make nameidata completely opaque outside of fs/namei.c
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203
204 error:
205 final_putname(result);
206 return err;
207 }
208
209 struct filename *
210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 /*
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218 */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 struct filename *result;
223 char *kname;
224 int len;
225
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
229
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
233
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
239
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
242 }
243
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
250 }
251 #endif
252
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
257
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 }
267
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
275 }
276 #endif
277
278 return -EAGAIN;
279 }
280
281 /*
282 * This does the basic permission checking
283 */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 unsigned int mode = inode->i_mode;
287
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
295 }
296
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
299 }
300
301 /*
302 * If the DACs are ok we don't need any capability check.
303 */
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
307 }
308
309 /**
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 *
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
318 *
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
322 */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 int ret;
326
327 /*
328 * Do the basic permission checks.
329 */
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
333
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
343 }
344 /*
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
348 */
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360
361 return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364
365 /*
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
370 */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(inode->i_op->permission))
375 return inode->i_op->permission(inode, mask);
376
377 /* This gets set once for the inode lifetime */
378 spin_lock(&inode->i_lock);
379 inode->i_opflags |= IOP_FASTPERM;
380 spin_unlock(&inode->i_lock);
381 }
382 return generic_permission(inode, mask);
383 }
384
385 /**
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389 *
390 * Check for read/write/execute permissions on an inode.
391 *
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393 *
394 * This does not check for a read-only file system. You probably want
395 * inode_permission().
396 */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 int retval;
400
401 if (unlikely(mask & MAY_WRITE)) {
402 /*
403 * Nobody gets write access to an immutable file.
404 */
405 if (IS_IMMUTABLE(inode))
406 return -EACCES;
407 }
408
409 retval = do_inode_permission(inode, mask);
410 if (retval)
411 return retval;
412
413 retval = devcgroup_inode_permission(inode, mask);
414 if (retval)
415 return retval;
416
417 return security_inode_permission(inode, mask);
418 }
419 EXPORT_SYMBOL(__inode_permission);
420
421 /**
422 * sb_permission - Check superblock-level permissions
423 * @sb: Superblock of inode to check permission on
424 * @inode: Inode to check permission on
425 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
426 *
427 * Separate out file-system wide checks from inode-specific permission checks.
428 */
429 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
430 {
431 if (unlikely(mask & MAY_WRITE)) {
432 umode_t mode = inode->i_mode;
433
434 /* Nobody gets write access to a read-only fs. */
435 if ((sb->s_flags & MS_RDONLY) &&
436 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
437 return -EROFS;
438 }
439 return 0;
440 }
441
442 /**
443 * inode_permission - Check for access rights to a given inode
444 * @inode: Inode to check permission on
445 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
446 *
447 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
448 * this, letting us set arbitrary permissions for filesystem access without
449 * changing the "normal" UIDs which are used for other things.
450 *
451 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
452 */
453 int inode_permission(struct inode *inode, int mask)
454 {
455 int retval;
456
457 retval = sb_permission(inode->i_sb, inode, mask);
458 if (retval)
459 return retval;
460 return __inode_permission(inode, mask);
461 }
462 EXPORT_SYMBOL(inode_permission);
463
464 /**
465 * path_get - get a reference to a path
466 * @path: path to get the reference to
467 *
468 * Given a path increment the reference count to the dentry and the vfsmount.
469 */
470 void path_get(const struct path *path)
471 {
472 mntget(path->mnt);
473 dget(path->dentry);
474 }
475 EXPORT_SYMBOL(path_get);
476
477 /**
478 * path_put - put a reference to a path
479 * @path: path to put the reference to
480 *
481 * Given a path decrement the reference count to the dentry and the vfsmount.
482 */
483 void path_put(const struct path *path)
484 {
485 dput(path->dentry);
486 mntput(path->mnt);
487 }
488 EXPORT_SYMBOL(path_put);
489
490 struct nameidata {
491 struct path path;
492 struct qstr last;
493 struct path root;
494 struct inode *inode; /* path.dentry.d_inode */
495 unsigned int flags;
496 unsigned seq, m_seq;
497 int last_type;
498 unsigned depth;
499 char *saved_names[MAX_NESTED_LINKS + 1];
500 };
501
502 /*
503 * Path walking has 2 modes, rcu-walk and ref-walk (see
504 * Documentation/filesystems/path-lookup.txt). In situations when we can't
505 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
506 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
507 * mode. Refcounts are grabbed at the last known good point before rcu-walk
508 * got stuck, so ref-walk may continue from there. If this is not successful
509 * (eg. a seqcount has changed), then failure is returned and it's up to caller
510 * to restart the path walk from the beginning in ref-walk mode.
511 */
512
513 /**
514 * unlazy_walk - try to switch to ref-walk mode.
515 * @nd: nameidata pathwalk data
516 * @dentry: child of nd->path.dentry or NULL
517 * Returns: 0 on success, -ECHILD on failure
518 *
519 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
520 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
521 * @nd or NULL. Must be called from rcu-walk context.
522 */
523 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
524 {
525 struct fs_struct *fs = current->fs;
526 struct dentry *parent = nd->path.dentry;
527
528 BUG_ON(!(nd->flags & LOOKUP_RCU));
529
530 /*
531 * After legitimizing the bastards, terminate_walk()
532 * will do the right thing for non-RCU mode, and all our
533 * subsequent exit cases should rcu_read_unlock()
534 * before returning. Do vfsmount first; if dentry
535 * can't be legitimized, just set nd->path.dentry to NULL
536 * and rely on dput(NULL) being a no-op.
537 */
538 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
539 return -ECHILD;
540 nd->flags &= ~LOOKUP_RCU;
541
542 if (!lockref_get_not_dead(&parent->d_lockref)) {
543 nd->path.dentry = NULL;
544 goto out;
545 }
546
547 /*
548 * For a negative lookup, the lookup sequence point is the parents
549 * sequence point, and it only needs to revalidate the parent dentry.
550 *
551 * For a positive lookup, we need to move both the parent and the
552 * dentry from the RCU domain to be properly refcounted. And the
553 * sequence number in the dentry validates *both* dentry counters,
554 * since we checked the sequence number of the parent after we got
555 * the child sequence number. So we know the parent must still
556 * be valid if the child sequence number is still valid.
557 */
558 if (!dentry) {
559 if (read_seqcount_retry(&parent->d_seq, nd->seq))
560 goto out;
561 BUG_ON(nd->inode != parent->d_inode);
562 } else {
563 if (!lockref_get_not_dead(&dentry->d_lockref))
564 goto out;
565 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
566 goto drop_dentry;
567 }
568
569 /*
570 * Sequence counts matched. Now make sure that the root is
571 * still valid and get it if required.
572 */
573 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
574 spin_lock(&fs->lock);
575 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
576 goto unlock_and_drop_dentry;
577 path_get(&nd->root);
578 spin_unlock(&fs->lock);
579 }
580
581 rcu_read_unlock();
582 return 0;
583
584 unlock_and_drop_dentry:
585 spin_unlock(&fs->lock);
586 drop_dentry:
587 rcu_read_unlock();
588 dput(dentry);
589 goto drop_root_mnt;
590 out:
591 rcu_read_unlock();
592 drop_root_mnt:
593 if (!(nd->flags & LOOKUP_ROOT))
594 nd->root.mnt = NULL;
595 return -ECHILD;
596 }
597
598 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
599 {
600 return dentry->d_op->d_revalidate(dentry, flags);
601 }
602
603 /**
604 * complete_walk - successful completion of path walk
605 * @nd: pointer nameidata
606 *
607 * If we had been in RCU mode, drop out of it and legitimize nd->path.
608 * Revalidate the final result, unless we'd already done that during
609 * the path walk or the filesystem doesn't ask for it. Return 0 on
610 * success, -error on failure. In case of failure caller does not
611 * need to drop nd->path.
612 */
613 static int complete_walk(struct nameidata *nd)
614 {
615 struct dentry *dentry = nd->path.dentry;
616 int status;
617
618 if (nd->flags & LOOKUP_RCU) {
619 nd->flags &= ~LOOKUP_RCU;
620 if (!(nd->flags & LOOKUP_ROOT))
621 nd->root.mnt = NULL;
622
623 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
624 rcu_read_unlock();
625 return -ECHILD;
626 }
627 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
628 rcu_read_unlock();
629 mntput(nd->path.mnt);
630 return -ECHILD;
631 }
632 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
633 rcu_read_unlock();
634 dput(dentry);
635 mntput(nd->path.mnt);
636 return -ECHILD;
637 }
638 rcu_read_unlock();
639 }
640
641 if (likely(!(nd->flags & LOOKUP_JUMPED)))
642 return 0;
643
644 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
645 return 0;
646
647 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
648 if (status > 0)
649 return 0;
650
651 if (!status)
652 status = -ESTALE;
653
654 path_put(&nd->path);
655 return status;
656 }
657
658 static __always_inline void set_root(struct nameidata *nd)
659 {
660 get_fs_root(current->fs, &nd->root);
661 }
662
663 static int link_path_walk(const char *, struct nameidata *);
664
665 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
666 {
667 struct fs_struct *fs = current->fs;
668 unsigned seq, res;
669
670 do {
671 seq = read_seqcount_begin(&fs->seq);
672 nd->root = fs->root;
673 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
674 } while (read_seqcount_retry(&fs->seq, seq));
675 return res;
676 }
677
678 static void path_put_conditional(struct path *path, struct nameidata *nd)
679 {
680 dput(path->dentry);
681 if (path->mnt != nd->path.mnt)
682 mntput(path->mnt);
683 }
684
685 static inline void path_to_nameidata(const struct path *path,
686 struct nameidata *nd)
687 {
688 if (!(nd->flags & LOOKUP_RCU)) {
689 dput(nd->path.dentry);
690 if (nd->path.mnt != path->mnt)
691 mntput(nd->path.mnt);
692 }
693 nd->path.mnt = path->mnt;
694 nd->path.dentry = path->dentry;
695 }
696
697 /*
698 * Helper to directly jump to a known parsed path from ->follow_link,
699 * caller must have taken a reference to path beforehand.
700 */
701 void nd_jump_link(struct nameidata *nd, struct path *path)
702 {
703 path_put(&nd->path);
704
705 nd->path = *path;
706 nd->inode = nd->path.dentry->d_inode;
707 nd->flags |= LOOKUP_JUMPED;
708 }
709
710 void nd_set_link(struct nameidata *nd, char *path)
711 {
712 nd->saved_names[nd->depth] = path;
713 }
714 EXPORT_SYMBOL(nd_set_link);
715
716 char *nd_get_link(struct nameidata *nd)
717 {
718 return nd->saved_names[nd->depth];
719 }
720 EXPORT_SYMBOL(nd_get_link);
721
722 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
723 {
724 struct inode *inode = link->dentry->d_inode;
725 if (inode->i_op->put_link)
726 inode->i_op->put_link(link->dentry, nd, cookie);
727 path_put(link);
728 }
729
730 int sysctl_protected_symlinks __read_mostly = 0;
731 int sysctl_protected_hardlinks __read_mostly = 0;
732
733 /**
734 * may_follow_link - Check symlink following for unsafe situations
735 * @link: The path of the symlink
736 * @nd: nameidata pathwalk data
737 *
738 * In the case of the sysctl_protected_symlinks sysctl being enabled,
739 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
740 * in a sticky world-writable directory. This is to protect privileged
741 * processes from failing races against path names that may change out
742 * from under them by way of other users creating malicious symlinks.
743 * It will permit symlinks to be followed only when outside a sticky
744 * world-writable directory, or when the uid of the symlink and follower
745 * match, or when the directory owner matches the symlink's owner.
746 *
747 * Returns 0 if following the symlink is allowed, -ve on error.
748 */
749 static inline int may_follow_link(struct path *link, struct nameidata *nd)
750 {
751 const struct inode *inode;
752 const struct inode *parent;
753
754 if (!sysctl_protected_symlinks)
755 return 0;
756
757 /* Allowed if owner and follower match. */
758 inode = link->dentry->d_inode;
759 if (uid_eq(current_cred()->fsuid, inode->i_uid))
760 return 0;
761
762 /* Allowed if parent directory not sticky and world-writable. */
763 parent = nd->path.dentry->d_inode;
764 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
765 return 0;
766
767 /* Allowed if parent directory and link owner match. */
768 if (uid_eq(parent->i_uid, inode->i_uid))
769 return 0;
770
771 audit_log_link_denied("follow_link", link);
772 path_put_conditional(link, nd);
773 path_put(&nd->path);
774 return -EACCES;
775 }
776
777 /**
778 * safe_hardlink_source - Check for safe hardlink conditions
779 * @inode: the source inode to hardlink from
780 *
781 * Return false if at least one of the following conditions:
782 * - inode is not a regular file
783 * - inode is setuid
784 * - inode is setgid and group-exec
785 * - access failure for read and write
786 *
787 * Otherwise returns true.
788 */
789 static bool safe_hardlink_source(struct inode *inode)
790 {
791 umode_t mode = inode->i_mode;
792
793 /* Special files should not get pinned to the filesystem. */
794 if (!S_ISREG(mode))
795 return false;
796
797 /* Setuid files should not get pinned to the filesystem. */
798 if (mode & S_ISUID)
799 return false;
800
801 /* Executable setgid files should not get pinned to the filesystem. */
802 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
803 return false;
804
805 /* Hardlinking to unreadable or unwritable sources is dangerous. */
806 if (inode_permission(inode, MAY_READ | MAY_WRITE))
807 return false;
808
809 return true;
810 }
811
812 /**
813 * may_linkat - Check permissions for creating a hardlink
814 * @link: the source to hardlink from
815 *
816 * Block hardlink when all of:
817 * - sysctl_protected_hardlinks enabled
818 * - fsuid does not match inode
819 * - hardlink source is unsafe (see safe_hardlink_source() above)
820 * - not CAP_FOWNER
821 *
822 * Returns 0 if successful, -ve on error.
823 */
824 static int may_linkat(struct path *link)
825 {
826 const struct cred *cred;
827 struct inode *inode;
828
829 if (!sysctl_protected_hardlinks)
830 return 0;
831
832 cred = current_cred();
833 inode = link->dentry->d_inode;
834
835 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
836 * otherwise, it must be a safe source.
837 */
838 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
839 capable(CAP_FOWNER))
840 return 0;
841
842 audit_log_link_denied("linkat", link);
843 return -EPERM;
844 }
845
846 static __always_inline int
847 follow_link(struct path *link, struct nameidata *nd, void **p)
848 {
849 struct dentry *dentry = link->dentry;
850 int error;
851 char *s;
852
853 BUG_ON(nd->flags & LOOKUP_RCU);
854
855 if (link->mnt == nd->path.mnt)
856 mntget(link->mnt);
857
858 error = -ELOOP;
859 if (unlikely(current->total_link_count >= 40))
860 goto out_put_nd_path;
861
862 cond_resched();
863 current->total_link_count++;
864
865 touch_atime(link);
866 nd_set_link(nd, NULL);
867
868 error = security_inode_follow_link(link->dentry, nd);
869 if (error)
870 goto out_put_nd_path;
871
872 nd->last_type = LAST_BIND;
873 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
874 error = PTR_ERR(*p);
875 if (IS_ERR(*p))
876 goto out_put_nd_path;
877
878 error = 0;
879 s = nd_get_link(nd);
880 if (s) {
881 if (unlikely(IS_ERR(s))) {
882 path_put(&nd->path);
883 put_link(nd, link, *p);
884 return PTR_ERR(s);
885 }
886 if (*s == '/') {
887 if (!nd->root.mnt)
888 set_root(nd);
889 path_put(&nd->path);
890 nd->path = nd->root;
891 path_get(&nd->root);
892 nd->flags |= LOOKUP_JUMPED;
893 }
894 nd->inode = nd->path.dentry->d_inode;
895 error = link_path_walk(s, nd);
896 if (unlikely(error))
897 put_link(nd, link, *p);
898 }
899
900 return error;
901
902 out_put_nd_path:
903 *p = NULL;
904 path_put(&nd->path);
905 path_put(link);
906 return error;
907 }
908
909 static int follow_up_rcu(struct path *path)
910 {
911 struct mount *mnt = real_mount(path->mnt);
912 struct mount *parent;
913 struct dentry *mountpoint;
914
915 parent = mnt->mnt_parent;
916 if (&parent->mnt == path->mnt)
917 return 0;
918 mountpoint = mnt->mnt_mountpoint;
919 path->dentry = mountpoint;
920 path->mnt = &parent->mnt;
921 return 1;
922 }
923
924 /*
925 * follow_up - Find the mountpoint of path's vfsmount
926 *
927 * Given a path, find the mountpoint of its source file system.
