dts, kbuild: Factor out dtbs install rules to Makefile.dtbinst
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203
204 error:
205 final_putname(result);
206 return err;
207 }
208
209 struct filename *
210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 /*
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218 */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 struct filename *result;
223 char *kname;
224 int len;
225
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
229
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
233
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
239
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
242 }
243
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
250 }
251 #endif
252
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
257
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 }
267
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
275 }
276 #endif
277
278 return -EAGAIN;
279 }
280
281 /*
282 * This does the basic permission checking
283 */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 unsigned int mode = inode->i_mode;
287
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
295 }
296
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
299 }
300
301 /*
302 * If the DACs are ok we don't need any capability check.
303 */
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
307 }
308
309 /**
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 *
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
318 *
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
322 */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 int ret;
326
327 /*
328 * Do the basic permission checks.
329 */
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
333
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
343 }
344 /*
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
348 */
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360
361 return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364
365 /*
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
370 */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(inode->i_op->permission))
375 return inode->i_op->permission(inode, mask);
376
377 /* This gets set once for the inode lifetime */
378 spin_lock(&inode->i_lock);
379 inode->i_opflags |= IOP_FASTPERM;
380 spin_unlock(&inode->i_lock);
381 }
382 return generic_permission(inode, mask);
383 }
384
385 /**
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389 *
390 * Check for read/write/execute permissions on an inode.
391 *
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393 *
394 * This does not check for a read-only file system. You probably want
395 * inode_permission().
396 */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 int retval;
400
401 if (unlikely(mask & MAY_WRITE)) {
402 /*
403 * Nobody gets write access to an immutable file.
404 */
405 if (IS_IMMUTABLE(inode))
406 return -EACCES;
407 }
408
409 retval = do_inode_permission(inode, mask);
410 if (retval)
411 return retval;
412
413 retval = devcgroup_inode_permission(inode, mask);
414 if (retval)
415 return retval;
416
417 return security_inode_permission(inode, mask);
418 }
419
420 /**
421 * sb_permission - Check superblock-level permissions
422 * @sb: Superblock of inode to check permission on
423 * @inode: Inode to check permission on
424 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
425 *
426 * Separate out file-system wide checks from inode-specific permission checks.
427 */
428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
429 {
430 if (unlikely(mask & MAY_WRITE)) {
431 umode_t mode = inode->i_mode;
432
433 /* Nobody gets write access to a read-only fs. */
434 if ((sb->s_flags & MS_RDONLY) &&
435 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
436 return -EROFS;
437 }
438 return 0;
439 }
440
441 /**
442 * inode_permission - Check for access rights to a given inode
443 * @inode: Inode to check permission on
444 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
445 *
446 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
447 * this, letting us set arbitrary permissions for filesystem access without
448 * changing the "normal" UIDs which are used for other things.
449 *
450 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
451 */
452 int inode_permission(struct inode *inode, int mask)
453 {
454 int retval;
455
456 retval = sb_permission(inode->i_sb, inode, mask);
457 if (retval)
458 return retval;
459 return __inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
466 *
467 * Given a path increment the reference count to the dentry and the vfsmount.
468 */
469 void path_get(const struct path *path)
470 {
471 mntget(path->mnt);
472 dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
479 *
480 * Given a path decrement the reference count to the dentry and the vfsmount.
481 */
482 void path_put(const struct path *path)
483 {
484 dput(path->dentry);
485 mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 /*
490 * Path walking has 2 modes, rcu-walk and ref-walk (see
491 * Documentation/filesystems/path-lookup.txt). In situations when we can't
492 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
493 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
494 * mode. Refcounts are grabbed at the last known good point before rcu-walk
495 * got stuck, so ref-walk may continue from there. If this is not successful
496 * (eg. a seqcount has changed), then failure is returned and it's up to caller
497 * to restart the path walk from the beginning in ref-walk mode.
498 */
499
500 /**
501 * unlazy_walk - try to switch to ref-walk mode.
502 * @nd: nameidata pathwalk data
503 * @dentry: child of nd->path.dentry or NULL
504 * Returns: 0 on success, -ECHILD on failure
505 *
506 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
507 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
508 * @nd or NULL. Must be called from rcu-walk context.
509 */
510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
511 {
512 struct fs_struct *fs = current->fs;
513 struct dentry *parent = nd->path.dentry;
514
515 BUG_ON(!(nd->flags & LOOKUP_RCU));
516
517 /*
518 * After legitimizing the bastards, terminate_walk()
519 * will do the right thing for non-RCU mode, and all our
520 * subsequent exit cases should rcu_read_unlock()
521 * before returning. Do vfsmount first; if dentry
522 * can't be legitimized, just set nd->path.dentry to NULL
523 * and rely on dput(NULL) being a no-op.
