(!path->dentry->d_op);
1220 BUG_ON(!path->dentry->d_op->d_manage);
1221 ret = path->dentry->d_op->d_manage(
1222 path->dentry, false);
1223 if (ret < 0)
1224 return ret == -EISDIR ? 0 : ret;
1225 }
1226
1227 /* Transit to a mounted filesystem. */
1228 if (managed & DCACHE_MOUNTED) {
1229 struct vfsmount *mounted = lookup_mnt(path);
1230 if (!mounted)
1231 break;
1232 dput(path->dentry);
1233 mntput(path->mnt);
1234 path->mnt = mounted;
1235 path->dentry = dget(mounted->mnt_root);
1236 continue;
1237 }
1238
1239 /* Don't handle automount points here */
1240 break;
1241 }
1242 return 0;
1243 }
1244 EXPORT_SYMBOL(follow_down);
1245
1246 /*
1247 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1248 */
1249 static void follow_mount(struct path *path)
1250 {
1251 while (d_mountpoint(path->dentry)) {
1252 struct vfsmount *mounted = lookup_mnt(path);
1253 if (!mounted)
1254 break;
1255 dput(path->dentry);
1256 mntput(path->mnt);
1257 path->mnt = mounted;
1258 path->dentry = dget(mounted->mnt_root);
1259 }
1260 }
1261
1262 static void follow_dotdot(struct nameidata *nd)
1263 {
1264 if (!nd->root.mnt)
1265 set_root(nd);
1266
1267 while(1) {
1268 struct dentry *old = nd->path.dentry;
1269
1270 if (nd->path.dentry == nd->root.dentry &&
1271 nd->path.mnt == nd->root.mnt) {
1272 break;
1273 }
1274 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1275 /* rare case of legitimate dget_parent()... */
1276 nd->path.dentry = dget_parent(nd->path.dentry);
1277 dput(old);
1278 break;
1279 }
1280 if (!follow_up(&nd->path))
1281 break;
1282 }
1283 follow_mount(&nd->path);
1284 nd->inode = nd->path.dentry->d_inode;
1285 }
1286
1287 /*
1288 * This looks up the name in dcache, possibly revalidates the old dentry and
1289 * allocates a new one if not found or not valid. In the need_lookup argument
1290 * returns whether i_op->lookup is necessary.
1291 *
1292 * dir->d_inode->i_mutex must be held
1293 */
1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1295 unsigned int flags, bool *need_lookup)
1296 {
1297 struct dentry *dentry;
1298 int error;
1299
1300 *need_lookup = false;
1301 dentry = d_lookup(dir, name);
1302 if (dentry) {
1303 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1304 error = d_revalidate(dentry, flags);
1305 if (unlikely(error <= 0)) {
1306 if (error < 0) {
1307 dput(dentry);
1308 return ERR_PTR(error);
1309 } else if (!d_invalidate(dentry)) {
1310 dput(dentry);
1311 dentry = NULL;
1312 }
1313 }
1314 }
1315 }
1316
1317 if (!dentry) {
1318 dentry = d_alloc(dir, name);
1319 if (unlikely(!dentry))
1320 return ERR_PTR(-ENOMEM);
1321
1322 *need_lookup = true;
1323 }
1324 return dentry;
1325 }
1326
1327 /*
1328 * Call i_op->lookup on the dentry. The dentry must be negative and
1329 * unhashed.
1330 *
1331 * dir->d_inode->i_mutex must be held
1332 */
1333 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1334 unsigned int flags)
1335 {
1336 struct dentry *old;
1337
1338 /* Don't create child dentry for a dead directory. */
1339 if (unlikely(IS_DEADDIR(dir))) {
1340 dput(dentry);
1341 return ERR_PTR(-ENOENT);
1342 }
1343
1344 old = dir->i_op->lookup(dir, dentry, flags);
1345 if (unlikely(old)) {
1346 dput(dentry);
1347 dentry = old;
1348 }
1349 return dentry;
1350 }
1351
1352 static struct dentry *__lookup_hash(struct qstr *name,
1353 struct dentry *base, unsigned int flags)
1354 {
1355 bool need_lookup;
1356 struct dentry *dentry;
1357
1358 dentry = lookup_dcache(name, base, flags, &need_lookup);
1359 if (!need_lookup)
1360 return dentry;
1361
1362 return lookup_real(base->d_inode, dentry, flags);
1363 }
1364
1365 /*
1366 * It's more convoluted than I'd like it to be, but... it's still fairly
1367 * small and for now I'd prefer to have fast path as straight as possible.
1368 * It _is_ time-critical.
1369 */
1370 static int lookup_fast(struct nameidata *nd,
1371 struct path *path, struct inode **inode)
1372 {
1373 struct vfsmount *mnt = nd->path.mnt;
1374 struct dentry *dentry, *parent = nd->path.dentry;
1375 int need_reval = 1;
1376 int status = 1;
1377 int err;
1378
1379 /*
1380 * Rename seqlock is not required here because in the off chance
1381 * of a false negative due to a concurrent rename, we're going to
1382 * do the non-racy lookup, below.
1383 */
1384 if (nd->flags & LOOKUP_RCU) {
1385 unsigned seq;
1386 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1387 if (!dentry)
1388 goto unlazy;
1389
1390 /*
1391 * This sequence count validates that the inode matches
1392 * the dentry name information from lookup.
1393 */
1394 *inode = dentry->d_inode;
1395 if (read_seqcount_retry(&dentry->d_seq, seq))
1396 return -ECHILD;
1397
1398 /*
1399 * This sequence count validates that the parent had no
1400 * changes while we did the lookup of the dentry above.
1401 *
1402 * The memory barrier in read_seqcount_begin of child is
1403 * enough, we can use __read_seqcount_retry here.
1404 */
1405 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1406 return -ECHILD;
1407 nd->seq = seq;
1408
1409 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1410 status = d_revalidate(dentry, nd->flags);
1411 if (unlikely(status <= 0)) {
1412 if (status != -ECHILD)
1413 need_reval = 0;
1414 goto unlazy;
1415 }
1416 }
1417 path->mnt = mnt;
1418 path->dentry = dentry;
1419 if (likely(__follow_mount_rcu(nd, path, inode)))
1420 return 0;
1421 unlazy:
1422 if (unlazy_walk(nd, dentry))
1423 return -ECHILD;
1424 } else {
1425 dentry = __d_lookup(parent, &nd->last);
1426 }
1427
1428 if (unlikely(!dentry))
1429 goto need_lookup;
1430
1431 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1432 status = d_revalidate(dentry, nd->flags);
1433 if (unlikely(status <= 0)) {
1434 if (status < 0) {
1435 dput(dentry);
1436 return status;
1437 }
1438 if (!d_invalidate(dentry)) {
1439 dput(dentry);
1440 goto need_lookup;
1441 }
1442 }
1443
1444 path->mnt = mnt;
1445 path->dentry = dentry;
1446 err = follow_managed(path, nd->flags);
1447 if (unlikely(err < 0)) {
1448 path_put_conditional(path, nd);
1449 return err;
1450 }
1451 if (err)
1452 nd->flags |= LOOKUP_JUMPED;
1453 *inode = path->dentry->d_inode;
1454 return 0;
1455
1456 need_lookup:
1457 return 1;
1458 }
1459
1460 /* Fast lookup failed, do it the slow way */
1461 static int lookup_slow(struct nameidata *nd, struct path *path)
1462 {
1463 struct dentry *dentry, *parent;
1464 int err;
1465
1466 parent = nd->path.dentry;
1467 BUG_ON(nd->inode != parent->d_inode);
1468
1469 mutex_lock(&parent->d_inode->i_mutex);
1470 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1471 mutex_unlock(&parent->d_inode->i_mutex);
1472 if (IS_ERR(dentry))
1473 return PTR_ERR(dentry);
1474 path->mnt = nd->path.mnt;
1475 path->dentry = dentry;
1476 err = follow_managed(path, nd->flags);
1477 if (unlikely(err < 0)) {
1478 path_put_conditional(path, nd);
1479 return err;
1480 }
1481 if (err)
1482 nd->flags |= LOOKUP_JUMPED;
1483 return 0;
1484 }
1485
1486 static inline int may_lookup(struct nameidata *nd)
1487 {
1488 if (nd->flags & LOOKUP_RCU) {
1489 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1490 if (err != -ECHILD)
1491 return err;
1492 if (unlazy_walk(nd, NULL))
1493 return -ECHILD;
1494 }
1495 return inode_permission(nd->inode, MAY_EXEC);
1496 }
1497
1498 static inline int handle_dots(struct nameidata *nd, int type)
1499 {
1500 if (type == LAST_DOTDOT) {
1501 if (nd->flags & LOOKUP_RCU) {
1502 if (follow_dotdot_rcu(nd))
1503 return -ECHILD;
1504 } else
1505 follow_dotdot(nd);
1506 }
1507 return 0;
1508 }
1509
1510 static void terminate_walk(struct nameidata *nd)
1511 {
1512 if (!(nd->flags & LOOKUP_RCU)) {
1513 path_put(&nd->path);
1514 } else {
1515 nd->flags &= ~LOOKUP_RCU;
1516 if (!(nd->flags & LOOKUP_ROOT))
1517 nd->root.mnt = NULL;
1518 rcu_read_unlock();
1519 }
1520 }
1521
1522 /*
1523 * Do we need to follow links? We _really_ want to be able
1524 * to do this check without having to look at inode->i_op,
1525 * so we keep a cache of "no, this doesn't need follow_link"
1526 * for the common case.
1527 */
1528 static inline int should_follow_link(struct dentry *dentry, int follow)
1529 {
1530 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1531 }
1532
1533 static inline int walk_component(struct nameidata *nd, struct path *path,
1534 int follow)
1535 {
1536 struct inode *inode;
1537 int err;
1538 /*
1539 * "." and ".." are special - ".." especially so because it has
1540 * to be able to know about the current root directory and
1541 * parent relationships.
1542 */
1543 if (unlikely(nd->last_type != LAST_NORM))
1544 return handle_dots(nd, nd->last_type);
1545 err = lookup_fast(nd, path, &inode);
1546 if (unlikely(err)) {
1547 if (err < 0)
1548 goto out_err;
1549
1550 err = lookup_slow(nd, path);
1551 if (err < 0)
1552 goto out_err;
1553
1554 inode = path->dentry->d_inode;
1555 }
1556 err = -ENOENT;
1557 if (!inode || d_is_negative(path->dentry))
1558 goto out_path_put;
1559
1560 if (should_follow_link(path->dentry, follow)) {
1561 if (nd->flags & LOOKUP_RCU) {
1562 if (unlikely(unlazy_walk(nd, path->dentry))) {
1563 err = -ECHILD;
1564 goto out_err;
1565 }
1566 }
1567 BUG_ON(inode != path->dentry->d_inode);
1568 return 1;
1569 }
1570 path_to_nameidata(path, nd);
1571 nd->inode = inode;
1572 return 0;
1573
1574 out_path_put:
1575 path_to_nameidata(path, nd);
1576 out_err:
1577 terminate_walk(nd);
1578 return err;
1579 }
1580
1581 /*
1582 * This limits recursive symlink follows to 8, while
1583 * limiting consecutive symlinks to 40.
1584 *
1585 * Without that kind of total limit, nasty chains of consecutive
1586 * symlinks can cause almost arbitrarily long lookups.
1587 */
1588 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1589 {
1590 int res;
1591
1592 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1593 path_put_conditional(path, nd);
1594 path_put(&nd->path);
1595 return -ELOOP;
1596 }
1597 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1598
1599 nd->depth++;
1600 current->link_count++;
1601
1602 do {
1603 struct path link = *path;
1604 void *cookie;
1605
1606 res = follow_link(&link, nd, &cookie);
1607 if (res)
1608 break;
1609 res = walk_component(nd, path, LOOKUP_FOLLOW);
1610 put_link(nd, &link, cookie);
1611 } while (res > 0);
1612
1613 current->link_count--;
1614 nd->depth--;
1615 return res;
1616 }
1617
1618 /*
1619 * We can do the critical dentry name comparison and hashing
1620 * operations one word at a time, but we are limited to:
1621 *
1622 * - Architectures with fast unaligned word accesses. We could
1623 * do a "get_unaligned()" if this helps and is sufficiently
1624 * fast.