928 * Replace @path with the path of the mountpoint in the parent mount.
929 * Up is towards /.
930 *
931 * Return 1 if we went up a level and 0 if we were already at the
932 * root.
933 */
934 int follow_up(struct path *path)
935 {
936 struct mount *mnt = real_mount(path->mnt);
937 struct mount *parent;
938 struct dentry *mountpoint;
939
940 read_seqlock_excl(&mount_lock);
941 parent = mnt->mnt_parent;
942 if (parent == mnt) {
943 read_sequnlock_excl(&mount_lock);
944 return 0;
945 }
946 mntget(&parent->mnt);
947 mountpoint = dget(mnt->mnt_mountpoint);
948 read_sequnlock_excl(&mount_lock);
949 dput(path->dentry);
950 path->dentry = mountpoint;
951 mntput(path->mnt);
952 path->mnt = &parent->mnt;
953 return 1;
954 }
955 EXPORT_SYMBOL(follow_up);
956
957 /*
958 * Perform an automount
959 * - return -EISDIR to tell follow_managed() to stop and return the path we
960 * were called with.
961 */
962 static int follow_automount(struct path *path, unsigned flags,
963 bool *need_mntput)
964 {
965 struct vfsmount *mnt;
966 int err;
967
968 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
969 return -EREMOTE;
970
971 /* We don't want to mount if someone's just doing a stat -
972 * unless they're stat'ing a directory and appended a '/' to
973 * the name.
974 *
975 * We do, however, want to mount if someone wants to open or
976 * create a file of any type under the mountpoint, wants to
977 * traverse through the mountpoint or wants to open the
978 * mounted directory. Also, autofs may mark negative dentries
979 * as being automount points. These will need the attentions
980 * of the daemon to instantiate them before they can be used.
981 */
982 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
983 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
984 path->dentry->d_inode)
985 return -EISDIR;
986
987 current->total_link_count++;
988 if (current->total_link_count >= 40)
989 return -ELOOP;
990
991 mnt = path->dentry->d_op->d_automount(path);
992 if (IS_ERR(mnt)) {
993 /*
994 * The filesystem is allowed to return -EISDIR here to indicate
995 * it doesn't want to automount. For instance, autofs would do
996 * this so that its userspace daemon can mount on this dentry.
997 *
998 * However, we can only permit this if it's a terminal point in
999 * the path being looked up; if it wasn't then the remainder of
1000 * the path is inaccessible and we should say so.
1001 */
1002 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1003 return -EREMOTE;
1004 return PTR_ERR(mnt);
1005 }
1006
1007 if (!mnt) /* mount collision */
1008 return 0;
1009
1010 if (!*need_mntput) {
1011 /* lock_mount() may release path->mnt on error */
1012 mntget(path->mnt);
1013 *need_mntput = true;
1014 }
1015 err = finish_automount(mnt, path);
1016
1017 switch (err) {
1018 case -EBUSY:
1019 /* Someone else made a mount here whilst we were busy */
1020 return 0;
1021 case 0:
1022 path_put(path);
1023 path->mnt = mnt;
1024 path->dentry = dget(mnt->mnt_root);
1025 return 0;
1026 default:
1027 return err;
1028 }
1029
1030 }
1031
1032 /*
1033 * Handle a dentry that is managed in some way.
1034 * - Flagged for transit management (autofs)
1035 * - Flagged as mountpoint
1036 * - Flagged as automount point
1037 *
1038 * This may only be called in refwalk mode.
1039 *
1040 * Serialization is taken care of in namespace.c
1041 */
1042 static int follow_managed(struct path *path, unsigned flags)
1043 {
1044 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1045 unsigned managed;
1046 bool need_mntput = false;
1047 int ret = 0;
1048
1049 /* Given that we're not holding a lock here, we retain the value in a
1050 * local variable for each dentry as we look at it so that we don't see
1051 * the components of that value change under us */
1052 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1053 managed &= DCACHE_MANAGED_DENTRY,
1054 unlikely(managed != 0)) {
1055 /* Allow the filesystem to manage the transit without i_mutex
1056 * being held. */
1057 if (managed & DCACHE_MANAGE_TRANSIT) {
1058 BUG_ON(!path->dentry->d_op);
1059 BUG_ON(!path->dentry->d_op->d_manage);
1060 ret = path->dentry->d_op->d_manage(path->dentry, false);
1061 if (ret < 0)
1062 break;
1063 }
1064
1065 /* Transit to a mounted filesystem. */
1066 if (managed & DCACHE_MOUNTED) {
1067 struct vfsmount *mounted = lookup_mnt(path);
1068 if (mounted) {
1069 dput(path->dentry);
1070 if (need_mntput)
1071 mntput(path->mnt);
1072 path->mnt = mounted;
1073 path->dentry = dget(mounted->mnt_root);
1074 need_mntput = true;
1075 continue;
1076 }
1077
1078 /* Something is mounted on this dentry in another
1079 * namespace and/or whatever was mounted there in this
1080 * namespace got unmounted before lookup_mnt() could
1081 * get it */
1082 }
1083
1084 /* Handle an automount point */
1085 if (managed & DCACHE_NEED_AUTOMOUNT) {
1086 ret = follow_automount(path, flags, &need_mntput);
1087 if (ret < 0)
1088 break;
1089 continue;
1090 }
1091
1092 /* We didn't change the current path point */
1093 break;
1094 }
1095
1096 if (need_mntput && path->mnt == mnt)
1097 mntput(path->mnt);
1098 if (ret == -EISDIR)
1099 ret = 0;
1100 return ret < 0 ? ret : need_mntput;
1101 }
1102
1103 int follow_down_one(struct path *path)
1104 {
1105 struct vfsmount *mounted;
1106
1107 mounted = lookup_mnt(path);
1108 if (mounted) {
1109 dput(path->dentry);
1110 mntput(path->mnt);
1111 path->mnt = mounted;
1112 path->dentry = dget(mounted->mnt_root);
1113 return 1;
1114 }
1115 return 0;
1116 }
1117 EXPORT_SYMBOL(follow_down_one);
1118
1119 static inline int managed_dentry_rcu(struct dentry *dentry)
1120 {
1121 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1122 dentry->d_op->d_manage(dentry, true) : 0;
1123 }
1124
1125 /*
1126 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1127 * we meet a managed dentry that would need blocking.
1128 */
1129 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1130 struct inode **inode)
1131 {
1132 for (;;) {
1133 struct mount *mounted;
1134 /*
1135 * Don't forget we might have a non-mountpoint managed dentry
1136 * that wants to block transit.
1137 */
1138 switch (managed_dentry_rcu(path->dentry)) {
1139 case -ECHILD:
1140 default:
1141 return false;
1142 case -EISDIR:
1143 return true;
1144 case 0:
1145 break;
1146 }
1147
1148 if (!d_mountpoint(path->dentry))
1149 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1150
1151 mounted = __lookup_mnt(path->mnt, path->dentry);
1152 if (!mounted)
1153 break;
1154 path->mnt = &mounted->mnt;
1155 path->dentry = mounted->mnt.mnt_root;
1156 nd->flags |= LOOKUP_JUMPED;
1157 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1158 /*
1159 * Update the inode too. We don't need to re-check the
1160 * dentry sequence number here after this d_inode read,
1161 * because a mount-point is always pinned.
1162 */
1163 *inode = path->dentry->d_inode;
1164 }
1165 return !read_seqretry(&mount_lock, nd->m_seq) &&
1166 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1167 }
1168
1169 static int follow_dotdot_rcu(struct nameidata *nd)
1170 {
1171 struct inode *inode = nd->inode;
1172 if (!nd->root.mnt)
1173 set_root_rcu(nd);
1174
1175 while (1) {
1176 if (nd->path.dentry == nd->root.dentry &&
1177 nd->path.mnt == nd->root.mnt) {
1178 break;
1179 }
1180 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1181 struct dentry *old = nd->path.dentry;
1182 struct dentry *parent = old->d_parent;
1183 unsigned seq;
1184
1185 inode = parent->d_inode;
1186 seq = read_seqcount_begin(&parent->d_seq);
1187 if (read_seqcount_retry(&old->d_seq, nd->seq))
1188 goto failed;
1189 nd->path.dentry = parent;
1190 nd->seq = seq;
1191 break;
1192 }
1193 if (!follow_up_rcu(&nd->path))
1194 break;
1195 inode = nd->path.dentry->d_inode;
1196 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1197 }
1198 while (d_mountpoint(nd->path.dentry)) {
1199 struct mount *mounted;
1200 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1201 if (!mounted)
1202 break;
1203 nd->path.mnt = &mounted->mnt;
1204 nd->path.dentry = mounted->mnt.mnt_root;
1205 inode = nd->path.dentry->d_inode;
1206 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1207 if (read_seqretry(&mount_lock, nd->m_seq))
1208 goto failed;
1209 }
1210 nd->inode = inode;
1211 return 0;
1212
1213 failed:
1214 nd->flags &= ~LOOKUP_RCU;
1215 if (!(nd->flags & LOOKUP_ROOT))
1216 nd->root.mnt = NULL;
1217 rcu_read_unlock();
1218 return -ECHILD;
1219 }
1220
1221 /*
1222 * Follow down to the covering mount currently visible to userspace. At each
1223 * point, the filesystem owning that dentry may be queried as to whether the
1224 * caller is permitted to proceed or not.
1225 */
1226 int follow_down(struct path *path)
1227 {
1228 unsigned managed;
1229 int ret;
1230
1231 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1232 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1233 /* Allow the filesystem to manage the transit without i_mutex
1234 * being held.
1235 *
1236 * We indicate to the filesystem if someone is trying to mount
1237 * something here. This gives autofs the chance to deny anyone
1238 * other than its daemon the right to mount on its
1239 * superstructure.
1240 *
1241 * The filesystem may sleep at this point.
1242 */
1243 if (managed & DCACHE_MANAGE_TRANSIT) {
1244 BUG_ON(!path->dentry->d_op);
1245 BUG_ON(!path->dentry->d_op->d_manage);
1246 ret = path->dentry->d_op->d_manage(
1247 path->dentry, false);
1248 if (ret < 0)
1249 return ret == -EISDIR ? 0 : ret;
1250 }
1251
1252 /* Transit to a mounted filesystem. */
1253 if (managed & DCACHE_MOUNTED) {
1254 struct vfsmount *mounted = lookup_mnt(path);
1255 if (!mounted)
1256 break;
1257 dput(path->dentry);
1258 mntput(path->mnt);
1259 path->mnt = mounted;
1260 path->dentry = dget(mounted->mnt_root);
1261 continue;
1262 }
1263
1264 /* Don't handle automount points here */
1265 break;
1266 }
1267 return 0;
1268 }
1269 EXPORT_SYMBOL(follow_down);
1270
1271 /*
1272 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1273 */
1274 static void follow_mount(struct path *path)
1275 {
1276 while (d_mountpoint(path->dentry)) {
1277 struct vfsmount *mounted = lookup_mnt(path);
1278 if (!mounted)
1279 break;
1280 dput(path->dentry);
1281 mntput(path->mnt);
1282 path->mnt = mounted;
1283 path->dentry = dget(mounted->mnt_root);
1284 }
1285 }
1286
1287 static void follow_dotdot(struct nameidata *nd)
1288 {
1289 if (!nd->root.mnt)
1290 set_root(nd);
1291
1292 while(1) {
1293 struct dentry *old = nd->path.dentry;
1294
1295 if (nd->path.dentry == nd->root.dentry &&
1296 nd->path.mnt == nd->root.mnt) {
1297 break;
1298 }
1299 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1300 /* rare case of legitimate dget_parent()... */
1301 nd->path.dentry = dget_parent(nd->path.dentry);
1302 dput(old);
1303 break;
1304 }
1305 if (!follow_up(&nd->path))
1306 break;
1307 }
1308 follow_mount(&nd->path);
1309 nd->inode = nd->path.dentry->d_inode;
1310 }
1311
1312 /*
1313 * This looks up the name in dcache, possibly revalidates the old dentry and
1314 * allocates a new one if not found or not valid. In the need_lookup argument
1315 * returns whether i_op->lookup is necessary.
1316 *
1317 * dir->d_inode->i_mutex must be held
1318 */
1319 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1320 unsigned int flags, bool *need_lookup)
1321 {
1322 struct dentry *dentry;
1323 int error;
1324
1325 *need_lookup = false;
1326 dentry = d_lookup(dir, name);
1327 if (dentry) {
1328 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1329 error = d_revalidate(dentry, flags);
1330 if (unlikely(error <= 0)) {
1331 if (error < 0) {
1332 dput(dentry);
1333 return ERR_PTR(error);
1334 } else {
1335 d_invalidate(dentry);
1336 dput(dentry);
1337 dentry = NULL;
1338 }
1339 }
1340 }
1341 }
1342
1343 if (!dentry) {
1344 dentry = d_alloc(dir, name);
1345 if (unlikely(!dentry))
1346 return ERR_PTR(-ENOMEM);
1347
1348 *need_lookup = true;
1349 }
1350 return dentry;
1351 }
1352
1353 /*
1354 * Call i_op->lookup on the dentry. The dentry must be negative and
1355 * unhashed.
1356 *
1357 * dir->d_inode->i_mutex must be held
1358 */
1359 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1360 unsigned int flags)
1361 {
1362 struct dentry *old;
1363
1364 /* Don't create child dentry for a dead directory. */
1365 if (unlikely(IS_DEADDIR(dir))) {
1366 dput(dentry);
1367 return ERR_PTR(-ENOENT);
1368 }
1369
1370 old = dir->i_op->lookup(dir, dentry, flags);
1371 if (unlikely(old)) {
1372 dput(dentry);
1373 dentry = old;
1374 }
1375 return dentry;
1376 }
1377
1378 static struct dentry *__lookup_hash(struct qstr *name,
1379 struct dentry *base, unsigned int flags)
1380 {
1381 bool need_lookup;
1382 struct dentry *dentry;
1383
1384 dentry = lookup_dcache(name, base, flags, &need_lookup);
1385 if (!need_lookup)
1386 return dentry;
1387
1388 return lookup_real(base->d_inode, dentry, flags);
1389 }
1390
1391 /*
1392 * It's more convoluted than I'd like it to be, but... it's still fairly
1393 * small and for now I'd prefer to have fast path as straight as possible.
1394 * It _is_ time-critical.