524 */
525 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
526 return -ECHILD;
527 nd->flags &= ~LOOKUP_RCU;
528
529 if (!lockref_get_not_dead(&parent->d_lockref)) {
530 nd->path.dentry = NULL;
531 goto out;
532 }
533
534 /*
535 * For a negative lookup, the lookup sequence point is the parents
536 * sequence point, and it only needs to revalidate the parent dentry.
537 *
538 * For a positive lookup, we need to move both the parent and the
539 * dentry from the RCU domain to be properly refcounted. And the
540 * sequence number in the dentry validates *both* dentry counters,
541 * since we checked the sequence number of the parent after we got
542 * the child sequence number. So we know the parent must still
543 * be valid if the child sequence number is still valid.
544 */
545 if (!dentry) {
546 if (read_seqcount_retry(&parent->d_seq, nd->seq))
547 goto out;
548 BUG_ON(nd->inode != parent->d_inode);
549 } else {
550 if (!lockref_get_not_dead(&dentry->d_lockref))
551 goto out;
552 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 goto drop_dentry;
554 }
555
556 /*
557 * Sequence counts matched. Now make sure that the root is
558 * still valid and get it if required.
559 */
560 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
561 spin_lock(&fs->lock);
562 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
563 goto unlock_and_drop_dentry;
564 path_get(&nd->root);
565 spin_unlock(&fs->lock);
566 }
567
568 rcu_read_unlock();
569 return 0;
570
571 unlock_and_drop_dentry:
572 spin_unlock(&fs->lock);
573 drop_dentry:
574 rcu_read_unlock();
575 dput(dentry);
576 goto drop_root_mnt;
577 out:
578 rcu_read_unlock();
579 drop_root_mnt:
580 if (!(nd->flags & LOOKUP_ROOT))
581 nd->root.mnt = NULL;
582 return -ECHILD;
583 }
584
585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
586 {
587 return dentry->d_op->d_revalidate(dentry, flags);
588 }
589
590 /**
591 * complete_walk - successful completion of path walk
592 * @nd: pointer nameidata
593 *
594 * If we had been in RCU mode, drop out of it and legitimize nd->path.
595 * Revalidate the final result, unless we'd already done that during
596 * the path walk or the filesystem doesn't ask for it. Return 0 on
597 * success, -error on failure. In case of failure caller does not
598 * need to drop nd->path.
599 */
600 static int complete_walk(struct nameidata *nd)
601 {
602 struct dentry *dentry = nd->path.dentry;
603 int status;
604
605 if (nd->flags & LOOKUP_RCU) {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609
610 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
611 rcu_read_unlock();
612 return -ECHILD;
613 }
614 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
615 rcu_read_unlock();
616 mntput(nd->path.mnt);
617 return -ECHILD;
618 }
619 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
620 rcu_read_unlock();
621 dput(dentry);
622 mntput(nd->path.mnt);
623 return -ECHILD;
624 }
625 rcu_read_unlock();
626 }
627
628 if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 return 0;
630
631 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
632 return 0;
633
634 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
635 if (status > 0)
636 return 0;
637
638 if (!status)
639 status = -ESTALE;
640
641 path_put(&nd->path);
642 return status;
643 }
644
645 static __always_inline void set_root(struct nameidata *nd)
646 {
647 get_fs_root(current->fs, &nd->root);
648 }
649
650 static int link_path_walk(const char *, struct nameidata *);
651
652 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
653 {
654 struct fs_struct *fs = current->fs;
655 unsigned seq, res;
656
657 do {
658 seq = read_seqcount_begin(&fs->seq);
659 nd->root = fs->root;
660 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 } while (read_seqcount_retry(&fs->seq, seq));
662 return res;
663 }
664
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 dput(path->dentry);
668 if (path->mnt != nd->path.mnt)
669 mntput(path->mnt);
670 }
671
672 static inline void path_to_nameidata(const struct path *path,
673 struct nameidata *nd)
674 {
675 if (!(nd->flags & LOOKUP_RCU)) {
676 dput(nd->path.dentry);
677 if (nd->path.mnt != path->mnt)
678 mntput(nd->path.mnt);
679 }
680 nd->path.mnt = path->mnt;
681 nd->path.dentry = path->dentry;
682 }
683
684 /*
685 * Helper to directly jump to a known parsed path from ->follow_link,
686 * caller must have taken a reference to path beforehand.
687 */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 path_put(&nd->path);
691
692 nd->path = *path;
693 nd->inode = nd->path.dentry->d_inode;
694 nd->flags |= LOOKUP_JUMPED;
695 }
696
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 struct inode *inode = link->dentry->d_inode;
700 if (inode->i_op->put_link)
701 inode->i_op->put_link(link->dentry, nd, cookie);
702 path_put(link);
703 }
704
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707
708 /**
709 * may_follow_link - Check symlink following for unsafe situations
710 * @link: The path of the symlink
711 * @nd: nameidata pathwalk data
712 *
713 * In the case of the sysctl_protected_symlinks sysctl being enabled,
714 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715 * in a sticky world-writable directory. This is to protect privileged
716 * processes from failing races against path names that may change out
717 * from under them by way of other users creating malicious symlinks.
