27c38591b4ecafc7089629652050492eebcb79b3
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 } *stack, internal[EMBEDDED_LEVELS];
511 };
512
513 static struct nameidata *set_nameidata(struct nameidata *p)
514 {
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->total_link_count = old ? old->total_link_count : 0;
518 current->nameidata = p;
519 return old;
520 }
521
522 static void restore_nameidata(struct nameidata *old)
523 {
524 struct nameidata *now = current->nameidata;
525
526 current->nameidata = old;
527 if (old)
528 old->total_link_count = now->total_link_count;
529 if (now->stack != now->internal) {
530 kfree(now->stack);
531 now->stack = now->internal;
532 }
533 }
534
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 struct saved *p = kmalloc(MAXSYMLINKS * sizeof(struct saved),
538 GFP_KERNEL);
539 if (unlikely(!p))
540 return -ENOMEM;
541 memcpy(p, nd->internal, sizeof(nd->internal));
542 nd->stack = p;
543 return 0;
544 }
545
546 static inline int nd_alloc_stack(struct nameidata *nd)
547 {
548 if (likely(nd->depth != EMBEDDED_LEVELS))
549 return 0;
550 if (likely(nd->stack != nd->internal))
551 return 0;
552 return __nd_alloc_stack(nd);
553 }
554
555 /*
556 * Path walking has 2 modes, rcu-walk and ref-walk (see
557 * Documentation/filesystems/path-lookup.txt). In situations when we can't
558 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
559 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
560 * mode. Refcounts are grabbed at the last known good point before rcu-walk
561 * got stuck, so ref-walk may continue from there. If this is not successful
562 * (eg. a seqcount has changed), then failure is returned and it's up to caller
563 * to restart the path walk from the beginning in ref-walk mode.
564 */
565
566 /**
567 * unlazy_walk - try to switch to ref-walk mode.
568 * @nd: nameidata pathwalk data
569 * @dentry: child of nd->path.dentry or NULL
570 * Returns: 0 on success, -ECHILD on failure
571 *
572 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
573 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
574 * @nd or NULL. Must be called from rcu-walk context.
575 */
576 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
577 {
578 struct fs_struct *fs = current->fs;
579 struct dentry *parent = nd->path.dentry;
580
581 BUG_ON(!(nd->flags & LOOKUP_RCU));
582
583 /*
584 * After legitimizing the bastards, terminate_walk()
585 * will do the right thing for non-RCU mode, and all our
586 * subsequent exit cases should rcu_read_unlock()
587 * before returning. Do vfsmount first; if dentry
588 * can't be legitimized, just set nd->path.dentry to NULL
589 * and rely on dput(NULL) being a no-op.
590 */
591 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
592 return -ECHILD;
593 nd->flags &= ~LOOKUP_RCU;
594
595 if (!lockref_get_not_dead(&parent->d_lockref)) {
596 nd->path.dentry = NULL;
597 goto out;
598 }
599
600 /*
601 * For a negative lookup, the lookup sequence point is the parents
602 * sequence point, and it only needs to revalidate the parent dentry.
603 *
604 * For a positive lookup, we need to move both the parent and the
605 * dentry from the RCU domain to be properly refcounted. And the
606 * sequence number in the dentry validates *both* dentry counters,
607 * since we checked the sequence number of the parent after we got
608 * the child sequence number. So we know the parent must still
609 * be valid if the child sequence number is still valid.
610 */
611 if (!dentry) {
612 if (read_seqcount_retry(&parent->d_seq, nd->seq))
613 goto out;
614 BUG_ON(nd->inode != parent->d_inode);
615 } else {
616 if (!lockref_get_not_dead(&dentry->d_lockref))
617 goto out;
618 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
619 goto drop_dentry;
620 }
621
622 /*
623 * Sequence counts matched. Now make sure that the root is
624 * still valid and get it if required.
625 */
626 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
627 spin_lock(&fs->lock);
628 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
629 goto unlock_and_drop_dentry;
630 path_get(&nd->root);
631 spin_unlock(&fs->lock);
632 }
633
634 rcu_read_unlock();
635 return 0;
636
637 unlock_and_drop_dentry:
638 spin_unlock(&fs->lock);
639 drop_dentry:
640 rcu_read_unlock();
641 dput(dentry);
642 goto drop_root_mnt;
643 out:
644 rcu_read_unlock();
645 drop_root_mnt:
646 if (!(nd->flags & LOOKUP_ROOT))
647 nd->root.mnt = NULL;
648 return -ECHILD;
649 }
650
651 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
652 {
653 return dentry->d_op->d_revalidate(dentry, flags);
654 }
655
656 /**
657 * complete_walk - successful completion of path walk
658 * @nd: pointer nameidata
659 *
660 * If we had been in RCU mode, drop out of it and legitimize nd->path.
661 * Revalidate the final result, unless we'd already done that during
662 * the path walk or the filesystem doesn't ask for it. Return 0 on
663 * success, -error on failure. In case of failure caller does not
664 * need to drop nd->path.
665 */
666 static int complete_walk(struct nameidata *nd)
667 {
668 struct dentry *dentry = nd->path.dentry;
669 int status;
670
671 if (nd->flags & LOOKUP_RCU) {
672 if (!(nd->flags & LOOKUP_ROOT))
673 nd->root.mnt = NULL;
674 if (unlikely(unlazy_walk(nd, NULL)))
675 return -ECHILD;
676 }
677
678 if (likely(!(nd->flags & LOOKUP_JUMPED)))
679 return 0;
680
681 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
682 return 0;
683
684 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
685 if (status > 0)
686 return 0;
687
688 if (!status)
689 status = -ESTALE;
690
691 return status;
692 }
693
694 static __always_inline void set_root(struct nameidata *nd)
695 {
696 get_fs_root(current->fs, &nd->root);
697 }
698
699 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
700 {
701 struct fs_struct *fs = current->fs;
702 unsigned seq, res;
703
704 do {
705 seq = read_seqcount_begin(&fs->seq);
706 nd->root = fs->root;
707 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
708 } while (read_seqcount_retry(&fs->seq, seq));
709 return res;
710 }
711
712 static void path_put_conditional(struct path *path, struct nameidata *nd)
713 {
714 dput(path->dentry);
715 if (path->mnt != nd->path.mnt)
716 mntput(path->mnt);
717 }
718
719 static inline void path_to_nameidata(const struct path *path,
720 struct nameidata *nd)
721 {
722 if (!(nd->flags & LOOKUP_RCU)) {
723 dput(nd->path.dentry);
724 if (nd->path.mnt != path->mnt)
725 mntput(nd->path.mnt);
726 }
727 nd->path.mnt = path->mnt;
728 nd->path.dentry = path->dentry;
729 }
730
731 /*
732 * Helper to directly jump to a known parsed path from ->follow_link,
733 * caller must have taken a reference to path beforehand.
734 */
735 void nd_jump_link(struct path *path)
736 {
737 struct nameidata *nd = current->nameidata;
738 path_put(&nd->path);
739
740 nd->path = *path;
741 nd->inode = nd->path.dentry->d_inode;
742 nd->flags |= LOOKUP_JUMPED;
743 }
744
745 static inline void put_link(struct nameidata *nd)
746 {
747 struct saved *last = nd->stack + --nd->depth;
748 struct inode *inode = last->link.dentry->d_inode;
749 if (last->cookie && inode->i_op->put_link)
750 inode->i_op->put_link(last->link.dentry, last->cookie);
751 path_put(&last->link);
752 }
753
754 int sysctl_protected_symlinks __read_mostly = 0;
755 int sysctl_protected_hardlinks __read_mostly = 0;
756
757 /**
758 * may_follow_link - Check symlink following for unsafe situations
759 * @nd: nameidata pathwalk data
760 *
761 * In the case of the sysctl_protected_symlinks sysctl being enabled,
762 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
763 * in a sticky world-writable directory. This is to protect privileged
764 * processes from failing races against path names that may change out
765 * from under them by way of other users creating malicious symlinks.
766 * It will permit symlinks to be followed only when outside a sticky
767 * world-writable directory, or when the uid of the symlink and follower
768 * match, or when the directory owner matches the symlink's owner.
769 *
770 * Returns 0 if following the symlink is allowed, -ve on error.
771 */
772 static inline int may_follow_link(struct nameidata *nd)
773 {
774 const struct inode *inode;
775 const struct inode *parent;
776
777 if (!sysctl_protected_symlinks)
778 return 0;
779
780 /* Allowed if owner and follower match. */
781 inode = nd->stack[0].link.dentry->d_inode;
782 if (uid_eq(current_cred()->fsuid, inode->i_uid))
783 return 0;
784
785 /* Allowed if parent directory not sticky and world-writable. */
786 parent = nd->path.dentry->d_inode;
787 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
788 return 0;
789
790 /* Allowed if parent directory and link owner match. */
791 if (uid_eq(parent->i_uid, inode->i_uid))
792 return 0;
793
794 audit_log_link_denied("follow_link", &nd->stack[0].link);
795 return -EACCES;
796 }
797
798 /**
799 * safe_hardlink_source - Check for safe hardlink conditions
800 * @inode: the source inode to hardlink from
801 *
802 * Return false if at least one of the following conditions:
803 * - inode is not a regular file
804 * - inode is setuid
805 * - inode is setgid and group-exec
806 * - access failure for read and write
807 *
808 * Otherwise returns true.
809 */
810 static bool safe_hardlink_source(struct inode *inode)
811 {
812 umode_t mode = inode->i_mode;
813
814 /* Special files should not get pinned to the filesystem. */
815 if (!S_ISREG(mode))
816 return false;
817
818 /* Setuid files should not get pinned to the filesystem. */
819 if (mode & S_ISUID)
820 return false;
821
822 /* Executable setgid files should not get pinned to the filesystem. */
823 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
824 return false;
825
826 /* Hardlinking to unreadable or unwritable sources is dangerous. */
827 if (inode_permission(inode, MAY_READ | MAY_WRITE))
828 return false;
829
830 return true;
831 }
832
833 /**
834 * may_linkat - Check permissions for creating a hardlink
835 * @link: the source to hardlink from
836 *
837 * Block hardlink when all of:
838 * - sysctl_protected_hardlinks enabled
839 * - fsuid does not match inode
840 * - hardlink source is unsafe (see safe_hardlink_source() above)
841 * - not CAP_FOWNER
842 *
843 * Returns 0 if successful, -ve on error.
844 */
845 static int may_linkat(struct path *link)
846 {
847 const struct cred *cred;
848 struct inode *inode;
849
850 if (!sysctl_protected_hardlinks)
851 return 0;
852
853 cred = current_cred();
854 inode = link->dentry->d_inode;
855
856 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
857 * otherwise, it must be a safe source.
858 */
859 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
860 capable(CAP_FOWNER))
861 return 0;
862
863 audit_log_link_denied("linkat", link);
864 return -EPERM;
865 }
866
867 static __always_inline
868 const char *get_link(struct nameidata *nd)
869 {
870 struct saved *last = nd->stack + nd->depth - 1;
871 struct dentry *dentry = last->link.dentry;
872 struct inode *inode = dentry->d_inode;
873 int error;
874 const char *res;
875
876 BUG_ON(nd->flags & LOOKUP_RCU);
877
878 cond_resched();
879
880 touch_atime(&last->link);
881
882 error = security_inode_follow_link(dentry);
883 if (error)
884 return ERR_PTR(error);
885
886 nd->last_type = LAST_BIND;
887 res = inode->i_link;
888 if (!res) {
889 res = inode->i_op->follow_link(dentry, &last->cookie);
890 if (IS_ERR_OR_NULL(res)) {
891 last->cookie = NULL;
892 return res;
893 }
894 }
895 if (*res == '/') {
896 if (!nd->root.mnt)
897 set_root(nd);
898 path_put(&nd->path);
899 nd->path = nd->root;
900 path_get(&nd->root);
901 nd->inode = nd->path.dentry->d_inode;
902 nd->flags |= LOOKUP_JUMPED;
903 while (unlikely(*++res == '/'))
904 ;
905 }
906 if (!*res)
907 res = NULL;
908 return res;
909 }
910
911 static int follow_up_rcu(struct path *path)
912 {
913 struct mount *mnt = real_mount(path->mnt);
914 struct mount *parent;
915 struct dentry *mountpoint;
916
917 parent = mnt->mnt_parent;
918 if (&parent->mnt == path->mnt)
919 return 0;
920 mountpoint = mnt->mnt_mountpoint;
921 path->dentry = mountpoint;
922 path->mnt = &parent->mnt;
923 return 1;
924 }
925
926 /*
927 * follow_up - Find the mountpoint of path's vfsmount
928 *
929 * Given a path, find the mountpoint of its source file system.
930 * Replace @path with the path of the mountpoint in the parent mount.
931 * Up is towards /.
932 *
933 * Return 1 if we went up a level and 0 if we were already at the
934 * root.
935 */
936 int follow_up(struct path *path)
937 {
938 struct mount *mnt = real_mount(path->mnt);
939 struct mount *parent;
940 struct dentry *mountpoint;
941
942 read_seqlock_excl(&mount_lock);
943 parent = mnt->mnt_parent;
944 if (parent == mnt) {
945 read_sequnlock_excl(&mount_lock);
946 return 0;
947 }
948 mntget(&parent->mnt);
949 mountpoint = dget(mnt->mnt_mountpoint);
950 read_sequnlock_excl(&mount_lock);
951 dput(path->dentry);
952 path->dentry = mountpoint;
953 mntput(path->mnt);
954 path->mnt = &parent->mnt;
955 return 1;
956 }
957 EXPORT_SYMBOL(follow_up);
958
959 /*
960 * Perform an automount
961 * - return -EISDIR to tell follow_managed() to stop and return the path we
962 * were called with.
963 */
964 static int follow_automount(struct path *path, struct nameidata *nd,
965 bool *need_mntput)
966 {
967 struct vfsmount *mnt;
968 int err;
969
970 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
971 return -EREMOTE;
972
973 /* We don't want to mount if someone's just doing a stat -
974 * unless they're stat'ing a directory and appended a '/' to
975 * the name.
976 *
977 * We do, however, want to mount if someone wants to open or
978 * create a file of any type under the mountpoint, wants to
979 * traverse through the mountpoint or wants to open the
980 * mounted directory. Also, autofs may mark negative dentries
981 * as being automount points. These will need the attentions
982 * of the daemon to instantiate them before they can be used.
983 */
984 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
985 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
986 path->dentry->d_inode)
987 return -EISDIR;
988
989 nd->total_link_count++;
990 if (nd->total_link_count >= 40)
991 return -ELOOP;
992
993 mnt = path->dentry->d_op->d_automount(path);
994 if (IS_ERR(mnt)) {
995 /*
996 * The filesystem is allowed to return -EISDIR here to indicate
997 * it doesn't want to automount. For instance, autofs would do
998 * this so that its userspace daemon can mount on this dentry.
999 *
1000 * However, we can only permit this if it's a terminal point in
1001 * the path being looked up; if it wasn't then the remainder of
1002 * the path is inaccessible and we should say so.