1625 *
1626 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1627 * do not trap on the (extremely unlikely) case of a page
1628 * crossing operation.
1629 *
1630 * - Furthermore, we need an efficient 64-bit compile for the
1631 * 64-bit case in order to generate the "number of bytes in
1632 * the final mask". Again, that could be replaced with a
1633 * efficient population count instruction or similar.
1634 */
1635 #ifdef CONFIG_DCACHE_WORD_ACCESS
1636
1637 #include <asm/word-at-a-time.h>
1638
1639 #ifdef CONFIG_64BIT
1640
1641 static inline unsigned int fold_hash(unsigned long hash)
1642 {
1643 return hash_64(hash, 32);
1644 }
1645
1646 #else /* 32-bit case */
1647
1648 #define fold_hash(x) (x)
1649
1650 #endif
1651
1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1653 {
1654 unsigned long a, mask;
1655 unsigned long hash = 0;
1656
1657 for (;;) {
1658 a = load_unaligned_zeropad(name);
1659 if (len < sizeof(unsigned long))
1660 break;
1661 hash += a;
1662 hash *= 9;
1663 name += sizeof(unsigned long);
1664 len -= sizeof(unsigned long);
1665 if (!len)
1666 goto done;
1667 }
1668 mask = bytemask_from_count(len);
1669 hash += mask & a;
1670 done:
1671 return fold_hash(hash);
1672 }
1673 EXPORT_SYMBOL(full_name_hash);
1674
1675 /*
1676 * Calculate the length and hash of the path component, and
1677 * fill in the qstr. return the "len" as the result.
1678 */
1679 static inline unsigned long hash_name(const char *name, struct qstr *res)
1680 {
1681 unsigned long a, b, adata, bdata, mask, hash, len;
1682 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1683
1684 res->name = name;
1685 hash = a = 0;
1686 len = -sizeof(unsigned long);
1687 do {
1688 hash = (hash + a) * 9;
1689 len += sizeof(unsigned long);
1690 a = load_unaligned_zeropad(name+len);
1691 b = a ^ REPEAT_BYTE('/');
1692 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1693
1694 adata = prep_zero_mask(a, adata, &constants);
1695 bdata = prep_zero_mask(b, bdata, &constants);
1696
1697 mask = create_zero_mask(adata | bdata);
1698
1699 hash += a & zero_bytemask(mask);
1700 len += find_zero(mask);
1701 res->hash_len = hashlen_create(fold_hash(hash), len);
1702
1703 return len;
1704 }
1705
1706 #else
1707
1708 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1709 {
1710 unsigned long hash = init_name_hash();
1711 while (len--)
1712 hash = partial_name_hash(*name++, hash);
1713 return end_name_hash(hash);
1714 }
1715 EXPORT_SYMBOL(full_name_hash);
1716
1717 /*
1718 * We know there's a real path component here of at least
1719 * one character.
1720 */
1721 static inline long hash_name(const char *name, struct qstr *res)
1722 {
1723 unsigned long hash = init_name_hash();
1724 unsigned long len = 0, c;
1725
1726 res->name = name;
1727 c = (unsigned char)*name;
1728 do {
1729 len++;
1730 hash = partial_name_hash(c, hash);
1731 c = (unsigned char)name[len];
1732 } while (c && c != '/');
1733 res->hash_len = hashlen_create(end_name_hash(hash), len);
1734 return len;
1735 }
1736
1737 #endif
1738
1739 /*
1740 * Name resolution.
1741 * This is the basic name resolution function, turning a pathname into
1742 * the final dentry. We expect 'base' to be positive and a directory.
1743 *
1744 * Returns 0 and nd will have valid dentry and mnt on success.
1745 * Returns error and drops reference to input namei data on failure.
1746 */
1747 static int link_path_walk(const char *name, struct nameidata *nd)
1748 {
1749 struct path next;
1750 int err;
1751
1752 while (*name=='/')
1753 name++;
1754 if (!*name)
1755 return 0;
1756
1757 /* At this point we know we have a real path component. */
1758 for(;;) {
1759 struct qstr this;
1760 long len;
1761 int type;
1762
1763 err = may_lookup(nd);
1764 if (err)
1765 break;
1766
1767 len = hash_name(name, &this);
1768
1769 type = LAST_NORM;
1770 if (name[0] == '.') switch (len) {
1771 case 2:
1772 if (name[1] == '.') {
1773 type = LAST_DOTDOT;
1774 nd->flags |= LOOKUP_JUMPED;
1775 }
1776 break;
1777 case 1:
1778 type = LAST_DOT;
1779 }
1780 if (likely(type == LAST_NORM)) {
1781 struct dentry *parent = nd->path.dentry;
1782 nd->flags &= ~LOOKUP_JUMPED;
1783 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1784 err = parent->d_op->d_hash(parent, &this);
1785 if (err < 0)
1786 break;
1787 }
1788 }
1789
1790 nd->last = this;
1791 nd->last_type = type;
1792
1793 if (!name[len])
1794 return 0;
1795 /*
1796 * If it wasn't NUL, we know it was '/'. Skip that
1797 * slash, and continue until no more slashes.
1798 */
1799 do {
1800 len++;
1801 } while (unlikely(name[len] == '/'));
1802 if (!name[len])
1803 return 0;
1804
1805 name += len;
1806
1807 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1808 if (err < 0)
1809 return err;
1810
1811 if (err) {
1812 err = nested_symlink(&next, nd);
1813 if (err)
1814 return err;
1815 }
1816 if (!d_can_lookup(nd->path.dentry)) {
1817 err = -ENOTDIR;
1818 break;
1819 }
1820 }
1821 terminate_walk(nd);
1822 return err;
1823 }
1824
1825 static int path_init(int dfd, const char *name, unsigned int flags,
1826 struct nameidata *nd, struct file **fp)
1827 {
1828 int retval = 0;
1829
1830 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1831 nd->flags = flags | LOOKUP_JUMPED;
1832 nd->depth = 0;
1833 if (flags & LOOKUP_ROOT) {
1834 struct dentry *root = nd->root.dentry;
1835 struct inode *inode = root->d_inode;
1836 if (*name) {
1837 if (!d_can_lookup(root))
1838 return -ENOTDIR;
1839 retval = inode_permission(inode, MAY_EXEC);
1840 if (retval)
1841 return retval;
1842 }
1843 nd->path = nd->root;
1844 nd->inode = inode;
1845 if (flags & LOOKUP_RCU) {
1846 rcu_read_lock();
1847 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1848 nd->m_seq = read_seqbegin(&mount_lock);
1849 } else {
1850 path_get(&nd->path);
1851 }
1852 return 0;
1853 }
1854
1855 nd->root.mnt = NULL;
1856
1857 nd->m_seq = read_seqbegin(&mount_lock);
1858 if (*name=='/') {
1859 if (flags & LOOKUP_RCU) {
1860 rcu_read_lock();
1861 nd->seq = set_root_rcu(nd);
1862 } else {
1863 set_root(nd);
1864 path_get(&nd->root);
1865 }
1866 nd->path = nd->root;
1867 } else if (dfd == AT_FDCWD) {
1868 if (flags & LOOKUP_RCU) {
1869 struct fs_struct *fs = current->fs;
1870 unsigned seq;
1871
1872 rcu_read_lock();
1873
1874 do {
1875 seq = read_seqcount_begin(&fs->seq);
1876 nd->path = fs->pwd;
1877 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1878 } while (read_seqcount_retry(&fs->seq, seq));
1879 } else {
1880 get_fs_pwd(current->fs, &nd->path);
1881 }
1882 } else {
1883 /* Caller must check execute permissions on the starting path component */
1884 struct fd f = fdget_raw(dfd);
1885 struct dentry *dentry;
1886
1887 if (!f.file)
1888 return -EBADF;
1889
1890 dentry = f.file->f_path.dentry;
1891
1892 if (*name) {
1893 if (!d_can_lookup(dentry)) {
1894 fdput(f);
1895 return -ENOTDIR;
1896 }
1897 }
1898
1899 nd->path = f.file->f_path;
1900 if (flags & LOOKUP_RCU) {
1901 if (f.flags & FDPUT_FPUT)
1902 *fp = f.file;
1903 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1904 rcu_read_lock();
1905 } else {
1906 path_get(&nd->path);
1907 fdput(f);
1908 }
1909 }
1910
1911 nd->inode = nd->path.dentry->d_inode;
1912 if (!(flags & LOOKUP_RCU))
1913 return 0;
1914 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1915 return 0;
1916 if (!(nd->flags & LOOKUP_ROOT))
1917 nd->root.mnt = NULL;
1918 rcu_read_unlock();
1919 return -ECHILD;
1920 }
1921
1922 static inline int lookup_last(struct nameidata *nd, struct path *path)
1923 {
1924 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1925 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1926
1927 nd->flags &= ~LOOKUP_PARENT;
1928 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1929 }
1930
1931 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1932 static int path_lookupat(int dfd, const char *name,
1933 unsigned int flags, struct nameidata *nd)
1934 {
1935 struct file *base = NULL;
1936 struct path path;
1937 int err;
1938
1939 /*
1940 * Path walking is largely split up into 2 different synchronisation
1941 * schemes, rcu-walk and ref-walk (explained in
1942 * Documentation/filesystems/path-lookup.txt). These share much of the
1943 * path walk code, but some things particularly setup, cleanup, and
1944 * following mounts are sufficiently divergent that functions are
1945 * duplicated. Typically there is a function foo(), and its RCU
1946 * analogue, foo_rcu().
1947 *
1948 * -ECHILD is the error number of choice (just to avoid clashes) that
1949 * is returned if some aspect of an rcu-walk fails. Such an error must
1950 * be handled by restarting a traditional ref-walk (which will always
1951 * be able to complete).
1952 */
1953 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1954
1955 if (unlikely(err))
1956 return err;
1957
1958 current->total_link_count = 0;
1959 err = link_path_walk(name, nd);
1960
1961 if (!err && !(flags & LOOKUP_PARENT)) {
1962 err = lookup_last(nd, &path);
1963 while (err > 0) {
1964 void *cookie;
1965 struct path link = path;
1966 err = may_follow_link(&link, nd);
1967 if (unlikely(err))
1968 break;
1969 nd->flags |= LOOKUP_PARENT;
1970 err = follow_link(&link, nd, &cookie);
1971 if (err)
1972 break;
1973 err = lookup_last(nd, &path);
1974 put_link(nd, &link, cookie);
1975 }
1976 }
1977
1978 if (!err)
1979 err = complete_walk(nd);
1980
1981 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1982 if (!d_can_lookup(nd->path.dentry)) {
1983 path_put(&nd->path);
1984 err = -ENOTDIR;
1985 }
1986 }
1987
1988 if (base)
1989 fput(base);
1990
1991 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1992 path_put(&nd->root);
1993 nd->root.mnt = NULL;
1994 }
1995 return err;
1996 }
1997
1998 static int filename_lookup(int dfd, struct filename *name,
1999 unsigned int flags, struct nameidata *nd)
2000 {
2001 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2002 if (unlikely(retval == -ECHILD))
2003 retval = path_lookupat(dfd, name->name, flags, nd);
2004 if (unlikely(retval == -ESTALE))
2005 retval = path_lookupat(dfd, name->name,
2006 flags | LOOKUP_REVAL, nd);
2007
2008 if (likely(!retval))
2009 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2010 return retval;
2011 }
2012
2013 static int do_path_lookup(int dfd, const char *name,
2014 unsigned int flags, struct nameidata *nd)
2015 {
2016 struct filename filename = { .name = name };
2017
2018 return filename_lookup(dfd, &filename, flags, nd);
2019 }
2020
2021 /* does lookup, returns the object with parent locked */
2022 struct dentry *kern_path_locked(const char *name, struct path *path)
2023 {
2024 struct nameidata nd;
2025 struct dentry *d;
2026 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2027 if (err)
2028 return ERR_PTR(err);
2029 if (nd.last_type != LAST_NORM) {
2030 path_put(&nd.path);
2031 return ERR_PTR(-EINVAL);
2032 }
2033 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2034 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2035 if (IS_ERR(d)) {
2036 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2037 path_put(&nd.path);
2038 return d;
2039 }
2040 *path = nd.path;
2041 return d;
2042 }
2043
2044 int kern_path(const char *name, unsigned int flags, struct path *path)
2045 {
2046 struct nameidata nd;
2047 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2048 if (!res)
2049 *path = nd.path;
2050 return res;
2051 }
2052 EXPORT_SYMBOL(kern_path);
2053
2054 /**
2055 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2056 * @dentry: pointer to dentry of the base directory
2057 * @mnt: pointer to vfs mount of the base directory
2058 * @name: pointer to file name
2059 * @flags: lookup flags
2060 * @path: pointer to struct path to fill
2061 */
2062 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2063 const char *name, unsigned int flags,
2064 struct path *path)
2065 {
2066 struct nameidata nd;
2067 int err;
2068 nd.root.dentry = dentry;
2069 nd.root.mnt = mnt;
2070 BUG_ON(flags & LOOKUP_PARENT);
2071 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2072 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2073 if (!err)
2074 *path = nd.path;
2075 return err;
2076 }
2077 EXPORT_SYMBOL(vfs_path_lookup);
2078
2079 /*
2080 * Restricted form of lookup. Doesn't follow links, single-component only,
2081 * needs parent already locked. Doesn't follow mounts.