1395 */
1396 static int lookup_fast(struct nameidata *nd,
1397 struct path *path, struct inode **inode)
1398 {
1399 struct vfsmount *mnt = nd->path.mnt;
1400 struct dentry *dentry, *parent = nd->path.dentry;
1401 int need_reval = 1;
1402 int status = 1;
1403 int err;
1404
1405 /*
1406 * Rename seqlock is not required here because in the off chance
1407 * of a false negative due to a concurrent rename, we're going to
1408 * do the non-racy lookup, below.
1409 */
1410 if (nd->flags & LOOKUP_RCU) {
1411 unsigned seq;
1412 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1413 if (!dentry)
1414 goto unlazy;
1415
1416 /*
1417 * This sequence count validates that the inode matches
1418 * the dentry name information from lookup.
1419 */
1420 *inode = dentry->d_inode;
1421 if (read_seqcount_retry(&dentry->d_seq, seq))
1422 return -ECHILD;
1423
1424 /*
1425 * This sequence count validates that the parent had no
1426 * changes while we did the lookup of the dentry above.
1427 *
1428 * The memory barrier in read_seqcount_begin of child is
1429 * enough, we can use __read_seqcount_retry here.
1430 */
1431 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1432 return -ECHILD;
1433 nd->seq = seq;
1434
1435 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1436 status = d_revalidate(dentry, nd->flags);
1437 if (unlikely(status <= 0)) {
1438 if (status != -ECHILD)
1439 need_reval = 0;
1440 goto unlazy;
1441 }
1442 }
1443 path->mnt = mnt;
1444 path->dentry = dentry;
1445 if (likely(__follow_mount_rcu(nd, path, inode)))
1446 return 0;
1447 unlazy:
1448 if (unlazy_walk(nd, dentry))
1449 return -ECHILD;
1450 } else {
1451 dentry = __d_lookup(parent, &nd->last);
1452 }
1453
1454 if (unlikely(!dentry))
1455 goto need_lookup;
1456
1457 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1458 status = d_revalidate(dentry, nd->flags);
1459 if (unlikely(status <= 0)) {
1460 if (status < 0) {
1461 dput(dentry);
1462 return status;
1463 }
1464 d_invalidate(dentry);
1465 dput(dentry);
1466 goto need_lookup;
1467 }
1468
1469 path->mnt = mnt;
1470 path->dentry = dentry;
1471 err = follow_managed(path, nd->flags);
1472 if (unlikely(err < 0)) {
1473 path_put_conditional(path, nd);
1474 return err;
1475 }
1476 if (err)
1477 nd->flags |= LOOKUP_JUMPED;
1478 *inode = path->dentry->d_inode;
1479 return 0;
1480
1481 need_lookup:
1482 return 1;
1483 }
1484
1485 /* Fast lookup failed, do it the slow way */
1486 static int lookup_slow(struct nameidata *nd, struct path *path)
1487 {
1488 struct dentry *dentry, *parent;
1489 int err;
1490
1491 parent = nd->path.dentry;
1492 BUG_ON(nd->inode != parent->d_inode);
1493
1494 mutex_lock(&parent->d_inode->i_mutex);
1495 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1496 mutex_unlock(&parent->d_inode->i_mutex);
1497 if (IS_ERR(dentry))
1498 return PTR_ERR(dentry);
1499 path->mnt = nd->path.mnt;
1500 path->dentry = dentry;
1501 err = follow_managed(path, nd->flags);
1502 if (unlikely(err < 0)) {
1503 path_put_conditional(path, nd);
1504 return err;
1505 }
1506 if (err)
1507 nd->flags |= LOOKUP_JUMPED;
1508 return 0;
1509 }
1510
1511 static inline int may_lookup(struct nameidata *nd)
1512 {
1513 if (nd->flags & LOOKUP_RCU) {
1514 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1515 if (err != -ECHILD)
1516 return err;
1517 if (unlazy_walk(nd, NULL))
1518 return -ECHILD;
1519 }
1520 return inode_permission(nd->inode, MAY_EXEC);
1521 }
1522
1523 static inline int handle_dots(struct nameidata *nd, int type)
1524 {
1525 if (type == LAST_DOTDOT) {
1526 if (nd->flags & LOOKUP_RCU) {
1527 if (follow_dotdot_rcu(nd))
1528 return -ECHILD;
1529 } else
1530 follow_dotdot(nd);
1531 }
1532 return 0;
1533 }
1534
1535 static void terminate_walk(struct nameidata *nd)
1536 {
1537 if (!(nd->flags & LOOKUP_RCU)) {
1538 path_put(&nd->path);
1539 } else {
1540 nd->flags &= ~LOOKUP_RCU;
1541 if (!(nd->flags & LOOKUP_ROOT))
1542 nd->root.mnt = NULL;
1543 rcu_read_unlock();
1544 }
1545 }
1546
1547 /*
1548 * Do we need to follow links? We _really_ want to be able
1549 * to do this check without having to look at inode->i_op,
1550 * so we keep a cache of "no, this doesn't need follow_link"
1551 * for the common case.
1552 */
1553 static inline int should_follow_link(struct dentry *dentry, int follow)
1554 {
1555 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1556 }
1557
1558 static inline int walk_component(struct nameidata *nd, struct path *path,
1559 int follow)
1560 {
1561 struct inode *inode;
1562 int err;
1563 /*
1564 * "." and ".." are special - ".." especially so because it has
1565 * to be able to know about the current root directory and
1566 * parent relationships.
1567 */
1568 if (unlikely(nd->last_type != LAST_NORM))
1569 return handle_dots(nd, nd->last_type);
1570 err = lookup_fast(nd, path, &inode);
1571 if (unlikely(err)) {
1572 if (err < 0)
1573 goto out_err;
1574
1575 err = lookup_slow(nd, path);
1576 if (err < 0)
1577 goto out_err;
1578
1579 inode = path->dentry->d_inode;
1580 }
1581 err = -ENOENT;
1582 if (!inode || d_is_negative(path->dentry))
1583 goto out_path_put;
1584
1585 if (should_follow_link(path->dentry, follow)) {
1586 if (nd->flags & LOOKUP_RCU) {
1587 if (unlikely(unlazy_walk(nd, path->dentry))) {
1588 err = -ECHILD;
1589 goto out_err;
1590 }
1591 }
1592 BUG_ON(inode != path->dentry->d_inode);
1593 return 1;
1594 }
1595 path_to_nameidata(path, nd);
1596 nd->inode = inode;
1597 return 0;
1598
1599 out_path_put:
1600 path_to_nameidata(path, nd);
1601 out_err:
1602 terminate_walk(nd);
1603 return err;
1604 }
1605
1606 /*
1607 * This limits recursive symlink follows to 8, while
1608 * limiting consecutive symlinks to 40.
1609 *
1610 * Without that kind of total limit, nasty chains of consecutive
1611 * symlinks can cause almost arbitrarily long lookups.
1612 */
1613 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1614 {
1615 int res;
1616
1617 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1618 path_put_conditional(path, nd);
1619 path_put(&nd->path);
1620 return -ELOOP;
1621 }
1622 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1623
1624 nd->depth++;
1625 current->link_count++;
1626
1627 do {
1628 struct path link = *path;
1629 void *cookie;
1630
1631 res = follow_link(&link, nd, &cookie);
1632 if (res)
1633 break;
1634 res = walk_component(nd, path, LOOKUP_FOLLOW);
1635 put_link(nd, &link, cookie);
1636 } while (res > 0);
1637
1638 current->link_count--;
1639 nd->depth--;
1640 return res;
1641 }
1642
1643 /*
1644 * We can do the critical dentry name comparison and hashing
1645 * operations one word at a time, but we are limited to:
1646 *
1647 * - Architectures with fast unaligned word accesses. We could
1648 * do a "get_unaligned()" if this helps and is sufficiently
1649 * fast.
1650 *
1651 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1652 * do not trap on the (extremely unlikely) case of a page
1653 * crossing operation.
1654 *
1655 * - Furthermore, we need an efficient 64-bit compile for the
1656 * 64-bit case in order to generate the "number of bytes in
1657 * the final mask". Again, that could be replaced with a
1658 * efficient population count instruction or similar.
1659 */
1660 #ifdef CONFIG_DCACHE_WORD_ACCESS
1661
1662 #include <asm/word-at-a-time.h>
1663
1664 #ifdef CONFIG_64BIT
1665
1666 static inline unsigned int fold_hash(unsigned long hash)
1667 {
1668 return hash_64(hash, 32);
1669 }
1670
1671 #else /* 32-bit case */
1672
1673 #define fold_hash(x) (x)
1674
1675 #endif
1676
1677 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1678 {
1679 unsigned long a, mask;
1680 unsigned long hash = 0;
1681
1682 for (;;) {
1683 a = load_unaligned_zeropad(name);
1684 if (len < sizeof(unsigned long))
1685 break;
1686 hash += a;
1687 hash *= 9;
1688 name += sizeof(unsigned long);
1689 len -= sizeof(unsigned long);
1690 if (!len)
1691 goto done;
1692 }
1693 mask = bytemask_from_count(len);
1694 hash += mask & a;
1695 done:
1696 return fold_hash(hash);
1697 }
1698 EXPORT_SYMBOL(full_name_hash);
1699
1700 /*
1701 * Calculate the length and hash of the path component, and
1702 * return the "hash_len" as the result.
1703 */
1704 static inline u64 hash_name(const char *name)
1705 {
1706 unsigned long a, b, adata, bdata, mask, hash, len;
1707 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1708
1709 hash = a = 0;
1710 len = -sizeof(unsigned long);
1711 do {
1712 hash = (hash + a) * 9;
1713 len += sizeof(unsigned long);
1714 a = load_unaligned_zeropad(name+len);
1715 b = a ^ REPEAT_BYTE('/');
1716 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1717
1718 adata = prep_zero_mask(a, adata, &constants);
1719 bdata = prep_zero_mask(b, bdata, &constants);
1720
1721 mask = create_zero_mask(adata | bdata);
1722
1723 hash += a & zero_bytemask(mask);
1724 len += find_zero(mask);
1725 return hashlen_create(fold_hash(hash), len);
1726 }
1727
1728 #else
1729
1730 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1731 {
1732 unsigned long hash = init_name_hash();
1733 while (len--)
1734 hash = partial_name_hash(*name++, hash);
1735 return end_name_hash(hash);
1736 }
1737 EXPORT_SYMBOL(full_name_hash);
1738
1739 /*
1740 * We know there's a real path component here of at least
1741 * one character.
1742 */
1743 static inline u64 hash_name(const char *name)
1744 {
1745 unsigned long hash = init_name_hash();
1746 unsigned long len = 0, c;
1747
1748 c = (unsigned char)*name;
1749 do {
1750 len++;
1751 hash = partial_name_hash(c, hash);
1752 c = (unsigned char)name[len];
1753 } while (c && c != '/');
1754 return hashlen_create(end_name_hash(hash), len);
1755 }
1756
1757 #endif
1758
1759 /*
1760 * Name resolution.
1761 * This is the basic name resolution function, turning a pathname into
1762 * the final dentry. We expect 'base' to be positive and a directory.
1763 *
1764 * Returns 0 and nd will have valid dentry and mnt on success.
1765 * Returns error and drops reference to input namei data on failure.
1766 */
1767 static int link_path_walk(const char *name, struct nameidata *nd)
1768 {
1769 struct path next;
1770 int err;
1771
1772 while (*name=='/')
1773 name++;
1774 if (!*name)
1775 return 0;
1776
1777 /* At this point we know we have a real path component. */
1778 for(;;) {
1779 u64 hash_len;
1780 int type;
1781
1782 err = may_lookup(nd);
1783 if (err)
1784 break;
1785
1786 hash_len = hash_name(name);
1787
1788 type = LAST_NORM;
1789 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1790 case 2:
1791 if (name[1] == '.') {
1792 type = LAST_DOTDOT;
1793 nd->flags |= LOOKUP_JUMPED;
1794 }
1795 break;
1796 case 1:
1797 type = LAST_DOT;
1798 }
1799 if (likely(type == LAST_NORM)) {
1800 struct dentry *parent = nd->path.dentry;
1801 nd->flags &= ~LOOKUP_JUMPED;
1802 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1803 struct qstr this = { { .hash_len = hash_len }, .name = name };
1804 err = parent->d_op->d_hash(parent, &this);
1805 if (err < 0)
1806 break;
1807 hash_len = this.hash_len;
1808 name = this.name;
1809 }
1810 }
1811
1812 nd->last.hash_len = hash_len;
1813 nd->last.name = name;
1814 nd->last_type = type;
1815
1816 name += hashlen_len(hash_len);
1817 if (!*name)
1818 return 0;
1819 /*
1820 * If it wasn't NUL, we know it was '/'. Skip that
1821 * slash, and continue until no more slashes.
1822 */
1823 do {
1824 name++;
1825 } while (unlikely(*name == '/'));
1826 if (!*name)
1827 return 0;
1828
1829 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1830 if (err < 0)
1831 return err;
1832
1833 if (err) {
1834 err = nested_symlink(&next, nd);
1835 if (err)
1836 return err;
1837 }
1838 if (!d_can_lookup(nd->path.dentry)) {
1839 err = -ENOTDIR;
1840 break;
1841 }
1842 }
1843 terminate_walk(nd);
1844 return err;
1845 }
1846
1847 static int path_init(int dfd, const char *name, unsigned int flags,
1848 struct nameidata *nd, struct file **fp)
1849 {
1850 int retval = 0;
1851
1852 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1853 nd->flags = flags | LOOKUP_JUMPED;
1854 nd->depth = 0;
1855 if (flags & LOOKUP_ROOT) {
1856 struct dentry *root = nd->root.dentry;
1857 struct inode *inode = root->d_inode;
1858 if (*name) {
1859 if (!d_can_lookup(root))
1860 return -ENOTDIR;
1861 retval = inode_permission(inode, MAY_EXEC);
1862 if (retval)
1863 return retval;
1864 }
1865 nd->path = nd->root;
1866 nd->inode = inode;
1867 if (flags & LOOKUP_RCU) {
1868 rcu_read_lock();
1869 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1870 nd->m_seq = read_seqbegin(&mount_lock);
1871 } else {
1872 path_get(&nd->path);
1873 }
1874 return 0;
1875 }
1876
1877 nd->root.mnt = NULL;
1878
1879 nd->m_seq = read_seqbegin(&mount_lock);
1880 if (*name=='/') {
1881 if (flags & LOOKUP_RCU) {
1882 rcu_read_lock();
1883 nd->seq = set_root_rcu(nd);
1884 } else {
1885 set_root(nd);
1886 path_get(&nd->root);
1887 }
1888 nd->path = nd->root;
1889 } else if (dfd == AT_FDCWD) {
1890 if (flags & LOOKUP_RCU) {
1891 struct fs_struct *fs = current->fs;
1892 unsigned seq;
1893
1894 rcu_read_lock();
1895
1896 do {
1897 seq = read_seqcount_begin(&fs->seq);
1898 nd->path = fs->pwd;
1899 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1900 } while (read_seqcount_retry(&fs->seq, seq));
1901 } else {
1902 get_fs_pwd(current->fs, &nd->path);
1903 }
1904 } else {
1905 /* Caller must check execute permissions on the starting path component */
1906 struct fd f = fdget_raw(dfd);
1907 struct dentry *dentry;
1908
1909 if (!f.file)
1910 return -EBADF;
1911
1912 dentry = f.file->f_path.dentry;
1913
1914 if (*name) {
1915 if (!d_can_lookup(dentry)) {
1916 fdput(f);
1917 return -ENOTDIR;
1918 }
1919 }
1920
1921 nd->path = f.file->f_path;
1922 if (flags & LOOKUP_RCU) {
1923 if (f.flags & FDPUT_FPUT)
1924 *fp = f.file;
1925 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1926 rcu_read_lock();
1927 } else {
1928 path_get(&nd->path);
1929 fdput(f);
1930 }
1931 }
1932
1933 nd->inode = nd->path.dentry->d_inode;
1934 if (!(flags & LOOKUP_RCU))
1935 return 0;
1936 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1937 return 0;
1938 if (!(nd->flags & LOOKUP_ROOT))
1939 nd->root.mnt = NULL;
1940 rcu_read_unlock();
1941 return -ECHILD;
1942 }
1943
1944 static inline int lookup_last(struct nameidata *nd, struct path *path)
1945 {
1946 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1947 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1948
1949 nd->flags &= ~LOOKUP_PARENT;
1950 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1951 }
1952
1953 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1954 static int path_lookupat(int dfd, const char *name,
1955 unsigned int flags, struct nameidata *nd)
1956 {
1957 struct file *base = NULL;
1958 struct path path;
1959 int err;
1960
1961 /*
1962 * Path walking is largely split up into 2 different synchronisation
1963 * schemes, rcu-walk and ref-walk (explained in
1964 * Documentation/filesystems/path-lookup.txt). These share much of the
1965 * path walk code, but some things particularly setup, cleanup, and
1966 * following mounts are sufficiently divergent that functions are
1967 * duplicated. Typically there is a function foo(), and its RCU
1968 * analogue, foo_rcu().