1003 */
1004 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1005 return -EREMOTE;
1006 return PTR_ERR(mnt);
1007 }
1008
1009 if (!mnt) /* mount collision */
1010 return 0;
1011
1012 if (!*need_mntput) {
1013 /* lock_mount() may release path->mnt on error */
1014 mntget(path->mnt);
1015 *need_mntput = true;
1016 }
1017 err = finish_automount(mnt, path);
1018
1019 switch (err) {
1020 case -EBUSY:
1021 /* Someone else made a mount here whilst we were busy */
1022 return 0;
1023 case 0:
1024 path_put(path);
1025 path->mnt = mnt;
1026 path->dentry = dget(mnt->mnt_root);
1027 return 0;
1028 default:
1029 return err;
1030 }
1031
1032 }
1033
1034 /*
1035 * Handle a dentry that is managed in some way.
1036 * - Flagged for transit management (autofs)
1037 * - Flagged as mountpoint
1038 * - Flagged as automount point
1039 *
1040 * This may only be called in refwalk mode.
1041 *
1042 * Serialization is taken care of in namespace.c
1043 */
1044 static int follow_managed(struct path *path, struct nameidata *nd)
1045 {
1046 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1047 unsigned managed;
1048 bool need_mntput = false;
1049 int ret = 0;
1050
1051 /* Given that we're not holding a lock here, we retain the value in a
1052 * local variable for each dentry as we look at it so that we don't see
1053 * the components of that value change under us */
1054 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1055 managed &= DCACHE_MANAGED_DENTRY,
1056 unlikely(managed != 0)) {
1057 /* Allow the filesystem to manage the transit without i_mutex
1058 * being held. */
1059 if (managed & DCACHE_MANAGE_TRANSIT) {
1060 BUG_ON(!path->dentry->d_op);
1061 BUG_ON(!path->dentry->d_op->d_manage);
1062 ret = path->dentry->d_op->d_manage(path->dentry, false);
1063 if (ret < 0)
1064 break;
1065 }
1066
1067 /* Transit to a mounted filesystem. */
1068 if (managed & DCACHE_MOUNTED) {
1069 struct vfsmount *mounted = lookup_mnt(path);
1070 if (mounted) {
1071 dput(path->dentry);
1072 if (need_mntput)
1073 mntput(path->mnt);
1074 path->mnt = mounted;
1075 path->dentry = dget(mounted->mnt_root);
1076 need_mntput = true;
1077 continue;
1078 }
1079
1080 /* Something is mounted on this dentry in another
1081 * namespace and/or whatever was mounted there in this
1082 * namespace got unmounted before lookup_mnt() could
1083 * get it */
1084 }
1085
1086 /* Handle an automount point */
1087 if (managed & DCACHE_NEED_AUTOMOUNT) {
1088 ret = follow_automount(path, nd, &need_mntput);
1089 if (ret < 0)
1090 break;
1091 continue;
1092 }
1093
1094 /* We didn't change the current path point */
1095 break;
1096 }
1097
1098 if (need_mntput && path->mnt == mnt)
1099 mntput(path->mnt);
1100 if (ret == -EISDIR)
1101 ret = 0;
1102 if (need_mntput)
1103 nd->flags |= LOOKUP_JUMPED;
1104 if (unlikely(ret < 0))
1105 path_put_conditional(path, nd);
1106 return ret;
1107 }
1108
1109 int follow_down_one(struct path *path)
1110 {
1111 struct vfsmount *mounted;
1112
1113 mounted = lookup_mnt(path);
1114 if (mounted) {
1115 dput(path->dentry);
1116 mntput(path->mnt);
1117 path->mnt = mounted;
1118 path->dentry = dget(mounted->mnt_root);
1119 return 1;
1120 }
1121 return 0;
1122 }
1123 EXPORT_SYMBOL(follow_down_one);
1124
1125 static inline int managed_dentry_rcu(struct dentry *dentry)
1126 {
1127 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1128 dentry->d_op->d_manage(dentry, true) : 0;
1129 }
1130
1131 /*
1132 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1133 * we meet a managed dentry that would need blocking.
1134 */
1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1136 struct inode **inode)
1137 {
1138 for (;;) {
1139 struct mount *mounted;
1140 /*
1141 * Don't forget we might have a non-mountpoint managed dentry
1142 * that wants to block transit.
1143 */
1144 switch (managed_dentry_rcu(path->dentry)) {
1145 case -ECHILD:
1146 default:
1147 return false;
1148 case -EISDIR:
1149 return true;
1150 case 0:
1151 break;
1152 }
1153
1154 if (!d_mountpoint(path->dentry))
1155 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1156
1157 mounted = __lookup_mnt(path->mnt, path->dentry);
1158 if (!mounted)
1159 break;
1160 path->mnt = &mounted->mnt;
1161 path->dentry = mounted->mnt.mnt_root;
1162 nd->flags |= LOOKUP_JUMPED;
1163 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1164 /*
1165 * Update the inode too. We don't need to re-check the
1166 * dentry sequence number here after this d_inode read,
1167 * because a mount-point is always pinned.
1168 */
1169 *inode = path->dentry->d_inode;
1170 }
1171 return !read_seqretry(&mount_lock, nd->m_seq) &&
1172 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1173 }
1174
1175 static int follow_dotdot_rcu(struct nameidata *nd)
1176 {
1177 struct inode *inode = nd->inode;
1178 if (!nd->root.mnt)
1179 set_root_rcu(nd);
1180
1181 while (1) {
1182 if (nd->path.dentry == nd->root.dentry &&
1183 nd->path.mnt == nd->root.mnt) {
1184 break;
1185 }
1186 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 struct dentry *old = nd->path.dentry;
1188 struct dentry *parent = old->d_parent;
1189 unsigned seq;
1190
1191 inode = parent->d_inode;
1192 seq = read_seqcount_begin(&parent->d_seq);
1193 if (read_seqcount_retry(&old->d_seq, nd->seq))
1194 goto failed;
1195 nd->path.dentry = parent;
1196 nd->seq = seq;
1197 break;
1198 }
1199 if (!follow_up_rcu(&nd->path))
1200 break;
1201 inode = nd->path.dentry->d_inode;
1202 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 }
1204 while (d_mountpoint(nd->path.dentry)) {
1205 struct mount *mounted;
1206 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1207 if (!mounted)
1208 break;
1209 nd->path.mnt = &mounted->mnt;
1210 nd->path.dentry = mounted->mnt.mnt_root;
1211 inode = nd->path.dentry->d_inode;
1212 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1213 if (read_seqretry(&mount_lock, nd->m_seq))
1214 goto failed;
1215 }
1216 nd->inode = inode;
1217 return 0;
1218
1219 failed:
1220 return -ECHILD;
1221 }
1222
1223 /*
1224 * Follow down to the covering mount currently visible to userspace. At each
1225 * point, the filesystem owning that dentry may be queried as to whether the
1226 * caller is permitted to proceed or not.
1227 */
1228 int follow_down(struct path *path)
1229 {
1230 unsigned managed;
1231 int ret;
1232
1233 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1234 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1235 /* Allow the filesystem to manage the transit without i_mutex
1236 * being held.
1237 *
1238 * We indicate to the filesystem if someone is trying to mount
1239 * something here. This gives autofs the chance to deny anyone
1240 * other than its daemon the right to mount on its
1241 * superstructure.
1242 *
1243 * The filesystem may sleep at this point.
1244 */
1245 if (managed & DCACHE_MANAGE_TRANSIT) {
1246 BUG_ON(!path->dentry->d_op);
1247 BUG_ON(!path->dentry->d_op->d_manage);
1248 ret = path->dentry->d_op->d_manage(
1249 path->dentry, false);
1250 if (ret < 0)
1251 return ret == -EISDIR ? 0 : ret;
1252 }
1253
1254 /* Transit to a mounted filesystem. */
1255 if (managed & DCACHE_MOUNTED) {
1256 struct vfsmount *mounted = lookup_mnt(path);
1257 if (!mounted)
1258 break;
1259 dput(path->dentry);
1260 mntput(path->mnt);
1261 path->mnt = mounted;
1262 path->dentry = dget(mounted->mnt_root);
1263 continue;
1264 }
1265
1266 /* Don't handle automount points here */
1267 break;
1268 }
1269 return 0;
1270 }
1271 EXPORT_SYMBOL(follow_down);
1272
1273 /*
1274 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1275 */
1276 static void follow_mount(struct path *path)
1277 {
1278 while (d_mountpoint(path->dentry)) {
1279 struct vfsmount *mounted = lookup_mnt(path);
1280 if (!mounted)
1281 break;
1282 dput(path->dentry);
1283 mntput(path->mnt);
1284 path->mnt = mounted;
1285 path->dentry = dget(mounted->mnt_root);
1286 }
1287 }
1288
1289 static void follow_dotdot(struct nameidata *nd)
1290 {
1291 if (!nd->root.mnt)
1292 set_root(nd);
1293
1294 while(1) {
1295 struct dentry *old = nd->path.dentry;
1296
1297 if (nd->path.dentry == nd->root.dentry &&
1298 nd->path.mnt == nd->root.mnt) {
1299 break;
1300 }
1301 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1302 /* rare case of legitimate dget_parent()... */
1303 nd->path.dentry = dget_parent(nd->path.dentry);
1304 dput(old);
1305 break;
1306 }
1307 if (!follow_up(&nd->path))
1308 break;
1309 }
1310 follow_mount(&nd->path);
1311 nd->inode = nd->path.dentry->d_inode;
1312 }
1313
1314 /*
1315 * This looks up the name in dcache, possibly revalidates the old dentry and
1316 * allocates a new one if not found or not valid. In the need_lookup argument
1317 * returns whether i_op->lookup is necessary.
1318 *
1319 * dir->d_inode->i_mutex must be held
1320 */
1321 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1322 unsigned int flags, bool *need_lookup)
1323 {
1324 struct dentry *dentry;
1325 int error;
1326
1327 *need_lookup = false;
1328 dentry = d_lookup(dir, name);
1329 if (dentry) {
1330 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1331 error = d_revalidate(dentry, flags);
1332 if (unlikely(error <= 0)) {
1333 if (error < 0) {
1334 dput(dentry);
1335 return ERR_PTR(error);
1336 } else {
1337 d_invalidate(dentry);
1338 dput(dentry);
1339 dentry = NULL;
1340 }
1341 }
1342 }
1343 }
1344
1345 if (!dentry) {
1346 dentry = d_alloc(dir, name);
1347 if (unlikely(!dentry))
1348 return ERR_PTR(-ENOMEM);
1349
1350 *need_lookup = true;
1351 }
1352 return dentry;
1353 }
1354
1355 /*
1356 * Call i_op->lookup on the dentry. The dentry must be negative and
1357 * unhashed.
1358 *
1359 * dir->d_inode->i_mutex must be held
1360 */
1361 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1362 unsigned int flags)
1363 {
1364 struct dentry *old;
1365
1366 /* Don't create child dentry for a dead directory. */
1367 if (unlikely(IS_DEADDIR(dir))) {
1368 dput(dentry);
1369 return ERR_PTR(-ENOENT);
1370 }
1371
1372 old = dir->i_op->lookup(dir, dentry, flags);
1373 if (unlikely(old)) {
1374 dput(dentry);
1375 dentry = old;
1376 }
1377 return dentry;
1378 }
1379
1380 static struct dentry *__lookup_hash(struct qstr *name,
1381 struct dentry *base, unsigned int flags)
1382 {
1383 bool need_lookup;
1384 struct dentry *dentry;
1385
1386 dentry = lookup_dcache(name, base, flags, &need_lookup);
1387 if (!need_lookup)
1388 return dentry;
1389
1390 return lookup_real(base->d_inode, dentry, flags);
1391 }
1392
1393 /*
1394 * It's more convoluted than I'd like it to be, but... it's still fairly
1395 * small and for now I'd prefer to have fast path as straight as possible.
1396 * It _is_ time-critical.
1397 */
1398 static int lookup_fast(struct nameidata *nd,
1399 struct path *path, struct inode **inode)
1400 {
1401 struct vfsmount *mnt = nd->path.mnt;
1402 struct dentry *dentry, *parent = nd->path.dentry;
1403 int need_reval = 1;
1404 int status = 1;
1405 int err;
1406
1407 /*
1408 * Rename seqlock is not required here because in the off chance
1409 * of a false negative due to a concurrent rename, we're going to
1410 * do the non-racy lookup, below.
1411 */
1412 if (nd->flags & LOOKUP_RCU) {
1413 unsigned seq;
1414 bool negative;
1415 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1416 if (!dentry)
1417 goto unlazy;
1418
1419 /*
1420 * This sequence count validates that the inode matches
1421 * the dentry name information from lookup.
1422 */
1423 *inode = dentry->d_inode;
1424 negative = d_is_negative(dentry);
1425 if (read_seqcount_retry(&dentry->d_seq, seq))
1426 return -ECHILD;
1427 if (negative)
1428 return -ENOENT;
1429
1430 /*
1431 * This sequence count validates that the parent had no
1432 * changes while we did the lookup of the dentry above.
1433 *
1434 * The memory barrier in read_seqcount_begin of child is
1435 * enough, we can use __read_seqcount_retry here.
1436 */
1437 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1438 return -ECHILD;
1439 nd->seq = seq;
1440
1441 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1442 status = d_revalidate(dentry, nd->flags);
1443 if (unlikely(status <= 0)) {
1444 if (status != -ECHILD)
1445 need_reval = 0;
1446 goto unlazy;
1447 }
1448 }
1449 path->mnt = mnt;
1450 path->dentry = dentry;
1451 if (likely(__follow_mount_rcu(nd, path, inode)))
1452 return 0;
1453 unlazy:
1454 if (unlazy_walk(nd, dentry))
1455 return -ECHILD;
1456 } else {
1457 dentry = __d_lookup(parent, &nd->last);
1458 }
1459
1460 if (unlikely(!dentry))
1461 goto need_lookup;
1462
1463 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1464 status = d_revalidate(dentry, nd->flags);
1465 if (unlikely(status <= 0)) {
1466 if (status < 0) {
1467 dput(dentry);
1468 return status;
1469 }
1470 d_invalidate(dentry);
1471 dput(dentry);
1472 goto need_lookup;
1473 }
1474
1475 if (unlikely(d_is_negative(dentry))) {
1476 dput(dentry);
1477 return -ENOENT;
1478 }
1479 path->mnt = mnt;
1480 path->dentry = dentry;
1481 err = follow_managed(path, nd);
1482 if (likely(!err))
1483 *inode = path->dentry->d_inode;
1484 return err;
1485
1486 need_lookup:
1487 return 1;
1488 }
1489
1490 /* Fast lookup failed, do it the slow way */
1491 static int lookup_slow(struct nameidata *nd, struct path *path)
1492 {
1493 struct dentry *dentry, *parent;
1494
1495 parent = nd->path.dentry;
1496 BUG_ON(nd->inode != parent->d_inode);
1497
1498 mutex_lock(&parent->d_inode->i_mutex);
1499 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1500 mutex_unlock(&parent->d_inode->i_mutex);
1501 if (IS_ERR(dentry))
1502 return PTR_ERR(dentry);
1503 path->mnt = nd->path.mnt;
1504 path->dentry = dentry;
1505 return follow_managed(path, nd);
1506 }
1507
1508 static inline int may_lookup(struct nameidata *nd)
1509 {
1510 if (nd->flags & LOOKUP_RCU) {
1511 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1512 if (err != -ECHILD)
1513 return err;
1514 if (unlazy_walk(nd, NULL))
1515 return -ECHILD;
1516 }
1517 return inode_permission(nd->inode, MAY_EXEC);
1518 }
1519
1520 static inline int handle_dots(struct nameidata *nd, int type)
1521 {
1522 if (type == LAST_DOTDOT) {
1523 if (nd->flags & LOOKUP_RCU) {
1524 return follow_dotdot_rcu(nd);
1525 } else
1526 follow_dotdot(nd);
1527 }
1528 return 0;
1529 }
1530
1531 static void terminate_walk(struct nameidata *nd)
1532 {
1533 if (!(nd->flags & LOOKUP_RCU)) {
1534 path_put(&nd->path);
1535 } else {
1536 nd->flags &= ~LOOKUP_RCU;
1537 if (!(nd->flags & LOOKUP_ROOT))
1538 nd->root.mnt = NULL;
1539 rcu_read_unlock();
1540 }
1541 while (unlikely(nd->depth))
1542 put_link(nd);
1543 }
1544
1545 static int pick_link(struct nameidata *nd, struct path *link)
1546 {
1547 int error;
1548 struct saved *last;
1549 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1550 path_to_nameidata(link, nd);
1551 return -ELOOP;
1552 }
1553 if (nd->flags & LOOKUP_RCU) {
1554 if (unlikely(nd->path.mnt != link->mnt ||
1555 unlazy_walk(nd, link->dentry))) {
1556 return -ECHILD;
1557 }
1558 }
1559 if (link->mnt == nd->path.mnt)
1560 mntget(link->mnt);
1561 error = nd_alloc_stack(nd);
1562 if (unlikely(error)) {
1563 path_put(link);
1564 return error;
1565 }
1566
1567 last = nd->stack + nd->depth++;
1568 last->link = *link;
1569 last->cookie = NULL;
1570 return 1;
1571 }
1572
1573 /*
1574 * Do we need to follow links? We _really_ want to be able
1575 * to do this check without having to look at inode->i_op,
1576 * so we keep a cache of "no, this doesn't need follow_link"
1577 * for the common case.