2082 * SMP-safe.
2083 */
2084 static struct dentry *lookup_hash(struct nameidata *nd)
2085 {
2086 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2087 }
2088
2089 /**
2090 * lookup_one_len - filesystem helper to lookup single pathname component
2091 * @name: pathname component to lookup
2092 * @base: base directory to lookup from
2093 * @len: maximum length @len should be interpreted to
2094 *
2095 * Note that this routine is purely a helper for filesystem usage and should
2096 * not be called by generic code. Also note that by using this function the
2097 * nameidata argument is passed to the filesystem methods and a filesystem
2098 * using this helper needs to be prepared for that.
2099 */
2100 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2101 {
2102 struct qstr this;
2103 unsigned int c;
2104 int err;
2105
2106 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2107
2108 this.name = name;
2109 this.len = len;
2110 this.hash = full_name_hash(name, len);
2111 if (!len)
2112 return ERR_PTR(-EACCES);
2113
2114 if (unlikely(name[0] == '.')) {
2115 if (len < 2 || (len == 2 && name[1] == '.'))
2116 return ERR_PTR(-EACCES);
2117 }
2118
2119 while (len--) {
2120 c = *(const unsigned char *)name++;
2121 if (c == '/' || c == '\0')
2122 return ERR_PTR(-EACCES);
2123 }
2124 /*
2125 * See if the low-level filesystem might want
2126 * to use its own hash..
2127 */
2128 if (base->d_flags & DCACHE_OP_HASH) {
2129 int err = base->d_op->d_hash(base, &this);
2130 if (err < 0)
2131 return ERR_PTR(err);
2132 }
2133
2134 err = inode_permission(base->d_inode, MAY_EXEC);
2135 if (err)
2136 return ERR_PTR(err);
2137
2138 return __lookup_hash(&this, base, 0);
2139 }
2140 EXPORT_SYMBOL(lookup_one_len);
2141
2142 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2143 struct path *path, int *empty)
2144 {
2145 struct nameidata nd;
2146 struct filename *tmp = getname_flags(name, flags, empty);
2147 int err = PTR_ERR(tmp);
2148 if (!IS_ERR(tmp)) {
2149
2150 BUG_ON(flags & LOOKUP_PARENT);
2151
2152 err = filename_lookup(dfd, tmp, flags, &nd);
2153 putname(tmp);
2154 if (!err)
2155 *path = nd.path;
2156 }
2157 return err;
2158 }
2159
2160 int user_path_at(int dfd, const char __user *name, unsigned flags,
2161 struct path *path)
2162 {
2163 return user_path_at_empty(dfd, name, flags, path, NULL);
2164 }
2165 EXPORT_SYMBOL(user_path_at);
2166
2167 /*
2168 * NB: most callers don't do anything directly with the reference to the
2169 * to struct filename, but the nd->last pointer points into the name string
2170 * allocated by getname. So we must hold the reference to it until all
2171 * path-walking is complete.
2172 */
2173 static struct filename *
2174 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2175 unsigned int flags)
2176 {
2177 struct filename *s = getname(path);
2178 int error;
2179
2180 /* only LOOKUP_REVAL is allowed in extra flags */
2181 flags &= LOOKUP_REVAL;
2182
2183 if (IS_ERR(s))
2184 return s;
2185
2186 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2187 if (error) {
2188 putname(s);
2189 return ERR_PTR(error);
2190 }
2191
2192 return s;
2193 }
2194
2195 /**
2196 * mountpoint_last - look up last component for umount
2197 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2198 * @path: pointer to container for result
2199 *
2200 * This is a special lookup_last function just for umount. In this case, we
2201 * need to resolve the path without doing any revalidation.
2202 *
2203 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2204 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2205 * in almost all cases, this lookup will be served out of the dcache. The only
2206 * cases where it won't are if nd->last refers to a symlink or the path is
2207 * bogus and it doesn't exist.
2208 *
2209 * Returns:
2210 * -error: if there was an error during lookup. This includes -ENOENT if the
2211 * lookup found a negative dentry. The nd->path reference will also be
2212 * put in this case.
2213 *
2214 * 0: if we successfully resolved nd->path and found it to not to be a
2215 * symlink that needs to be followed. "path" will also be populated.
2216 * The nd->path reference will also be put.
2217 *
2218 * 1: if we successfully resolved nd->last and found it to be a symlink
2219 * that needs to be followed. "path" will be populated with the path
2220 * to the link, and nd->path will *not* be put.
2221 */
2222 static int
2223 mountpoint_last(struct nameidata *nd, struct path *path)
2224 {
2225 int error = 0;
2226 struct dentry *dentry;
2227 struct dentry *dir = nd->path.dentry;
2228
2229 /* If we're in rcuwalk, drop out of it to handle last component */
2230 if (nd->flags & LOOKUP_RCU) {
2231 if (unlazy_walk(nd, NULL)) {
2232 error = -ECHILD;
2233 goto out;
2234 }
2235 }
2236
2237 nd->flags &= ~LOOKUP_PARENT;
2238
2239 if (unlikely(nd->last_type != LAST_NORM)) {
2240 error = handle_dots(nd, nd->last_type);
2241 if (error)
2242 goto out;
2243 dentry = dget(nd->path.dentry);
2244 goto done;
2245 }
2246
2247 mutex_lock(&dir->d_inode->i_mutex);
2248 dentry = d_lookup(dir, &nd->last);
2249 if (!dentry) {
2250 /*
2251 * No cached dentry. Mounted dentries are pinned in the cache,
2252 * so that means that this dentry is probably a symlink or the
2253 * path doesn't actually point to a mounted dentry.
2254 */
2255 dentry = d_alloc(dir, &nd->last);
2256 if (!dentry) {
2257 error = -ENOMEM;
2258 mutex_unlock(&dir->d_inode->i_mutex);
2259 goto out;
2260 }
2261 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2262 error = PTR_ERR(dentry);
2263 if (IS_ERR(dentry)) {
2264 mutex_unlock(&dir->d_inode->i_mutex);
2265 goto out;
2266 }
2267 }
2268 mutex_unlock(&dir->d_inode->i_mutex);
2269
2270 done:
2271 if (!dentry->d_inode || d_is_negative(dentry)) {
2272 error = -ENOENT;
2273 dput(dentry);
2274 goto out;
2275 }
2276 path->dentry = dentry;
2277 path->mnt = nd->path.mnt;
2278 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2279 return 1;
2280 mntget(path->mnt);
2281 follow_mount(path);
2282 error = 0;
2283 out:
2284 terminate_walk(nd);
2285 return error;
2286 }
2287
2288 /**
2289 * path_mountpoint - look up a path to be umounted
2290 * @dfd: directory file descriptor to start walk from
2291 * @name: full pathname to walk
2292 * @path: pointer to container for result
2293 * @flags: lookup flags
2294 *
2295 * Look up the given name, but don't attempt to revalidate the last component.
2296 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2297 */
2298 static int
2299 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2300 {
2301 struct file *base = NULL;
2302 struct nameidata nd;
2303 int err;
2304
2305 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2306 if (unlikely(err))
2307 return err;
2308
2309 current->total_link_count = 0;
2310 err = link_path_walk(name, &nd);
2311 if (err)
2312 goto out;
2313
2314 err = mountpoint_last(&nd, path);
2315 while (err > 0) {
2316 void *cookie;
2317 struct path link = *path;
2318 err = may_follow_link(&link, &nd);
2319 if (unlikely(err))
2320 break;
2321 nd.flags |= LOOKUP_PARENT;
2322 err = follow_link(&link, &nd, &cookie);
2323 if (err)
2324 break;
2325 err = mountpoint_last(&nd, path);
2326 put_link(&nd, &link, cookie);
2327 }
2328 out:
2329 if (base)
2330 fput(base);
2331
2332 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2333 path_put(&nd.root);
2334
2335 return err;
2336 }
2337
2338 static int
2339 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2340 unsigned int flags)
2341 {
2342 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2343 if (unlikely(error == -ECHILD))
2344 error = path_mountpoint(dfd, s->name, path, flags);
2345 if (unlikely(error == -ESTALE))
2346 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2347 if (likely(!error))
2348 audit_inode(s, path->dentry, 0);
2349 return error;
2350 }
2351
2352 /**
2353 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2354 * @dfd: directory file descriptor
2355 * @name: pathname from userland
2356 * @flags: lookup flags
2357 * @path: pointer to container to hold result
2358 *
2359 * A umount is a special case for path walking. We're not actually interested
2360 * in the inode in this situation, and ESTALE errors can be a problem. We
2361 * simply want track down the dentry and vfsmount attached at the mountpoint
2362 * and avoid revalidating the last component.
2363 *
2364 * Returns 0 and populates "path" on success.
2365 */
2366 int
2367 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2368 struct path *path)
2369 {
2370 struct filename *s = getname(name);
2371 int error;
2372 if (IS_ERR(s))
2373 return PTR_ERR(s);
2374 error = filename_mountpoint(dfd, s, path, flags);
2375 putname(s);
2376 return error;
2377 }
2378
2379 int
2380 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2381 unsigned int flags)
2382 {
2383 struct filename s = {.name = name};
2384 return filename_mountpoint(dfd, &s, path, flags);
2385 }
2386 EXPORT_SYMBOL(kern_path_mountpoint);
2387
2388 /*
2389 * It's inline, so penalty for filesystems that don't use sticky bit is
2390 * minimal.
2391 */
2392 static inline int check_sticky(struct inode *dir, struct inode *inode)
2393 {
2394 kuid_t fsuid = current_fsuid();
2395
2396 if (!(dir->i_mode & S_ISVTX))
2397 return 0;
2398 if (uid_eq(inode->i_uid, fsuid))
2399 return 0;
2400 if (uid_eq(dir->i_uid, fsuid))
2401 return 0;
2402 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2403 }
2404
2405 /*
2406 * Check whether we can remove a link victim from directory dir, check
2407 * whether the type of victim is right.
2408 * 1. We can't do it if dir is read-only (done in permission())
2409 * 2. We should have write and exec permissions on dir
2410 * 3. We can't remove anything from append-only dir
2411 * 4. We can't do anything with immutable dir (done in permission())
2412 * 5. If the sticky bit on dir is set we should either
2413 * a. be owner of dir, or
2414 * b. be owner of victim, or
2415 * c. have CAP_FOWNER capability
2416 * 6. If the victim is append-only or immutable we can't do antyhing with
2417 * links pointing to it.
2418 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2419 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2420 * 9. We can't remove a root or mountpoint.
2421 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2422 * nfs_async_unlink().