1969 *
1970 * -ECHILD is the error number of choice (just to avoid clashes) that
1971 * is returned if some aspect of an rcu-walk fails. Such an error must
1972 * be handled by restarting a traditional ref-walk (which will always
1973 * be able to complete).
1974 */
1975 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1976
1977 if (unlikely(err))
1978 goto out;
1979
1980 current->total_link_count = 0;
1981 err = link_path_walk(name, nd);
1982
1983 if (!err && !(flags & LOOKUP_PARENT)) {
1984 err = lookup_last(nd, &path);
1985 while (err > 0) {
1986 void *cookie;
1987 struct path link = path;
1988 err = may_follow_link(&link, nd);
1989 if (unlikely(err))
1990 break;
1991 nd->flags |= LOOKUP_PARENT;
1992 err = follow_link(&link, nd, &cookie);
1993 if (err)
1994 break;
1995 err = lookup_last(nd, &path);
1996 put_link(nd, &link, cookie);
1997 }
1998 }
1999
2000 if (!err)
2001 err = complete_walk(nd);
2002
2003 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2004 if (!d_can_lookup(nd->path.dentry)) {
2005 path_put(&nd->path);
2006 err = -ENOTDIR;
2007 }
2008 }
2009
2010 out:
2011 if (base)
2012 fput(base);
2013
2014 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2015 path_put(&nd->root);
2016 nd->root.mnt = NULL;
2017 }
2018 return err;
2019 }
2020
2021 static int filename_lookup(int dfd, struct filename *name,
2022 unsigned int flags, struct nameidata *nd)
2023 {
2024 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2025 if (unlikely(retval == -ECHILD))
2026 retval = path_lookupat(dfd, name->name, flags, nd);
2027 if (unlikely(retval == -ESTALE))
2028 retval = path_lookupat(dfd, name->name,
2029 flags | LOOKUP_REVAL, nd);
2030
2031 if (likely(!retval))
2032 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2033 return retval;
2034 }
2035
2036 static int do_path_lookup(int dfd, const char *name,
2037 unsigned int flags, struct nameidata *nd)
2038 {
2039 struct filename filename = { .name = name };
2040
2041 return filename_lookup(dfd, &filename, flags, nd);
2042 }
2043
2044 /* does lookup, returns the object with parent locked */
2045 struct dentry *kern_path_locked(const char *name, struct path *path)
2046 {
2047 struct nameidata nd;
2048 struct dentry *d;
2049 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2050 if (err)
2051 return ERR_PTR(err);
2052 if (nd.last_type != LAST_NORM) {
2053 path_put(&nd.path);
2054 return ERR_PTR(-EINVAL);
2055 }
2056 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2057 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2058 if (IS_ERR(d)) {
2059 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2060 path_put(&nd.path);
2061 return d;
2062 }
2063 *path = nd.path;
2064 return d;
2065 }
2066
2067 int kern_path(const char *name, unsigned int flags, struct path *path)
2068 {
2069 struct nameidata nd;
2070 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2071 if (!res)
2072 *path = nd.path;
2073 return res;
2074 }
2075 EXPORT_SYMBOL(kern_path);
2076
2077 /**
2078 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2079 * @dentry: pointer to dentry of the base directory
2080 * @mnt: pointer to vfs mount of the base directory
2081 * @name: pointer to file name
2082 * @flags: lookup flags
2083 * @path: pointer to struct path to fill
2084 */
2085 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2086 const char *name, unsigned int flags,
2087 struct path *path)
2088 {
2089 struct nameidata nd;
2090 int err;
2091 nd.root.dentry = dentry;
2092 nd.root.mnt = mnt;
2093 BUG_ON(flags & LOOKUP_PARENT);
2094 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2095 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2096 if (!err)
2097 *path = nd.path;
2098 return err;
2099 }
2100 EXPORT_SYMBOL(vfs_path_lookup);
2101
2102 /*
2103 * Restricted form of lookup. Doesn't follow links, single-component only,
2104 * needs parent already locked. Doesn't follow mounts.
2105 * SMP-safe.
2106 */
2107 static struct dentry *lookup_hash(struct nameidata *nd)
2108 {
2109 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2110 }
2111
2112 /**
2113 * lookup_one_len - filesystem helper to lookup single pathname component
2114 * @name: pathname component to lookup
2115 * @base: base directory to lookup from
2116 * @len: maximum length @len should be interpreted to
2117 *
2118 * Note that this routine is purely a helper for filesystem usage and should
2119 * not be called by generic code. Also note that by using this function the
2120 * nameidata argument is passed to the filesystem methods and a filesystem
2121 * using this helper needs to be prepared for that.
2122 */
2123 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2124 {
2125 struct qstr this;
2126 unsigned int c;
2127 int err;
2128
2129 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2130
2131 this.name = name;
2132 this.len = len;
2133 this.hash = full_name_hash(name, len);
2134 if (!len)
2135 return ERR_PTR(-EACCES);
2136
2137 if (unlikely(name[0] == '.')) {
2138 if (len < 2 || (len == 2 && name[1] == '.'))
2139 return ERR_PTR(-EACCES);
2140 }
2141
2142 while (len--) {
2143 c = *(const unsigned char *)name++;
2144 if (c == '/' || c == '\0')
2145 return ERR_PTR(-EACCES);
2146 }
2147 /*
2148 * See if the low-level filesystem might want
2149 * to use its own hash..
2150 */
2151 if (base->d_flags & DCACHE_OP_HASH) {
2152 int err = base->d_op->d_hash(base, &this);
2153 if (err < 0)
2154 return ERR_PTR(err);
2155 }
2156
2157 err = inode_permission(base->d_inode, MAY_EXEC);
2158 if (err)
2159 return ERR_PTR(err);
2160
2161 return __lookup_hash(&this, base, 0);
2162 }
2163 EXPORT_SYMBOL(lookup_one_len);
2164
2165 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2166 struct path *path, int *empty)
2167 {
2168 struct nameidata nd;
2169 struct filename *tmp = getname_flags(name, flags, empty);
2170 int err = PTR_ERR(tmp);
2171 if (!IS_ERR(tmp)) {
2172
2173 BUG_ON(flags & LOOKUP_PARENT);
2174
2175 err = filename_lookup(dfd, tmp, flags, &nd);
2176 putname(tmp);
2177 if (!err)
2178 *path = nd.path;
2179 }
2180 return err;
2181 }
2182
2183 int user_path_at(int dfd, const char __user *name, unsigned flags,
2184 struct path *path)
2185 {
2186 return user_path_at_empty(dfd, name, flags, path, NULL);
2187 }
2188 EXPORT_SYMBOL(user_path_at);
2189
2190 /*
2191 * NB: most callers don't do anything directly with the reference to the
2192 * to struct filename, but the nd->last pointer points into the name string
2193 * allocated by getname. So we must hold the reference to it until all
2194 * path-walking is complete.
2195 */
2196 static struct filename *
2197 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2198 unsigned int flags)
2199 {
2200 struct filename *s = getname(path);
2201 int error;
2202
2203 /* only LOOKUP_REVAL is allowed in extra flags */
2204 flags &= LOOKUP_REVAL;
2205
2206 if (IS_ERR(s))
2207 return s;
2208
2209 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2210 if (error) {
2211 putname(s);
2212 return ERR_PTR(error);
2213 }
2214
2215 return s;
2216 }
2217
2218 /**
2219 * mountpoint_last - look up last component for umount
2220 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2221 * @path: pointer to container for result
2222 *
2223 * This is a special lookup_last function just for umount. In this case, we
2224 * need to resolve the path without doing any revalidation.
2225 *
2226 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2227 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2228 * in almost all cases, this lookup will be served out of the dcache. The only
2229 * cases where it won't are if nd->last refers to a symlink or the path is
2230 * bogus and it doesn't exist.
2231 *
2232 * Returns:
2233 * -error: if there was an error during lookup. This includes -ENOENT if the
2234 * lookup found a negative dentry. The nd->path reference will also be
2235 * put in this case.
2236 *
2237 * 0: if we successfully resolved nd->path and found it to not to be a
2238 * symlink that needs to be followed. "path" will also be populated.
2239 * The nd->path reference will also be put.
2240 *
2241 * 1: if we successfully resolved nd->last and found it to be a symlink
2242 * that needs to be followed. "path" will be populated with the path
2243 * to the link, and nd->path will *not* be put.
2244 */
2245 static int
2246 mountpoint_last(struct nameidata *nd, struct path *path)
2247 {
2248 int error = 0;
2249 struct dentry *dentry;
2250 struct dentry *dir = nd->path.dentry;
2251
2252 /* If we're in rcuwalk, drop out of it to handle last component */
2253 if (nd->flags & LOOKUP_RCU) {
2254 if (unlazy_walk(nd, NULL)) {
2255 error = -ECHILD;
2256 goto out;
2257 }
2258 }
2259
2260 nd->flags &= ~LOOKUP_PARENT;
2261
2262 if (unlikely(nd->last_type != LAST_NORM)) {
2263 error = handle_dots(nd, nd->last_type);
2264 if (error)
2265 goto out;
2266 dentry = dget(nd->path.dentry);
2267 goto done;
2268 }
2269
2270 mutex_lock(&dir->d_inode->i_mutex);
2271 dentry = d_lookup(dir, &nd->last);
2272 if (!dentry) {
2273 /*
2274 * No cached dentry. Mounted dentries are pinned in the cache,
2275 * so that means that this dentry is probably a symlink or the
2276 * path doesn't actually point to a mounted dentry.
2277 */
2278 dentry = d_alloc(dir, &nd->last);
2279 if (!dentry) {
2280 error = -ENOMEM;
2281 mutex_unlock(&dir->d_inode->i_mutex);
2282 goto out;
2283 }
2284 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2285 error = PTR_ERR(dentry);
2286 if (IS_ERR(dentry)) {
2287 mutex_unlock(&dir->d_inode->i_mutex);
2288 goto out;
2289 }
2290 }
2291 mutex_unlock(&dir->d_inode->i_mutex);
2292
2293 done:
2294 if (!dentry->d_inode || d_is_negative(dentry)) {
2295 error = -ENOENT;
2296 dput(dentry);
2297 goto out;
2298 }
2299 path->dentry = dentry;
2300 path->mnt = nd->path.mnt;
2301 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2302 return 1;
2303 mntget(path->mnt);
2304 follow_mount(path);
2305 error = 0;
2306 out:
2307 terminate_walk(nd);
2308 return error;
2309 }
2310
2311 /**
2312 * path_mountpoint - look up a path to be umounted
2313 * @dfd: directory file descriptor to start walk from
2314 * @name: full pathname to walk
2315 * @path: pointer to container for result
2316 * @flags: lookup flags
2317 *
2318 * Look up the given name, but don't attempt to revalidate the last component.
2319 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2320 */
2321 static int
2322 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2323 {
2324 struct file *base = NULL;
2325 struct nameidata nd;
2326 int err;
2327
2328 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2329 if (unlikely(err))
2330 goto out;
2331
2332 current->total_link_count = 0;
2333 err = link_path_walk(name, &nd);
2334 if (err)
2335 goto out;
2336
2337 err = mountpoint_last(&nd, path);
2338 while (err > 0) {
2339 void *cookie;
2340 struct path link = *path;
2341 err = may_follow_link(&link, &nd);
2342 if (unlikely(err))
2343 break;
2344 nd.flags |= LOOKUP_PARENT;
2345 err = follow_link(&link, &nd, &cookie);
2346 if (err)
2347 break;
2348 err = mountpoint_last(&nd, path);
2349 put_link(&nd, &link, cookie);
2350 }
2351 out:
2352 if (base)
2353 fput(base);
2354
2355 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2356 path_put(&nd.root);
2357
2358 return err;
2359 }
2360
2361 static int
2362 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2363 unsigned int flags)
2364 {
2365 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2366 if (unlikely(error == -ECHILD))
2367 error = path_mountpoint(dfd, s->name, path, flags);
2368 if (unlikely(error == -ESTALE))
2369 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2370 if (likely(!error))
2371 audit_inode(s, path->dentry, 0);
2372 return error;
2373 }
2374
2375 /**
2376 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2377 * @dfd: directory file descriptor
2378 * @name: pathname from userland
2379 * @flags: lookup flags
2380 * @path: pointer to container to hold result
2381 *
2382 * A umount is a special case for path walking. We're not actually interested
2383 * in the inode in this situation, and ESTALE errors can be a problem. We
2384 * simply want track down the dentry and vfsmount attached at the mountpoint
2385 * and avoid revalidating the last component.
2386 *
2387 * Returns 0 and populates "path" on success.
2388 */
2389 int
2390 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2391 struct path *path)
2392 {
2393 struct filename *s = getname(name);
2394 int error;
2395 if (IS_ERR(s))
2396 return PTR_ERR(s);
2397 error = filename_mountpoint(dfd, s, path, flags);
2398 putname(s);
2399 return error;
2400 }
2401
2402 int
2403 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2404 unsigned int flags)
2405 {
2406 struct filename s = {.name = name};
2407 return filename_mountpoint(dfd, &s, path, flags);
2408 }
2409 EXPORT_SYMBOL(kern_path_mountpoint);
2410
2411 int __check_sticky(struct inode *dir, struct inode *inode)
2412 {
2413 kuid_t fsuid = current_fsuid();
2414
2415 if (uid_eq(inode->i_uid, fsuid))
2416 return 0;
2417 if (uid_eq(dir->i_uid, fsuid))
2418 return 0;
2419 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2420 }
2421 EXPORT_SYMBOL(__check_sticky);
2422
2423 /*
2424 * Check whether we can remove a link victim from directory dir, check
2425 * whether the type of victim is right.
2426 * 1. We can't do it if dir is read-only (done in permission())
2427 * 2. We should have write and exec permissions on dir
2428 * 3. We can't remove anything from append-only dir
2429 * 4. We can't do anything with immutable dir (done in permission())
2430 * 5. If the sticky bit on dir is set we should either
2431 * a. be owner of dir, or
2432 * b. be owner of victim, or
2433 * c. have CAP_FOWNER capability
2434 * 6. If the victim is append-only or immutable we can't do antyhing with
2435 * links pointing to it.