1578 */
1579 static inline int should_follow_link(struct nameidata *nd, struct path *link, int follow)
1580 {
1581 if (likely(!d_is_symlink(link->dentry)))
1582 return 0;
1583 if (!follow)
1584 return 0;
1585 return pick_link(nd, link);
1586 }
1587
1588 enum {WALK_GET = 1, WALK_PUT = 2};
1589
1590 static int walk_component(struct nameidata *nd, int flags)
1591 {
1592 struct path path;
1593 struct inode *inode;
1594 int err;
1595 /*
1596 * "." and ".." are special - ".." especially so because it has
1597 * to be able to know about the current root directory and
1598 * parent relationships.
1599 */
1600 if (unlikely(nd->last_type != LAST_NORM)) {
1601 err = handle_dots(nd, nd->last_type);
1602 if (flags & WALK_PUT)
1603 put_link(nd);
1604 return err;
1605 }
1606 err = lookup_fast(nd, &path, &inode);
1607 if (unlikely(err)) {
1608 if (err < 0)
1609 return err;
1610
1611 err = lookup_slow(nd, &path);
1612 if (err < 0)
1613 return err;
1614
1615 inode = path.dentry->d_inode;
1616 err = -ENOENT;
1617 if (d_is_negative(path.dentry))
1618 goto out_path_put;
1619 }
1620
1621 if (flags & WALK_PUT)
1622 put_link(nd);
1623 err = should_follow_link(nd, &path, flags & WALK_GET);
1624 if (unlikely(err))
1625 return err;
1626 path_to_nameidata(&path, nd);
1627 nd->inode = inode;
1628 return 0;
1629
1630 out_path_put:
1631 path_to_nameidata(&path, nd);
1632 return err;
1633 }
1634
1635 /*
1636 * We can do the critical dentry name comparison and hashing
1637 * operations one word at a time, but we are limited to:
1638 *
1639 * - Architectures with fast unaligned word accesses. We could
1640 * do a "get_unaligned()" if this helps and is sufficiently
1641 * fast.
1642 *
1643 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1644 * do not trap on the (extremely unlikely) case of a page
1645 * crossing operation.
1646 *
1647 * - Furthermore, we need an efficient 64-bit compile for the
1648 * 64-bit case in order to generate the "number of bytes in
1649 * the final mask". Again, that could be replaced with a
1650 * efficient population count instruction or similar.
1651 */
1652 #ifdef CONFIG_DCACHE_WORD_ACCESS
1653
1654 #include <asm/word-at-a-time.h>
1655
1656 #ifdef CONFIG_64BIT
1657
1658 static inline unsigned int fold_hash(unsigned long hash)
1659 {
1660 return hash_64(hash, 32);
1661 }
1662
1663 #else /* 32-bit case */
1664
1665 #define fold_hash(x) (x)
1666
1667 #endif
1668
1669 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1670 {
1671 unsigned long a, mask;
1672 unsigned long hash = 0;
1673
1674 for (;;) {
1675 a = load_unaligned_zeropad(name);
1676 if (len < sizeof(unsigned long))
1677 break;
1678 hash += a;
1679 hash *= 9;
1680 name += sizeof(unsigned long);
1681 len -= sizeof(unsigned long);
1682 if (!len)
1683 goto done;
1684 }
1685 mask = bytemask_from_count(len);
1686 hash += mask & a;
1687 done:
1688 return fold_hash(hash);
1689 }
1690 EXPORT_SYMBOL(full_name_hash);
1691
1692 /*
1693 * Calculate the length and hash of the path component, and
1694 * return the "hash_len" as the result.
1695 */
1696 static inline u64 hash_name(const char *name)
1697 {
1698 unsigned long a, b, adata, bdata, mask, hash, len;
1699 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1700
1701 hash = a = 0;
1702 len = -sizeof(unsigned long);
1703 do {
1704 hash = (hash + a) * 9;
1705 len += sizeof(unsigned long);
1706 a = load_unaligned_zeropad(name+len);
1707 b = a ^ REPEAT_BYTE('/');
1708 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1709
1710 adata = prep_zero_mask(a, adata, &constants);
1711 bdata = prep_zero_mask(b, bdata, &constants);
1712
1713 mask = create_zero_mask(adata | bdata);
1714
1715 hash += a & zero_bytemask(mask);
1716 len += find_zero(mask);
1717 return hashlen_create(fold_hash(hash), len);
1718 }
1719
1720 #else
1721
1722 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1723 {
1724 unsigned long hash = init_name_hash();
1725 while (len--)
1726 hash = partial_name_hash(*name++, hash);
1727 return end_name_hash(hash);
1728 }
1729 EXPORT_SYMBOL(full_name_hash);
1730
1731 /*
1732 * We know there's a real path component here of at least
1733 * one character.
1734 */
1735 static inline u64 hash_name(const char *name)
1736 {
1737 unsigned long hash = init_name_hash();
1738 unsigned long len = 0, c;
1739
1740 c = (unsigned char)*name;
1741 do {
1742 len++;
1743 hash = partial_name_hash(c, hash);
1744 c = (unsigned char)name[len];
1745 } while (c && c != '/');
1746 return hashlen_create(end_name_hash(hash), len);
1747 }
1748
1749 #endif
1750
1751 /*
1752 * Name resolution.
1753 * This is the basic name resolution function, turning a pathname into
1754 * the final dentry. We expect 'base' to be positive and a directory.
1755 *
1756 * Returns 0 and nd will have valid dentry and mnt on success.
1757 * Returns error and drops reference to input namei data on failure.
1758 */
1759 static int link_path_walk(const char *name, struct nameidata *nd)
1760 {
1761 int err;
1762
1763 while (*name=='/')
1764 name++;
1765 if (!*name)
1766 return 0;
1767
1768 /* At this point we know we have a real path component. */
1769 for(;;) {
1770 u64 hash_len;
1771 int type;
1772
1773 err = may_lookup(nd);
1774 if (err)
1775 break;
1776
1777 hash_len = hash_name(name);
1778
1779 type = LAST_NORM;
1780 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1781 case 2:
1782 if (name[1] == '.') {
1783 type = LAST_DOTDOT;
1784 nd->flags |= LOOKUP_JUMPED;
1785 }
1786 break;
1787 case 1:
1788 type = LAST_DOT;
1789 }
1790 if (likely(type == LAST_NORM)) {
1791 struct dentry *parent = nd->path.dentry;
1792 nd->flags &= ~LOOKUP_JUMPED;
1793 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1794 struct qstr this = { { .hash_len = hash_len }, .name = name };
1795 err = parent->d_op->d_hash(parent, &this);
1796 if (err < 0)
1797 break;
1798 hash_len = this.hash_len;
1799 name = this.name;
1800 }
1801 }
1802
1803 nd->last.hash_len = hash_len;
1804 nd->last.name = name;
1805 nd->last_type = type;
1806
1807 name += hashlen_len(hash_len);
1808 if (!*name)
1809 goto OK;
1810 /*
1811 * If it wasn't NUL, we know it was '/'. Skip that
1812 * slash, and continue until no more slashes.
1813 */
1814 do {
1815 name++;
1816 } while (unlikely(*name == '/'));
1817 if (unlikely(!*name)) {
1818 OK:
1819 /* pathname body, done */
1820 if (!nd->depth)
1821 return 0;
1822 name = nd->stack[nd->depth - 1].name;
1823 /* trailing symlink, done */
1824 if (!name)
1825 return 0;
1826 /* last component of nested symlink */
1827 err = walk_component(nd, WALK_GET | WALK_PUT);
1828 } else {
1829 err = walk_component(nd, WALK_GET);
1830 }
1831 if (err < 0)
1832 break;
1833
1834 if (err) {
1835 const char *s = get_link(nd);
1836
1837 if (unlikely(IS_ERR(s))) {
1838 err = PTR_ERR(s);
1839 break;
1840 }
1841 err = 0;
1842 if (unlikely(!s)) {
1843 /* jumped */
1844 put_link(nd);
1845 } else {
1846 nd->stack[nd->depth - 1].name = name;
1847 name = s;
1848 continue;
1849 }
1850 }
1851 if (!d_can_lookup(nd->path.dentry)) {
1852 err = -ENOTDIR;
1853 break;
1854 }
1855 }
1856 return err;
1857 }
1858
1859 static const char *path_init(int dfd, const struct filename *name,
1860 unsigned int flags, struct nameidata *nd)
1861 {
1862 int retval = 0;
1863 const char *s = name->name;
1864
1865 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1866 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1867 nd->depth = 0;
1868 nd->total_link_count = 0;
1869 if (flags & LOOKUP_ROOT) {
1870 struct dentry *root = nd->root.dentry;
1871 struct inode *inode = root->d_inode;
1872 if (*s) {
1873 if (!d_can_lookup(root))
1874 return ERR_PTR(-ENOTDIR);
1875 retval = inode_permission(inode, MAY_EXEC);
1876 if (retval)
1877 return ERR_PTR(retval);
1878 }
1879 nd->path = nd->root;
1880 nd->inode = inode;
1881 if (flags & LOOKUP_RCU) {
1882 rcu_read_lock();
1883 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1884 nd->m_seq = read_seqbegin(&mount_lock);
1885 } else {
1886 path_get(&nd->path);
1887 }
1888 return s;
1889 }
1890
1891 nd->root.mnt = NULL;
1892
1893 nd->m_seq = read_seqbegin(&mount_lock);
1894 if (*s == '/') {
1895 if (flags & LOOKUP_RCU) {
1896 rcu_read_lock();
1897 nd->seq = set_root_rcu(nd);
1898 } else {
1899 set_root(nd);
1900 path_get(&nd->root);
1901 }
1902 nd->path = nd->root;
1903 } else if (dfd == AT_FDCWD) {
1904 if (flags & LOOKUP_RCU) {
1905 struct fs_struct *fs = current->fs;
1906 unsigned seq;
1907
1908 rcu_read_lock();
1909
1910 do {
1911 seq = read_seqcount_begin(&fs->seq);
1912 nd->path = fs->pwd;
1913 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1914 } while (read_seqcount_retry(&fs->seq, seq));
1915 } else {
1916 get_fs_pwd(current->fs, &nd->path);
1917 }
1918 } else {
1919 /* Caller must check execute permissions on the starting path component */
1920 struct fd f = fdget_raw(dfd);
1921 struct dentry *dentry;
1922
1923 if (!f.file)
1924 return ERR_PTR(-EBADF);
1925
1926 dentry = f.file->f_path.dentry;
1927
1928 if (*s) {
1929 if (!d_can_lookup(dentry)) {
1930 fdput(f);
1931 return ERR_PTR(-ENOTDIR);
1932 }
1933 }
1934
1935 nd->path = f.file->f_path;
1936 if (flags & LOOKUP_RCU) {
1937 rcu_read_lock();
1938 nd->inode = nd->path.dentry->d_inode;
1939 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1940 } else {
1941 path_get(&nd->path);
1942 nd->inode = nd->path.dentry->d_inode;
1943 }
1944 fdput(f);
1945 return s;
1946 }
1947
1948 nd->inode = nd->path.dentry->d_inode;
1949 if (!(flags & LOOKUP_RCU))
1950 return s;
1951 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1952 return s;
1953 if (!(nd->flags & LOOKUP_ROOT))
1954 nd->root.mnt = NULL;
1955 rcu_read_unlock();
1956 return ERR_PTR(-ECHILD);
1957 }
1958
1959 static void path_cleanup(struct nameidata *nd)
1960 {
1961 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1962 path_put(&nd->root);
1963 nd->root.mnt = NULL;
1964 }
1965 }
1966
1967 static const char *trailing_symlink(struct nameidata *nd)
1968 {
1969 const char *s;
1970 int error = may_follow_link(nd);
1971 if (unlikely(error))
1972 return ERR_PTR(error);
1973 nd->flags |= LOOKUP_PARENT;
1974 nd->stack[0].name = NULL;
1975 s = get_link(nd);
1976 return s ? s : "";
1977 }
1978
1979 static inline int lookup_last(struct nameidata *nd)
1980 {
1981 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1982 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1983
1984 nd->flags &= ~LOOKUP_PARENT;
1985 return walk_component(nd,
1986 nd->flags & LOOKUP_FOLLOW
1987 ? nd->depth
1988 ? WALK_PUT | WALK_GET
1989 : WALK_GET
1990 : 0);
1991 }
1992
1993 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1994 static int path_lookupat(int dfd, const struct filename *name,
1995 unsigned int flags, struct nameidata *nd)
1996 {
1997 const char *s = path_init(dfd, name, flags, nd);
1998 int err;
1999
2000 if (IS_ERR(s))
2001 return PTR_ERR(s);
2002 while (!(err = link_path_walk(s, nd))
2003 && ((err = lookup_last(nd)) > 0)) {
2004 s = trailing_symlink(nd);
2005 if (IS_ERR(s)) {
2006 err = PTR_ERR(s);
2007 break;
2008 }
2009 }
2010 if (!err)
2011 err = complete_walk(nd);
2012
2013 if (!err && nd->flags & LOOKUP_DIRECTORY)
2014 if (!d_can_lookup(nd->path.dentry))
2015 err = -ENOTDIR;
2016 if (err)
2017 terminate_walk(nd);
2018
2019 path_cleanup(nd);
2020 return err;
2021 }
2022
2023 static int filename_lookup(int dfd, struct filename *name,
2024 unsigned int flags, struct nameidata *nd)
2025 {
2026 int retval;
2027 struct nameidata *saved_nd = set_nameidata(nd);
2028
2029 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2030 if (unlikely(retval == -ECHILD))
2031 retval = path_lookupat(dfd, name, flags, nd);
2032 if (unlikely(retval == -ESTALE))
2033 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2034
2035 if (likely(!retval))
2036 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2037 restore_nameidata(saved_nd);
2038 return retval;
2039 }
2040
2041 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2042 static int path_parentat(int dfd, const struct filename *name,
2043 unsigned int flags, struct nameidata *nd)
2044 {
2045 const char *s = path_init(dfd, name, flags, nd);
2046 int err;
2047 if (IS_ERR(s))
2048 return PTR_ERR(s);
2049 err = link_path_walk(s, nd);
2050 if (!err)
2051 err = complete_walk(nd);
2052 if (err)
2053 terminate_walk(nd);
2054 path_cleanup(nd);
2055 return err;
2056 }
2057
2058 static int filename_parentat(int dfd, struct filename *name,
2059 unsigned int flags, struct nameidata *nd)
2060 {
2061 int retval;
2062 struct nameidata *saved_nd = set_nameidata(nd);
2063
2064 retval = path_parentat(dfd, name, flags | LOOKUP_RCU, nd);
2065 if (unlikely(retval == -ECHILD))
2066 retval = path_parentat(dfd, name, flags, nd);
2067 if (unlikely(retval == -ESTALE))
2068 retval = path_parentat(dfd, name, flags | LOOKUP_REVAL, nd);
2069
2070 if (likely(!retval))
2071 audit_inode(name, nd->path.dentry, LOOKUP_PARENT);
2072 restore_nameidata(saved_nd);