2423 */
2424 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2425 {
2426 struct inode *inode = victim->d_inode;
2427 int error;
2428
2429 if (d_is_negative(victim))
2430 return -ENOENT;
2431 BUG_ON(!inode);
2432
2433 BUG_ON(victim->d_parent->d_inode != dir);
2434 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2435
2436 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2437 if (error)
2438 return error;
2439 if (IS_APPEND(dir))
2440 return -EPERM;
2441
2442 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2443 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2444 return -EPERM;
2445 if (isdir) {
2446 if (!d_is_dir(victim))
2447 return -ENOTDIR;
2448 if (IS_ROOT(victim))
2449 return -EBUSY;
2450 } else if (d_is_dir(victim))
2451 return -EISDIR;
2452 if (IS_DEADDIR(dir))
2453 return -ENOENT;
2454 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2455 return -EBUSY;
2456 return 0;
2457 }
2458
2459 /* Check whether we can create an object with dentry child in directory
2460 * dir.
2461 * 1. We can't do it if child already exists (open has special treatment for
2462 * this case, but since we are inlined it's OK)
2463 * 2. We can't do it if dir is read-only (done in permission())
2464 * 3. We should have write and exec permissions on dir
2465 * 4. We can't do it if dir is immutable (done in permission())
2466 */
2467 static inline int may_create(struct inode *dir, struct dentry *child)
2468 {
2469 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2470 if (child->d_inode)
2471 return -EEXIST;
2472 if (IS_DEADDIR(dir))
2473 return -ENOENT;
2474 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2475 }
2476
2477 /*
2478 * p1 and p2 should be directories on the same fs.
2479 */
2480 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2481 {
2482 struct dentry *p;
2483
2484 if (p1 == p2) {
2485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2486 return NULL;
2487 }
2488
2489 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2490
2491 p = d_ancestor(p2, p1);
2492 if (p) {
2493 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2494 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2495 return p;
2496 }
2497
2498 p = d_ancestor(p1, p2);
2499 if (p) {
2500 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2501 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2502 return p;
2503 }
2504
2505 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2506 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2507 return NULL;
2508 }
2509 EXPORT_SYMBOL(lock_rename);
2510
2511 void unlock_rename(struct dentry *p1, struct dentry *p2)
2512 {
2513 mutex_unlock(&p1->d_inode->i_mutex);
2514 if (p1 != p2) {
2515 mutex_unlock(&p2->d_inode->i_mutex);
2516 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2517 }
2518 }
2519 EXPORT_SYMBOL(unlock_rename);
2520
2521 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2522 bool want_excl)
2523 {
2524 int error = may_create(dir, dentry);
2525 if (error)
2526 return error;
2527
2528 if (!dir->i_op->create)
2529 return -EACCES; /* shouldn't it be ENOSYS? */
2530 mode &= S_IALLUGO;
2531 mode |= S_IFREG;
2532 error = security_inode_create(dir, dentry, mode);
2533 if (error)
2534 return error;
2535 error = dir->i_op->create(dir, dentry, mode, want_excl);
2536 if (!error)
2537 fsnotify_create(dir, dentry);
2538 return error;
2539 }
2540 EXPORT_SYMBOL(vfs_create);
2541
2542 static int may_open(struct path *path, int acc_mode, int flag)
2543 {
2544 struct dentry *dentry = path->dentry;
2545 struct inode *inode = dentry->d_inode;
2546 int error;
2547
2548 /* O_PATH? */
2549 if (!acc_mode)
2550 return 0;
2551
2552 if (!inode)
2553 return -ENOENT;
2554
2555 switch (inode->i_mode & S_IFMT) {
2556 case S_IFLNK:
2557 return -ELOOP;
2558 case S_IFDIR:
2559 if (acc_mode & MAY_WRITE)
2560 return -EISDIR;
2561 break;
2562 case S_IFBLK:
2563 case S_IFCHR:
2564 if (path->mnt->mnt_flags & MNT_NODEV)
2565 return -EACCES;
2566 /*FALLTHRU*/
2567 case S_IFIFO:
2568 case S_IFSOCK:
2569 flag &= ~O_TRUNC;
2570 break;
2571 }
2572
2573 error = inode_permission(inode, acc_mode);
2574 if (error)
2575 return error;
2576
2577 /*
2578 * An append-only file must be opened in append mode for writing.
2579 */
2580 if (IS_APPEND(inode)) {
2581 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2582 return -EPERM;
2583 if (flag & O_TRUNC)
2584 return -EPERM;
2585 }
2586
2587 /* O_NOATIME can only be set by the owner or superuser */
2588 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2589 return -EPERM;
2590
2591 return 0;
2592 }
2593
2594 static int handle_truncate(struct file *filp)
2595 {
2596 struct path *path = &filp->f_path;
2597 struct inode *inode = path->dentry->d_inode;
2598 int error = get_write_access(inode);
2599 if (error)
2600 return error;
2601 /*
2602 * Refuse to truncate files with mandatory locks held on them.
2603 */
2604 error = locks_verify_locked(filp);
2605 if (!error)
2606 error = security_path_truncate(path);
2607 if (!error) {
2608 error = do_truncate(path->dentry, 0,
2609 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2610 filp);
2611 }
2612 put_write_access(inode);
2613 return error;
2614 }
2615
2616 static inline int open_to_namei_flags(int flag)
2617 {
2618 if ((flag & O_ACCMODE) == 3)
2619 flag--;
2620 return flag;
2621 }
2622
2623 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2624 {
2625 int error = security_path_mknod(dir, dentry, mode, 0);
2626 if (error)
2627 return error;
2628
2629 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2630 if (error)
2631 return error;
2632
2633 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2634 }
2635
2636 /*
2637 * Attempt to atomically look up, create and open a file from a negative
2638 * dentry.
2639 *
2640 * Returns 0 if successful. The file will have been created and attached to
2641 * @file by the filesystem calling finish_open().
2642 *
2643 * Returns 1 if the file was looked up only or didn't need creating. The
2644 * caller will need to perform the open themselves. @path will have been
2645 * updated to point to the new dentry. This may be negative.
2646 *
2647 * Returns an error code otherwise.
2648 */
2649 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2650 struct path *path, struct file *file,
2651 const struct open_flags *op,
2652 bool got_write, bool need_lookup,
2653 int *opened)
2654 {
2655 struct inode *dir = nd->path.dentry->d_inode;
2656 unsigned open_flag = open_to_namei_flags(op->open_flag);
2657 umode_t mode;
2658 int error;
2659 int acc_mode;
2660 int create_error = 0;
2661 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2662 bool excl;
2663
2664 BUG_ON(dentry->d_inode);
2665
2666 /* Don't create child dentry for a dead directory. */
2667 if (unlikely(IS_DEADDIR(dir))) {
2668 error = -ENOENT;
2669 goto out;
2670 }
2671
2672 mode = op->mode;
2673 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2674 mode &= ~current_umask();
2675
2676 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2677 if (excl)
2678 open_flag &= ~O_TRUNC;
2679
2680 /*
2681 * Checking write permission is tricky, bacuse we don't know if we are
2682 * going to actually need it: O_CREAT opens should work as long as the
2683 * file exists. But checking existence breaks atomicity. The trick is
2684 * to check access and if not granted clear O_CREAT from the flags.
2685 *
2686 * Another problem is returing the "right" error value (e.g. for an
2687 * O_EXCL open we want to return EEXIST not EROFS).
2688 */
2689 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2690 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2691 if (!(open_flag & O_CREAT)) {
2692 /*
2693 * No O_CREATE -> atomicity not a requirement -> fall
2694 * back to lookup + open
2695 */
2696 goto no_open;
2697 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2698 /* Fall back and fail with the right error */
2699 create_error = -EROFS;
2700 goto no_open;
2701 } else {
2702 /* No side effects, safe to clear O_CREAT */
2703 create_error = -EROFS;
2704 open_flag &= ~O_CREAT;
2705 }
2706 }
2707
2708 if (open_flag & O_CREAT) {
2709 error = may_o_create(&nd->path, dentry, mode);
2710 if (error) {
2711 create_error = error;
2712 if (open_flag & O_EXCL)
2713 goto no_open;
2714 open_flag &= ~O_CREAT;
2715 }
2716 }
2717
2718 if (nd->flags & LOOKUP_DIRECTORY)
2719 open_flag |= O_DIRECTORY;
2720
2721 file->f_path.dentry = DENTRY_NOT_SET;
2722 file->f_path.mnt = nd->path.mnt;
2723 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2724 opened);
2725 if (error < 0) {
2726 if (create_error && error == -ENOENT)
2727 error = create_error;
2728 goto out;
2729 }
2730
2731 if (error) { /* returned 1, that is */
2732 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2733 error = -EIO;
2734 goto out;
2735 }
2736 if (file->f_path.dentry) {
2737 dput(dentry);
2738 dentry = file->f_path.dentry;
2739 }
2740 if (*opened & FILE_CREATED)
2741 fsnotify_create(dir, dentry);
2742 if (!dentry->d_inode) {
2743 WARN_ON(*opened & FILE_CREATED);
2744 if (create_error) {
2745 error = create_error;
2746 goto out;
2747 }
2748 } else {
2749 if (excl && !(*opened & FILE_CREATED)) {
2750 error = -EEXIST;
2751 goto out;
2752 }
2753 }
2754 goto looked_up;
2755 }
2756
2757 /*
2758 * We didn't have the inode before the open, so check open permission
2759 * here.
2760 */
2761 acc_mode = op->acc_mode;
2762 if (*opened & FILE_CREATED) {
2763 WARN_ON(!(open_flag & O_CREAT));
2764 fsnotify_create(dir, dentry);
2765 acc_mode = MAY_OPEN;
2766 }
2767 error = may_open(&file->f_path, acc_mode, open_flag);
2768 if (error)
2769 fput(file);
2770
2771 out:
2772 dput(dentry);
2773 return error;
2774
2775 no_open:
2776 if (need_lookup) {
2777 dentry = lookup_real(dir, dentry, nd->flags);
2778 if (IS_ERR(dentry))
2779 return PTR_ERR(dentry);
2780
2781 if (create_error) {
2782 int open_flag = op->open_flag;
2783
2784 error = create_error;
2785 if ((open_flag & O_EXCL)) {
2786 if (!dentry->d_inode)
2787 goto out;
2788 } else if (!dentry->d_inode) {
2789 goto out;
2790 } else if ((open_flag & O_TRUNC) &&
2791 S_ISREG(dentry->d_inode->i_mode)) {
2792 goto out;
2793 }
2794 /* will fail later, go on to get the right error */
2795 }
2796 }
2797 looked_up:
2798 path->dentry = dentry;
2799 path->mnt = nd->path.mnt;
2800 return 1;
2801 }
2802
2803 /*
2804 * Look up and maybe create and open the last component.
2805 *
2806 * Must be called with i_mutex held on parent.
2807 *
2808 * Returns 0 if the file was successfully atomically created (if necessary) and
2809 * opened. In this case the file will be returned attached to @file.
2810 *
2811 * Returns 1 if the file was not completely opened at this time, though lookups
2812 * and creations will have been performed and the dentry returned in @path will
2813 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2814 * specified then a negative dentry may be returned.
2815 *
2816 * An error code is returned otherwise.
2817 *
2818 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2819 * cleared otherwise prior to returning.
2820 */
2821 static int lookup_open(struct nameidata *nd, struct path *path,
2822 struct file *file,
2823 const struct open_flags *op,
2824 bool got_write, int *opened)
2825 {
2826 struct dentry *dir = nd->path.dentry;
2827 struct inode *dir_inode = dir->d_inode;
2828 struct dentry *dentry;
2829 int error;
2830 bool need_lookup;
2831
2832 *opened &= ~FILE_CREATED;
2833 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2834 if (IS_ERR(dentry))
2835 return PTR_ERR(dentry);
2836
2837 /* Cached positive dentry: will open in f_op->open */
2838 if (!need_lookup && dentry->d_inode)
2839 goto out_no_open;
2840
2841 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2842 return atomic_open(nd, dentry, path, file, op, got_write,
2843 need_lookup, opened);
2844 }
2845
2846 if (need_lookup) {
2847 BUG_ON(dentry->d_inode);
2848
2849 dentry = lookup_real(dir_inode, dentry, nd->flags);
2850 if (IS_ERR(dentry))
2851 return PTR_ERR(dentry);
2852 }
2853
2854 /* Negative dentry, just create the file */
2855 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2856 umode_t mode = op->mode;
2857 if (!IS_POSIXACL(dir->d_inode))
2858 mode &= ~current_umask();
2859 /*
2860 * This write is needed to ensure that a
2861 * rw->ro transition does not occur between
2862 * the time when the file is created and when
2863 * a permanent write count is taken through
2864 * the 'struct file' in finish_open().