718 * It will permit symlinks to be followed only when outside a sticky
719 * world-writable directory, or when the uid of the symlink and follower
720 * match, or when the directory owner matches the symlink's owner.
721 *
722 * Returns 0 if following the symlink is allowed, -ve on error.
723 */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 const struct inode *inode;
727 const struct inode *parent;
728
729 if (!sysctl_protected_symlinks)
730 return 0;
731
732 /* Allowed if owner and follower match. */
733 inode = link->dentry->d_inode;
734 if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 return 0;
736
737 /* Allowed if parent directory not sticky and world-writable. */
738 parent = nd->path.dentry->d_inode;
739 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 return 0;
741
742 /* Allowed if parent directory and link owner match. */
743 if (uid_eq(parent->i_uid, inode->i_uid))
744 return 0;
745
746 audit_log_link_denied("follow_link", link);
747 path_put_conditional(link, nd);
748 path_put(&nd->path);
749 return -EACCES;
750 }
751
752 /**
753 * safe_hardlink_source - Check for safe hardlink conditions
754 * @inode: the source inode to hardlink from
755 *
756 * Return false if at least one of the following conditions:
757 * - inode is not a regular file
758 * - inode is setuid
759 * - inode is setgid and group-exec
760 * - access failure for read and write
761 *
762 * Otherwise returns true.
763 */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 umode_t mode = inode->i_mode;
767
768 /* Special files should not get pinned to the filesystem. */
769 if (!S_ISREG(mode))
770 return false;
771
772 /* Setuid files should not get pinned to the filesystem. */
773 if (mode & S_ISUID)
774 return false;
775
776 /* Executable setgid files should not get pinned to the filesystem. */
777 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 return false;
779
780 /* Hardlinking to unreadable or unwritable sources is dangerous. */
781 if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 return false;
783
784 return true;
785 }
786
787 /**
788 * may_linkat - Check permissions for creating a hardlink
789 * @link: the source to hardlink from
790 *
791 * Block hardlink when all of:
792 * - sysctl_protected_hardlinks enabled
793 * - fsuid does not match inode
794 * - hardlink source is unsafe (see safe_hardlink_source() above)
795 * - not CAP_FOWNER
796 *
797 * Returns 0 if successful, -ve on error.
798 */
799 static int may_linkat(struct path *link)
800 {
801 const struct cred *cred;
802 struct inode *inode;
803
804 if (!sysctl_protected_hardlinks)
805 return 0;
806
807 cred = current_cred();
808 inode = link->dentry->d_inode;
809
810 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 * otherwise, it must be a safe source.
812 */
813 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 capable(CAP_FOWNER))
815 return 0;
816
817 audit_log_link_denied("linkat", link);
818 return -EPERM;
819 }
820
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 struct dentry *dentry = link->dentry;
825 int error;
826 char *s;
827
828 BUG_ON(nd->flags & LOOKUP_RCU);
829
830 if (link->mnt == nd->path.mnt)
831 mntget(link->mnt);
832
833 error = -ELOOP;
834 if (unlikely(current->total_link_count >= 40))
835 goto out_put_nd_path;
836
837 cond_resched();
838 current->total_link_count++;
839
840 touch_atime(link);
841 nd_set_link(nd, NULL);
842
843 error = security_inode_follow_link(link->dentry, nd);
844 if (error)
845 goto out_put_nd_path;
846
847 nd->last_type = LAST_BIND;
848 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 error = PTR_ERR(*p);
850 if (IS_ERR(*p))
851 goto out_put_nd_path;
852
853 error = 0;
854 s = nd_get_link(nd);
855 if (s) {
856 if (unlikely(IS_ERR(s))) {
857 path_put(&nd->path);
858 put_link(nd, link, *p);
859 return PTR_ERR(s);
860 }
861 if (*s == '/') {
862 if (!nd->root.mnt)
863 set_root(nd);
864 path_put(&nd->path);
865 nd->path = nd->root;
866 path_get(&nd->root);
867 nd->flags |= LOOKUP_JUMPED;
868 }
869 nd->inode = nd->path.dentry->d_inode;
870 error = link_path_walk(s, nd);
871 if (unlikely(error))
872 put_link(nd, link, *p);
873 }
874
875 return error;
876
877 out_put_nd_path:
878 *p = NULL;
879 path_put(&nd->path);
880 path_put(link);
881 return error;
882 }
883
884 static int follow_up_rcu(struct path *path)
885 {
886 struct mount *mnt = real_mount(path->mnt);
887 struct mount *parent;
888 struct dentry *mountpoint;
889
890 parent = mnt->mnt_parent;
891 if (&parent->mnt == path->mnt)
892 return 0;
893 mountpoint = mnt->mnt_mountpoint;
894 path->dentry = mountpoint;
895 path->mnt = &parent->mnt;
896 return 1;
897 }
898
899 /*
900 * follow_up - Find the mountpoint of path's vfsmount
901 *
902 * Given a path, find the mountpoint of its source file system.