2436 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2437 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2438 * 9. We can't remove a root or mountpoint.
2439 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2440 * nfs_async_unlink().
2441 */
2442 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2443 {
2444 struct inode *inode = victim->d_inode;
2445 int error;
2446
2447 if (d_is_negative(victim))
2448 return -ENOENT;
2449 BUG_ON(!inode);
2450
2451 BUG_ON(victim->d_parent->d_inode != dir);
2452 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2453
2454 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2455 if (error)
2456 return error;
2457 if (IS_APPEND(dir))
2458 return -EPERM;
2459
2460 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2461 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2462 return -EPERM;
2463 if (isdir) {
2464 if (!d_is_dir(victim))
2465 return -ENOTDIR;
2466 if (IS_ROOT(victim))
2467 return -EBUSY;
2468 } else if (d_is_dir(victim))
2469 return -EISDIR;
2470 if (IS_DEADDIR(dir))
2471 return -ENOENT;
2472 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2473 return -EBUSY;
2474 return 0;
2475 }
2476
2477 /* Check whether we can create an object with dentry child in directory
2478 * dir.
2479 * 1. We can't do it if child already exists (open has special treatment for
2480 * this case, but since we are inlined it's OK)
2481 * 2. We can't do it if dir is read-only (done in permission())
2482 * 3. We should have write and exec permissions on dir
2483 * 4. We can't do it if dir is immutable (done in permission())
2484 */
2485 static inline int may_create(struct inode *dir, struct dentry *child)
2486 {
2487 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2488 if (child->d_inode)
2489 return -EEXIST;
2490 if (IS_DEADDIR(dir))
2491 return -ENOENT;
2492 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2493 }
2494
2495 /*
2496 * p1 and p2 should be directories on the same fs.
2497 */
2498 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2499 {
2500 struct dentry *p;
2501
2502 if (p1 == p2) {
2503 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2504 return NULL;
2505 }
2506
2507 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2508
2509 p = d_ancestor(p2, p1);
2510 if (p) {
2511 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2512 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2513 return p;
2514 }
2515
2516 p = d_ancestor(p1, p2);
2517 if (p) {
2518 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2519 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2520 return p;
2521 }
2522
2523 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2524 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2525 return NULL;
2526 }
2527 EXPORT_SYMBOL(lock_rename);
2528
2529 void unlock_rename(struct dentry *p1, struct dentry *p2)
2530 {
2531 mutex_unlock(&p1->d_inode->i_mutex);
2532 if (p1 != p2) {
2533 mutex_unlock(&p2->d_inode->i_mutex);
2534 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2535 }
2536 }
2537 EXPORT_SYMBOL(unlock_rename);
2538
2539 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2540 bool want_excl)
2541 {
2542 int error = may_create(dir, dentry);
2543 if (error)
2544 return error;
2545
2546 if (!dir->i_op->create)
2547 return -EACCES; /* shouldn't it be ENOSYS? */
2548 mode &= S_IALLUGO;
2549 mode |= S_IFREG;
2550 error = security_inode_create(dir, dentry, mode);
2551 if (error)
2552 return error;
2553 error = dir->i_op->create(dir, dentry, mode, want_excl);
2554 if (!error)
2555 fsnotify_create(dir, dentry);
2556 return error;
2557 }
2558 EXPORT_SYMBOL(vfs_create);
2559
2560 static int may_open(struct path *path, int acc_mode, int flag)
2561 {
2562 struct dentry *dentry = path->dentry;
2563 struct inode *inode = dentry->d_inode;
2564 int error;
2565
2566 /* O_PATH? */
2567 if (!acc_mode)
2568 return 0;
2569
2570 if (!inode)
2571 return -ENOENT;
2572
2573 switch (inode->i_mode & S_IFMT) {
2574 case S_IFLNK:
2575 return -ELOOP;
2576 case S_IFDIR:
2577 if (acc_mode & MAY_WRITE)
2578 return -EISDIR;
2579 break;
2580 case S_IFBLK:
2581 case S_IFCHR:
2582 if (path->mnt->mnt_flags & MNT_NODEV)
2583 return -EACCES;
2584 /*FALLTHRU*/
2585 case S_IFIFO:
2586 case S_IFSOCK:
2587 flag &= ~O_TRUNC;
2588 break;
2589 }
2590
2591 error = inode_permission(inode, acc_mode);
2592 if (error)
2593 return error;
2594
2595 /*
2596 * An append-only file must be opened in append mode for writing.
2597 */
2598 if (IS_APPEND(inode)) {
2599 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2600 return -EPERM;
2601 if (flag & O_TRUNC)
2602 return -EPERM;
2603 }
2604
2605 /* O_NOATIME can only be set by the owner or superuser */
2606 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2607 return -EPERM;
2608
2609 return 0;
2610 }
2611
2612 static int handle_truncate(struct file *filp)
2613 {
2614 struct path *path = &filp->f_path;
2615 struct inode *inode = path->dentry->d_inode;
2616 int error = get_write_access(inode);
2617 if (error)
2618 return error;
2619 /*
2620 * Refuse to truncate files with mandatory locks held on them.
2621 */
2622 error = locks_verify_locked(filp);
2623 if (!error)
2624 error = security_path_truncate(path);
2625 if (!error) {
2626 error = do_truncate(path->dentry, 0,
2627 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2628 filp);
2629 }
2630 put_write_access(inode);
2631 return error;
2632 }
2633
2634 static inline int open_to_namei_flags(int flag)
2635 {
2636 if ((flag & O_ACCMODE) == 3)
2637 flag--;
2638 return flag;
2639 }
2640
2641 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2642 {
2643 int error = security_path_mknod(dir, dentry, mode, 0);
2644 if (error)
2645 return error;
2646
2647 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2648 if (error)
2649 return error;
2650
2651 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2652 }
2653
2654 /*
2655 * Attempt to atomically look up, create and open a file from a negative
2656 * dentry.
2657 *
2658 * Returns 0 if successful. The file will have been created and attached to
2659 * @file by the filesystem calling finish_open().
2660 *
2661 * Returns 1 if the file was looked up only or didn't need creating. The
2662 * caller will need to perform the open themselves. @path will have been
2663 * updated to point to the new dentry. This may be negative.
2664 *
2665 * Returns an error code otherwise.
2666 */
2667 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2668 struct path *path, struct file *file,
2669 const struct open_flags *op,
2670 bool got_write, bool need_lookup,
2671 int *opened)
2672 {
2673 struct inode *dir = nd->path.dentry->d_inode;
2674 unsigned open_flag = open_to_namei_flags(op->open_flag);
2675 umode_t mode;
2676 int error;
2677 int acc_mode;
2678 int create_error = 0;
2679 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2680 bool excl;
2681
2682 BUG_ON(dentry->d_inode);
2683
2684 /* Don't create child dentry for a dead directory. */
2685 if (unlikely(IS_DEADDIR(dir))) {
2686 error = -ENOENT;
2687 goto out;
2688 }
2689
2690 mode = op->mode;
2691 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2692 mode &= ~current_umask();
2693
2694 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2695 if (excl)
2696 open_flag &= ~O_TRUNC;
2697
2698 /*
2699 * Checking write permission is tricky, bacuse we don't know if we are
2700 * going to actually need it: O_CREAT opens should work as long as the
2701 * file exists. But checking existence breaks atomicity. The trick is
2702 * to check access and if not granted clear O_CREAT from the flags.
2703 *
2704 * Another problem is returing the "right" error value (e.g. for an
2705 * O_EXCL open we want to return EEXIST not EROFS).
2706 */
2707 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2708 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2709 if (!(open_flag & O_CREAT)) {
2710 /*
2711 * No O_CREATE -> atomicity not a requirement -> fall
2712 * back to lookup + open
2713 */
2714 goto no_open;
2715 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2716 /* Fall back and fail with the right error */
2717 create_error = -EROFS;
2718 goto no_open;
2719 } else {
2720 /* No side effects, safe to clear O_CREAT */
2721 create_error = -EROFS;
2722 open_flag &= ~O_CREAT;
2723 }
2724 }
2725
2726 if (open_flag & O_CREAT) {
2727 error = may_o_create(&nd->path, dentry, mode);
2728 if (error) {
2729 create_error = error;
2730 if (open_flag & O_EXCL)
2731 goto no_open;
2732 open_flag &= ~O_CREAT;
2733 }
2734 }
2735
2736 if (nd->flags & LOOKUP_DIRECTORY)
2737 open_flag |= O_DIRECTORY;
2738
2739 file->f_path.dentry = DENTRY_NOT_SET;
2740 file->f_path.mnt = nd->path.mnt;
2741 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2742 opened);
2743 if (error < 0) {
2744 if (create_error && error == -ENOENT)
2745 error = create_error;
2746 goto out;
2747 }
2748
2749 if (error) { /* returned 1, that is */
2750 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2751 error = -EIO;
2752 goto out;
2753 }
2754 if (file->f_path.dentry) {
2755 dput(dentry);
2756 dentry = file->f_path.dentry;
2757 }
2758 if (*opened & FILE_CREATED)
2759 fsnotify_create(dir, dentry);
2760 if (!dentry->d_inode) {
2761 WARN_ON(*opened & FILE_CREATED);
2762 if (create_error) {
2763 error = create_error;
2764 goto out;
2765 }
2766 } else {
2767 if (excl && !(*opened & FILE_CREATED)) {
2768 error = -EEXIST;
2769 goto out;
2770 }
2771 }
2772 goto looked_up;
2773 }
2774
2775 /*
2776 * We didn't have the inode before the open, so check open permission
2777 * here.
2778 */
2779 acc_mode = op->acc_mode;
2780 if (*opened & FILE_CREATED) {
2781 WARN_ON(!(open_flag & O_CREAT));
2782 fsnotify_create(dir, dentry);
2783 acc_mode = MAY_OPEN;
2784 }
2785 error = may_open(&file->f_path, acc_mode, open_flag);
2786 if (error)
2787 fput(file);
2788
2789 out:
2790 dput(dentry);
2791 return error;
2792
2793 no_open:
2794 if (need_lookup) {
2795 dentry = lookup_real(dir, dentry, nd->flags);
2796 if (IS_ERR(dentry))
2797 return PTR_ERR(dentry);
2798
2799 if (create_error) {
2800 int open_flag = op->open_flag;
2801
2802 error = create_error;
2803 if ((open_flag & O_EXCL)) {
2804 if (!dentry->d_inode)
2805 goto out;
2806 } else if (!dentry->d_inode) {
2807 goto out;
2808 } else if ((open_flag & O_TRUNC) &&
2809 S_ISREG(dentry->d_inode->i_mode)) {
2810 goto out;
2811 }
2812 /* will fail later, go on to get the right error */
2813 }
2814 }
2815 looked_up:
2816 path->dentry = dentry;
2817 path->mnt = nd->path.mnt;
2818 return 1;
2819 }
2820
2821 /*
2822 * Look up and maybe create and open the last component.
2823 *
2824 * Must be called with i_mutex held on parent.
2825 *
2826 * Returns 0 if the file was successfully atomically created (if necessary) and
2827 * opened. In this case the file will be returned attached to @file.
2828 *
2829 * Returns 1 if the file was not completely opened at this time, though lookups
2830 * and creations will have been performed and the dentry returned in @path will
2831 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2832 * specified then a negative dentry may be returned.
2833 *
2834 * An error code is returned otherwise.
2835 *
2836 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2837 * cleared otherwise prior to returning.
2838 */
2839 static int lookup_open(struct nameidata *nd, struct path *path,
2840 struct file *file,
2841 const struct open_flags *op,
2842 bool got_write, int *opened)
2843 {
2844 struct dentry *dir = nd->path.dentry;
2845 struct inode *dir_inode = dir->d_inode;
2846 struct dentry *dentry;
2847 int error;
2848 bool need_lookup;
2849
2850 *opened &= ~FILE_CREATED;
2851 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2852 if (IS_ERR(dentry))
2853 return PTR_ERR(dentry);
2854
2855 /* Cached positive dentry: will open in f_op->open */
2856 if (!need_lookup && dentry->d_inode)
2857 goto out_no_open;
2858
2859 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2860 return atomic_open(nd, dentry, path, file, op, got_write,
2861 need_lookup, opened);
2862 }
2863
2864 if (need_lookup) {
2865 BUG_ON(dentry->d_inode);
2866
2867 dentry = lookup_real(dir_inode, dentry, nd->flags);
2868 if (IS_ERR(dentry))
2869 return PTR_ERR(dentry);
2870 }
2871
2872 /* Negative dentry, just create the file */
2873 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2874 umode_t mode = op->mode;
2875 if (!IS_POSIXACL(dir->d_inode))
2876 mode &= ~current_umask();
2877 /*
2878 * This write is needed to ensure that a
2879 * rw->ro transition does not occur between
2880 * the time when the file is created and when
2881 * a permanent write count is taken through
2882 * the 'struct file' in finish_open().
2883 */
2884 if (!got_write) {
2885 error = -EROFS;
2886 goto out_dput;
2887 }
2888 *opened |= FILE_CREATED;
2889 error = security_path_mknod(&nd->path, dentry, mode, 0);
2890 if (error)
2891 goto out_dput;
2892 error = vfs_create(dir->d_inode, dentry, mode,
2893 nd->flags & LOOKUP_EXCL);
2894 if (error)
2895 goto out_dput;
2896 }
2897 out_no_open:
2898 path->dentry = dentry;
2899 path->mnt = nd->path.mnt;
2900 return 1;
2901
2902 out_dput:
2903 dput(dentry);
2904 return error;
2905 }
2906
2907 /*
2908 * Handle the last step of open()
2909 */
2910 static int do_last(struct nameidata *nd, struct path *path,
2911 struct file *file, const struct open_flags *op,
2912 int *opened, struct filename *name)
2913 {
2914 struct dentry *dir = nd->path.dentry;
2915 int open_flag = op->open_flag;
2916 bool will_truncate = (open_flag & O_TRUNC) != 0;
2917 bool got_write = false;
2918 int acc_mode = op->acc_mode;
2919 struct inode *inode;
2920 bool symlink_ok = false;
2921 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2922 bool retried = false;
2923 int error;
2924
2925 nd->flags &= ~LOOKUP_PARENT;
2926 nd->flags |= op->intent;
2927
2928 if (nd->last_type != LAST_NORM) {
2929 error = handle_dots(nd, nd->last_type);
2930 if (error)
2931 return error;
2932 goto finish_open;
2933 }
2934
2935 if (!(open_flag & O_CREAT)) {
2936 if (nd->last.name[nd->last.len])
2937 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2938 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2939 symlink_ok = true;
2940 /* we _can_ be in RCU mode here */
2941 error = lookup_fast(nd, path, &inode);
2942 if (likely(!error))
2943 goto finish_lookup;
2944
2945 if (error < 0)
2946 goto out;
2947
2948 BUG_ON(nd->inode != dir->d_inode);
2949 } else {
2950 /* create side of things */
2951 /*
2952 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2953 * has been cleared when we got to the last component we are
2954 * about to look up
2955 */
2956 error = complete_walk(nd);
2957 if (error)
2958 return error;
2959
2960 audit_inode(name, dir, LOOKUP_PARENT);
2961 error = -EISDIR;
2962 /* trailing slashes? */
2963 if (nd->last.name[nd->last.len])
2964 goto out;
2965 }
2966
2967 retry_lookup:
2968 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2969 error = mnt_want_write(nd->path.mnt);
2970 if (!error)
2971 got_write = true;
2972 /*
2973 * do _not_ fail yet - we might not need that or fail with
2974 * a different error; let lookup_open() decide; we'll be
2975 * dropping this one anyway.