2865 */
2866 if (!got_write) {
2867 error = -EROFS;
2868 goto out_dput;
2869 }
2870 *opened |= FILE_CREATED;
2871 error = security_path_mknod(&nd->path, dentry, mode, 0);
2872 if (error)
2873 goto out_dput;
2874 error = vfs_create(dir->d_inode, dentry, mode,
2875 nd->flags & LOOKUP_EXCL);
2876 if (error)
2877 goto out_dput;
2878 }
2879 out_no_open:
2880 path->dentry = dentry;
2881 path->mnt = nd->path.mnt;
2882 return 1;
2883
2884 out_dput:
2885 dput(dentry);
2886 return error;
2887 }
2888
2889 /*
2890 * Handle the last step of open()
2891 */
2892 static int do_last(struct nameidata *nd, struct path *path,
2893 struct file *file, const struct open_flags *op,
2894 int *opened, struct filename *name)
2895 {
2896 struct dentry *dir = nd->path.dentry;
2897 int open_flag = op->open_flag;
2898 bool will_truncate = (open_flag & O_TRUNC) != 0;
2899 bool got_write = false;
2900 int acc_mode = op->acc_mode;
2901 struct inode *inode;
2902 bool symlink_ok = false;
2903 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2904 bool retried = false;
2905 int error;
2906
2907 nd->flags &= ~LOOKUP_PARENT;
2908 nd->flags |= op->intent;
2909
2910 if (nd->last_type != LAST_NORM) {
2911 error = handle_dots(nd, nd->last_type);
2912 if (error)
2913 return error;
2914 goto finish_open;
2915 }
2916
2917 if (!(open_flag & O_CREAT)) {
2918 if (nd->last.name[nd->last.len])
2919 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2920 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2921 symlink_ok = true;
2922 /* we _can_ be in RCU mode here */
2923 error = lookup_fast(nd, path, &inode);
2924 if (likely(!error))
2925 goto finish_lookup;
2926
2927 if (error < 0)
2928 goto out;
2929
2930 BUG_ON(nd->inode != dir->d_inode);
2931 } else {
2932 /* create side of things */
2933 /*
2934 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2935 * has been cleared when we got to the last component we are
2936 * about to look up
2937 */
2938 error = complete_walk(nd);
2939 if (error)
2940 return error;
2941
2942 audit_inode(name, dir, LOOKUP_PARENT);
2943 error = -EISDIR;
2944 /* trailing slashes? */
2945 if (nd->last.name[nd->last.len])
2946 goto out;
2947 }
2948
2949 retry_lookup:
2950 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2951 error = mnt_want_write(nd->path.mnt);
2952 if (!error)
2953 got_write = true;
2954 /*
2955 * do _not_ fail yet - we might not need that or fail with
2956 * a different error; let lookup_open() decide; we'll be
2957 * dropping this one anyway.
2958 */
2959 }
2960 mutex_lock(&dir->d_inode->i_mutex);
2961 error = lookup_open(nd, path, file, op, got_write, opened);
2962 mutex_unlock(&dir->d_inode->i_mutex);
2963
2964 if (error <= 0) {
2965 if (error)
2966 goto out;
2967
2968 if ((*opened & FILE_CREATED) ||
2969 !S_ISREG(file_inode(file)->i_mode))
2970 will_truncate = false;
2971
2972 audit_inode(name, file->f_path.dentry, 0);
2973 goto opened;
2974 }
2975
2976 if (*opened & FILE_CREATED) {
2977 /* Don't check for write permission, don't truncate */
2978 open_flag &= ~O_TRUNC;
2979 will_truncate = false;
2980 acc_mode = MAY_OPEN;
2981 path_to_nameidata(path, nd);
2982 goto finish_open_created;
2983 }
2984
2985 /*
2986 * create/update audit record if it already exists.
2987 */
2988 if (d_is_positive(path->dentry))
2989 audit_inode(name, path->dentry, 0);
2990
2991 /*
2992 * If atomic_open() acquired write access it is dropped now due to
2993 * possible mount and symlink following (this might be optimized away if
2994 * necessary...)
2995 */
2996 if (got_write) {
2997 mnt_drop_write(nd->path.mnt);
2998 got_write = false;
2999 }
3000
3001 error = -EEXIST;
3002 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3003 goto exit_dput;
3004
3005 error = follow_managed(path, nd->flags);
3006 if (error < 0)
3007 goto exit_dput;
3008
3009 if (error)
3010 nd->flags |= LOOKUP_JUMPED;
3011
3012 BUG_ON(nd->flags & LOOKUP_RCU);
3013 inode = path->dentry->d_inode;
3014 finish_lookup:
3015 /* we _can_ be in RCU mode here */
3016 error = -ENOENT;
3017 if (!inode || d_is_negative(path->dentry)) {
3018 path_to_nameidata(path, nd);
3019 goto out;
3020 }
3021
3022 if (should_follow_link(path->dentry, !symlink_ok)) {
3023 if (nd->flags & LOOKUP_RCU) {
3024 if (unlikely(unlazy_walk(nd, path->dentry))) {
3025 error = -ECHILD;
3026 goto out;
3027 }
3028 }
3029 BUG_ON(inode != path->dentry->d_inode);
3030 return 1;
3031 }
3032
3033 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3034 path_to_nameidata(path, nd);
3035 } else {
3036 save_parent.dentry = nd->path.dentry;
3037 save_parent.mnt = mntget(path->mnt);
3038 nd->path.dentry = path->dentry;
3039
3040 }
3041 nd->inode = inode;
3042 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3043 finish_open:
3044 error = complete_walk(nd);
3045 if (error) {
3046 path_put(&save_parent);
3047 return error;
3048 }
3049 audit_inode(name, nd->path.dentry, 0);
3050 error = -EISDIR;
3051 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3052 goto out;
3053 error = -ENOTDIR;
3054 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3055 goto out;
3056 if (!S_ISREG(nd->inode->i_mode))
3057 will_truncate = false;
3058
3059 if (will_truncate) {
3060 error = mnt_want_write(nd->path.mnt);
3061 if (error)
3062 goto out;
3063 got_write = true;
3064 }
3065 finish_open_created:
3066 error = may_open(&nd->path, acc_mode, open_flag);
3067 if (error)
3068 goto out;
3069 file->f_path.mnt = nd->path.mnt;
3070 error = finish_open(file, nd->path.dentry, NULL, opened);
3071 if (error) {
3072 if (error == -EOPENSTALE)
3073 goto stale_open;
3074 goto out;
3075 }
3076 opened:
3077 error = open_check_o_direct(file);
3078 if (error)
3079 goto exit_fput;
3080 error = ima_file_check(file, op->acc_mode);
3081 if (error)
3082 goto exit_fput;
3083
3084 if (will_truncate) {
3085 error = handle_truncate(file);
3086 if (error)
3087 goto exit_fput;
3088 }
3089 out:
3090 if (got_write)
3091 mnt_drop_write(nd->path.mnt);
3092 path_put(&save_parent);
3093 terminate_walk(nd);
3094 return error;
3095
3096 exit_dput:
3097 path_put_conditional(path, nd);
3098 goto out;
3099 exit_fput:
3100 fput(file);
3101 goto out;
3102
3103 stale_open:
3104 /* If no saved parent or already retried then can't retry */
3105 if (!save_parent.dentry || retried)
3106 goto out;
3107
3108 BUG_ON(save_parent.dentry != dir);
3109 path_put(&nd->path);
3110 nd->path = save_parent;
3111 nd->inode = dir->d_inode;
3112 save_parent.mnt = NULL;
3113 save_parent.dentry = NULL;
3114 if (got_write) {
3115 mnt_drop_write(nd->path.mnt);
3116 got_write = false;
3117 }
3118 retried = true;
3119 goto retry_lookup;
3120 }
3121
3122 static int do_tmpfile(int dfd, struct filename *pathname,
3123 struct nameidata *nd, int flags,
3124 const struct open_flags *op,
3125 struct file *file, int *opened)
3126 {
3127 static const struct qstr name = QSTR_INIT("/", 1);
3128 struct dentry *dentry, *child;
3129 struct inode *dir;
3130 int error = path_lookupat(dfd, pathname->name,
3131 flags | LOOKUP_DIRECTORY, nd);
3132 if (unlikely(error))
3133 return error;
3134 error = mnt_want_write(nd->path.mnt);
3135 if (unlikely(error))
3136 goto out;
3137 /* we want directory to be writable */
3138 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3139 if (error)
3140 goto out2;
3141 dentry = nd->path.dentry;
3142 dir = dentry->d_inode;
3143 if (!dir->i_op->tmpfile) {
3144 error = -EOPNOTSUPP;
3145 goto out2;
3146 }
3147 child = d_alloc(dentry, &name);
3148 if (unlikely(!child)) {
3149 error = -ENOMEM;
3150 goto out2;
3151 }
3152 nd->flags &= ~LOOKUP_DIRECTORY;
3153 nd->flags |= op->intent;
3154 dput(nd->path.dentry);
3155 nd->path.dentry = child;
3156 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3157 if (error)
3158 goto out2;
3159 audit_inode(pathname, nd->path.dentry, 0);
3160 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3161 if (error)
3162 goto out2;
3163 file->f_path.mnt = nd->path.mnt;
3164 error = finish_open(file, nd->path.dentry, NULL, opened);
3165 if (error)
3166 goto out2;
3167 error = open_check_o_direct(file);
3168 if (error) {
3169 fput(file);
3170 } else if (!(op->open_flag & O_EXCL)) {
3171 struct inode *inode = file_inode(file);
3172 spin_lock(&inode->i_lock);
3173 inode->i_state |= I_LINKABLE;
3174 spin_unlock(&inode->i_lock);
3175 }
3176 out2:
3177 mnt_drop_write(nd->path.mnt);
3178 out:
3179 path_put(&nd->path);
3180 return error;
3181 }
3182
3183 static struct file *path_openat(int dfd, struct filename *pathname,
3184 struct nameidata *nd, const struct open_flags *op, int flags)
3185 {
3186 struct file *base = NULL;
3187 struct file *file;
3188 struct path path;
3189 int opened = 0;
3190 int error;
3191
3192 file = get_empty_filp();
3193 if (IS_ERR(file))
3194 return file;
3195
3196 file->f_flags = op->open_flag;
3197
3198 if (unlikely(file->f_flags & __O_TMPFILE)) {
3199 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3200 goto out;
3201 }
3202
3203 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3204 if (unlikely(error))
3205 goto out;
3206
3207 current->total_link_count = 0;
3208 error = link_path_walk(pathname->name, nd);
3209 if (unlikely(error))
3210 goto out;
3211
3212 error = do_last(nd, &path, file, op, &opened, pathname);
3213 while (unlikely(error > 0)) { /* trailing symlink */
3214 struct path link = path;
3215 void *cookie;
3216 if (!(nd->flags & LOOKUP_FOLLOW)) {
3217 path_put_conditional(&path, nd);
3218 path_put(&nd->path);
3219 error = -ELOOP;
3220 break;
3221 }
3222 error = may_follow_link(&link, nd);
3223 if (unlikely(error))
3224 break;
3225 nd->flags |= LOOKUP_PARENT;
3226 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3227 error = follow_link(&link, nd, &cookie);
3228 if (unlikely(error))
3229 break;
3230 error = do_last(nd, &path, file, op, &opened, pathname);
3231 put_link(nd, &link, cookie);
3232 }
3233 out:
3234 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3235 path_put(&nd->root);
3236 if (base)
3237 fput(base);
3238 if (!(opened & FILE_OPENED)) {
3239 BUG_ON(!error);
3240 put_filp(file);
3241 }
3242 if (unlikely(error)) {
3243 if (error == -EOPENSTALE) {
3244 if (flags & LOOKUP_RCU)
3245 error = -ECHILD;
3246 else
3247 error = -ESTALE;
3248 }
3249 file = ERR_PTR(error);
3250 }
3251 return file;
3252 }
3253
3254 struct file *do_filp_open(int dfd, struct filename *pathname,
3255 const struct open_flags *op)
3256 {
3257 struct nameidata nd;
3258 int flags = op->lookup_flags;
3259 struct file *filp;
3260
3261 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3262 if (unlikely(filp == ERR_PTR(-ECHILD)))
3263 filp = path_openat(dfd, pathname, &nd, op, flags);
3264 if (unlikely(filp == ERR_PTR(-ESTALE)))
3265 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3266 return filp;
3267 }
3268
3269 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3270 const char *name, const struct open_flags *op)
3271 {
3272 struct nameidata nd;
3273 struct file *file;
3274 struct filename filename = { .name = name };
3275 int flags = op->lookup_flags | LOOKUP_ROOT;
3276
3277 nd.root.mnt = mnt;
3278 nd.root.dentry = dentry;
3279
3280 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3281 return ERR_PTR(-ELOOP);
3282
3283 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3284 if (unlikely(file == ERR_PTR(-ECHILD)))
3285 file = path_openat(-1, &filename, &nd, op, flags);
3286 if (unlikely(file == ERR_PTR(-ESTALE)))
3287 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3288 return file;
3289 }
3290
3291 struct dentry *kern_path_create(int dfd, const char *pathname,
3292 struct path *path, unsigned int lookup_flags)
3293 {
3294 struct dentry *dentry = ERR_PTR(-EEXIST);
3295 struct nameidata nd;
3296 int err2;
3297 int error;
3298 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3299
3300 /*
3301 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3302 * other flags passed in are ignored!