903 * Replace @path with the path of the mountpoint in the parent mount.
904 * Up is towards /.
905 *
906 * Return 1 if we went up a level and 0 if we were already at the
907 * root.
908 */
909 int follow_up(struct path *path)
910 {
911 struct mount *mnt = real_mount(path->mnt);
912 struct mount *parent;
913 struct dentry *mountpoint;
914
915 read_seqlock_excl(&mount_lock);
916 parent = mnt->mnt_parent;
917 if (parent == mnt) {
918 read_sequnlock_excl(&mount_lock);
919 return 0;
920 }
921 mntget(&parent->mnt);
922 mountpoint = dget(mnt->mnt_mountpoint);
923 read_sequnlock_excl(&mount_lock);
924 dput(path->dentry);
925 path->dentry = mountpoint;
926 mntput(path->mnt);
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931
932 /*
933 * Perform an automount
934 * - return -EISDIR to tell follow_managed() to stop and return the path we
935 * were called with.
936 */
937 static int follow_automount(struct path *path, unsigned flags,
938 bool *need_mntput)
939 {
940 struct vfsmount *mnt;
941 int err;
942
943 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 return -EREMOTE;
945
946 /* We don't want to mount if someone's just doing a stat -
947 * unless they're stat'ing a directory and appended a '/' to
948 * the name.
949 *
950 * We do, however, want to mount if someone wants to open or
951 * create a file of any type under the mountpoint, wants to
952 * traverse through the mountpoint or wants to open the
953 * mounted directory. Also, autofs may mark negative dentries
954 * as being automount points. These will need the attentions
955 * of the daemon to instantiate them before they can be used.
956 */
957 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 path->dentry->d_inode)
960 return -EISDIR;
961
962 current->total_link_count++;
963 if (current->total_link_count >= 40)
964 return -ELOOP;
965
966 mnt = path->dentry->d_op->d_automount(path);
967 if (IS_ERR(mnt)) {
968 /*
969 * The filesystem is allowed to return -EISDIR here to indicate
970 * it doesn't want to automount. For instance, autofs would do
971 * this so that its userspace daemon can mount on this dentry.
972 *
973 * However, we can only permit this if it's a terminal point in
974 * the path being looked up; if it wasn't then the remainder of
975 * the path is inaccessible and we should say so.
976 */
977 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 return -EREMOTE;
979 return PTR_ERR(mnt);
980 }
981
982 if (!mnt) /* mount collision */
983 return 0;
984
985 if (!*need_mntput) {
986 /* lock_mount() may release path->mnt on error */
987 mntget(path->mnt);
988 *need_mntput = true;
989 }
990 err = finish_automount(mnt, path);
991
992 switch (err) {
993 case -EBUSY:
994 /* Someone else made a mount here whilst we were busy */
995 return 0;
996 case 0:
997 path_put(path);
998 path->mnt = mnt;
999 path->dentry = dget(mnt->mnt_root);
1000 return 0;
1001 default:
1002 return err;
1003 }
1004
1005 }
1006
1007 /*
1008 * Handle a dentry that is managed in some way.
1009 * - Flagged for transit management (autofs)
1010 * - Flagged as mountpoint
1011 * - Flagged as automount point
1012 *
1013 * This may only be called in refwalk mode.