2073 return retval;
2074 }
2075
2076 /* does lookup, returns the object with parent locked */
2077 struct dentry *kern_path_locked(const char *name, struct path *path)
2078 {
2079 struct filename *filename = getname_kernel(name);
2080 struct nameidata nd;
2081 struct dentry *d;
2082 int err;
2083
2084 if (IS_ERR(filename))
2085 return ERR_CAST(filename);
2086
2087 err = filename_parentat(AT_FDCWD, filename, 0, &nd);
2088 if (err) {
2089 d = ERR_PTR(err);
2090 goto out;
2091 }
2092 if (nd.last_type != LAST_NORM) {
2093 path_put(&nd.path);
2094 d = ERR_PTR(-EINVAL);
2095 goto out;
2096 }
2097 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2098 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2099 if (IS_ERR(d)) {
2100 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2101 path_put(&nd.path);
2102 goto out;
2103 }
2104 *path = nd.path;
2105 out:
2106 putname(filename);
2107 return d;
2108 }
2109
2110 int kern_path(const char *name, unsigned int flags, struct path *path)
2111 {
2112 struct nameidata nd;
2113 struct filename *filename = getname_kernel(name);
2114 int res = PTR_ERR(filename);
2115
2116 if (!IS_ERR(filename)) {
2117 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2118 putname(filename);
2119 if (!res)
2120 *path = nd.path;
2121 }
2122 return res;
2123 }
2124 EXPORT_SYMBOL(kern_path);
2125
2126 /**
2127 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2128 * @dentry: pointer to dentry of the base directory
2129 * @mnt: pointer to vfs mount of the base directory
2130 * @name: pointer to file name
2131 * @flags: lookup flags
2132 * @path: pointer to struct path to fill
2133 */
2134 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2135 const char *name, unsigned int flags,
2136 struct path *path)
2137 {
2138 struct filename *filename = getname_kernel(name);
2139 int err = PTR_ERR(filename);
2140
2141 BUG_ON(flags & LOOKUP_PARENT);
2142
2143 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2144 if (!IS_ERR(filename)) {
2145 struct nameidata nd;
2146 nd.root.dentry = dentry;
2147 nd.root.mnt = mnt;
2148 err = filename_lookup(AT_FDCWD, filename,
2149 flags | LOOKUP_ROOT, &nd);
2150 if (!err)
2151 *path = nd.path;
2152 putname(filename);
2153 }
2154 return err;
2155 }
2156 EXPORT_SYMBOL(vfs_path_lookup);
2157
2158 /**
2159 * lookup_one_len - filesystem helper to lookup single pathname component
2160 * @name: pathname component to lookup
2161 * @base: base directory to lookup from
2162 * @len: maximum length @len should be interpreted to
2163 *
2164 * Note that this routine is purely a helper for filesystem usage and should
2165 * not be called by generic code.
2166 */
2167 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2168 {
2169 struct qstr this;
2170 unsigned int c;
2171 int err;
2172
2173 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2174
2175 this.name = name;
2176 this.len = len;
2177 this.hash = full_name_hash(name, len);
2178 if (!len)
2179 return ERR_PTR(-EACCES);
2180
2181 if (unlikely(name[0] == '.')) {
2182 if (len < 2 || (len == 2 && name[1] == '.'))
2183 return ERR_PTR(-EACCES);
2184 }
2185
2186 while (len--) {
2187 c = *(const unsigned char *)name++;
2188 if (c == '/' || c == '\0')
2189 return ERR_PTR(-EACCES);
2190 }
2191 /*
2192 * See if the low-level filesystem might want
2193 * to use its own hash..
2194 */
2195 if (base->d_flags & DCACHE_OP_HASH) {
2196 int err = base->d_op->d_hash(base, &this);
2197 if (err < 0)
2198 return ERR_PTR(err);
2199 }
2200
2201 err = inode_permission(base->d_inode, MAY_EXEC);
2202 if (err)
2203 return ERR_PTR(err);
2204
2205 return __lookup_hash(&this, base, 0);
2206 }
2207 EXPORT_SYMBOL(lookup_one_len);
2208
2209 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2210 struct path *path, int *empty)
2211 {
2212 struct nameidata nd;
2213 struct filename *tmp = getname_flags(name, flags, empty);
2214 int err = PTR_ERR(tmp);
2215 if (!IS_ERR(tmp)) {
2216
2217 BUG_ON(flags & LOOKUP_PARENT);
2218
2219 err = filename_lookup(dfd, tmp, flags, &nd);
2220 putname(tmp);
2221 if (!err)
2222 *path = nd.path;
2223 }
2224 return err;
2225 }
2226
2227 int user_path_at(int dfd, const char __user *name, unsigned flags,
2228 struct path *path)
2229 {
2230 return user_path_at_empty(dfd, name, flags, path, NULL);
2231 }
2232 EXPORT_SYMBOL(user_path_at);
2233
2234 /*
2235 * NB: most callers don't do anything directly with the reference to the
2236 * to struct filename, but the nd->last pointer points into the name string
2237 * allocated by getname. So we must hold the reference to it until all
2238 * path-walking is complete.
2239 */
2240 static struct filename *
2241 user_path_parent(int dfd, const char __user *path,
2242 struct path *parent,
2243 struct qstr *last,
2244 int *type,
2245 unsigned int flags)
2246 {
2247 struct nameidata nd;
2248 struct filename *s = getname(path);
2249 int error;
2250
2251 /* only LOOKUP_REVAL is allowed in extra flags */
2252 flags &= LOOKUP_REVAL;
2253
2254 if (IS_ERR(s))
2255 return s;
2256
2257 error = filename_parentat(dfd, s, flags, &nd);
2258 if (error) {
2259 putname(s);
2260 return ERR_PTR(error);
2261 }
2262 *parent = nd.path;
2263 *last = nd.last;
2264 *type = nd.last_type;
2265
2266 return s;
2267 }
2268
2269 /**
2270 * mountpoint_last - look up last component for umount
2271 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2272 * @path: pointer to container for result
2273 *
2274 * This is a special lookup_last function just for umount. In this case, we
2275 * need to resolve the path without doing any revalidation.
2276 *
2277 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2278 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2279 * in almost all cases, this lookup will be served out of the dcache. The only
2280 * cases where it won't are if nd->last refers to a symlink or the path is
2281 * bogus and it doesn't exist.
2282 *
2283 * Returns:
2284 * -error: if there was an error during lookup. This includes -ENOENT if the
2285 * lookup found a negative dentry. The nd->path reference will also be
2286 * put in this case.
2287 *
2288 * 0: if we successfully resolved nd->path and found it to not to be a
2289 * symlink that needs to be followed. "path" will also be populated.
2290 * The nd->path reference will also be put.
2291 *
2292 * 1: if we successfully resolved nd->last and found it to be a symlink
2293 * that needs to be followed. "path" will be populated with the path
2294 * to the link, and nd->path will *not* be put.
2295 */
2296 static int
2297 mountpoint_last(struct nameidata *nd, struct path *path)
2298 {
2299 int error = 0;
2300 struct dentry *dentry;
2301 struct dentry *dir = nd->path.dentry;
2302
2303 /* If we're in rcuwalk, drop out of it to handle last component */
2304 if (nd->flags & LOOKUP_RCU) {
2305 if (unlazy_walk(nd, NULL))
2306 return -ECHILD;
2307 }
2308
2309 nd->flags &= ~LOOKUP_PARENT;
2310
2311 if (unlikely(nd->last_type != LAST_NORM)) {
2312 error = handle_dots(nd, nd->last_type);
2313 if (error)
2314 return error;
2315 dentry = dget(nd->path.dentry);
2316 goto done;
2317 }
2318
2319 mutex_lock(&dir->d_inode->i_mutex);
2320 dentry = d_lookup(dir, &nd->last);
2321 if (!dentry) {
2322 /*
2323 * No cached dentry. Mounted dentries are pinned in the cache,
2324 * so that means that this dentry is probably a symlink or the
2325 * path doesn't actually point to a mounted dentry.
2326 */
2327 dentry = d_alloc(dir, &nd->last);
2328 if (!dentry) {
2329 mutex_unlock(&dir->d_inode->i_mutex);
2330 return -ENOMEM;
2331 }
2332 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2333 if (IS_ERR(dentry)) {
2334 mutex_unlock(&dir->d_inode->i_mutex);
2335 return PTR_ERR(dentry);
2336 }
2337 }
2338 mutex_unlock(&dir->d_inode->i_mutex);
2339
2340 done:
2341 if (d_is_negative(dentry)) {
2342 dput(dentry);
2343 return -ENOENT;
2344 }
2345 if (nd->depth)
2346 put_link(nd);
2347 path->dentry = dentry;
2348 path->mnt = nd->path.mnt;
2349 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW);
2350 if (unlikely(error))
2351 return error;
2352 mntget(path->mnt);
2353 follow_mount(path);
2354 return 0;
2355 }
2356
2357 /**
2358 * path_mountpoint - look up a path to be umounted
2359 * @dfd: directory file descriptor to start walk from
2360 * @name: full pathname to walk
2361 * @path: pointer to container for result
2362 * @flags: lookup flags
2363 *
2364 * Look up the given name, but don't attempt to revalidate the last component.
2365 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2366 */
2367 static int
2368 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2369 struct nameidata *nd, unsigned int flags)
2370 {
2371 const char *s = path_init(dfd, name, flags, nd);
2372 int err;
2373 if (IS_ERR(s))
2374 return PTR_ERR(s);
2375 while (!(err = link_path_walk(s, nd)) &&
2376 (err = mountpoint_last(nd, path)) > 0) {
2377 s = trailing_symlink(nd);
2378 if (IS_ERR(s)) {
2379 err = PTR_ERR(s);
2380 break;
2381 }
2382 }
2383 terminate_walk(nd);
2384 path_cleanup(nd);
2385 return err;
2386 }
2387
2388 static int
2389 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2390 unsigned int flags)
2391 {
2392 struct nameidata nd, *saved;
2393 int error;
2394 if (IS_ERR(name))
2395 return PTR_ERR(name);
2396 saved = set_nameidata(&nd);
2397 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2398 if (unlikely(error == -ECHILD))
2399 error = path_mountpoint(dfd, name, path, &nd, flags);
2400 if (unlikely(error == -ESTALE))
2401 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2402 if (likely(!error))
2403 audit_inode(name, path->dentry, 0);
2404 restore_nameidata(saved);
2405 putname(name);
2406 return error;
2407 }
2408
2409 /**
2410 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2411 * @dfd: directory file descriptor
2412 * @name: pathname from userland
2413 * @flags: lookup flags
2414 * @path: pointer to container to hold result
2415 *
2416 * A umount is a special case for path walking. We're not actually interested
2417 * in the inode in this situation, and ESTALE errors can be a problem. We
2418 * simply want track down the dentry and vfsmount attached at the mountpoint
2419 * and avoid revalidating the last component.
2420 *
2421 * Returns 0 and populates "path" on success.
2422 */
2423 int
2424 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2425 struct path *path)
2426 {
2427 return filename_mountpoint(dfd, getname(name), path, flags);
2428 }
2429
2430 int
2431 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2432 unsigned int flags)
2433 {
2434 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2435 }
2436 EXPORT_SYMBOL(kern_path_mountpoint);
2437
2438 int __check_sticky(struct inode *dir, struct inode *inode)
2439 {
2440 kuid_t fsuid = current_fsuid();
2441
2442 if (uid_eq(inode->i_uid, fsuid))
2443 return 0;
2444 if (uid_eq(dir->i_uid, fsuid))
2445 return 0;
2446 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2447 }
2448 EXPORT_SYMBOL(__check_sticky);
2449
2450 /*
2451 * Check whether we can remove a link victim from directory dir, check
2452 * whether the type of victim is right.
2453 * 1. We can't do it if dir is read-only (done in permission())
2454 * 2. We should have write and exec permissions on dir
2455 * 3. We can't remove anything from append-only dir
2456 * 4. We can't do anything with immutable dir (done in permission())
2457 * 5. If the sticky bit on dir is set we should either
2458 * a. be owner of dir, or
2459 * b. be owner of victim, or
2460 * c. have CAP_FOWNER capability
2461 * 6. If the victim is append-only or immutable we can't do antyhing with
2462 * links pointing to it.
2463 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2464 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2465 * 9. We can't remove a root or mountpoint.
2466 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2467 * nfs_async_unlink().
2468 */
2469 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2470 {
2471 struct inode *inode = victim->d_inode;
2472 int error;
2473
2474 if (d_is_negative(victim))
2475 return -ENOENT;
2476 BUG_ON(!inode);
2477
2478 BUG_ON(victim->d_parent->d_inode != dir);
2479 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2480
2481 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2482 if (error)
2483 return error;
2484 if (IS_APPEND(dir))
2485 return -EPERM;
2486
2487 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2488 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2489 return -EPERM;
2490 if (isdir) {
2491 if (!d_is_dir(victim))
2492 return -ENOTDIR;
2493 if (IS_ROOT(victim))
2494 return -EBUSY;
2495 } else if (d_is_dir(victim))
2496 return -EISDIR;
2497 if (IS_DEADDIR(dir))
2498 return -ENOENT;
2499 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2500 return -EBUSY;
2501 return 0;
2502 }
2503
2504 /* Check whether we can create an object with dentry child in directory
2505 * dir.