3303 */
3304 lookup_flags &= LOOKUP_REVAL;
3305
3306 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3307 if (error)
3308 return ERR_PTR(error);
3309
3310 /*
3311 * Yucky last component or no last component at all?
3312 * (foo/., foo/.., /////)
3313 */
3314 if (nd.last_type != LAST_NORM)
3315 goto out;
3316 nd.flags &= ~LOOKUP_PARENT;
3317 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3318
3319 /* don't fail immediately if it's r/o, at least try to report other errors */
3320 err2 = mnt_want_write(nd.path.mnt);
3321 /*
3322 * Do the final lookup.
3323 */
3324 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3325 dentry = lookup_hash(&nd);
3326 if (IS_ERR(dentry))
3327 goto unlock;
3328
3329 error = -EEXIST;
3330 if (d_is_positive(dentry))
3331 goto fail;
3332
3333 /*
3334 * Special case - lookup gave negative, but... we had foo/bar/
3335 * From the vfs_mknod() POV we just have a negative dentry -
3336 * all is fine. Let's be bastards - you had / on the end, you've
3337 * been asking for (non-existent) directory. -ENOENT for you.
3338 */
3339 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3340 error = -ENOENT;
3341 goto fail;
3342 }
3343 if (unlikely(err2)) {
3344 error = err2;
3345 goto fail;
3346 }
3347 *path = nd.path;
3348 return dentry;
3349 fail:
3350 dput(dentry);
3351 dentry = ERR_PTR(error);
3352 unlock:
3353 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3354 if (!err2)
3355 mnt_drop_write(nd.path.mnt);
3356 out:
3357 path_put(&nd.path);
3358 return dentry;
3359 }
3360 EXPORT_SYMBOL(kern_path_create);
3361
3362 void done_path_create(struct path *path, struct dentry *dentry)
3363 {
3364 dput(dentry);
3365 mutex_unlock(&path->dentry->d_inode->i_mutex);
3366 mnt_drop_write(path->mnt);
3367 path_put(path);
3368 }
3369 EXPORT_SYMBOL(done_path_create);
3370
3371 struct dentry *user_path_create(int dfd, const char __user *pathname,
3372 struct path *path, unsigned int lookup_flags)
3373 {
3374 struct filename *tmp = getname(pathname);
3375 struct dentry *res;
3376 if (IS_ERR(tmp))
3377 return ERR_CAST(tmp);
3378 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3379 putname(tmp);
3380 return res;
3381 }
3382 EXPORT_SYMBOL(user_path_create);
3383
3384 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3385 {
3386 int error = may_create(dir, dentry);
3387
3388 if (error)
3389 return error;
3390
3391 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3392 return -EPERM;
3393
3394 if (!dir->i_op->mknod)
3395 return -EPERM;
3396
3397 error = devcgroup_inode_mknod(mode, dev);
3398 if (error)
3399 return error;
3400
3401 error = security_inode_mknod(dir, dentry, mode, dev);
3402 if (error)
3403 return error;
3404
3405 error = dir->i_op->mknod(dir, dentry, mode, dev);
3406 if (!error)
3407 fsnotify_create(dir, dentry);
3408 return error;
3409 }
3410 EXPORT_SYMBOL(vfs_mknod);
3411
3412 static int may_mknod(umode_t mode)
3413 {
3414 switch (mode & S_IFMT) {
3415 case S_IFREG:
3416 case S_IFCHR:
3417 case S_IFBLK:
3418 case S_IFIFO:
3419 case S_IFSOCK:
3420 case 0: /* zero mode translates to S_IFREG */
3421 return 0;
3422 case S_IFDIR:
3423 return -EPERM;
3424 default:
3425 return -EINVAL;
3426 }
3427 }
3428
3429 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3430 unsigned, dev)
3431 {
3432 struct dentry *dentry;
3433 struct path path;
3434 int error;
3435 unsigned int lookup_flags = 0;
3436
3437 error = may_mknod(mode);
3438 if (error)
3439 return error;
3440 retry:
3441 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3442 if (IS_ERR(dentry))
3443 return PTR_ERR(dentry);
3444
3445 if (!IS_POSIXACL(path.dentry->d_inode))
3446 mode &= ~current_umask();
3447 error = security_path_mknod(&path, dentry, mode, dev);
3448 if (error)
3449 goto out;
3450 switch (mode & S_IFMT) {
3451 case 0: case S_IFREG:
3452 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3453 break;
3454 case S_IFCHR: case S_IFBLK:
3455 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3456 new_decode_dev(dev));
3457 break;
3458 case S_IFIFO: case S_IFSOCK:
3459 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3460 break;
3461 }
3462 out:
3463 done_path_create(&path, dentry);
3464 if (retry_estale(error, lookup_flags)) {
3465 lookup_flags |= LOOKUP_REVAL;
3466 goto retry;
3467 }
3468 return error;
3469 }
3470
3471 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3472 {
3473 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3474 }
3475
3476 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3477 {
3478 int error = may_create(dir, dentry);
3479 unsigned max_links = dir->i_sb->s_max_links;
3480
3481 if (error)
3482 return error;
3483
3484 if (!dir->i_op->mkdir)
3485 return -EPERM;
3486
3487 mode &= (S_IRWXUGO|S_ISVTX);
3488 error = security_inode_mkdir(dir, dentry, mode);
3489 if (error)
3490 return error;
3491
3492 if (max_links && dir->i_nlink >= max_links)
3493 return -EMLINK;
3494
3495 error = dir->i_op->mkdir(dir, dentry, mode);
3496 if (!error)
3497 fsnotify_mkdir(dir, dentry);
3498 return error;
3499 }
3500 EXPORT_SYMBOL(vfs_mkdir);
3501
3502 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3503 {
3504 struct dentry *dentry;
3505 struct path path;
3506 int error;
3507 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3508
3509 retry:
3510 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3511 if (IS_ERR(dentry))
3512 return PTR_ERR(dentry);
3513
3514 if (!IS_POSIXACL(path.dentry->d_inode))
3515 mode &= ~current_umask();
3516 error = security_path_mkdir(&path, dentry, mode);
3517 if (!error)
3518 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3519 done_path_create(&path, dentry);
3520 if (retry_estale(error, lookup_flags)) {
3521 lookup_flags |= LOOKUP_REVAL;
3522 goto retry;
3523 }
3524 return error;
3525 }
3526
3527 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3528 {
3529 return sys_mkdirat(AT_FDCWD, pathname, mode);
3530 }
3531
3532 /*
3533 * The dentry_unhash() helper will try to drop the dentry early: we
3534 * should have a usage count of 1 if we're the only user of this
3535 * dentry, and if that is true (possibly after pruning the dcache),
3536 * then we drop the dentry now.
3537 *
3538 * A low-level filesystem can, if it choses, legally
3539 * do a
3540 *
3541 * if (!d_unhashed(dentry))
3542 * return -EBUSY;
3543 *
3544 * if it cannot handle the case of removing a directory
3545 * that is still in use by something else..
3546 */
3547 void dentry_unhash(struct dentry *dentry)
3548 {
3549 shrink_dcache_parent(dentry);
3550 spin_lock(&dentry->d_lock);
3551 if (dentry->d_lockref.count == 1)
3552 __d_drop(dentry);
3553 spin_unlock(&dentry->d_lock);
3554 }
3555 EXPORT_SYMBOL(dentry_unhash);
3556
3557 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3558 {
3559 int error = may_delete(dir, dentry, 1);
3560
3561 if (error)
3562 return error;
3563
3564 if (!dir->i_op->rmdir)
3565 return -EPERM;
3566
3567 dget(dentry);
3568 mutex_lock(&dentry->d_inode->i_mutex);
3569
3570 error = -EBUSY;
3571 if (d_mountpoint(dentry))
3572 goto out;
3573
3574 error = security_inode_rmdir(dir, dentry);
3575 if (error)
3576 goto out;
3577
3578 shrink_dcache_parent(dentry);
3579 error = dir->i_op->rmdir(dir, dentry);
3580 if (error)
3581 goto out;
3582
3583 dentry->d_inode->i_flags |= S_DEAD;
3584 dont_mount(dentry);
3585
3586 out:
3587 mutex_unlock(&dentry->d_inode->i_mutex);
3588 dput(dentry);
3589 if (!error)
3590 d_delete(dentry);
3591 return error;
3592 }
3593 EXPORT_SYMBOL(vfs_rmdir);
3594
3595 static long do_rmdir(int dfd, const char __user *pathname)
3596 {
3597 int error = 0;
3598 struct filename *name;
3599 struct dentry *dentry;
3600 struct nameidata nd;
3601 unsigned int lookup_flags = 0;
3602 retry:
3603 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3604 if (IS_ERR(name))
3605 return PTR_ERR(name);
3606
3607 switch(nd.last_type) {
3608 case LAST_DOTDOT:
3609 error = -ENOTEMPTY;
3610 goto exit1;
3611 case LAST_DOT:
3612 error = -EINVAL;
3613 goto exit1;
3614 case LAST_ROOT:
3615 error = -EBUSY;
3616 goto exit1;
3617 }
3618
3619 nd.flags &= ~LOOKUP_PARENT;
3620 error = mnt_want_write(nd.path.mnt);
3621 if (error)
3622 goto exit1;
3623
3624 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3625 dentry = lookup_hash(&nd);
3626 error = PTR_ERR(dentry);
3627 if (IS_ERR(dentry))
3628 goto exit2;
3629 if (!dentry->d_inode) {
3630 error = -ENOENT;
3631 goto exit3;
3632 }
3633 error = security_path_rmdir(&nd.path, dentry);
3634 if (error)
3635 goto exit3;
3636 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3637 exit3:
3638 dput(dentry);
3639 exit2:
3640 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3641 mnt_drop_write(nd.path.mnt);
3642 exit1:
3643 path_put(&nd.path);
3644 putname(name);
3645 if (retry_estale(error, lookup_flags)) {
3646 lookup_flags |= LOOKUP_REVAL;
3647 goto retry;
3648 }
3649 return error;
3650 }
3651
3652 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3653 {
3654 return do_rmdir(AT_FDCWD, pathname);
3655 }
3656
3657 /**
3658 * vfs_unlink - unlink a filesystem object
3659 * @dir: parent directory
3660 * @dentry: victim
3661 * @delegated_inode: returns victim inode, if the inode is delegated.
3662 *
3663 * The caller must hold dir->i_mutex.
3664 *
3665 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3666 * return a reference to the inode in delegated_inode. The caller
3667 * should then break the delegation on that inode and retry. Because
3668 * breaking a delegation may take a long time, the caller should drop
3669 * dir->i_mutex before doing so.
3670 *
3671 * Alternatively, a caller may pass NULL for delegated_inode. This may
3672 * be appropriate for callers that expect the underlying filesystem not
3673 * to be NFS exported.