2976 */
2977 }
2978 mutex_lock(&dir->d_inode->i_mutex);
2979 error = lookup_open(nd, path, file, op, got_write, opened);
2980 mutex_unlock(&dir->d_inode->i_mutex);
2981
2982 if (error <= 0) {
2983 if (error)
2984 goto out;
2985
2986 if ((*opened & FILE_CREATED) ||
2987 !S_ISREG(file_inode(file)->i_mode))
2988 will_truncate = false;
2989
2990 audit_inode(name, file->f_path.dentry, 0);
2991 goto opened;
2992 }
2993
2994 if (*opened & FILE_CREATED) {
2995 /* Don't check for write permission, don't truncate */
2996 open_flag &= ~O_TRUNC;
2997 will_truncate = false;
2998 acc_mode = MAY_OPEN;
2999 path_to_nameidata(path, nd);
3000 goto finish_open_created;
3001 }
3002
3003 /*
3004 * create/update audit record if it already exists.
3005 */
3006 if (d_is_positive(path->dentry))
3007 audit_inode(name, path->dentry, 0);
3008
3009 /*
3010 * If atomic_open() acquired write access it is dropped now due to
3011 * possible mount and symlink following (this might be optimized away if
3012 * necessary...)
3013 */
3014 if (got_write) {
3015 mnt_drop_write(nd->path.mnt);
3016 got_write = false;
3017 }
3018
3019 error = -EEXIST;
3020 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3021 goto exit_dput;
3022
3023 error = follow_managed(path, nd->flags);
3024 if (error < 0)
3025 goto exit_dput;
3026
3027 if (error)
3028 nd->flags |= LOOKUP_JUMPED;
3029
3030 BUG_ON(nd->flags & LOOKUP_RCU);
3031 inode = path->dentry->d_inode;
3032 finish_lookup:
3033 /* we _can_ be in RCU mode here */
3034 error = -ENOENT;
3035 if (!inode || d_is_negative(path->dentry)) {
3036 path_to_nameidata(path, nd);
3037 goto out;
3038 }
3039
3040 if (should_follow_link(path->dentry, !symlink_ok)) {
3041 if (nd->flags & LOOKUP_RCU) {
3042 if (unlikely(unlazy_walk(nd, path->dentry))) {
3043 error = -ECHILD;
3044 goto out;
3045 }
3046 }
3047 BUG_ON(inode != path->dentry->d_inode);
3048 return 1;
3049 }
3050
3051 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3052 path_to_nameidata(path, nd);
3053 } else {
3054 save_parent.dentry = nd->path.dentry;
3055 save_parent.mnt = mntget(path->mnt);
3056 nd->path.dentry = path->dentry;
3057
3058 }
3059 nd->inode = inode;
3060 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3061 finish_open:
3062 error = complete_walk(nd);
3063 if (error) {
3064 path_put(&save_parent);
3065 return error;
3066 }
3067 audit_inode(name, nd->path.dentry, 0);
3068 error = -EISDIR;
3069 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3070 goto out;
3071 error = -ENOTDIR;
3072 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3073 goto out;
3074 if (!S_ISREG(nd->inode->i_mode))
3075 will_truncate = false;
3076
3077 if (will_truncate) {
3078 error = mnt_want_write(nd->path.mnt);
3079 if (error)
3080 goto out;
3081 got_write = true;
3082 }
3083 finish_open_created:
3084 error = may_open(&nd->path, acc_mode, open_flag);
3085 if (error)
3086 goto out;
3087
3088 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3089 error = vfs_open(&nd->path, file, current_cred());
3090 if (!error) {
3091 *opened |= FILE_OPENED;
3092 } else {
3093 if (error == -EOPENSTALE)
3094 goto stale_open;
3095 goto out;
3096 }
3097 opened:
3098 error = open_check_o_direct(file);
3099 if (error)
3100 goto exit_fput;
3101 error = ima_file_check(file, op->acc_mode, *opened);
3102 if (error)
3103 goto exit_fput;
3104
3105 if (will_truncate) {
3106 error = handle_truncate(file);
3107 if (error)
3108 goto exit_fput;
3109 }
3110 out:
3111 if (got_write)
3112 mnt_drop_write(nd->path.mnt);
3113 path_put(&save_parent);
3114 terminate_walk(nd);
3115 return error;
3116
3117 exit_dput:
3118 path_put_conditional(path, nd);
3119 goto out;
3120 exit_fput:
3121 fput(file);
3122 goto out;
3123
3124 stale_open:
3125 /* If no saved parent or already retried then can't retry */
3126 if (!save_parent.dentry || retried)
3127 goto out;
3128
3129 BUG_ON(save_parent.dentry != dir);
3130 path_put(&nd->path);
3131 nd->path = save_parent;
3132 nd->inode = dir->d_inode;
3133 save_parent.mnt = NULL;
3134 save_parent.dentry = NULL;
3135 if (got_write) {
3136 mnt_drop_write(nd->path.mnt);
3137 got_write = false;
3138 }
3139 retried = true;
3140 goto retry_lookup;
3141 }
3142
3143 static int do_tmpfile(int dfd, struct filename *pathname,
3144 struct nameidata *nd, int flags,
3145 const struct open_flags *op,
3146 struct file *file, int *opened)
3147 {
3148 static const struct qstr name = QSTR_INIT("/", 1);
3149 struct dentry *dentry, *child;
3150 struct inode *dir;
3151 int error = path_lookupat(dfd, pathname->name,
3152 flags | LOOKUP_DIRECTORY, nd);
3153 if (unlikely(error))
3154 return error;
3155 error = mnt_want_write(nd->path.mnt);
3156 if (unlikely(error))
3157 goto out;
3158 /* we want directory to be writable */
3159 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3160 if (error)
3161 goto out2;
3162 dentry = nd->path.dentry;
3163 dir = dentry->d_inode;
3164 if (!dir->i_op->tmpfile) {
3165 error = -EOPNOTSUPP;
3166 goto out2;
3167 }
3168 child = d_alloc(dentry, &name);
3169 if (unlikely(!child)) {
3170 error = -ENOMEM;
3171 goto out2;
3172 }
3173 nd->flags &= ~LOOKUP_DIRECTORY;
3174 nd->flags |= op->intent;
3175 dput(nd->path.dentry);
3176 nd->path.dentry = child;
3177 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3178 if (error)
3179 goto out2;
3180 audit_inode(pathname, nd->path.dentry, 0);
3181 /* Don't check for other permissions, the inode was just created */
3182 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3183 if (error)
3184 goto out2;
3185 file->f_path.mnt = nd->path.mnt;
3186 error = finish_open(file, nd->path.dentry, NULL, opened);
3187 if (error)
3188 goto out2;
3189 error = open_check_o_direct(file);
3190 if (error) {
3191 fput(file);
3192 } else if (!(op->open_flag & O_EXCL)) {
3193 struct inode *inode = file_inode(file);
3194 spin_lock(&inode->i_lock);
3195 inode->i_state |= I_LINKABLE;
3196 spin_unlock(&inode->i_lock);
3197 }
3198 out2:
3199 mnt_drop_write(nd->path.mnt);
3200 out:
3201 path_put(&nd->path);
3202 return error;
3203 }
3204
3205 static struct file *path_openat(int dfd, struct filename *pathname,
3206 struct nameidata *nd, const struct open_flags *op, int flags)
3207 {
3208 struct file *base = NULL;
3209 struct file *file;
3210 struct path path;
3211 int opened = 0;
3212 int error;
3213
3214 file = get_empty_filp();
3215 if (IS_ERR(file))
3216 return file;
3217
3218 file->f_flags = op->open_flag;
3219
3220 if (unlikely(file->f_flags & __O_TMPFILE)) {
3221 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3222 goto out;
3223 }
3224
3225 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3226 if (unlikely(error))
3227 goto out;
3228
3229 current->total_link_count = 0;
3230 error = link_path_walk(pathname->name, nd);
3231 if (unlikely(error))
3232 goto out;
3233
3234 error = do_last(nd, &path, file, op, &opened, pathname);
3235 while (unlikely(error > 0)) { /* trailing symlink */
3236 struct path link = path;
3237 void *cookie;
3238 if (!(nd->flags & LOOKUP_FOLLOW)) {
3239 path_put_conditional(&path, nd);
3240 path_put(&nd->path);
3241 error = -ELOOP;
3242 break;
3243 }
3244 error = may_follow_link(&link, nd);
3245 if (unlikely(error))
3246 break;
3247 nd->flags |= LOOKUP_PARENT;
3248 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3249 error = follow_link(&link, nd, &cookie);
3250 if (unlikely(error))
3251 break;
3252 error = do_last(nd, &path, file, op, &opened, pathname);
3253 put_link(nd, &link, cookie);
3254 }
3255 out:
3256 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3257 path_put(&nd->root);
3258 if (base)
3259 fput(base);
3260 if (!(opened & FILE_OPENED)) {
3261 BUG_ON(!error);
3262 put_filp(file);
3263 }
3264 if (unlikely(error)) {
3265 if (error == -EOPENSTALE) {
3266 if (flags & LOOKUP_RCU)
3267 error = -ECHILD;
3268 else
3269 error = -ESTALE;
3270 }
3271 file = ERR_PTR(error);
3272 }
3273 return file;
3274 }
3275
3276 struct file *do_filp_open(int dfd, struct filename *pathname,
3277 const struct open_flags *op)
3278 {
3279 struct nameidata nd;
3280 int flags = op->lookup_flags;
3281 struct file *filp;
3282
3283 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3284 if (unlikely(filp == ERR_PTR(-ECHILD)))
3285 filp = path_openat(dfd, pathname, &nd, op, flags);
3286 if (unlikely(filp == ERR_PTR(-ESTALE)))
3287 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3288 return filp;
3289 }
3290
3291 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3292 const char *name, const struct open_flags *op)
3293 {
3294 struct nameidata nd;
3295 struct file *file;
3296 struct filename filename = { .name = name };
3297 int flags = op->lookup_flags | LOOKUP_ROOT;
3298
3299 nd.root.mnt = mnt;
3300 nd.root.dentry = dentry;
3301
3302 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3303 return ERR_PTR(-ELOOP);
3304
3305 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3306 if (unlikely(file == ERR_PTR(-ECHILD)))
3307 file = path_openat(-1, &filename, &nd, op, flags);
3308 if (unlikely(file == ERR_PTR(-ESTALE)))
3309 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3310 return file;
3311 }
3312
3313 struct dentry *kern_path_create(int dfd, const char *pathname,
3314 struct path *path, unsigned int lookup_flags)
3315 {
3316 struct dentry *dentry = ERR_PTR(-EEXIST);
3317 struct nameidata nd;
3318 int err2;
3319 int error;
3320 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3321
3322 /*
3323 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3324 * other flags passed in are ignored!
3325 */
3326 lookup_flags &= LOOKUP_REVAL;
3327
3328 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3329 if (error)
3330 return ERR_PTR(error);
3331
3332 /*
3333 * Yucky last component or no last component at all?
3334 * (foo/., foo/.., /////)
3335 */
3336 if (nd.last_type != LAST_NORM)
3337 goto out;
3338 nd.flags &= ~LOOKUP_PARENT;
3339 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3340
3341 /* don't fail immediately if it's r/o, at least try to report other errors */
3342 err2 = mnt_want_write(nd.path.mnt);
3343 /*
3344 * Do the final lookup.
3345 */
3346 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3347 dentry = lookup_hash(&nd);
3348 if (IS_ERR(dentry))
3349 goto unlock;
3350
3351 error = -EEXIST;
3352 if (d_is_positive(dentry))
3353 goto fail;
3354
3355 /*
3356 * Special case - lookup gave negative, but... we had foo/bar/
3357 * From the vfs_mknod() POV we just have a negative dentry -
3358 * all is fine. Let's be bastards - you had / on the end, you've
3359 * been asking for (non-existent) directory. -ENOENT for you.
3360 */
3361 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3362 error = -ENOENT;
3363 goto fail;
3364 }
3365 if (unlikely(err2)) {
3366 error = err2;
3367 goto fail;
3368 }
3369 *path = nd.path;
3370 return dentry;
3371 fail:
3372 dput(dentry);
3373 dentry = ERR_PTR(error);
3374 unlock:
3375 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3376 if (!err2)
3377 mnt_drop_write(nd.path.mnt);
3378 out:
3379 path_put(&nd.path);
3380 return dentry;
3381 }
3382 EXPORT_SYMBOL(kern_path_create);
3383
3384 void done_path_create(struct path *path, struct dentry *dentry)
3385 {
3386 dput(dentry);
3387 mutex_unlock(&path->dentry->d_inode->i_mutex);
3388 mnt_drop_write(path->mnt);
3389 path_put(path);
3390 }
3391 EXPORT_SYMBOL(done_path_create);
3392
3393 struct dentry *user_path_create(int dfd, const char __user *pathname,
3394 struct path *path, unsigned int lookup_flags)
3395 {
3396 struct filename *tmp = getname(pathname);
3397 struct dentry *res;
3398 if (IS_ERR(tmp))
3399 return ERR_CAST(tmp);
3400 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3401 putname(tmp);
3402 return res;
3403 }
3404 EXPORT_SYMBOL(user_path_create);
3405
3406 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3407 {
3408 int error = may_create(dir, dentry);
3409
3410 if (error)
3411 return error;
3412
3413 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3414 return -EPERM;
3415
3416 if (!dir->i_op->mknod)
3417 return -EPERM;
3418
3419 error = devcgroup_inode_mknod(mode, dev);
3420 if (error)
3421 return error;
3422
3423 error = security_inode_mknod(dir, dentry, mode, dev);
3424 if (error)
3425 return error;
3426
3427 error = dir->i_op->mknod(dir, dentry, mode, dev);
3428 if (!error)
3429 fsnotify_create(dir, dentry);
3430 return error;
3431 }
3432 EXPORT_SYMBOL(vfs_mknod);
3433
3434 static int may_mknod(umode_t mode)
3435 {
3436 switch (mode & S_IFMT) {
3437 case S_IFREG:
3438 case S_IFCHR:
3439 case S_IFBLK:
3440 case S_IFIFO:
3441 case S_IFSOCK:
3442 case 0: /* zero mode translates to S_IFREG */
3443 return 0;
3444 case S_IFDIR:
3445 return -EPERM;
3446 default:
3447 return -EINVAL;
3448 }
3449 }
3450
3451 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3452 unsigned, dev)
3453 {
3454 struct dentry *dentry;
3455 struct path path;
3456 int error;
3457 unsigned int lookup_flags = 0;
3458
3459 error = may_mknod(mode);
3460 if (error)
3461 return error;
3462 retry:
3463 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3464 if (IS_ERR(dentry))
3465 return PTR_ERR(dentry);
3466
3467 if (!IS_POSIXACL(path.dentry->d_inode))
3468 mode &= ~current_umask();
3469 error = security_path_mknod(&path, dentry, mode, dev);
3470 if (error)
3471 goto out;
3472 switch (mode & S_IFMT) {
3473 case 0: case S_IFREG:
3474 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3475 break;
3476 case S_IFCHR: case S_IFBLK:
3477 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3478 new_decode_dev(dev));
3479 break;
3480 case S_IFIFO: case S_IFSOCK:
3481 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3482 break;
3483 }
3484 out:
3485 done_path_create(&path, dentry);
3486 if (retry_estale(error, lookup_flags)) {
3487 lookup_flags |= LOOKUP_REVAL;
3488 goto retry;
3489 }
3490 return error;
3491 }
3492
3493 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3494 {
3495 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3496 }
3497
3498 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3499 {
3500 int error = may_create(dir, dentry);
3501 unsigned max_links = dir->i_sb->s_max_links;
3502
3503 if (error)
3504 return error;
3505
3506 if (!dir->i_op->mkdir)
3507 return -EPERM;
3508
3509 mode &= (S_IRWXUGO|S_ISVTX);
3510 error = security_inode_mkdir(dir, dentry, mode);
3511 if (error)
3512 return error;
3513
3514 if (max_links && dir->i_nlink >= max_links)
3515 return -EMLINK;
3516
3517 error = dir->i_op->mkdir(dir, dentry, mode);
3518 if (!error)
3519 fsnotify_mkdir(dir, dentry);
3520 return error;
3521 }
3522 EXPORT_SYMBOL(vfs_mkdir);
3523
3524 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3525 {
3526 struct dentry *dentry;
3527 struct path path;
3528 int error;
3529 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3530
3531 retry:
3532 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3533 if (IS_ERR(dentry))
3534 return PTR_ERR(dentry);
3535
3536 if (!IS_POSIXACL(path.dentry->d_inode))
3537 mode &= ~current_umask();
3538 error = security_path_mkdir(&path, dentry, mode);
3539 if (!error)
3540 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3541 done_path_create(&path, dentry);
3542 if (retry_estale(error, lookup_flags)) {
3543 lookup_flags |= LOOKUP_REVAL;
3544 goto retry;
3545 }
3546 return error;
3547 }
3548
3549 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3550 {
3551 return sys_mkdirat(AT_FDCWD, pathname, mode);
3552 }
3553
3554 /*
3555 * The dentry_unhash() helper will try to drop the dentry early: we
3556 * should have a usage count of 1 if we're the only user of this
3557 * dentry, and if that is true (possibly after pruning the dcache),
3558 * then we drop the dentry now.