2506 * 1. We can't do it if child already exists (open has special treatment for
2507 * this case, but since we are inlined it's OK)
2508 * 2. We can't do it if dir is read-only (done in permission())
2509 * 3. We should have write and exec permissions on dir
2510 * 4. We can't do it if dir is immutable (done in permission())
2511 */
2512 static inline int may_create(struct inode *dir, struct dentry *child)
2513 {
2514 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2515 if (child->d_inode)
2516 return -EEXIST;
2517 if (IS_DEADDIR(dir))
2518 return -ENOENT;
2519 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2520 }
2521
2522 /*
2523 * p1 and p2 should be directories on the same fs.
2524 */
2525 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2526 {
2527 struct dentry *p;
2528
2529 if (p1 == p2) {
2530 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2531 return NULL;
2532 }
2533
2534 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2535
2536 p = d_ancestor(p2, p1);
2537 if (p) {
2538 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2539 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2540 return p;
2541 }
2542
2543 p = d_ancestor(p1, p2);
2544 if (p) {
2545 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2546 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2547 return p;
2548 }
2549
2550 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2551 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2552 return NULL;
2553 }
2554 EXPORT_SYMBOL(lock_rename);
2555
2556 void unlock_rename(struct dentry *p1, struct dentry *p2)
2557 {
2558 mutex_unlock(&p1->d_inode->i_mutex);
2559 if (p1 != p2) {
2560 mutex_unlock(&p2->d_inode->i_mutex);
2561 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2562 }
2563 }
2564 EXPORT_SYMBOL(unlock_rename);
2565
2566 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2567 bool want_excl)
2568 {
2569 int error = may_create(dir, dentry);
2570 if (error)
2571 return error;
2572
2573 if (!dir->i_op->create)
2574 return -EACCES; /* shouldn't it be ENOSYS? */
2575 mode &= S_IALLUGO;
2576 mode |= S_IFREG;
2577 error = security_inode_create(dir, dentry, mode);
2578 if (error)
2579 return error;
2580 error = dir->i_op->create(dir, dentry, mode, want_excl);
2581 if (!error)
2582 fsnotify_create(dir, dentry);
2583 return error;
2584 }
2585 EXPORT_SYMBOL(vfs_create);
2586
2587 static int may_open(struct path *path, int acc_mode, int flag)
2588 {
2589 struct dentry *dentry = path->dentry;
2590 struct inode *inode = dentry->d_inode;
2591 int error;
2592
2593 /* O_PATH? */
2594 if (!acc_mode)
2595 return 0;
2596
2597 if (!inode)
2598 return -ENOENT;
2599
2600 switch (inode->i_mode & S_IFMT) {
2601 case S_IFLNK:
2602 return -ELOOP;
2603 case S_IFDIR:
2604 if (acc_mode & MAY_WRITE)
2605 return -EISDIR;
2606 break;
2607 case S_IFBLK:
2608 case S_IFCHR:
2609 if (path->mnt->mnt_flags & MNT_NODEV)
2610 return -EACCES;
2611 /*FALLTHRU*/
2612 case S_IFIFO:
2613 case S_IFSOCK:
2614 flag &= ~O_TRUNC;
2615 break;
2616 }
2617
2618 error = inode_permission(inode, acc_mode);
2619 if (error)
2620 return error;
2621
2622 /*
2623 * An append-only file must be opened in append mode for writing.
2624 */
2625 if (IS_APPEND(inode)) {
2626 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2627 return -EPERM;
2628 if (flag & O_TRUNC)
2629 return -EPERM;
2630 }
2631
2632 /* O_NOATIME can only be set by the owner or superuser */
2633 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2634 return -EPERM;
2635
2636 return 0;
2637 }
2638
2639 static int handle_truncate(struct file *filp)
2640 {
2641 struct path *path = &filp->f_path;
2642 struct inode *inode = path->dentry->d_inode;
2643 int error = get_write_access(inode);
2644 if (error)
2645 return error;
2646 /*
2647 * Refuse to truncate files with mandatory locks held on them.
2648 */
2649 error = locks_verify_locked(filp);
2650 if (!error)
2651 error = security_path_truncate(path);
2652 if (!error) {
2653 error = do_truncate(path->dentry, 0,
2654 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2655 filp);
2656 }
2657 put_write_access(inode);
2658 return error;
2659 }
2660
2661 static inline int open_to_namei_flags(int flag)
2662 {
2663 if ((flag & O_ACCMODE) == 3)
2664 flag--;
2665 return flag;
2666 }
2667
2668 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2669 {
2670 int error = security_path_mknod(dir, dentry, mode, 0);
2671 if (error)
2672 return error;
2673
2674 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2675 if (error)
2676 return error;
2677
2678 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2679 }
2680
2681 /*
2682 * Attempt to atomically look up, create and open a file from a negative
2683 * dentry.
2684 *
2685 * Returns 0 if successful. The file will have been created and attached to
2686 * @file by the filesystem calling finish_open().
2687 *
2688 * Returns 1 if the file was looked up only or didn't need creating. The
2689 * caller will need to perform the open themselves. @path will have been
2690 * updated to point to the new dentry. This may be negative.
2691 *
2692 * Returns an error code otherwise.
2693 */
2694 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2695 struct path *path, struct file *file,
2696 const struct open_flags *op,
2697 bool got_write, bool need_lookup,
2698 int *opened)
2699 {
2700 struct inode *dir = nd->path.dentry->d_inode;
2701 unsigned open_flag = open_to_namei_flags(op->open_flag);
2702 umode_t mode;
2703 int error;
2704 int acc_mode;
2705 int create_error = 0;
2706 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2707 bool excl;
2708
2709 BUG_ON(dentry->d_inode);
2710
2711 /* Don't create child dentry for a dead directory. */
2712 if (unlikely(IS_DEADDIR(dir))) {
2713 error = -ENOENT;
2714 goto out;
2715 }
2716
2717 mode = op->mode;
2718 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2719 mode &= ~current_umask();
2720
2721 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2722 if (excl)
2723 open_flag &= ~O_TRUNC;
2724
2725 /*
2726 * Checking write permission is tricky, bacuse we don't know if we are
2727 * going to actually need it: O_CREAT opens should work as long as the
2728 * file exists. But checking existence breaks atomicity. The trick is
2729 * to check access and if not granted clear O_CREAT from the flags.
2730 *
2731 * Another problem is returing the "right" error value (e.g. for an
2732 * O_EXCL open we want to return EEXIST not EROFS).
2733 */
2734 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2735 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2736 if (!(open_flag & O_CREAT)) {
2737 /*
2738 * No O_CREATE -> atomicity not a requirement -> fall
2739 * back to lookup + open
2740 */
2741 goto no_open;
2742 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2743 /* Fall back and fail with the right error */
2744 create_error = -EROFS;
2745 goto no_open;
2746 } else {
2747 /* No side effects, safe to clear O_CREAT */
2748 create_error = -EROFS;
2749 open_flag &= ~O_CREAT;
2750 }
2751 }
2752
2753 if (open_flag & O_CREAT) {
2754 error = may_o_create(&nd->path, dentry, mode);
2755 if (error) {
2756 create_error = error;
2757 if (open_flag & O_EXCL)
2758 goto no_open;
2759 open_flag &= ~O_CREAT;
2760 }
2761 }
2762
2763 if (nd->flags & LOOKUP_DIRECTORY)
2764 open_flag |= O_DIRECTORY;
2765
2766 file->f_path.dentry = DENTRY_NOT_SET;
2767 file->f_path.mnt = nd->path.mnt;
2768 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2769 opened);
2770 if (error < 0) {
2771 if (create_error && error == -ENOENT)
2772 error = create_error;
2773 goto out;
2774 }
2775
2776 if (error) { /* returned 1, that is */
2777 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2778 error = -EIO;
2779 goto out;
2780 }
2781 if (file->f_path.dentry) {
2782 dput(dentry);
2783 dentry = file->f_path.dentry;
2784 }
2785 if (*opened & FILE_CREATED)
2786 fsnotify_create(dir, dentry);
2787 if (!dentry->d_inode) {
2788 WARN_ON(*opened & FILE_CREATED);
2789 if (create_error) {
2790 error = create_error;
2791 goto out;
2792 }
2793 } else {
2794 if (excl && !(*opened & FILE_CREATED)) {
2795 error = -EEXIST;
2796 goto out;
2797 }
2798 }
2799 goto looked_up;
2800 }
2801
2802 /*
2803 * We didn't have the inode before the open, so check open permission
2804 * here.
2805 */
2806 acc_mode = op->acc_mode;
2807 if (*opened & FILE_CREATED) {
2808 WARN_ON(!(open_flag & O_CREAT));
2809 fsnotify_create(dir, dentry);
2810 acc_mode = MAY_OPEN;
2811 }
2812 error = may_open(&file->f_path, acc_mode, open_flag);
2813 if (error)
2814 fput(file);
2815
2816 out:
2817 dput(dentry);
2818 return error;
2819
2820 no_open:
2821 if (need_lookup) {
2822 dentry = lookup_real(dir, dentry, nd->flags);
2823 if (IS_ERR(dentry))
2824 return PTR_ERR(dentry);
2825
2826 if (create_error) {
2827 int open_flag = op->open_flag;
2828
2829 error = create_error;
2830 if ((open_flag & O_EXCL)) {
2831 if (!dentry->d_inode)
2832 goto out;
2833 } else if (!dentry->d_inode) {
2834 goto out;
2835 } else if ((open_flag & O_TRUNC) &&
2836 d_is_reg(dentry)) {
2837 goto out;
2838 }
2839 /* will fail later, go on to get the right error */
2840 }
2841 }
2842 looked_up:
2843 path->dentry = dentry;
2844 path->mnt = nd->path.mnt;
2845 return 1;
2846 }
2847
2848 /*
2849 * Look up and maybe create and open the last component.
2850 *
2851 * Must be called with i_mutex held on parent.
2852 *
2853 * Returns 0 if the file was successfully atomically created (if necessary) and
2854 * opened. In this case the file will be returned attached to @file.
2855 *
2856 * Returns 1 if the file was not completely opened at this time, though lookups
2857 * and creations will have been performed and the dentry returned in @path will
2858 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2859 * specified then a negative dentry may be returned.
2860 *
2861 * An error code is returned otherwise.
2862 *
2863 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2864 * cleared otherwise prior to returning.
2865 */
2866 static int lookup_open(struct nameidata *nd, struct path *path,
2867 struct file *file,
2868 const struct open_flags *op,
2869 bool got_write, int *opened)
2870 {
2871 struct dentry *dir = nd->path.dentry;
2872 struct inode *dir_inode = dir->d_inode;
2873 struct dentry *dentry;
2874 int error;
2875 bool need_lookup;
2876
2877 *opened &= ~FILE_CREATED;
2878 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2879 if (IS_ERR(dentry))
2880 return PTR_ERR(dentry);
2881
2882 /* Cached positive dentry: will open in f_op->open */
2883 if (!need_lookup && dentry->d_inode)
2884 goto out_no_open;
2885
2886 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2887 return atomic_open(nd, dentry, path, file, op, got_write,
2888 need_lookup, opened);
2889 }
2890
2891 if (need_lookup) {
2892 BUG_ON(dentry->d_inode);
2893
2894 dentry = lookup_real(dir_inode, dentry, nd->flags);
2895 if (IS_ERR(dentry))
2896 return PTR_ERR(dentry);
2897 }
2898
2899 /* Negative dentry, just create the file */
2900 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2901 umode_t mode = op->mode;
2902 if (!IS_POSIXACL(dir->d_inode))
2903 mode &= ~current_umask();
2904 /*
2905 * This write is needed to ensure that a
2906 * rw->ro transition does not occur between
2907 * the time when the file is created and when
2908 * a permanent write count is taken through
2909 * the 'struct file' in finish_open().
2910 */
2911 if (!got_write) {
2912 error = -EROFS;
2913 goto out_dput;
2914 }
2915 *opened |= FILE_CREATED;
2916 error = security_path_mknod(&nd->path, dentry, mode, 0);
2917 if (error)
2918 goto out_dput;
2919 error = vfs_create(dir->d_inode, dentry, mode,
2920 nd->flags & LOOKUP_EXCL);
2921 if (error)
2922 goto out_dput;
2923 }
2924 out_no_open:
2925 path->dentry = dentry;
2926 path->mnt = nd->path.mnt;
2927 return 1;
2928
2929 out_dput:
2930 dput(dentry);
2931 return error;
2932 }
2933
2934 /*
2935 * Handle the last step of open()
2936 */
2937 static int do_last(struct nameidata *nd,
2938 struct file *file, const struct open_flags *op,
2939 int *opened, struct filename *name)
2940 {
2941 struct dentry *dir = nd->path.dentry;
2942 int open_flag = op->open_flag;
2943 bool will_truncate = (open_flag & O_TRUNC) != 0;
2944 bool got_write = false;
2945 int acc_mode = op->acc_mode;
2946 struct inode *inode;
2947 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2948 struct path path;
2949 bool retried = false;
2950 int error;
2951
2952 nd->flags &= ~LOOKUP_PARENT;
2953 nd->flags |= op->intent;
2954
2955 if (nd->last_type != LAST_NORM) {
2956 error = handle_dots(nd, nd->last_type);
2957 if (unlikely(error))
2958 return error;
2959 goto finish_open;
2960 }
2961
2962 if (!(open_flag & O_CREAT)) {
2963 if (nd->last.name[nd->last.len])
2964 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2965 /* we _can_ be in RCU mode here */
2966 error = lookup_fast(nd, &path, &inode);
2967 if (likely(!error))
2968 goto finish_lookup;
2969
2970 if (error < 0)
2971 return error;
2972
2973 BUG_ON(nd->inode != dir->d_inode);
2974 } else {
2975 /* create side of things */
2976 /*
2977 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2978 * has been cleared when we got to the last component we are
2979 * about to look up
2980 */
2981 error = complete_walk(nd);
2982 if (error)
2983 return error;
2984
2985 audit_inode(name, dir, LOOKUP_PARENT);
2986 /* trailing slashes? */
2987 if (unlikely(nd->last.name[nd->last.len]))
2988 return -EISDIR;
2989 }
2990
2991 retry_lookup:
2992 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2993 error = mnt_want_write(nd->path.mnt);
2994 if (!error)
2995 got_write = true;
2996 /*
2997 * do _not_ fail yet - we might not need that or fail with
2998 * a different error; let lookup_open() decide; we'll be
2999 * dropping this one anyway.
3000 */
3001 }
3002 mutex_lock(&dir->d_inode->i_mutex);
3003 error = lookup_open(nd, &path, file, op, got_write, opened);
3004 mutex_unlock(&dir->d_inode->i_mutex);
3005
3006 if (error <= 0) {
3007 if (error)
3008 goto out;
3009
3010 if ((*opened & FILE_CREATED) ||
3011 !S_ISREG(file_inode(file)->i_mode))
3012 will_truncate = false;
3013
3014 audit_inode(name, file->f_path.dentry, 0);
3015 goto opened;
3016 }
3017
3018 if (*opened & FILE_CREATED) {
3019 /* Don't check for write permission, don't truncate */
3020 open_flag &= ~O_TRUNC;
3021 will_truncate = false;
3022 acc_mode = MAY_OPEN;
3023 path_to_nameidata(&path, nd);
3024 goto finish_open_created;
3025 }
3026
3027 /*
3028 * create/update audit record if it already exists.