3674 */
3675 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3676 {
3677 struct inode *target = dentry->d_inode;
3678 int error = may_delete(dir, dentry, 0);
3679
3680 if (error)
3681 return error;
3682
3683 if (!dir->i_op->unlink)
3684 return -EPERM;
3685
3686 mutex_lock(&target->i_mutex);
3687 if (d_mountpoint(dentry))
3688 error = -EBUSY;
3689 else {
3690 error = security_inode_unlink(dir, dentry);
3691 if (!error) {
3692 error = try_break_deleg(target, delegated_inode);
3693 if (error)
3694 goto out;
3695 error = dir->i_op->unlink(dir, dentry);
3696 if (!error)
3697 dont_mount(dentry);
3698 }
3699 }
3700 out:
3701 mutex_unlock(&target->i_mutex);
3702
3703 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3704 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3705 fsnotify_link_count(target);
3706 d_delete(dentry);
3707 }
3708
3709 return error;
3710 }
3711 EXPORT_SYMBOL(vfs_unlink);
3712
3713 /*
3714 * Make sure that the actual truncation of the file will occur outside its
3715 * directory's i_mutex. Truncate can take a long time if there is a lot of
3716 * writeout happening, and we don't want to prevent access to the directory
3717 * while waiting on the I/O.
3718 */
3719 static long do_unlinkat(int dfd, const char __user *pathname)
3720 {
3721 int error;
3722 struct filename *name;
3723 struct dentry *dentry;
3724 struct nameidata nd;
3725 struct inode *inode = NULL;
3726 struct inode *delegated_inode = NULL;
3727 unsigned int lookup_flags = 0;
3728 retry:
3729 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3730 if (IS_ERR(name))
3731 return PTR_ERR(name);
3732
3733 error = -EISDIR;
3734 if (nd.last_type != LAST_NORM)
3735 goto exit1;
3736
3737 nd.flags &= ~LOOKUP_PARENT;
3738 error = mnt_want_write(nd.path.mnt);
3739 if (error)
3740 goto exit1;
3741 retry_deleg:
3742 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3743 dentry = lookup_hash(&nd);
3744 error = PTR_ERR(dentry);
3745 if (!IS_ERR(dentry)) {
3746 /* Why not before? Because we want correct error value */
3747 if (nd.last.name[nd.last.len])
3748 goto slashes;
3749 inode = dentry->d_inode;
3750 if (d_is_negative(dentry))
3751 goto slashes;
3752 ihold(inode);
3753 error = security_path_unlink(&nd.path, dentry);
3754 if (error)
3755 goto exit2;
3756 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3757 exit2:
3758 dput(dentry);
3759 }
3760 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3761 if (inode)
3762 iput(inode); /* truncate the inode here */
3763 inode = NULL;
3764 if (delegated_inode) {
3765 error = break_deleg_wait(&delegated_inode);
3766 if (!error)
3767 goto retry_deleg;
3768 }
3769 mnt_drop_write(nd.path.mnt);
3770 exit1:
3771 path_put(&nd.path);
3772 putname(name);
3773 if (retry_estale(error, lookup_flags)) {
3774 lookup_flags |= LOOKUP_REVAL;
3775 inode = NULL;
3776 goto retry;
3777 }
3778 return error;
3779
3780 slashes:
3781 if (d_is_negative(dentry))
3782 error = -ENOENT;
3783 else if (d_is_dir(dentry))
3784 error = -EISDIR;
3785 else
3786 error = -ENOTDIR;
3787 goto exit2;
3788 }
3789
3790 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3791 {
3792 if ((flag & ~AT_REMOVEDIR) != 0)
3793 return -EINVAL;
3794
3795 if (flag & AT_REMOVEDIR)
3796 return do_rmdir(dfd, pathname);
3797
3798 return do_unlinkat(dfd, pathname);
3799 }
3800
3801 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3802 {
3803 return do_unlinkat(AT_FDCWD, pathname);
3804 }
3805
3806 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3807 {
3808 int error = may_create(dir, dentry);
3809
3810 if (error)
3811 return error;
3812
3813 if (!dir->i_op->symlink)
3814 return -EPERM;
3815
3816 error = security_inode_symlink(dir, dentry, oldname);
3817 if (error)
3818 return error;
3819
3820 error = dir->i_op->symlink(dir, dentry, oldname);
3821 if (!error)
3822 fsnotify_create(dir, dentry);
3823 return error;
3824 }
3825 EXPORT_SYMBOL(vfs_symlink);
3826
3827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3828 int, newdfd, const char __user *, newname)
3829 {
3830 int error;
3831 struct filename *from;
3832 struct dentry *dentry;
3833 struct path path;
3834 unsigned int lookup_flags = 0;
3835
3836 from = getname(oldname);
3837 if (IS_ERR(from))
3838 return PTR_ERR(from);
3839 retry:
3840 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3841 error = PTR_ERR(dentry);
3842 if (IS_ERR(dentry))
3843 goto out_putname;
3844
3845 error = security_path_symlink(&path, dentry, from->name);
3846 if (!error)
3847 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3848 done_path_create(&path, dentry);
3849 if (retry_estale(error, lookup_flags)) {
3850 lookup_flags |= LOOKUP_REVAL;
3851 goto retry;
3852 }
3853 out_putname:
3854 putname(from);
3855 return error;
3856 }
3857
3858 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3859 {
3860 return sys_symlinkat(oldname, AT_FDCWD, newname);
3861 }
3862
3863 /**
3864 * vfs_link - create a new link
3865 * @old_dentry: object to be linked
3866 * @dir: new parent
3867 * @new_dentry: where to create the new link
3868 * @delegated_inode: returns inode needing a delegation break
3869 *
3870 * The caller must hold dir->i_mutex
3871 *
3872 * If vfs_link discovers a delegation on the to-be-linked file in need
3873 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3874 * inode in delegated_inode. The caller should then break the delegation
3875 * and retry. Because breaking a delegation may take a long time, the
3876 * caller should drop the i_mutex before doing so.
3877 *
3878 * Alternatively, a caller may pass NULL for delegated_inode. This may
3879 * be appropriate for callers that expect the underlying filesystem not
3880 * to be NFS exported.
3881 */
3882 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3883 {
3884 struct inode *inode = old_dentry->d_inode;
3885 unsigned max_links = dir->i_sb->s_max_links;
3886 int error;
3887
3888 if (!inode)
3889 return -ENOENT;
3890
3891 error = may_create(dir, new_dentry);
3892 if (error)
3893 return error;
3894
3895 if (dir->i_sb != inode->i_sb)
3896 return -EXDEV;
3897
3898 /*
3899 * A link to an append-only or immutable file cannot be created.
3900 */
3901 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3902 return -EPERM;
3903 if (!dir->i_op->link)
3904 return -EPERM;
3905 if (S_ISDIR(inode->i_mode))
3906 return -EPERM;
3907
3908 error = security_inode_link(old_dentry, dir, new_dentry);
3909 if (error)
3910 return error;
3911
3912 mutex_lock(&inode->i_mutex);
3913 /* Make sure we don't allow creating hardlink to an unlinked file */
3914 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3915 error = -ENOENT;
3916 else if (max_links && inode->i_nlink >= max_links)
3917 error = -EMLINK;
3918 else {
3919 error = try_break_deleg(inode, delegated_inode);
3920 if (!error)
3921 error = dir->i_op->link(old_dentry, dir, new_dentry);
3922 }
3923
3924 if (!error && (inode->i_state & I_LINKABLE)) {
3925 spin_lock(&inode->i_lock);
3926 inode->i_state &= ~I_LINKABLE;
3927 spin_unlock(&inode->i_lock);
3928 }
3929 mutex_unlock(&inode->i_mutex);
3930 if (!error)
3931 fsnotify_link(dir, inode, new_dentry);
3932 return error;
3933 }
3934 EXPORT_SYMBOL(vfs_link);
3935
3936 /*
3937 * Hardlinks are often used in delicate situations. We avoid
3938 * security-related surprises by not following symlinks on the
3939 * newname. --KAB
3940 *
3941 * We don't follow them on the oldname either to be compatible
3942 * with linux 2.0, and to avoid hard-linking to directories
3943 * and other special files. --ADM
3944 */
3945 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3946 int, newdfd, const char __user *, newname, int, flags)
3947 {
3948 struct dentry *new_dentry;
3949 struct path old_path, new_path;
3950 struct inode *delegated_inode = NULL;
3951 int how = 0;
3952 int error;
3953
3954 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3955 return -EINVAL;
3956 /*
3957 * To use null names we require CAP_DAC_READ_SEARCH
3958 * This ensures that not everyone will be able to create
3959 * handlink using the passed filedescriptor.
3960 */
3961 if (flags & AT_EMPTY_PATH) {
3962 if (!capable(CAP_DAC_READ_SEARCH))
3963 return -ENOENT;
3964 how = LOOKUP_EMPTY;
3965 }
3966
3967 if (flags & AT_SYMLINK_FOLLOW)
3968 how |= LOOKUP_FOLLOW;
3969 retry:
3970 error = user_path_at(olddfd, oldname, how, &old_path);
3971 if (error)
3972 return error;
3973
3974 new_dentry = user_path_create(newdfd, newname, &new_path,
3975 (how & LOOKUP_REVAL));
3976 error = PTR_ERR(new_dentry);
3977 if (IS_ERR(new_dentry))
3978 goto out;
3979
3980 error = -EXDEV;
3981 if (old_path.mnt != new_path.mnt)
3982 goto out_dput;
3983 error = may_linkat(&old_path);
3984 if (unlikely(error))
3985 goto out_dput;
3986 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3987 if (error)
3988 goto out_dput;
3989 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3990 out_dput:
3991 done_path_create(&new_path, new_dentry);
3992 if (delegated_inode) {
3993 error = break_deleg_wait(&delegated_inode);
3994 if (!error) {
3995 path_put(&old_path);
3996 goto retry;
3997 }
3998 }
3999 if (retry_estale(error, how)) {
4000 path_put(&old_path);
4001 how |= LOOKUP_REVAL;
4002 goto retry;
4003 }
4004 out:
4005 path_put(&old_path);
4006
4007 return error;
4008 }
4009
4010 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4011 {
4012 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4013 }
4014
4015 /**
4016 * vfs_rename - rename a filesystem object
4017 * @old_dir: parent of source
4018 * @old_dentry: source
4019 * @new_dir: parent of destination
4020 * @new_dentry: destination
4021 * @delegated_inode: returns an inode needing a delegation break
4022 * @flags: rename flags
4023 *
4024 * The caller must hold multiple mutexes--see lock_rename()).
4025 *
4026 * If vfs_rename discovers a delegation in need of breaking at either
4027 * the source or destination, it will return -EWOULDBLOCK and return a
4028 * reference to the inode in delegated_inode. The caller should then
4029 * break the delegation and retry. Because breaking a delegation may
4030 * take a long time, the caller should drop all locks before doing
4031 * so.
4032 *
4033 * Alternatively, a caller may pass NULL for delegated_inode. This may
4034 * be appropriate for callers that expect the underlying filesystem not
4035 * to be NFS exported.
4036 *
4037 * The worst of all namespace operations - renaming directory. "Perverted"
4038 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4039 * Problems:
4040 * a) we can get into loop creation.
4041 * b) race potential - two innocent renames can create a loop together.
4042 * That's where 4.4 screws up. Current fix: serialization on
4043 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4044 * story.
4045 * c) we have to lock _four_ objects - parents and victim (if it exists),
4046 * and source (if it is not a directory).
4047 * And that - after we got ->i_mutex on parents (until then we don't know
4048 * whether the target exists). Solution: try to be smart with locking
4049 * order for inodes. We rely on the fact that tree topology may change
4050 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4051 * move will be locked. Thus we can rank directories by the tree
4052 * (ancestors first) and rank all non-directories after them.
4053 * That works since everybody except rename does "lock parent, lookup,
4054 * lock child" and rename is under ->s_vfs_rename_mutex.
4055 * HOWEVER, it relies on the assumption that any object with ->lookup()
4056 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4057 * we'd better make sure that there's no link(2) for them.
4058 * d) conversion from fhandle to dentry may come in the wrong moment - when
4059 * we are removing the target. Solution: we will have to grab ->i_mutex
4060 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4061 * ->i_mutex on parents, which works but leads to some truly excessive
4062 * locking].