3559 *
3560 * A low-level filesystem can, if it choses, legally
3561 * do a
3562 *
3563 * if (!d_unhashed(dentry))
3564 * return -EBUSY;
3565 *
3566 * if it cannot handle the case of removing a directory
3567 * that is still in use by something else..
3568 */
3569 void dentry_unhash(struct dentry *dentry)
3570 {
3571 shrink_dcache_parent(dentry);
3572 spin_lock(&dentry->d_lock);
3573 if (dentry->d_lockref.count == 1)
3574 __d_drop(dentry);
3575 spin_unlock(&dentry->d_lock);
3576 }
3577 EXPORT_SYMBOL(dentry_unhash);
3578
3579 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3580 {
3581 int error = may_delete(dir, dentry, 1);
3582
3583 if (error)
3584 return error;
3585
3586 if (!dir->i_op->rmdir)
3587 return -EPERM;
3588
3589 dget(dentry);
3590 mutex_lock(&dentry->d_inode->i_mutex);
3591
3592 error = -EBUSY;
3593 if (is_local_mountpoint(dentry))
3594 goto out;
3595
3596 error = security_inode_rmdir(dir, dentry);
3597 if (error)
3598 goto out;
3599
3600 shrink_dcache_parent(dentry);
3601 error = dir->i_op->rmdir(dir, dentry);
3602 if (error)
3603 goto out;
3604
3605 dentry->d_inode->i_flags |= S_DEAD;
3606 dont_mount(dentry);
3607 detach_mounts(dentry);
3608
3609 out:
3610 mutex_unlock(&dentry->d_inode->i_mutex);
3611 dput(dentry);
3612 if (!error)
3613 d_delete(dentry);
3614 return error;
3615 }
3616 EXPORT_SYMBOL(vfs_rmdir);
3617
3618 static long do_rmdir(int dfd, const char __user *pathname)
3619 {
3620 int error = 0;
3621 struct filename *name;
3622 struct dentry *dentry;
3623 struct nameidata nd;
3624 unsigned int lookup_flags = 0;
3625 retry:
3626 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3627 if (IS_ERR(name))
3628 return PTR_ERR(name);
3629
3630 switch(nd.last_type) {
3631 case LAST_DOTDOT:
3632 error = -ENOTEMPTY;
3633 goto exit1;
3634 case LAST_DOT:
3635 error = -EINVAL;
3636 goto exit1;
3637 case LAST_ROOT:
3638 error = -EBUSY;
3639 goto exit1;
3640 }
3641
3642 nd.flags &= ~LOOKUP_PARENT;
3643 error = mnt_want_write(nd.path.mnt);
3644 if (error)
3645 goto exit1;
3646
3647 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3648 dentry = lookup_hash(&nd);
3649 error = PTR_ERR(dentry);
3650 if (IS_ERR(dentry))
3651 goto exit2;
3652 if (!dentry->d_inode) {
3653 error = -ENOENT;
3654 goto exit3;
3655 }
3656 error = security_path_rmdir(&nd.path, dentry);
3657 if (error)
3658 goto exit3;
3659 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3660 exit3:
3661 dput(dentry);
3662 exit2:
3663 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3664 mnt_drop_write(nd.path.mnt);
3665 exit1:
3666 path_put(&nd.path);
3667 putname(name);
3668 if (retry_estale(error, lookup_flags)) {
3669 lookup_flags |= LOOKUP_REVAL;
3670 goto retry;
3671 }
3672 return error;
3673 }
3674
3675 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3676 {
3677 return do_rmdir(AT_FDCWD, pathname);
3678 }
3679
3680 /**
3681 * vfs_unlink - unlink a filesystem object
3682 * @dir: parent directory
3683 * @dentry: victim
3684 * @delegated_inode: returns victim inode, if the inode is delegated.
3685 *
3686 * The caller must hold dir->i_mutex.
3687 *
3688 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3689 * return a reference to the inode in delegated_inode. The caller
3690 * should then break the delegation on that inode and retry. Because
3691 * breaking a delegation may take a long time, the caller should drop
3692 * dir->i_mutex before doing so.
3693 *
3694 * Alternatively, a caller may pass NULL for delegated_inode. This may
3695 * be appropriate for callers that expect the underlying filesystem not
3696 * to be NFS exported.
3697 */
3698 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3699 {
3700 struct inode *target = dentry->d_inode;
3701 int error = may_delete(dir, dentry, 0);
3702
3703 if (error)
3704 return error;
3705
3706 if (!dir->i_op->unlink)
3707 return -EPERM;
3708
3709 mutex_lock(&target->i_mutex);
3710 if (is_local_mountpoint(dentry))
3711 error = -EBUSY;
3712 else {
3713 error = security_inode_unlink(dir, dentry);
3714 if (!error) {
3715 error = try_break_deleg(target, delegated_inode);
3716 if (error)
3717 goto out;
3718 error = dir->i_op->unlink(dir, dentry);
3719 if (!error) {
3720 dont_mount(dentry);
3721 detach_mounts(dentry);
3722 }
3723 }
3724 }
3725 out:
3726 mutex_unlock(&target->i_mutex);
3727
3728 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3729 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3730 fsnotify_link_count(target);
3731 d_delete(dentry);
3732 }
3733
3734 return error;
3735 }
3736 EXPORT_SYMBOL(vfs_unlink);
3737
3738 /*
3739 * Make sure that the actual truncation of the file will occur outside its
3740 * directory's i_mutex. Truncate can take a long time if there is a lot of
3741 * writeout happening, and we don't want to prevent access to the directory
3742 * while waiting on the I/O.
3743 */
3744 static long do_unlinkat(int dfd, const char __user *pathname)
3745 {
3746 int error;
3747 struct filename *name;
3748 struct dentry *dentry;
3749 struct nameidata nd;
3750 struct inode *inode = NULL;
3751 struct inode *delegated_inode = NULL;
3752 unsigned int lookup_flags = 0;
3753 retry:
3754 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3755 if (IS_ERR(name))
3756 return PTR_ERR(name);
3757
3758 error = -EISDIR;
3759 if (nd.last_type != LAST_NORM)
3760 goto exit1;
3761
3762 nd.flags &= ~LOOKUP_PARENT;
3763 error = mnt_want_write(nd.path.mnt);
3764 if (error)
3765 goto exit1;
3766 retry_deleg:
3767 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3768 dentry = lookup_hash(&nd);
3769 error = PTR_ERR(dentry);
3770 if (!IS_ERR(dentry)) {
3771 /* Why not before? Because we want correct error value */
3772 if (nd.last.name[nd.last.len])
3773 goto slashes;
3774 inode = dentry->d_inode;
3775 if (d_is_negative(dentry))
3776 goto slashes;
3777 ihold(inode);
3778 error = security_path_unlink(&nd.path, dentry);
3779 if (error)
3780 goto exit2;
3781 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3782 exit2:
3783 dput(dentry);
3784 }
3785 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3786 if (inode)
3787 iput(inode); /* truncate the inode here */
3788 inode = NULL;
3789 if (delegated_inode) {
3790 error = break_deleg_wait(&delegated_inode);
3791 if (!error)
3792 goto retry_deleg;
3793 }
3794 mnt_drop_write(nd.path.mnt);
3795 exit1:
3796 path_put(&nd.path);
3797 putname(name);
3798 if (retry_estale(error, lookup_flags)) {
3799 lookup_flags |= LOOKUP_REVAL;
3800 inode = NULL;
3801 goto retry;
3802 }
3803 return error;
3804
3805 slashes:
3806 if (d_is_negative(dentry))
3807 error = -ENOENT;
3808 else if (d_is_dir(dentry))
3809 error = -EISDIR;
3810 else
3811 error = -ENOTDIR;
3812 goto exit2;
3813 }
3814
3815 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3816 {
3817 if ((flag & ~AT_REMOVEDIR) != 0)
3818 return -EINVAL;
3819
3820 if (flag & AT_REMOVEDIR)
3821 return do_rmdir(dfd, pathname);
3822
3823 return do_unlinkat(dfd, pathname);
3824 }
3825
3826 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3827 {
3828 return do_unlinkat(AT_FDCWD, pathname);
3829 }
3830
3831 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3832 {
3833 int error = may_create(dir, dentry);
3834
3835 if (error)
3836 return error;
3837
3838 if (!dir->i_op->symlink)
3839 return -EPERM;
3840
3841 error = security_inode_symlink(dir, dentry, oldname);
3842 if (error)
3843 return error;
3844
3845 error = dir->i_op->symlink(dir, dentry, oldname);
3846 if (!error)
3847 fsnotify_create(dir, dentry);
3848 return error;
3849 }
3850 EXPORT_SYMBOL(vfs_symlink);
3851
3852 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3853 int, newdfd, const char __user *, newname)
3854 {
3855 int error;
3856 struct filename *from;
3857 struct dentry *dentry;
3858 struct path path;
3859 unsigned int lookup_flags = 0;
3860
3861 from = getname(oldname);
3862 if (IS_ERR(from))
3863 return PTR_ERR(from);
3864 retry:
3865 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3866 error = PTR_ERR(dentry);
3867 if (IS_ERR(dentry))
3868 goto out_putname;
3869
3870 error = security_path_symlink(&path, dentry, from->name);
3871 if (!error)
3872 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3873 done_path_create(&path, dentry);
3874 if (retry_estale(error, lookup_flags)) {
3875 lookup_flags |= LOOKUP_REVAL;
3876 goto retry;
3877 }
3878 out_putname:
3879 putname(from);
3880 return error;
3881 }
3882
3883 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3884 {
3885 return sys_symlinkat(oldname, AT_FDCWD, newname);
3886 }
3887
3888 /**
3889 * vfs_link - create a new link
3890 * @old_dentry: object to be linked
3891 * @dir: new parent
3892 * @new_dentry: where to create the new link
3893 * @delegated_inode: returns inode needing a delegation break
3894 *
3895 * The caller must hold dir->i_mutex
3896 *
3897 * If vfs_link discovers a delegation on the to-be-linked file in need
3898 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3899 * inode in delegated_inode. The caller should then break the delegation
3900 * and retry. Because breaking a delegation may take a long time, the
3901 * caller should drop the i_mutex before doing so.
3902 *
3903 * Alternatively, a caller may pass NULL for delegated_inode. This may
3904 * be appropriate for callers that expect the underlying filesystem not
3905 * to be NFS exported.
3906 */
3907 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3908 {
3909 struct inode *inode = old_dentry->d_inode;
3910 unsigned max_links = dir->i_sb->s_max_links;
3911 int error;
3912
3913 if (!inode)
3914 return -ENOENT;
3915
3916 error = may_create(dir, new_dentry);
3917 if (error)
3918 return error;
3919
3920 if (dir->i_sb != inode->i_sb)
3921 return -EXDEV;
3922
3923 /*
3924 * A link to an append-only or immutable file cannot be created.
3925 */
3926 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3927 return -EPERM;
3928 if (!dir->i_op->link)
3929 return -EPERM;
3930 if (S_ISDIR(inode->i_mode))
3931 return -EPERM;
3932
3933 error = security_inode_link(old_dentry, dir, new_dentry);
3934 if (error)
3935 return error;
3936
3937 mutex_lock(&inode->i_mutex);
3938 /* Make sure we don't allow creating hardlink to an unlinked file */
3939 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3940 error = -ENOENT;
3941 else if (max_links && inode->i_nlink >= max_links)
3942 error = -EMLINK;
3943 else {
3944 error = try_break_deleg(inode, delegated_inode);
3945 if (!error)
3946 error = dir->i_op->link(old_dentry, dir, new_dentry);
3947 }
3948
3949 if (!error && (inode->i_state & I_LINKABLE)) {
3950 spin_lock(&inode->i_lock);
3951 inode->i_state &= ~I_LINKABLE;
3952 spin_unlock(&inode->i_lock);
3953 }
3954 mutex_unlock(&inode->i_mutex);
3955 if (!error)
3956 fsnotify_link(dir, inode, new_dentry);
3957 return error;
3958 }
3959 EXPORT_SYMBOL(vfs_link);
3960
3961 /*
3962 * Hardlinks are often used in delicate situations. We avoid
3963 * security-related surprises by not following symlinks on the
3964 * newname. --KAB
3965 *
3966 * We don't follow them on the oldname either to be compatible
3967 * with linux 2.0, and to avoid hard-linking to directories
3968 * and other special files. --ADM
3969 */
3970 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3971 int, newdfd, const char __user *, newname, int, flags)
3972 {
3973 struct dentry *new_dentry;
3974 struct path old_path, new_path;
3975 struct inode *delegated_inode = NULL;
3976 int how = 0;
3977 int error;
3978
3979 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3980 return -EINVAL;
3981 /*
3982 * To use null names we require CAP_DAC_READ_SEARCH
3983 * This ensures that not everyone will be able to create
3984 * handlink using the passed filedescriptor.