3029 */
3030 if (d_is_positive(path.dentry))
3031 audit_inode(name, path.dentry, 0);
3032
3033 /*
3034 * If atomic_open() acquired write access it is dropped now due to
3035 * possible mount and symlink following (this might be optimized away if
3036 * necessary...)
3037 */
3038 if (got_write) {
3039 mnt_drop_write(nd->path.mnt);
3040 got_write = false;
3041 }
3042
3043 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3044 path_to_nameidata(&path, nd);
3045 return -EEXIST;
3046 }
3047
3048 error = follow_managed(&path, nd);
3049 if (unlikely(error < 0))
3050 return error;
3051
3052 BUG_ON(nd->flags & LOOKUP_RCU);
3053 inode = path.dentry->d_inode;
3054 if (unlikely(d_is_negative(path.dentry))) {
3055 path_to_nameidata(&path, nd);
3056 return -ENOENT;
3057 }
3058 finish_lookup:
3059 if (nd->depth)
3060 put_link(nd);
3061 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW);
3062 if (unlikely(error))
3063 return error;
3064
3065 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3066 path_to_nameidata(&path, nd);
3067 return -ELOOP;
3068 }
3069
3070 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3071 path_to_nameidata(&path, nd);
3072 } else {
3073 save_parent.dentry = nd->path.dentry;
3074 save_parent.mnt = mntget(path.mnt);
3075 nd->path.dentry = path.dentry;
3076
3077 }
3078 nd->inode = inode;
3079 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3080 finish_open:
3081 error = complete_walk(nd);
3082 if (error) {
3083 path_put(&save_parent);
3084 return error;
3085 }
3086 audit_inode(name, nd->path.dentry, 0);
3087 error = -EISDIR;
3088 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3089 goto out;
3090 error = -ENOTDIR;
3091 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3092 goto out;
3093 if (!d_is_reg(nd->path.dentry))
3094 will_truncate = false;
3095
3096 if (will_truncate) {
3097 error = mnt_want_write(nd->path.mnt);
3098 if (error)
3099 goto out;
3100 got_write = true;
3101 }
3102 finish_open_created:
3103 error = may_open(&nd->path, acc_mode, open_flag);
3104 if (error)
3105 goto out;
3106
3107 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3108 error = vfs_open(&nd->path, file, current_cred());
3109 if (!error) {
3110 *opened |= FILE_OPENED;
3111 } else {
3112 if (error == -EOPENSTALE)
3113 goto stale_open;
3114 goto out;
3115 }
3116 opened:
3117 error = open_check_o_direct(file);
3118 if (error)
3119 goto exit_fput;
3120 error = ima_file_check(file, op->acc_mode, *opened);
3121 if (error)
3122 goto exit_fput;
3123
3124 if (will_truncate) {
3125 error = handle_truncate(file);
3126 if (error)
3127 goto exit_fput;
3128 }
3129 out:
3130 if (got_write)
3131 mnt_drop_write(nd->path.mnt);
3132 path_put(&save_parent);
3133 return error;
3134
3135 exit_fput:
3136 fput(file);
3137 goto out;
3138
3139 stale_open:
3140 /* If no saved parent or already retried then can't retry */
3141 if (!save_parent.dentry || retried)
3142 goto out;
3143
3144 BUG_ON(save_parent.dentry != dir);
3145 path_put(&nd->path);
3146 nd->path = save_parent;
3147 nd->inode = dir->d_inode;
3148 save_parent.mnt = NULL;
3149 save_parent.dentry = NULL;
3150 if (got_write) {
3151 mnt_drop_write(nd->path.mnt);
3152 got_write = false;
3153 }
3154 retried = true;
3155 goto retry_lookup;
3156 }
3157
3158 static int do_tmpfile(int dfd, struct filename *pathname,
3159 struct nameidata *nd, int flags,
3160 const struct open_flags *op,
3161 struct file *file, int *opened)
3162 {
3163 static const struct qstr name = QSTR_INIT("/", 1);
3164 struct dentry *dentry, *child;
3165 struct inode *dir;
3166 int error = path_lookupat(dfd, pathname,
3167 flags | LOOKUP_DIRECTORY, nd);
3168 if (unlikely(error))
3169 return error;
3170 error = mnt_want_write(nd->path.mnt);
3171 if (unlikely(error))
3172 goto out;
3173 /* we want directory to be writable */
3174 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3175 if (error)
3176 goto out2;
3177 dentry = nd->path.dentry;
3178 dir = dentry->d_inode;
3179 if (!dir->i_op->tmpfile) {
3180 error = -EOPNOTSUPP;
3181 goto out2;
3182 }
3183 child = d_alloc(dentry, &name);
3184 if (unlikely(!child)) {
3185 error = -ENOMEM;
3186 goto out2;
3187 }
3188 nd->flags &= ~LOOKUP_DIRECTORY;
3189 nd->flags |= op->intent;
3190 dput(nd->path.dentry);
3191 nd->path.dentry = child;
3192 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3193 if (error)
3194 goto out2;
3195 audit_inode(pathname, nd->path.dentry, 0);
3196 /* Don't check for other permissions, the inode was just created */
3197 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3198 if (error)
3199 goto out2;
3200 file->f_path.mnt = nd->path.mnt;
3201 error = finish_open(file, nd->path.dentry, NULL, opened);
3202 if (error)
3203 goto out2;
3204 error = open_check_o_direct(file);
3205 if (error) {
3206 fput(file);
3207 } else if (!(op->open_flag & O_EXCL)) {
3208 struct inode *inode = file_inode(file);
3209 spin_lock(&inode->i_lock);
3210 inode->i_state |= I_LINKABLE;
3211 spin_unlock(&inode->i_lock);
3212 }
3213 out2:
3214 mnt_drop_write(nd->path.mnt);
3215 out:
3216 path_put(&nd->path);
3217 return error;
3218 }
3219
3220 static struct file *path_openat(int dfd, struct filename *pathname,
3221 struct nameidata *nd, const struct open_flags *op, int flags)
3222 {
3223 const char *s;
3224 struct file *file;
3225 int opened = 0;
3226 int error;
3227
3228 file = get_empty_filp();
3229 if (IS_ERR(file))
3230 return file;
3231
3232 file->f_flags = op->open_flag;
3233
3234 if (unlikely(file->f_flags & __O_TMPFILE)) {
3235 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3236 goto out2;
3237 }
3238
3239 s = path_init(dfd, pathname, flags, nd);
3240 if (IS_ERR(s)) {
3241 put_filp(file);
3242 return ERR_CAST(s);
3243 }
3244 while (!(error = link_path_walk(s, nd)) &&
3245 (error = do_last(nd, file, op, &opened, pathname)) > 0) {
3246 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3247 s = trailing_symlink(nd);
3248 if (IS_ERR(s)) {
3249 error = PTR_ERR(s);
3250 break;
3251 }
3252 }
3253 terminate_walk(nd);
3254 path_cleanup(nd);
3255 out2:
3256 if (!(opened & FILE_OPENED)) {
3257 BUG_ON(!error);
3258 put_filp(file);
3259 }
3260 if (unlikely(error)) {
3261 if (error == -EOPENSTALE) {
3262 if (flags & LOOKUP_RCU)
3263 error = -ECHILD;
3264 else
3265 error = -ESTALE;
3266 }
3267 file = ERR_PTR(error);
3268 }
3269 return file;
3270 }
3271
3272 struct file *do_filp_open(int dfd, struct filename *pathname,
3273 const struct open_flags *op)
3274 {
3275 struct nameidata nd, *saved_nd = set_nameidata(&nd);
3276 int flags = op->lookup_flags;
3277 struct file *filp;
3278
3279 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3280 if (unlikely(filp == ERR_PTR(-ECHILD)))
3281 filp = path_openat(dfd, pathname, &nd, op, flags);
3282 if (unlikely(filp == ERR_PTR(-ESTALE)))
3283 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3284 restore_nameidata(saved_nd);
3285 return filp;
3286 }
3287
3288 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3289 const char *name, const struct open_flags *op)
3290 {
3291 struct nameidata nd, *saved_nd;
3292 struct file *file;
3293 struct filename *filename;
3294 int flags = op->lookup_flags | LOOKUP_ROOT;
3295
3296 nd.root.mnt = mnt;
3297 nd.root.dentry = dentry;
3298
3299 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3300 return ERR_PTR(-ELOOP);
3301
3302 filename = getname_kernel(name);
3303 if (unlikely(IS_ERR(filename)))
3304 return ERR_CAST(filename);
3305
3306 saved_nd = set_nameidata(&nd);
3307 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3308 if (unlikely(file == ERR_PTR(-ECHILD)))
3309 file = path_openat(-1, filename, &nd, op, flags);
3310 if (unlikely(file == ERR_PTR(-ESTALE)))
3311 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3312 restore_nameidata(saved_nd);
3313 putname(filename);
3314 return file;
3315 }
3316
3317 static struct dentry *filename_create(int dfd, struct filename *name,
3318 struct path *path, unsigned int lookup_flags)
3319 {
3320 struct dentry *dentry = ERR_PTR(-EEXIST);
3321 struct nameidata nd;
3322 int err2;
3323 int error;
3324 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3325
3326 /*
3327 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3328 * other flags passed in are ignored!
3329 */
3330 lookup_flags &= LOOKUP_REVAL;
3331
3332 error = filename_parentat(dfd, name, lookup_flags, &nd);
3333 if (error)
3334 return ERR_PTR(error);
3335
3336 /*
3337 * Yucky last component or no last component at all?
3338 * (foo/., foo/.., /////)
3339 */
3340 if (nd.last_type != LAST_NORM)
3341 goto out;
3342 nd.flags &= ~LOOKUP_PARENT;
3343 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3344
3345 /* don't fail immediately if it's r/o, at least try to report other errors */
3346 err2 = mnt_want_write(nd.path.mnt);
3347 /*
3348 * Do the final lookup.
3349 */
3350 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3351 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3352 if (IS_ERR(dentry))
3353 goto unlock;
3354
3355 error = -EEXIST;
3356 if (d_is_positive(dentry))
3357 goto fail;
3358
3359 /*
3360 * Special case - lookup gave negative, but... we had foo/bar/
3361 * From the vfs_mknod() POV we just have a negative dentry -
3362 * all is fine. Let's be bastards - you had / on the end, you've
3363 * been asking for (non-existent) directory. -ENOENT for you.
3364 */
3365 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3366 error = -ENOENT;
3367 goto fail;
3368 }
3369 if (unlikely(err2)) {
3370 error = err2;
3371 goto fail;
3372 }
3373 *path = nd.path;
3374 return dentry;
3375 fail:
3376 dput(dentry);
3377 dentry = ERR_PTR(error);
3378 unlock:
3379 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3380 if (!err2)
3381 mnt_drop_write(nd.path.mnt);
3382 out:
3383 path_put(&nd.path);
3384 return dentry;
3385 }
3386
3387 struct dentry *kern_path_create(int dfd, const char *pathname,
3388 struct path *path, unsigned int lookup_flags)
3389 {
3390 struct filename *filename = getname_kernel(pathname);
3391 struct dentry *res;
3392
3393 if (IS_ERR(filename))
3394 return ERR_CAST(filename);
3395 res = filename_create(dfd, filename, path, lookup_flags);
3396 putname(filename);
3397 return res;
3398 }
3399 EXPORT_SYMBOL(kern_path_create);
3400
3401 void done_path_create(struct path *path, struct dentry *dentry)
3402 {
3403 dput(dentry);
3404 mutex_unlock(&path->dentry->d_inode->i_mutex);
3405 mnt_drop_write(path->mnt);
3406 path_put(path);
3407 }
3408 EXPORT_SYMBOL(done_path_create);
3409
3410 struct dentry *user_path_create(int dfd, const char __user *pathname,
3411 struct path *path, unsigned int lookup_flags)
3412 {
3413 struct filename *tmp = getname(pathname);
3414 struct dentry *res;
3415 if (IS_ERR(tmp))
3416 return ERR_CAST(tmp);
3417 res = filename_create(dfd, tmp, path, lookup_flags);
3418 putname(tmp);
3419 return res;
3420 }
3421 EXPORT_SYMBOL(user_path_create);
3422
3423 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3424 {
3425 int error = may_create(dir, dentry);
3426
3427 if (error)
3428 return error;
3429
3430 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3431 return -EPERM;
3432
3433 if (!dir->i_op->mknod)
3434 return -EPERM;
3435
3436 error = devcgroup_inode_mknod(mode, dev);
3437 if (error)
3438 return error;
3439
3440 error = security_inode_mknod(dir, dentry, mode, dev);
3441 if (error)
3442 return error;
3443
3444 error = dir->i_op->mknod(dir, dentry, mode, dev);
3445 if (!error)
3446 fsnotify_create(dir, dentry);
3447 return error;
3448 }
3449 EXPORT_SYMBOL(vfs_mknod);
3450
3451 static int may_mknod(umode_t mode)
3452 {
3453 switch (mode & S_IFMT) {
3454 case S_IFREG:
3455 case S_IFCHR:
3456 case S_IFBLK:
3457 case S_IFIFO:
3458 case S_IFSOCK:
3459 case 0: /* zero mode translates to S_IFREG */
3460 return 0;
3461 case S_IFDIR:
3462 return -EPERM;
3463 default:
3464 return -EINVAL;
3465 }
3466 }
3467
3468 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3469 unsigned, dev)
3470 {
3471 struct dentry *dentry;
3472 struct path path;
3473 int error;
3474 unsigned int lookup_flags = 0;
3475
3476 error = may_mknod(mode);
3477 if (error)
3478 return error;
3479 retry:
3480 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3481 if (IS_ERR(dentry))
3482 return PTR_ERR(dentry);
3483
3484 if (!IS_POSIXACL(path.dentry->d_inode))
3485 mode &= ~current_umask();
3486 error = security_path_mknod(&path, dentry, mode, dev);
3487 if (error)
3488 goto out;
3489 switch (mode & S_IFMT) {
3490 case 0: case S_IFREG:
3491 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3492 break;
3493 case S_IFCHR: case S_IFBLK:
3494 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3495 new_decode_dev(dev));
3496 break;
3497 case S_IFIFO: case S_IFSOCK:
3498 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3499 break;
3500 }
3501 out:
3502 done_path_create(&path, dentry);
3503 if (retry_estale(error, lookup_flags)) {
3504 lookup_flags |= LOOKUP_REVAL;
3505 goto retry;
3506 }
3507 return error;
3508 }
3509
3510 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3511 {
3512 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3513 }
3514
3515 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3516 {
3517 int error = may_create(dir, dentry);
3518 unsigned max_links = dir->i_sb->s_max_links;
3519
3520 if (error)
3521 return error;
3522
3523 if (!dir->i_op->mkdir)
3524 return -EPERM;
3525
3526 mode &= (S_IRWXUGO|S_ISVTX);
3527 error = security_inode_mkdir(dir, dentry, mode);
3528 if (error)
3529 return error;
3530
3531 if (max_links && dir->i_nlink >= max_links)
3532 return -EMLINK;
3533
3534 error = dir->i_op->mkdir(dir, dentry, mode);
3535 if (!error)
3536 fsnotify_mkdir(dir, dentry);
3537 return error;
3538 }
3539 EXPORT_SYMBOL(vfs_mkdir);
3540
3541 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3542 {
3543 struct dentry *dentry;
3544 struct path path;
3545 int error;
3546 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3547
3548 retry:
3549 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3550 if (IS_ERR(dentry))
3551 return PTR_ERR(dentry);
3552
3553 if (!IS_POSIXACL(path.dentry->d_inode))
3554 mode &= ~current_umask();
3555 error = security_path_mkdir(&path, dentry, mode);
3556 if (!error)
3557 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3558 done_path_create(&path, dentry);
3559 if (retry_estale(error, lookup_flags)) {
3560 lookup_flags |= LOOKUP_REVAL;
3561 goto retry;
3562 }
3563 return error;
3564 }
3565
3566 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3567 {
3568 return sys_mkdirat(AT_FDCWD, pathname, mode);
3569 }
3570
3571 /*
3572 * The dentry_unhash() helper will try to drop the dentry early: we
3573 * should have a usage count of 1 if we're the only user of this
3574 * dentry, and if that is true (possibly after pruning the dcache),
3575 * then we drop the dentry now.