1014 *
1015 * Serialization is taken care of in namespace.c
1016 */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 unsigned managed;
1021 bool need_mntput = false;
1022 int ret = 0;
1023
1024 /* Given that we're not holding a lock here, we retain the value in a
1025 * local variable for each dentry as we look at it so that we don't see
1026 * the components of that value change under us */
1027 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 managed &= DCACHE_MANAGED_DENTRY,
1029 unlikely(managed != 0)) {
1030 /* Allow the filesystem to manage the transit without i_mutex
1031 * being held. */
1032 if (managed & DCACHE_MANAGE_TRANSIT) {
1033 BUG_ON(!path->dentry->d_op);
1034 BUG_ON(!path->dentry->d_op->d_manage);
1035 ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 if (ret < 0)
1037 break;
1038 }
1039
1040 /* Transit to a mounted filesystem. */
1041 if (managed & DCACHE_MOUNTED) {
1042 struct vfsmount *mounted = lookup_mnt(path);
1043 if (mounted) {
1044 dput(path->dentry);
1045 if (need_mntput)
1046 mntput(path->mnt);
1047 path->mnt = mounted;
1048 path->dentry = dget(mounted->mnt_root);
1049 need_mntput = true;
1050 continue;
1051 }
1052
1053 /* Something is mounted on this dentry in another
1054 * namespace and/or whatever was mounted there in this
1055 * namespace got unmounted before lookup_mnt() could
1056 * get it */
1057 }
1058
1059 /* Handle an automount point */
1060 if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 ret = follow_automount(path, flags, &need_mntput);
1062 if (ret < 0)
1063 break;
1064 continue;
1065 }
1066
1067 /* We didn't change the current path point */
1068 break;
1069 }
1070
1071 if (need_mntput && path->mnt == mnt)
1072 mntput(path->mnt);
1073 if (ret == -EISDIR)
1074 ret = 0;
1075 return ret < 0 ? ret : need_mntput;
1076 }
1077
1078 int follow_down_one(struct path *path)
1079 {
1080 struct vfsmount *mounted;
1081
1082 mounted = lookup_mnt(path);
1083 if (mounted) {
1084 dput(path->dentry);
1085 mntput(path->mnt);
1086 path->mnt = mounted;
1087 path->dentry = dget(mounted->mnt_root);
1088 return 1;
1089 }
1090 return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099
1100 /*
1101 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1102 * we meet a managed dentry that would need blocking.
1103 */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 struct inode **inode)
1106 {
1107 for (;;) {
1108 struct mount *mounted;
1109 /*
1110 * Don't forget we might have a non-mountpoint managed dentry
1111 * that wants to block transit.
1112 */
1113 switch (managed_dentry_rcu(path->dentry)) {
1114 case -ECHILD:
1115 default:
1116 return false;
1117 case -EISDIR:
1118 return true;
1119 case 0:
1120 break;
1121 }
1122
1123 if (!d_mountpoint(path->dentry))
1124 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125
1126 mounted = __lookup_mnt(path->mnt, path->dentry);
1127 if (!mounted)
1128 break;
1129 path->mnt = &mounted->mnt;
1130 path->dentry = mounted->mnt.mnt_root;
1131 nd->flags |= LOOKUP_JUMPED;
1132 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 /*
1134 * Update the inode too. We don't need to re-check the
1135 * dentry sequence number here after this d_inode read,
1136 * because a mount-point is always pinned.
1137 */
1138 *inode = path->dentry->d_inode;
1139 }
1140 return !read_seqretry(&mount_lock, nd->m_seq) &&
1141 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 struct inode *inode = nd->inode;
1147 if (!nd->root.mnt)
1148 set_root_rcu(nd);
1149
1150 while (1) {
1151 if (nd->path.dentry == nd->root.dentry &&
1152 nd->path.mnt == nd->root.mnt) {
1153 break;
1154 }
1155 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1156 struct dentry *old = nd->path.dentry;
1157 struct dentry *parent = old->d_parent;
1158 unsigned seq;
1159
1160 inode = parent->d_inode;
1161 seq = read_seqcount_begin(&parent->d_seq);
1162 if (read_seqcount_retry(&old->d_seq, nd->seq))
1163 goto failed;
1164 nd->path.dentry = parent;
1165 nd->seq = seq;
1166 break;
1167 }
1168 if (!follow_up_rcu(&nd->path))
1169 break;
1170 inode = nd->path.dentry->d_inode;
1171 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1172 }
1173 while (d_mountpoint(nd->path.dentry)) {
1174 struct mount *mounted;
1175 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1176 if (!mounted)
1177 break;
1178 nd->path.mnt = &mounted->mnt;
1179 nd->path.dentry = mounted->mnt.mnt_root;
1180 inode = nd->path.dentry->d_inode;
1181 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1182 if (read_seqretry(&mount_lock, nd->m_seq))
1183 goto failed;
1184 }
1185 nd->inode = inode;
1186 return 0;
1187
1188 failed:
1189 nd->flags &= ~LOOKUP_RCU;
1190 if (!(nd->flags & LOOKUP_ROOT))
1191 nd->root.mnt = NULL;
1192 rcu_read_unlock();
1193 return -ECHILD;
1194 }
1195
1196 /*
1197 * Follow down to the covering mount currently visible to userspace. At each
1198 * point, the filesystem owning that dentry may be queried as to whether the
1199 * caller is permitted to proceed or not.
1200 */
1201 int follow_down(struct path *path)
1202 {
1203 unsigned managed;
1204 int ret;
1205
1206 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1207 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1208 /* Allow the filesystem to manage the transit without i_mutex
1209 * being held.
1210 *
1211 * We indicate to the filesystem if someone is trying to mount
1212 * something here. This gives autofs the chance to deny anyone
1213 * other than its daemon the right to mount on its
1214 * superstructure.
1215 *
1216 * The filesystem may sleep at this point.