4063 */
4064 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4065 struct inode *new_dir, struct dentry *new_dentry,
4066 struct inode **delegated_inode, unsigned int flags)
4067 {
4068 int error;
4069 bool is_dir = d_is_dir(old_dentry);
4070 const unsigned char *old_name;
4071 struct inode *source = old_dentry->d_inode;
4072 struct inode *target = new_dentry->d_inode;
4073 bool new_is_dir = false;
4074 unsigned max_links = new_dir->i_sb->s_max_links;
4075
4076 if (source == target)
4077 return 0;
4078
4079 error = may_delete(old_dir, old_dentry, is_dir);
4080 if (error)
4081 return error;
4082
4083 if (!target) {
4084 error = may_create(new_dir, new_dentry);
4085 } else {
4086 new_is_dir = d_is_dir(new_dentry);
4087
4088 if (!(flags & RENAME_EXCHANGE))
4089 error = may_delete(new_dir, new_dentry, is_dir);
4090 else
4091 error = may_delete(new_dir, new_dentry, new_is_dir);
4092 }
4093 if (error)
4094 return error;
4095
4096 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4097 return -EPERM;
4098
4099 if (flags && !old_dir->i_op->rename2)
4100 return -EINVAL;
4101
4102 /*
4103 * If we are going to change the parent - check write permissions,
4104 * we'll need to flip '..'.
4105 */
4106 if (new_dir != old_dir) {
4107 if (is_dir) {
4108 error = inode_permission(source, MAY_WRITE);
4109 if (error)
4110 return error;
4111 }
4112 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4113 error = inode_permission(target, MAY_WRITE);
4114 if (error)
4115 return error;
4116 }
4117 }
4118
4119 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4120 flags);
4121 if (error)
4122 return error;
4123
4124 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4125 dget(new_dentry);
4126 if (!is_dir || (flags & RENAME_EXCHANGE))
4127 lock_two_nondirectories(source, target);
4128 else if (target)
4129 mutex_lock(&target->i_mutex);
4130
4131 error = -EBUSY;
4132 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4133 goto out;
4134
4135 if (max_links && new_dir != old_dir) {
4136 error = -EMLINK;
4137 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4138 goto out;
4139 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4140 old_dir->i_nlink >= max_links)
4141 goto out;
4142 }
4143 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4144 shrink_dcache_parent(new_dentry);
4145 if (!is_dir) {
4146 error = try_break_deleg(source, delegated_inode);
4147 if (error)
4148 goto out;
4149 }
4150 if (target && !new_is_dir) {
4151 error = try_break_deleg(target, delegated_inode);
4152 if (error)
4153 goto out;
4154 }
4155 if (!old_dir->i_op->rename2) {
4156 error = old_dir->i_op->rename(old_dir, old_dentry,
4157 new_dir, new_dentry);
4158 } else {
4159 WARN_ON(old_dir->i_op->rename != NULL);
4160 error = old_dir->i_op->rename2(old_dir, old_dentry,
4161 new_dir, new_dentry, flags);
4162 }
4163 if (error)
4164 goto out;
4165
4166 if (!(flags & RENAME_EXCHANGE) && target) {
4167 if (is_dir)
4168 target->i_flags |= S_DEAD;
4169 dont_mount(new_dentry);
4170 }
4171 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4172 if (!(flags & RENAME_EXCHANGE))
4173 d_move(old_dentry, new_dentry);
4174 else
4175 d_exchange(old_dentry, new_dentry);
4176 }
4177 out:
4178 if (!is_dir || (flags & RENAME_EXCHANGE))
4179 unlock_two_nondirectories(source, target);
4180 else if (target)
4181 mutex_unlock(&target->i_mutex);
4182 dput(new_dentry);
4183 if (!error) {
4184 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4185 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4186 if (flags & RENAME_EXCHANGE) {
4187 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4188 new_is_dir, NULL, new_dentry);
4189 }
4190 }
4191 fsnotify_oldname_free(old_name);
4192
4193 return error;
4194 }
4195 EXPORT_SYMBOL(vfs_rename);
4196
4197 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4198 int, newdfd, const char __user *, newname, unsigned int, flags)
4199 {
4200 struct dentry *old_dir, *new_dir;
4201 struct dentry *old_dentry, *new_dentry;
4202 struct dentry *trap;
4203 struct nameidata oldnd, newnd;
4204 struct inode *delegated_inode = NULL;
4205 struct filename *from;
4206 struct filename *to;
4207 unsigned int lookup_flags = 0;
4208 bool should_retry = false;
4209 int error;
4210
4211 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4212 return -EINVAL;
4213
4214 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4215 return -EINVAL;
4216
4217 retry:
4218 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4219 if (IS_ERR(from)) {
4220 error = PTR_ERR(from);
4221 goto exit;
4222 }
4223
4224 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4225 if (IS_ERR(to)) {
4226 error = PTR_ERR(to);
4227 goto exit1;
4228 }
4229
4230 error = -EXDEV;
4231 if (oldnd.path.mnt != newnd.path.mnt)
4232 goto exit2;
4233
4234 old_dir = oldnd.path.dentry;
4235 error = -EBUSY;
4236 if (oldnd.last_type != LAST_NORM)
4237 goto exit2;
4238
4239 new_dir = newnd.path.dentry;
4240 if (flags & RENAME_NOREPLACE)
4241 error = -EEXIST;
4242 if (newnd.last_type != LAST_NORM)
4243 goto exit2;
4244
4245 error = mnt_want_write(oldnd.path.mnt);
4246 if (error)
4247 goto exit2;
4248
4249 oldnd.flags &= ~LOOKUP_PARENT;
4250 newnd.flags &= ~LOOKUP_PARENT;
4251 if (!(flags & RENAME_EXCHANGE))
4252 newnd.flags |= LOOKUP_RENAME_TARGET;
4253
4254 retry_deleg:
4255 trap = lock_rename(new_dir, old_dir);
4256
4257 old_dentry = lookup_hash(&oldnd);
4258 error = PTR_ERR(old_dentry);
4259 if (IS_ERR(old_dentry))
4260 goto exit3;
4261 /* source must exist */
4262 error = -ENOENT;
4263 if (d_is_negative(old_dentry))
4264 goto exit4;
4265 new_dentry = lookup_hash(&newnd);
4266 error = PTR_ERR(new_dentry);
4267 if (IS_ERR(new_dentry))
4268 goto exit4;
4269 error = -EEXIST;
4270 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4271 goto exit5;
4272 if (flags & RENAME_EXCHANGE) {
4273 error = -ENOENT;
4274 if (d_is_negative(new_dentry))
4275 goto exit5;
4276
4277 if (!d_is_dir(new_dentry)) {
4278 error = -ENOTDIR;
4279 if (newnd.last.name[newnd.last.len])
4280 goto exit5;
4281 }
4282 }
4283 /* unless the source is a directory trailing slashes give -ENOTDIR */
4284 if (!d_is_dir(old_dentry)) {
4285 error = -ENOTDIR;
4286 if (oldnd.last.name[oldnd.last.len])
4287 goto exit5;
4288 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4289 goto exit5;
4290 }
4291 /* source should not be ancestor of target */
4292 error = -EINVAL;
4293 if (old_dentry == trap)
4294 goto exit5;
4295 /* target should not be an ancestor of source */
4296 if (!(flags & RENAME_EXCHANGE))
4297 error = -ENOTEMPTY;
4298 if (new_dentry == trap)
4299 goto exit5;
4300
4301 error = security_path_rename(&oldnd.path, old_dentry,
4302 &newnd.path, new_dentry, flags);
4303 if (error)
4304 goto exit5;
4305 error = vfs_rename(old_dir->d_inode, old_dentry,
4306 new_dir->d_inode, new_dentry,
4307 &delegated_inode, flags);
4308 exit5:
4309 dput(new_dentry);
4310 exit4:
4311 dput(old_dentry);
4312 exit3:
4313 unlock_rename(new_dir, old_dir);
4314 if (delegated_inode) {
4315 error = break_deleg_wait(&delegated_inode);
4316 if (!error)
4317 goto retry_deleg;
4318 }
4319 mnt_drop_write(oldnd.path.mnt);
4320 exit2:
4321 if (retry_estale(error, lookup_flags))
4322 should_retry = true;
4323 path_put(&newnd.path);
4324 putname(to);
4325 exit1:
4326 path_put(&oldnd.path);
4327 putname(from);
4328 if (should_retry) {
4329 should_retry = false;
4330 lookup_flags |= LOOKUP_REVAL;
4331 goto retry;
4332 }
4333 exit:
4334 return error;
4335 }
4336
4337 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4338 int, newdfd, const char __user *, newname)
4339 {
4340 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4341 }
4342
4343 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4344 {
4345 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4346 }
4347
4348 int readlink_copy(char __user *buffer, int buflen, const char *link)
4349 {
4350 int len = PTR_ERR(link);
4351 if (IS_ERR(link))
4352 goto out;
4353
4354 len = strlen(link);
4355 if (len > (unsigned) buflen)
4356 len = buflen;
4357 if (copy_to_user(buffer, link, len))
4358 len = -EFAULT;
4359 out:
4360 return len;
4361 }
4362 EXPORT_SYMBOL(readlink_copy);
4363
4364 /*
4365 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4366 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4367 * using) it for any given inode is up to filesystem.
4368 */
4369 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4370 {
4371 struct nameidata nd;
4372 void *cookie;
4373 int res;
4374
4375 nd.depth = 0;
4376 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4377 if (IS_ERR(cookie))
4378 return PTR_ERR(cookie);
4379
4380 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4381 if (dentry->d_inode->i_op->put_link)
4382 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4383 return res;
4384 }
4385 EXPORT_SYMBOL(generic_readlink);
4386
4387 /* get the link contents into pagecache */
4388 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4389 {
4390 char *kaddr;
4391 struct page *page;
4392 struct address_space *mapping = dentry->d_inode->i_mapping;
4393 page = read_mapping_page(mapping, 0, NULL);
4394 if (IS_ERR(page))
4395 return (char*)page;
4396 *ppage = page;
4397 kaddr = kmap(page);
4398 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4399 return kaddr;
4400 }
4401
4402 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4403 {
4404 struct page *page = NULL;
4405 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4406 if (page) {
4407 kunmap(page);
4408 page_cache_release(page);
4409 }
4410 return res;
4411 }
4412 EXPORT_SYMBOL(page_readlink);
4413
4414 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4415 {
4416 struct page *page = NULL;
4417 nd_set_link(nd, page_getlink(dentry, &page));
4418 return page;
4419 }
4420 EXPORT_SYMBOL(page_follow_link_light);
4421
4422 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4423 {
4424 struct page *page = cookie;
4425
4426 if (page) {
4427 kunmap(page);
4428 page_cache_release(page);
4429 }
4430 }
4431 EXPORT_SYMBOL(page_put_link);
4432
4433 /*
4434 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4435 */
4436 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4437 {
4438 struct address_space *mapping = inode->i_mapping;
4439 struct page *page;
4440 void *fsdata;
4441 int err;
4442 char *kaddr;
4443 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4444 if (nofs)
4445 flags |= AOP_FLAG_NOFS;
4446
4447 retry:
4448 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4449 flags, &page, &fsdata);
4450 if (err)
4451 goto fail;
4452
4453 kaddr = kmap_atomic(page);
4454 memcpy(kaddr, symname, len-1);
4455 kunmap_atomic(kaddr);
4456
4457 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4458 page, fsdata);
4459 if (err < 0)
4460 goto fail;
4461 if (err < len-1)
4462 goto retry;
4463
4464 mark_inode_dirty(inode);
4465 return 0;
4466 fail:
4467 return err;
4468 }
4469 EXPORT_SYMBOL(__page_symlink);
4470
4471 int page_symlink(struct inode *inode, const char *symname, int len)
4472 {
4473 return __page_symlink(inode, symname, len,
4474 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4475 }
4476 EXPORT_SYMBOL(page_symlink);
4477
4478 const struct inode_operations page_symlink_inode_operations = {
4479 .readlink = generic_readlink,
4480 .follow_link = page_follow_link_light,
4481 .put_link = page_put_link,
4482 };
4483 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.120875 seconds and 5 git commands to generate.