3576 *
3577 * A low-level filesystem can, if it choses, legally
3578 * do a
3579 *
3580 * if (!d_unhashed(dentry))
3581 * return -EBUSY;
3582 *
3583 * if it cannot handle the case of removing a directory
3584 * that is still in use by something else..
3585 */
3586 void dentry_unhash(struct dentry *dentry)
3587 {
3588 shrink_dcache_parent(dentry);
3589 spin_lock(&dentry->d_lock);
3590 if (dentry->d_lockref.count == 1)
3591 __d_drop(dentry);
3592 spin_unlock(&dentry->d_lock);
3593 }
3594 EXPORT_SYMBOL(dentry_unhash);
3595
3596 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3597 {
3598 int error = may_delete(dir, dentry, 1);
3599
3600 if (error)
3601 return error;
3602
3603 if (!dir->i_op->rmdir)
3604 return -EPERM;
3605
3606 dget(dentry);
3607 mutex_lock(&dentry->d_inode->i_mutex);
3608
3609 error = -EBUSY;
3610 if (is_local_mountpoint(dentry))
3611 goto out;
3612
3613 error = security_inode_rmdir(dir, dentry);
3614 if (error)
3615 goto out;
3616
3617 shrink_dcache_parent(dentry);
3618 error = dir->i_op->rmdir(dir, dentry);
3619 if (error)
3620 goto out;
3621
3622 dentry->d_inode->i_flags |= S_DEAD;
3623 dont_mount(dentry);
3624 detach_mounts(dentry);
3625
3626 out:
3627 mutex_unlock(&dentry->d_inode->i_mutex);
3628 dput(dentry);
3629 if (!error)
3630 d_delete(dentry);
3631 return error;
3632 }
3633 EXPORT_SYMBOL(vfs_rmdir);
3634
3635 static long do_rmdir(int dfd, const char __user *pathname)
3636 {
3637 int error = 0;
3638 struct filename *name;
3639 struct dentry *dentry;
3640 struct path path;
3641 struct qstr last;
3642 int type;
3643 unsigned int lookup_flags = 0;
3644 retry:
3645 name = user_path_parent(dfd, pathname,
3646 &path, &last, &type, lookup_flags);
3647 if (IS_ERR(name))
3648 return PTR_ERR(name);
3649
3650 switch (type) {
3651 case LAST_DOTDOT:
3652 error = -ENOTEMPTY;
3653 goto exit1;
3654 case LAST_DOT:
3655 error = -EINVAL;
3656 goto exit1;
3657 case LAST_ROOT:
3658 error = -EBUSY;
3659 goto exit1;
3660 }
3661
3662 error = mnt_want_write(path.mnt);
3663 if (error)
3664 goto exit1;
3665
3666 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3667 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3668 error = PTR_ERR(dentry);
3669 if (IS_ERR(dentry))
3670 goto exit2;
3671 if (!dentry->d_inode) {
3672 error = -ENOENT;
3673 goto exit3;
3674 }
3675 error = security_path_rmdir(&path, dentry);
3676 if (error)
3677 goto exit3;
3678 error = vfs_rmdir(path.dentry->d_inode, dentry);
3679 exit3:
3680 dput(dentry);
3681 exit2:
3682 mutex_unlock(&path.dentry->d_inode->i_mutex);
3683 mnt_drop_write(path.mnt);
3684 exit1:
3685 path_put(&path);
3686 putname(name);
3687 if (retry_estale(error, lookup_flags)) {
3688 lookup_flags |= LOOKUP_REVAL;
3689 goto retry;
3690 }
3691 return error;
3692 }
3693
3694 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3695 {
3696 return do_rmdir(AT_FDCWD, pathname);
3697 }
3698
3699 /**
3700 * vfs_unlink - unlink a filesystem object
3701 * @dir: parent directory
3702 * @dentry: victim
3703 * @delegated_inode: returns victim inode, if the inode is delegated.
3704 *
3705 * The caller must hold dir->i_mutex.
3706 *
3707 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3708 * return a reference to the inode in delegated_inode. The caller
3709 * should then break the delegation on that inode and retry. Because
3710 * breaking a delegation may take a long time, the caller should drop
3711 * dir->i_mutex before doing so.
3712 *
3713 * Alternatively, a caller may pass NULL for delegated_inode. This may
3714 * be appropriate for callers that expect the underlying filesystem not
3715 * to be NFS exported.
3716 */
3717 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3718 {
3719 struct inode *target = dentry->d_inode;
3720 int error = may_delete(dir, dentry, 0);
3721
3722 if (error)
3723 return error;
3724
3725 if (!dir->i_op->unlink)
3726 return -EPERM;
3727
3728 mutex_lock(&target->i_mutex);
3729 if (is_local_mountpoint(dentry))
3730 error = -EBUSY;
3731 else {
3732 error = security_inode_unlink(dir, dentry);
3733 if (!error) {
3734 error = try_break_deleg(target, delegated_inode);
3735 if (error)
3736 goto out;
3737 error = dir->i_op->unlink(dir, dentry);
3738 if (!error) {
3739 dont_mount(dentry);
3740 detach_mounts(dentry);
3741 }
3742 }
3743 }
3744 out:
3745 mutex_unlock(&target->i_mutex);
3746
3747 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3748 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3749 fsnotify_link_count(target);
3750 d_delete(dentry);
3751 }
3752
3753 return error;
3754 }
3755 EXPORT_SYMBOL(vfs_unlink);
3756
3757 /*
3758 * Make sure that the actual truncation of the file will occur outside its
3759 * directory's i_mutex. Truncate can take a long time if there is a lot of
3760 * writeout happening, and we don't want to prevent access to the directory
3761 * while waiting on the I/O.
3762 */
3763 static long do_unlinkat(int dfd, const char __user *pathname)
3764 {
3765 int error;
3766 struct filename *name;
3767 struct dentry *dentry;
3768 struct path path;
3769 struct qstr last;
3770 int type;
3771 struct inode *inode = NULL;
3772 struct inode *delegated_inode = NULL;
3773 unsigned int lookup_flags = 0;
3774 retry:
3775 name = user_path_parent(dfd, pathname,
3776 &path, &last, &type, lookup_flags);
3777 if (IS_ERR(name))
3778 return PTR_ERR(name);
3779
3780 error = -EISDIR;
3781 if (type != LAST_NORM)
3782 goto exit1;
3783
3784 error = mnt_want_write(path.mnt);
3785 if (error)
3786 goto exit1;
3787 retry_deleg:
3788 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3789 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3790 error = PTR_ERR(dentry);
3791 if (!IS_ERR(dentry)) {
3792 /* Why not before? Because we want correct error value */
3793 if (last.name[last.len])
3794 goto slashes;
3795 inode = dentry->d_inode;
3796 if (d_is_negative(dentry))
3797 goto slashes;
3798 ihold(inode);
3799 error = security_path_unlink(&path, dentry);
3800 if (error)
3801 goto exit2;
3802 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3803 exit2:
3804 dput(dentry);
3805 }
3806 mutex_unlock(&path.dentry->d_inode->i_mutex);
3807 if (inode)
3808 iput(inode); /* truncate the inode here */
3809 inode = NULL;
3810 if (delegated_inode) {
3811 error = break_deleg_wait(&delegated_inode);
3812 if (!error)
3813 goto retry_deleg;
3814 }
3815 mnt_drop_write(path.mnt);
3816 exit1:
3817 path_put(&path);
3818 putname(name);
3819 if (retry_estale(error, lookup_flags)) {
3820 lookup_flags |= LOOKUP_REVAL;
3821 inode = NULL;
3822 goto retry;
3823 }
3824 return error;
3825
3826 slashes:
3827 if (d_is_negative(dentry))
3828 error = -ENOENT;
3829 else if (d_is_dir(dentry))
3830 error = -EISDIR;
3831 else
3832 error = -ENOTDIR;
3833 goto exit2;
3834 }
3835
3836 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3837 {
3838 if ((flag & ~AT_REMOVEDIR) != 0)
3839 return -EINVAL;
3840
3841 if (flag & AT_REMOVEDIR)
3842 return do_rmdir(dfd, pathname);
3843
3844 return do_unlinkat(dfd, pathname);
3845 }
3846
3847 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3848 {
3849 return do_unlinkat(AT_FDCWD, pathname);
3850 }
3851
3852 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3853 {
3854 int error = may_create(dir, dentry);
3855
3856 if (error)
3857 return error;
3858
3859 if (!dir->i_op->symlink)
3860 return -EPERM;
3861
3862 error = security_inode_symlink(dir, dentry, oldname);
3863 if (error)
3864 return error;
3865
3866 error = dir->i_op->symlink(dir, dentry, oldname);
3867 if (!error)
3868 fsnotify_create(dir, dentry);
3869 return error;
3870 }
3871 EXPORT_SYMBOL(vfs_symlink);
3872
3873 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3874 int, newdfd, const char __user *, newname)
3875 {
3876 int error;
3877 struct filename *from;
3878 struct dentry *dentry;
3879 struct path path;
3880 unsigned int lookup_flags = 0;
3881
3882 from = getname(oldname);
3883 if (IS_ERR(from))
3884 return PTR_ERR(from);
3885 retry:
3886 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3887 error = PTR_ERR(dentry);
3888 if (IS_ERR(dentry))
3889 goto out_putname;
3890
3891 error = security_path_symlink(&path, dentry, from->name);
3892 if (!error)
3893 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3894 done_path_create(&path, dentry);
3895 if (retry_estale(error, lookup_flags)) {
3896 lookup_flags |= LOOKUP_REVAL;
3897 goto retry;
3898 }
3899 out_putname:
3900 putname(from);
3901 return error;
3902 }
3903
3904 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3905 {
3906 return sys_symlinkat(oldname, AT_FDCWD, newname);
3907 }
3908
3909 /**
3910 * vfs_link - create a new link
3911 * @old_dentry: object to be linked
3912 * @dir: new parent
3913 * @new_dentry: where to create the new link
3914 * @delegated_inode: returns inode needing a delegation break
3915 *
3916 * The caller must hold dir->i_mutex
3917 *
3918 * If vfs_link discovers a delegation on the to-be-linked file in need
3919 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3920 * inode in delegated_inode. The caller should then break the delegation
3921 * and retry. Because breaking a delegation may take a long time, the
3922 * caller should drop the i_mutex before doing so.
3923 *
3924 * Alternatively, a caller may pass NULL for delegated_inode. This may
3925 * be appropriate for callers that expect the underlying filesystem not
3926 * to be NFS exported.
3927 */
3928 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3929 {
3930 struct inode *inode = old_dentry->d_inode;
3931 unsigned max_links = dir->i_sb->s_max_links;
3932 int error;
3933
3934 if (!inode)
3935 return -ENOENT;
3936
3937 error = may_create(dir, new_dentry);
3938 if (error)
3939 return error;
3940
3941 if (dir->i_sb != inode->i_sb)
3942 return -EXDEV;
3943
3944 /*
3945 * A link to an append-only or immutable file cannot be created.
3946 */
3947 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3948 return -EPERM;
3949 if (!dir->i_op->link)
3950 return -EPERM;
3951 if (S_ISDIR(inode->i_mode))
3952 return -EPERM;
3953
3954 error = security_inode_link(old_dentry, dir, new_dentry);
3955 if (error)
3956 return error;
3957
3958 mutex_lock(&inode->i_mutex);
3959 /* Make sure we don't allow creating hardlink to an unlinked file */
3960 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3961 error = -ENOENT;
3962 else if (max_links && inode->i_nlink >= max_links)
3963 error = -EMLINK;
3964 else {
3965 error = try_break_deleg(inode, delegated_inode);
3966 if (!error)
3967 error = dir->i_op->link(old_dentry, dir, new_dentry);
3968 }
3969
3970 if (!error && (inode->i_state & I_LINKABLE)) {
3971 spin_lock(&inode->i_lock);
3972 inode->i_state &= ~I_LINKABLE;
3973 spin_unlock(&inode->i_lock);
3974 }
3975 mutex_unlock(&inode->i_mutex);
3976 if (!error)
3977 fsnotify_link(dir, inode, new_dentry);
3978 return error;
3979 }
3980 EXPORT_SYMBOL(vfs_link);
3981
3982 /*
3983 * Hardlinks are often used in delicate situations. We avoid
3984 * security-related surprises by not following symlinks on the
3985 * newname. --KAB
3986 *
3987 * We don't follow them on the oldname either to be compatible
3988 * with linux 2.0, and to avoid hard-linking to directories
3989 * and other special files. --ADM
3990 */
3991 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3992 int, newdfd, const char __user *, newname, int, flags)
3993 {
3994 struct dentry *new_dentry;
3995 struct path old_path, new_path;
3996 struct inode *delegated_inode = NULL;
3997 int how = 0;
3998 int error;
3999
4000 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4001 return -EINVAL;
4002 /*
4003 * To use null names we require CAP_DAC_READ_SEARCH
4004 * This ensures that not everyone will be able to create
4005 * handlink using the passed filedescriptor.
4006 */
4007 if (flags & AT_EMPTY_PATH) {
4008 if (!capable(CAP_DAC_READ_SEARCH))
4009 return -ENOENT;
4010 how = LOOKUP_EMPTY;
4011 }
4012
4013 if (flags & AT_SYMLINK_FOLLOW)
4014 how |= LOOKUP_FOLLOW;
4015 retry:
4016 error = user_path_at(olddfd, oldname, how, &old_path);
4017 if (error)
4018 return error;
4019
4020 new_dentry = user_path_create(newdfd, newname, &new_path,
4021 (how & LOOKUP_REVAL));
4022 error = PTR_ERR(new_dentry);
4023 if (IS_ERR(new_dentry))
4024 goto out;
4025
4026 error = -EXDEV;
4027 if (old_path.mnt != new_path.mnt)
4028 goto out_dput;
4029 error = may_linkat(&old_path);
4030 if (unlikely(error))
4031 goto out_dput;
4032 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4033 if (error)
4034 goto out_dput;
4035 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4036 out_dput:
4037 done_path_create(&new_path, new_dentry);
4038 if (delegated_inode) {
4039 error = break_deleg_wait(&delegated_inode);
4040 if (!error) {
4041 path_put(&old_path);
4042 goto retry;
4043 }
4044 }
4045 if (retry_estale(error, how)) {
4046 path_put(&old_path);
4047 how |= LOOKUP_REVAL;
4048 goto retry;
4049 }
4050 out:
4051 path_put(&old_path);
4052
4053 return error;
4054 }
4055
4056 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4057 {
4058 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4059 }
4060
4061 /**
4062 * vfs_rename - rename a filesystem object
4063 * @old_dir: parent of source
4064 * @old_dentry: source
4065 * @new_dir: parent of destination
4066 * @new_dentry: destination
4067 * @delegated_inode: returns an inode needing a delegation break
4068 * @flags: rename flags
4069 *
4070 * The caller must hold multiple mutexes--see lock_rename()).