1217 */
1218 if (managed & DCACHE_MANAGE_TRANSIT) {
1219 BUG_ON(!path->dentry->d_op);
1220 BUG_ON(!path->dentry->d_op->d_manage);
1221 ret = path->dentry->d_op->d_manage(
1222 path->dentry, false);
1223 if (ret < 0)
1224 return ret == -EISDIR ? 0 : ret;
1225 }
1226
1227 /* Transit to a mounted filesystem. */
1228 if (managed & DCACHE_MOUNTED) {
1229 struct vfsmount *mounted = lookup_mnt(path);
1230 if (!mounted)
1231 break;
1232 dput(path->dentry);
1233 mntput(path->mnt);
1234 path->mnt = mounted;
1235 path->dentry = dget(mounted->mnt_root);
1236 continue;
1237 }
1238
1239 /* Don't handle automount points here */
1240 break;
1241 }
1242 return 0;
1243 }
1244 EXPORT_SYMBOL(follow_down);
1245
1246 /*
1247 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1248 */
1249 static void follow_mount(struct path *path)
1250 {
1251 while (d_mountpoint(path->dentry)) {
1252 struct vfsmount *mounted = lookup_mnt(path);
1253 if (!mounted)
1254 break;
1255 dput(path->dentry);
1256 mntput(path->mnt);
1257 path->mnt = mounted;
1258 path->dentry = dget(mounted->mnt_root);
1259 }
1260 }
1261
1262 static void follow_dotdot(struct nameidata *nd)
1263 {
1264 if (!nd->root.mnt)
1265 set_root(nd);
1266
1267 while(1) {
1268 struct dentry *old = nd->path.dentry;
1269
1270 if (nd->path.dentry == nd->root.dentry &&
1271 nd->path.mnt == nd->root.mnt) {
1272 break;
1273 }
1274 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1275 /* rare case of legitimate dget_parent()... */
1276 nd->path.dentry = dget_parent(nd->path.dentry);
1277 dput(old);
1278 break;
1279 }
1280 if (!follow_up(&nd->path))
1281 break;
1282 }
1283 follow_mount(&nd->path);
1284 nd->inode = nd->path.dentry->d_inode;
1285 }
1286
1287 /*
1288 * This looks up the name in dcache, possibly revalidates the old dentry and
1289 * allocates a new one if not found or not valid. In the need_lookup argument
1290 * returns whether i_op->lookup is necessary.
1291 *
1292 * dir->d_inode->i_mutex must be held
1293 */
1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1295 unsigned int flags, bool *need_lookup)
1296 {
1297 struct dentry *dentry;
1298 int error;
1299
1300 *need_lookup = false;
1301 dentry = d_lookup(dir, name);
1302 if (dentry) {
1303 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1304 error = d_revalidate(dentry, flags);
1305 if (unlikely(error <= 0)) {
1306 if (error < 0) {
1307 dput(dentry);
1308 return ERR_PTR(error);
1309 } else {
1310 d_invalidate(dentry);
1311 dput(dentry);
1312 dentry = NULL;
1313 }
1314 }
1315 }
1316 }
1317
1318 if (!dentry) {
1319 dentry = d_alloc(dir, name);
1320 if (unlikely(!dentry))
1321 return ERR_PTR(-ENOMEM);
1322
1323 *need_lookup = true;
1324 }
1325 return dentry;
1326 }
1327
1328 /*
1329 * Call i_op->lookup on the dentry. The dentry must be negative and
1330 * unhashed.
1331 *
1332 * dir->d_inode->i_mutex must be held
1333 */
1334 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1335 unsigned int flags)
1336 {
1337 struct dentry *old;
1338
1339 /* Don't create child dentry for a dead directory. */
1340 if (unlikely(IS_DEADDIR(dir))) {
1341 dput(dentry);
1342 return ERR_PTR(-ENOENT);
1343 }
1344
1345 old = dir->i_op->lookup(dir, dentry, flags);
1346 if (unlikely(old)) {
1347 dput(dentry);
1348 dentry = old;
1349 }
1350 return dentry;
1351 }
1352
1353 static struct dentry *__lookup_hash(struct qstr *name,
1354 struct dentry *base, unsigned int flags)
1355 {
1356 bool need_lookup;
1357 struct dentry *dentry;
1358
1359 dentry = lookup_dcache(name, base, flags, &need_lookup);
1360 if (!need_lookup)
1361 return dentry;
1362
1363 return lookup_real(base->d_inode, dentry, flags);
1364 }
1365
1366 /*
1367 * It's more convoluted than I'd like it to be, but... it's still fairly
1368 * small and for now I'd prefer to have fast path as straight as possible.
1369 * It _is_ time-critical.