3985 */
3986 if (flags & AT_EMPTY_PATH) {
3987 if (!capable(CAP_DAC_READ_SEARCH))
3988 return -ENOENT;
3989 how = LOOKUP_EMPTY;
3990 }
3991
3992 if (flags & AT_SYMLINK_FOLLOW)
3993 how |= LOOKUP_FOLLOW;
3994 retry:
3995 error = user_path_at(olddfd, oldname, how, &old_path);
3996 if (error)
3997 return error;
3998
3999 new_dentry = user_path_create(newdfd, newname, &new_path,
4000 (how & LOOKUP_REVAL));
4001 error = PTR_ERR(new_dentry);
4002 if (IS_ERR(new_dentry))
4003 goto out;
4004
4005 error = -EXDEV;
4006 if (old_path.mnt != new_path.mnt)
4007 goto out_dput;
4008 error = may_linkat(&old_path);
4009 if (unlikely(error))
4010 goto out_dput;
4011 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4012 if (error)
4013 goto out_dput;
4014 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4015 out_dput:
4016 done_path_create(&new_path, new_dentry);
4017 if (delegated_inode) {
4018 error = break_deleg_wait(&delegated_inode);
4019 if (!error) {
4020 path_put(&old_path);
4021 goto retry;
4022 }
4023 }
4024 if (retry_estale(error, how)) {
4025 path_put(&old_path);
4026 how |= LOOKUP_REVAL;
4027 goto retry;
4028 }
4029 out:
4030 path_put(&old_path);
4031
4032 return error;
4033 }
4034
4035 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4036 {
4037 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4038 }
4039
4040 /**
4041 * vfs_rename - rename a filesystem object
4042 * @old_dir: parent of source
4043 * @old_dentry: source
4044 * @new_dir: parent of destination
4045 * @new_dentry: destination
4046 * @delegated_inode: returns an inode needing a delegation break
4047 * @flags: rename flags
4048 *
4049 * The caller must hold multiple mutexes--see lock_rename()).
4050 *
4051 * If vfs_rename discovers a delegation in need of breaking at either
4052 * the source or destination, it will return -EWOULDBLOCK and return a
4053 * reference to the inode in delegated_inode. The caller should then
4054 * break the delegation and retry. Because breaking a delegation may
4055 * take a long time, the caller should drop all locks before doing
4056 * so.
4057 *
4058 * Alternatively, a caller may pass NULL for delegated_inode. This may
4059 * be appropriate for callers that expect the underlying filesystem not
4060 * to be NFS exported.
4061 *
4062 * The worst of all namespace operations - renaming directory. "Perverted"
4063 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4064 * Problems:
4065 * a) we can get into loop creation.
4066 * b) race potential - two innocent renames can create a loop together.
4067 * That's where 4.4 screws up. Current fix: serialization on
4068 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4069 * story.
4070 * c) we have to lock _four_ objects - parents and victim (if it exists),
4071 * and source (if it is not a directory).
4072 * And that - after we got ->i_mutex on parents (until then we don't know
4073 * whether the target exists). Solution: try to be smart with locking
4074 * order for inodes. We rely on the fact that tree topology may change
4075 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4076 * move will be locked. Thus we can rank directories by the tree
4077 * (ancestors first) and rank all non-directories after them.
4078 * That works since everybody except rename does "lock parent, lookup,
4079 * lock child" and rename is under ->s_vfs_rename_mutex.
4080 * HOWEVER, it relies on the assumption that any object with ->lookup()
4081 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4082 * we'd better make sure that there's no link(2) for them.
4083 * d) conversion from fhandle to dentry may come in the wrong moment - when
4084 * we are removing the target. Solution: we will have to grab ->i_mutex
4085 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4086 * ->i_mutex on parents, which works but leads to some truly excessive
4087 * locking].
4088 */
4089 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4090 struct inode *new_dir, struct dentry *new_dentry,
4091 struct inode **delegated_inode, unsigned int flags)
4092 {
4093 int error;
4094 bool is_dir = d_is_dir(old_dentry);
4095 const unsigned char *old_name;
4096 struct inode *source = old_dentry->d_inode;
4097 struct inode *target = new_dentry->d_inode;
4098 bool new_is_dir = false;
4099 unsigned max_links = new_dir->i_sb->s_max_links;
4100
4101 if (source == target)
4102 return 0;
4103
4104 error = may_delete(old_dir, old_dentry, is_dir);
4105 if (error)
4106 return error;
4107
4108 if (!target) {
4109 error = may_create(new_dir, new_dentry);
4110 } else {
4111 new_is_dir = d_is_dir(new_dentry);
4112
4113 if (!(flags & RENAME_EXCHANGE))
4114 error = may_delete(new_dir, new_dentry, is_dir);
4115 else
4116 error = may_delete(new_dir, new_dentry, new_is_dir);
4117 }
4118 if (error)
4119 return error;
4120
4121 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4122 return -EPERM;
4123
4124 if (flags && !old_dir->i_op->rename2)
4125 return -EINVAL;
4126
4127 /*
4128 * If we are going to change the parent - check write permissions,
4129 * we'll need to flip '..'.
4130 */
4131 if (new_dir != old_dir) {
4132 if (is_dir) {
4133 error = inode_permission(source, MAY_WRITE);
4134 if (error)
4135 return error;
4136 }
4137 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4138 error = inode_permission(target, MAY_WRITE);
4139 if (error)
4140 return error;
4141 }
4142 }
4143
4144 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4145 flags);
4146 if (error)
4147 return error;
4148
4149 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4150 dget(new_dentry);
4151 if (!is_dir || (flags & RENAME_EXCHANGE))
4152 lock_two_nondirectories(source, target);
4153 else if (target)
4154 mutex_lock(&target->i_mutex);
4155
4156 error = -EBUSY;
4157 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4158 goto out;
4159
4160 if (max_links && new_dir != old_dir) {
4161 error = -EMLINK;
4162 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4163 goto out;
4164 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4165 old_dir->i_nlink >= max_links)
4166 goto out;
4167 }
4168 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4169 shrink_dcache_parent(new_dentry);
4170 if (!is_dir) {
4171 error = try_break_deleg(source, delegated_inode);
4172 if (error)
4173 goto out;
4174 }
4175 if (target && !new_is_dir) {
4176 error = try_break_deleg(target, delegated_inode);
4177 if (error)
4178 goto out;
4179 }
4180 if (!old_dir->i_op->rename2) {
4181 error = old_dir->i_op->rename(old_dir, old_dentry,
4182 new_dir, new_dentry);
4183 } else {
4184 WARN_ON(old_dir->i_op->rename != NULL);
4185 error = old_dir->i_op->rename2(old_dir, old_dentry,
4186 new_dir, new_dentry, flags);
4187 }
4188 if (error)
4189 goto out;
4190
4191 if (!(flags & RENAME_EXCHANGE) && target) {
4192 if (is_dir)
4193 target->i_flags |= S_DEAD;
4194 dont_mount(new_dentry);
4195 detach_mounts(new_dentry);
4196 }
4197 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4198 if (!(flags & RENAME_EXCHANGE))
4199 d_move(old_dentry, new_dentry);
4200 else
4201 d_exchange(old_dentry, new_dentry);
4202 }
4203 out:
4204 if (!is_dir || (flags & RENAME_EXCHANGE))
4205 unlock_two_nondirectories(source, target);
4206 else if (target)
4207 mutex_unlock(&target->i_mutex);
4208 dput(new_dentry);
4209 if (!error) {
4210 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4211 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4212 if (flags & RENAME_EXCHANGE) {
4213 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4214 new_is_dir, NULL, new_dentry);
4215 }
4216 }
4217 fsnotify_oldname_free(old_name);
4218
4219 return error;
4220 }
4221 EXPORT_SYMBOL(vfs_rename);
4222
4223 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4224 int, newdfd, const char __user *, newname, unsigned int, flags)
4225 {
4226 struct dentry *old_dir, *new_dir;
4227 struct dentry *old_dentry, *new_dentry;
4228 struct dentry *trap;
4229 struct nameidata oldnd, newnd;
4230 struct inode *delegated_inode = NULL;
4231 struct filename *from;
4232 struct filename *to;
4233 unsigned int lookup_flags = 0;
4234 bool should_retry = false;
4235 int error;
4236
4237 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4238 return -EINVAL;
4239
4240 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4241 (flags & RENAME_EXCHANGE))
4242 return -EINVAL;
4243
4244 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4245 return -EPERM;
4246
4247 retry:
4248 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4249 if (IS_ERR(from)) {
4250 error = PTR_ERR(from);
4251 goto exit;
4252 }
4253
4254 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4255 if (IS_ERR(to)) {
4256 error = PTR_ERR(to);
4257 goto exit1;
4258 }
4259
4260 error = -EXDEV;
4261 if (oldnd.path.mnt != newnd.path.mnt)
4262 goto exit2;
4263
4264 old_dir = oldnd.path.dentry;
4265 error = -EBUSY;
4266 if (oldnd.last_type != LAST_NORM)
4267 goto exit2;
4268
4269 new_dir = newnd.path.dentry;
4270 if (flags & RENAME_NOREPLACE)
4271 error = -EEXIST;
4272 if (newnd.last_type != LAST_NORM)
4273 goto exit2;
4274
4275 error = mnt_want_write(oldnd.path.mnt);
4276 if (error)
4277 goto exit2;
4278
4279 oldnd.flags &= ~LOOKUP_PARENT;
4280 newnd.flags &= ~LOOKUP_PARENT;
4281 if (!(flags & RENAME_EXCHANGE))
4282 newnd.flags |= LOOKUP_RENAME_TARGET;
4283
4284 retry_deleg:
4285 trap = lock_rename(new_dir, old_dir);
4286
4287 old_dentry = lookup_hash(&oldnd);
4288 error = PTR_ERR(old_dentry);
4289 if (IS_ERR(old_dentry))
4290 goto exit3;
4291 /* source must exist */
4292 error = -ENOENT;
4293 if (d_is_negative(old_dentry))
4294 goto exit4;
4295 new_dentry = lookup_hash(&newnd);
4296 error = PTR_ERR(new_dentry);
4297 if (IS_ERR(new_dentry))
4298 goto exit4;
4299 error = -EEXIST;
4300 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4301 goto exit5;
4302 if (flags & RENAME_EXCHANGE) {
4303 error = -ENOENT;
4304 if (d_is_negative(new_dentry))
4305 goto exit5;
4306
4307 if (!d_is_dir(new_dentry)) {
4308 error = -ENOTDIR;
4309 if (newnd.last.name[newnd.last.len])
4310 goto exit5;
4311 }
4312 }
4313 /* unless the source is a directory trailing slashes give -ENOTDIR */
4314 if (!d_is_dir(old_dentry)) {
4315 error = -ENOTDIR;
4316 if (oldnd.last.name[oldnd.last.len])
4317 goto exit5;
4318 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4319 goto exit5;
4320 }
4321 /* source should not be ancestor of target */
4322 error = -EINVAL;
4323 if (old_dentry == trap)
4324 goto exit5;
4325 /* target should not be an ancestor of source */
4326 if (!(flags & RENAME_EXCHANGE))
4327 error = -ENOTEMPTY;
4328 if (new_dentry == trap)
4329 goto exit5;
4330
4331 error = security_path_rename(&oldnd.path, old_dentry,
4332 &newnd.path, new_dentry, flags);
4333 if (error)
4334 goto exit5;
4335 error = vfs_rename(old_dir->d_inode, old_dentry,
4336 new_dir->d_inode, new_dentry,
4337 &delegated_inode, flags);
4338 exit5:
4339 dput(new_dentry);
4340 exit4:
4341 dput(old_dentry);
4342 exit3:
4343 unlock_rename(new_dir, old_dir);
4344 if (delegated_inode) {
4345 error = break_deleg_wait(&delegated_inode);
4346 if (!error)
4347 goto retry_deleg;
4348 }
4349 mnt_drop_write(oldnd.path.mnt);
4350 exit2:
4351 if (retry_estale(error, lookup_flags))
4352 should_retry = true;
4353 path_put(&newnd.path);
4354 putname(to);
4355 exit1:
4356 path_put(&oldnd.path);
4357 putname(from);
4358 if (should_retry) {
4359 should_retry = false;
4360 lookup_flags |= LOOKUP_REVAL;
4361 goto retry;
4362 }
4363 exit:
4364 return error;
4365 }
4366
4367 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4368 int, newdfd, const char __user *, newname)
4369 {
4370 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4371 }
4372
4373 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4374 {
4375 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4376 }
4377
4378 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4379 {
4380 int error = may_create(dir, dentry);
4381 if (error)
4382 return error;
4383
4384 if (!dir->i_op->mknod)
4385 return -EPERM;
4386
4387 return dir->i_op->mknod(dir, dentry,
4388 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4389 }
4390 EXPORT_SYMBOL(vfs_whiteout);
4391
4392 int readlink_copy(char __user *buffer, int buflen, const char *link)
4393 {
4394 int len = PTR_ERR(link);
4395 if (IS_ERR(link))
4396 goto out;
4397
4398 len = strlen(link);
4399 if (len > (unsigned) buflen)
4400 len = buflen;
4401 if (copy_to_user(buffer, link, len))
4402 len = -EFAULT;
4403 out:
4404 return len;
4405 }
4406 EXPORT_SYMBOL(readlink_copy);
4407
4408 /*
4409 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4410 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4411 * using) it for any given inode is up to filesystem.
4412 */
4413 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4414 {
4415 struct nameidata nd;
4416 void *cookie;
4417 int res;
4418
4419 nd.depth = 0;
4420 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4421 if (IS_ERR(cookie))
4422 return PTR_ERR(cookie);
4423
4424 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4425 if (dentry->d_inode->i_op->put_link)
4426 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4427 return res;
4428 }
4429 EXPORT_SYMBOL(generic_readlink);
4430
4431 /* get the link contents into pagecache */
4432 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4433 {
4434 char *kaddr;
4435 struct page *page;
4436 struct address_space *mapping = dentry->d_inode->i_mapping;
4437 page = read_mapping_page(mapping, 0, NULL);
4438 if (IS_ERR(page))
4439 return (char*)page;
4440 *ppage = page;
4441 kaddr = kmap(page);
4442 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4443 return kaddr;
4444 }
4445
4446 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4447 {
4448 struct page *page = NULL;
4449 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4450 if (page) {
4451 kunmap(page);
4452 page_cache_release(page);
4453 }
4454 return res;
4455 }
4456 EXPORT_SYMBOL(page_readlink);
4457
4458 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4459 {
4460 struct page *page = NULL;
4461 nd_set_link(nd, page_getlink(dentry, &page));
4462 return page;
4463 }
4464 EXPORT_SYMBOL(page_follow_link_light);
4465
4466 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4467 {
4468 struct page *page = cookie;
4469
4470 if (page) {
4471 kunmap(page);
4472 page_cache_release(page);
4473 }
4474 }
4475 EXPORT_SYMBOL(page_put_link);
4476
4477 /*
4478 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4479 */
4480 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4481 {
4482 struct address_space *mapping = inode->i_mapping;
4483 struct page *page;
4484 void *fsdata;
4485 int err;
4486 char *kaddr;
4487 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4488 if (nofs)
4489 flags |= AOP_FLAG_NOFS;
4490
4491 retry:
4492 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4493 flags, &page, &fsdata);
4494 if (err)
4495 goto fail;
4496
4497 kaddr = kmap_atomic(page);
4498 memcpy(kaddr, symname, len-1);
4499 kunmap_atomic(kaddr);
4500
4501 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4502 page, fsdata);
4503 if (err < 0)
4504 goto fail;
4505 if (err < len-1)
4506 goto retry;
4507
4508 mark_inode_dirty(inode);
4509 return 0;
4510 fail:
4511 return err;
4512 }
4513 EXPORT_SYMBOL(__page_symlink);
4514
4515 int page_symlink(struct inode *inode, const char *symname, int len)
4516 {
4517 return __page_symlink(inode, symname, len,
4518 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4519 }
4520 EXPORT_SYMBOL(page_symlink);
4521
4522 const struct inode_operations page_symlink_inode_operations = {
4523 .readlink = generic_readlink,
4524 .follow_link = page_follow_link_light,
4525 .put_link = page_put_link,
4526 };
4527 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.135601 seconds and 5 git commands to generate.