4071 *
4072 * If vfs_rename discovers a delegation in need of breaking at either
4073 * the source or destination, it will return -EWOULDBLOCK and return a
4074 * reference to the inode in delegated_inode. The caller should then
4075 * break the delegation and retry. Because breaking a delegation may
4076 * take a long time, the caller should drop all locks before doing
4077 * so.
4078 *
4079 * Alternatively, a caller may pass NULL for delegated_inode. This may
4080 * be appropriate for callers that expect the underlying filesystem not
4081 * to be NFS exported.
4082 *
4083 * The worst of all namespace operations - renaming directory. "Perverted"
4084 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4085 * Problems:
4086 * a) we can get into loop creation.
4087 * b) race potential - two innocent renames can create a loop together.
4088 * That's where 4.4 screws up. Current fix: serialization on
4089 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4090 * story.
4091 * c) we have to lock _four_ objects - parents and victim (if it exists),
4092 * and source (if it is not a directory).
4093 * And that - after we got ->i_mutex on parents (until then we don't know
4094 * whether the target exists). Solution: try to be smart with locking
4095 * order for inodes. We rely on the fact that tree topology may change
4096 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4097 * move will be locked. Thus we can rank directories by the tree
4098 * (ancestors first) and rank all non-directories after them.
4099 * That works since everybody except rename does "lock parent, lookup,
4100 * lock child" and rename is under ->s_vfs_rename_mutex.
4101 * HOWEVER, it relies on the assumption that any object with ->lookup()
4102 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4103 * we'd better make sure that there's no link(2) for them.
4104 * d) conversion from fhandle to dentry may come in the wrong moment - when
4105 * we are removing the target. Solution: we will have to grab ->i_mutex
4106 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4107 * ->i_mutex on parents, which works but leads to some truly excessive
4108 * locking].
4109 */
4110 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4111 struct inode *new_dir, struct dentry *new_dentry,
4112 struct inode **delegated_inode, unsigned int flags)
4113 {
4114 int error;
4115 bool is_dir = d_is_dir(old_dentry);
4116 const unsigned char *old_name;
4117 struct inode *source = old_dentry->d_inode;
4118 struct inode *target = new_dentry->d_inode;
4119 bool new_is_dir = false;
4120 unsigned max_links = new_dir->i_sb->s_max_links;
4121
4122 if (source == target)
4123 return 0;
4124
4125 error = may_delete(old_dir, old_dentry, is_dir);
4126 if (error)
4127 return error;
4128
4129 if (!target) {
4130 error = may_create(new_dir, new_dentry);
4131 } else {
4132 new_is_dir = d_is_dir(new_dentry);
4133
4134 if (!(flags & RENAME_EXCHANGE))
4135 error = may_delete(new_dir, new_dentry, is_dir);
4136 else
4137 error = may_delete(new_dir, new_dentry, new_is_dir);
4138 }
4139 if (error)
4140 return error;
4141
4142 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4143 return -EPERM;
4144
4145 if (flags && !old_dir->i_op->rename2)
4146 return -EINVAL;
4147
4148 /*
4149 * If we are going to change the parent - check write permissions,
4150 * we'll need to flip '..'.
4151 */
4152 if (new_dir != old_dir) {
4153 if (is_dir) {
4154 error = inode_permission(source, MAY_WRITE);
4155 if (error)
4156 return error;
4157 }
4158 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4159 error = inode_permission(target, MAY_WRITE);
4160 if (error)
4161 return error;
4162 }
4163 }
4164
4165 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4166 flags);
4167 if (error)
4168 return error;
4169
4170 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4171 dget(new_dentry);
4172 if (!is_dir || (flags & RENAME_EXCHANGE))
4173 lock_two_nondirectories(source, target);
4174 else if (target)
4175 mutex_lock(&target->i_mutex);
4176
4177 error = -EBUSY;
4178 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4179 goto out;
4180
4181 if (max_links && new_dir != old_dir) {
4182 error = -EMLINK;
4183 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4184 goto out;
4185 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4186 old_dir->i_nlink >= max_links)
4187 goto out;
4188 }
4189 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4190 shrink_dcache_parent(new_dentry);
4191 if (!is_dir) {
4192 error = try_break_deleg(source, delegated_inode);
4193 if (error)
4194 goto out;
4195 }
4196 if (target && !new_is_dir) {
4197 error = try_break_deleg(target, delegated_inode);
4198 if (error)
4199 goto out;
4200 }
4201 if (!old_dir->i_op->rename2) {
4202 error = old_dir->i_op->rename(old_dir, old_dentry,
4203 new_dir, new_dentry);
4204 } else {
4205 WARN_ON(old_dir->i_op->rename != NULL);
4206 error = old_dir->i_op->rename2(old_dir, old_dentry,
4207 new_dir, new_dentry, flags);
4208 }
4209 if (error)
4210 goto out;
4211
4212 if (!(flags & RENAME_EXCHANGE) && target) {
4213 if (is_dir)
4214 target->i_flags |= S_DEAD;
4215 dont_mount(new_dentry);
4216 detach_mounts(new_dentry);
4217 }
4218 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4219 if (!(flags & RENAME_EXCHANGE))
4220 d_move(old_dentry, new_dentry);
4221 else
4222 d_exchange(old_dentry, new_dentry);
4223 }
4224 out:
4225 if (!is_dir || (flags & RENAME_EXCHANGE))
4226 unlock_two_nondirectories(source, target);
4227 else if (target)
4228 mutex_unlock(&target->i_mutex);
4229 dput(new_dentry);
4230 if (!error) {
4231 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4232 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4233 if (flags & RENAME_EXCHANGE) {
4234 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4235 new_is_dir, NULL, new_dentry);
4236 }
4237 }
4238 fsnotify_oldname_free(old_name);
4239
4240 return error;
4241 }
4242 EXPORT_SYMBOL(vfs_rename);
4243
4244 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4245 int, newdfd, const char __user *, newname, unsigned int, flags)
4246 {
4247 struct dentry *old_dentry, *new_dentry;
4248 struct dentry *trap;
4249 struct path old_path, new_path;
4250 struct qstr old_last, new_last;
4251 int old_type, new_type;
4252 struct inode *delegated_inode = NULL;
4253 struct filename *from;
4254 struct filename *to;
4255 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4256 bool should_retry = false;
4257 int error;
4258
4259 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4260 return -EINVAL;
4261
4262 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4263 (flags & RENAME_EXCHANGE))
4264 return -EINVAL;
4265
4266 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4267 return -EPERM;
4268
4269 if (flags & RENAME_EXCHANGE)
4270 target_flags = 0;
4271
4272 retry:
4273 from = user_path_parent(olddfd, oldname,
4274 &old_path, &old_last, &old_type, lookup_flags);
4275 if (IS_ERR(from)) {
4276 error = PTR_ERR(from);
4277 goto exit;
4278 }
4279
4280 to = user_path_parent(newdfd, newname,
4281 &new_path, &new_last, &new_type, lookup_flags);
4282 if (IS_ERR(to)) {
4283 error = PTR_ERR(to);
4284 goto exit1;
4285 }
4286
4287 error = -EXDEV;
4288 if (old_path.mnt != new_path.mnt)
4289 goto exit2;
4290
4291 error = -EBUSY;
4292 if (old_type != LAST_NORM)
4293 goto exit2;
4294
4295 if (flags & RENAME_NOREPLACE)
4296 error = -EEXIST;
4297 if (new_type != LAST_NORM)
4298 goto exit2;
4299
4300 error = mnt_want_write(old_path.mnt);
4301 if (error)
4302 goto exit2;
4303
4304 retry_deleg:
4305 trap = lock_rename(new_path.dentry, old_path.dentry);
4306
4307 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4308 error = PTR_ERR(old_dentry);
4309 if (IS_ERR(old_dentry))
4310 goto exit3;
4311 /* source must exist */
4312 error = -ENOENT;
4313 if (d_is_negative(old_dentry))
4314 goto exit4;
4315 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4316 error = PTR_ERR(new_dentry);
4317 if (IS_ERR(new_dentry))
4318 goto exit4;
4319 error = -EEXIST;
4320 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4321 goto exit5;
4322 if (flags & RENAME_EXCHANGE) {
4323 error = -ENOENT;
4324 if (d_is_negative(new_dentry))
4325 goto exit5;
4326
4327 if (!d_is_dir(new_dentry)) {
4328 error = -ENOTDIR;
4329 if (new_last.name[new_last.len])
4330 goto exit5;
4331 }
4332 }
4333 /* unless the source is a directory trailing slashes give -ENOTDIR */
4334 if (!d_is_dir(old_dentry)) {
4335 error = -ENOTDIR;
4336 if (old_last.name[old_last.len])
4337 goto exit5;
4338 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4339 goto exit5;
4340 }
4341 /* source should not be ancestor of target */
4342 error = -EINVAL;
4343 if (old_dentry == trap)
4344 goto exit5;
4345 /* target should not be an ancestor of source */
4346 if (!(flags & RENAME_EXCHANGE))
4347 error = -ENOTEMPTY;
4348 if (new_dentry == trap)
4349 goto exit5;
4350
4351 error = security_path_rename(&old_path, old_dentry,
4352 &new_path, new_dentry, flags);
4353 if (error)
4354 goto exit5;
4355 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4356 new_path.dentry->d_inode, new_dentry,
4357 &delegated_inode, flags);
4358 exit5:
4359 dput(new_dentry);
4360 exit4:
4361 dput(old_dentry);
4362 exit3:
4363 unlock_rename(new_path.dentry, old_path.dentry);
4364 if (delegated_inode) {
4365 error = break_deleg_wait(&delegated_inode);
4366 if (!error)
4367 goto retry_deleg;
4368 }
4369 mnt_drop_write(old_path.mnt);
4370 exit2:
4371 if (retry_estale(error, lookup_flags))
4372 should_retry = true;
4373 path_put(&new_path);
4374 putname(to);
4375 exit1:
4376 path_put(&old_path);
4377 putname(from);
4378 if (should_retry) {
4379 should_retry = false;
4380 lookup_flags |= LOOKUP_REVAL;
4381 goto retry;
4382 }
4383 exit:
4384 return error;
4385 }
4386
4387 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4388 int, newdfd, const char __user *, newname)
4389 {
4390 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4391 }
4392
4393 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4394 {
4395 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4396 }
4397
4398 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4399 {
4400 int error = may_create(dir, dentry);
4401 if (error)
4402 return error;
4403
4404 if (!dir->i_op->mknod)
4405 return -EPERM;
4406
4407 return dir->i_op->mknod(dir, dentry,
4408 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4409 }
4410 EXPORT_SYMBOL(vfs_whiteout);
4411
4412 int readlink_copy(char __user *buffer, int buflen, const char *link)
4413 {
4414 int len = PTR_ERR(link);
4415 if (IS_ERR(link))
4416 goto out;
4417
4418 len = strlen(link);
4419 if (len > (unsigned) buflen)
4420 len = buflen;
4421 if (copy_to_user(buffer, link, len))
4422 len = -EFAULT;
4423 out:
4424 return len;
4425 }
4426 EXPORT_SYMBOL(readlink_copy);
4427
4428 /*
4429 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4430 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4431 * using) it for any given inode is up to filesystem.
4432 */
4433 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4434 {
4435 void *cookie;
4436 const char *link = dentry->d_inode->i_link;
4437 int res;
4438
4439 if (!link) {
4440 link = dentry->d_inode->i_op->follow_link(dentry, &cookie);
4441 if (IS_ERR(link))
4442 return PTR_ERR(link);
4443 }
4444 res = readlink_copy(buffer, buflen, link);
4445 if (dentry->d_inode->i_op->put_link)
4446 dentry->d_inode->i_op->put_link(dentry, cookie);
4447 return res;
4448 }
4449 EXPORT_SYMBOL(generic_readlink);
4450
4451 /* get the link contents into pagecache */
4452 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4453 {
4454 char *kaddr;
4455 struct page *page;
4456 struct address_space *mapping = dentry->d_inode->i_mapping;
4457 page = read_mapping_page(mapping, 0, NULL);
4458 if (IS_ERR(page))
4459 return (char*)page;
4460 *ppage = page;
4461 kaddr = kmap(page);
4462 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4463 return kaddr;
4464 }
4465
4466 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4467 {
4468 struct page *page = NULL;
4469 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4470 if (page) {
4471 kunmap(page);
4472 page_cache_release(page);
4473 }
4474 return res;
4475 }
4476 EXPORT_SYMBOL(page_readlink);
4477
4478 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4479 {
4480 struct page *page = NULL;
4481 char *res = page_getlink(dentry, &page);
4482 if (!IS_ERR(res))
4483 *cookie = page;
4484 return res;
4485 }
4486 EXPORT_SYMBOL(page_follow_link_light);
4487
4488 void page_put_link(struct dentry *dentry, void *cookie)
4489 {
4490 struct page *page = cookie;
4491 kunmap(page);
4492 page_cache_release(page);
4493 }
4494 EXPORT_SYMBOL(page_put_link);
4495
4496 /*
4497 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4498 */
4499 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4500 {
4501 struct address_space *mapping = inode->i_mapping;
4502 struct page *page;
4503 void *fsdata;
4504 int err;
4505 char *kaddr;
4506 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4507 if (nofs)
4508 flags |= AOP_FLAG_NOFS;
4509
4510 retry:
4511 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4512 flags, &page, &fsdata);
4513 if (err)
4514 goto fail;
4515
4516 kaddr = kmap_atomic(page);
4517 memcpy(kaddr, symname, len-1);
4518 kunmap_atomic(kaddr);
4519
4520 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4521 page, fsdata);
4522 if (err < 0)
4523 goto fail;
4524 if (err < len-1)
4525 goto retry;
4526
4527 mark_inode_dirty(inode);
4528 return 0;
4529 fail:
4530 return err;
4531 }
4532 EXPORT_SYMBOL(__page_symlink);
4533
4534 int page_symlink(struct inode *inode, const char *symname, int len)
4535 {
4536 return __page_symlink(inode, symname, len,
4537 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4538 }
4539 EXPORT_SYMBOL(page_symlink);
4540
4541 const struct inode_operations page_symlink_inode_operations = {
4542 .readlink = generic_readlink,
4543 .follow_link = page_follow_link_light,
4544 .put_link = page_put_link,
4545 };
4546 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.159605 seconds and 4 git commands to generate.