1370 */
1371 static int lookup_fast(struct nameidata *nd,
1372 struct path *path, struct inode **inode)
1373 {
1374 struct vfsmount *mnt = nd->path.mnt;
1375 struct dentry *dentry, *parent = nd->path.dentry;
1376 int need_reval = 1;
1377 int status = 1;
1378 int err;
1379
1380 /*
1381 * Rename seqlock is not required here because in the off chance
1382 * of a false negative due to a concurrent rename, we're going to
1383 * do the non-racy lookup, below.
1384 */
1385 if (nd->flags & LOOKUP_RCU) {
1386 unsigned seq;
1387 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1388 if (!dentry)
1389 goto unlazy;
1390
1391 /*
1392 * This sequence count validates that the inode matches
1393 * the dentry name information from lookup.
1394 */
1395 *inode = dentry->d_inode;
1396 if (read_seqcount_retry(&dentry->d_seq, seq))
1397 return -ECHILD;
1398
1399 /*
1400 * This sequence count validates that the parent had no
1401 * changes while we did the lookup of the dentry above.
1402 *
1403 * The memory barrier in read_seqcount_begin of child is
1404 * enough, we can use __read_seqcount_retry here.
1405 */
1406 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1407 return -ECHILD;
1408 nd->seq = seq;
1409
1410 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1411 status = d_revalidate(dentry, nd->flags);
1412 if (unlikely(status <= 0)) {
1413 if (status != -ECHILD)
1414 need_reval = 0;
1415 goto unlazy;
1416 }
1417 }
1418 path->mnt = mnt;
1419 path->dentry = dentry;
1420 if (likely(__follow_mount_rcu(nd, path, inode)))
1421 return 0;
1422 unlazy:
1423 if (unlazy_walk(nd, dentry))
1424 return -ECHILD;
1425 } else {
1426 dentry = __d_lookup(parent, &nd->last);
1427 }
1428
1429 if (unlikely(!dentry))
1430 goto need_lookup;
1431
1432 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1433 status = d_revalidate(dentry, nd->flags);
1434 if (unlikely(status <= 0)) {
1435 if (status < 0) {
1436 dput(dentry);
1437 return status;
1438 }
1439 d_invalidate(dentry);
1440 dput(dentry);
1441 goto need_lookup;
1442 }
1443
1444 path->mnt = mnt;
1445 path->dentry = dentry;
1446 err = follow_managed(path, nd->flags);
1447 if (unlikely(err < 0)) {
1448 path_put_conditional(path, nd);
1449 return err;
1450 }
1451 if (err)
1452 nd->flags |= LOOKUP_JUMPED;
1453 *inode = path->dentry->d_inode;
1454 return 0;
1455
1456 need_lookup:
1457 return 1;
1458 }
1459
1460 /* Fast lookup failed, do it the slow way */
1461 static int lookup_slow(struct nameidata *nd, struct path *path)
1462 {
1463 struct dentry *dentry, *parent;
1464 int err;
1465
1466 parent = nd->path.dentry;
1467 BUG_ON(nd->inode != parent->d_inode);
1468
1469 mutex_lock(&parent->d_inode->i_mutex);
1470 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1471 mutex_unlock(&parent->d_inode->i_mutex);
1472 if (IS_ERR(dentry))
1473 return PTR_ERR(dentry);
1474 path->mnt = nd->path.mnt;
1475 path->dentry = dentry;
1476 err = follow_managed(path, nd->flags);
1477 if (unlikely(err < 0)) {
1478 path_put_conditional(path, nd);
1479 return err;
1480 }
1481 if (err)
1482 nd->flags |= LOOKUP_JUMPED;
1483 return 0;
1484 }
1485
1486 static inline int may_lookup(struct nameidata *nd)
1487 {
1488 if (nd->flags & LOOKUP_RCU) {
1489 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1490 if (err != -ECHILD)
1491 return err;
1492 if (unlazy_walk(nd, NULL))
1493 return -ECHILD;
1494 }
1495 return inode_permission(nd->inode, MAY_EXEC);
1496 }
1497
1498 static inline int handle_dots(struct nameidata *nd, int type)
1499 {
1500 if (type == LAST_DOTDOT) {
1501 if (nd->flags & LOOKUP_RCU) {
1502 if (follow_dotdot_rcu(nd))
1503 return -ECHILD;
1504 } else
1505 follow_dotdot(nd);
1506 }
1507 return 0;
1508 }
1509
1510 static void terminate_walk(struct nameidata *nd)
1511 {
1512 if (!(nd->flags & LOOKUP_RCU)) {
1513 path_put(&nd->path);
1514 } else {
1515 nd->flags &= ~LOOKUP_RCU;
1516 if (!(nd->flags & LOOKUP_ROOT))
1517 nd->root.mnt = NULL;
1518 rcu_read_unlock();
1519 }
1520 }
1521
1522 /*
1523 * Do we need to follow links? We _really_ want to be able
1524 * to do this check without having to look at inode->i_op,
1525 * so we keep a cache of "no, this doesn't need follow_link"
1526 * for the common case.
1527 */
1528 static inline int should_follow_link(struct dentry *dentry, int follow)
1529 {
1530 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1531 }
1532
1533 static inline int walk_component(struct nameidata *nd, struct path *path,
1534 int follow)
1535 {
1536 struct inode *inode;
1537 int err;
1538 /*
1539 * "." and ".." are special - ".." especially so because it has
1540 * to be able to know about the current root directory and
1541 * parent relationships.
1542 */
1543 if (unlikely(nd->last_type != LAST_NORM))
1544 return handle_dots(nd, nd->last_type);
1545 err = lookup_fast(nd, path, &inode);
1546 if (unlikely(err)) {
1547 if (err < 0)
1548 goto out_err;
1549
1550 err = lookup_slow(nd, path);
1551 if (err < 0)
1552 goto out_err;
1553
1554 inode = path->dentry->d_inode;
1555 }
1556 err = -ENOENT;
1557 if (!inode || d_is_negative(path->dentry))
1558 goto out_path_put;
1559
1560 if (should_follow_link(path->dentry, follow)) {
1561 if (nd->flags & LOOKUP_RCU) {
1562 if (unlikely(unlazy_walk(nd, path->dentry))) {
1563 err = -ECHILD;
1564 goto out_err;
1565 }
1566 }
1567 BUG_ON(inode != path->dentry->d_inode);
1568 return 1;
1569 }
1570 path_to_nameidata(path, nd);
1571 nd->inode = inode;
1572 return 0;
1573
1574 out_path_put:
1575 path_to_nameidata(path, nd);
1576 out_err:
1577 terminate_walk(nd);
1578 return err;
1579 }
1580
1581 /*
1582 * This limits recursive symlink follows to 8, while
1583 * limiting consecutive symlinks to 40.
1584 *
1585 * Without that kind of total limit, nasty chains of consecutive
1586 * symlinks can cause almost arbitrarily long lookups.
1587 */
1588 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1589 {
1590 int res;
1591
1592 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1593 path_put_conditional(path, nd);
1594 path_put(&nd->path);
1595 return -ELOOP;
1596 }
1597 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1598
1599 nd->depth++;
1600 current->link_count++;
1601
1602 do {
1603 struct path link = *path;
1604 void *cookie;
1605
1606 res = follow_link(&link, nd, &cookie);
1607 if (res)
1608 break;
1609 res = walk_component(nd, path, LOOKUP_FOLLOW);
1610 put_link(nd, &link, cookie);
1611 } while (res > 0);
1612
1613 current->link_count--;
1614 nd->depth--;
1615 return res;
1616 }
1617
1618 /*
1619 * We can do the critical dentry name comparison and hashing
1620 * operations one word at a time, but we are limited to:
1621 *
1622 * - Architectures with fast unaligned word accesses. We could
1623 * do a "get_unaligned()" if this helps and is sufficiently
1624 * fast.
1625 *
1626 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1627 * do not trap on the (extremely unlikely) case of a page
1628 * crossing operation.
1629 *
1630 * - Furthermore, we need an efficient 64-bit compile for the
1631 * 64-bit case in order to generate the "number of bytes in
1632 * the final mask". Again, that could be replaced with a
1633 * efficient population count instruction or similar.
1634 */
1635 #ifdef CONFIG_DCACHE_WORD_ACCESS
1636
1637 #include <asm/word-at-a-time.h>
1638
1639 #ifdef CONFIG_64BIT
1640
1641 static inline unsigned int fold_hash(unsigned long hash)
1642 {
1643 return hash_64(hash, 32);
1644 }
1645
1646 #else /* 32-bit case */
1647
1648 #define fold_hash(x) (x)
1649
1650 #endif
1651
1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1653 {
1654 unsigned long a, mask;
1655 unsigned long hash = 0;
1656
1657 for (;;) {
1658 a = load_unaligned_zeropad(name);
1659 if (len < sizeof(unsigned long))
1660 break;
1661 hash += a;
1662 hash *= 9;
1663 name += sizeof(unsigned long);
1664 len -= sizeof(unsigned long);
1665 if (!len)
1666 goto done;
1667 }
1668 mask = bytemask_from_count(len);
1669 hash += mask & a;
1670 done:
1671 return fold_hash(hash);
1672 }
1673 EXPORT_SYMBOL(full_name_hash);
1674
1675 /*
1676 * Calculate the length and hash of the path component, and
1677 * return the "hash_len" as the result.
1678 */
1679 static inline u64 hash_name(const char *name)
1680 {
1681 unsigned long a, b, adata, bdata, mask, hash, len;
1682 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1683
1684 hash = a = 0;
1685 len = -sizeof(unsigned long);
1686 do {
1687 hash = (hash + a) * 9;
1688 len += sizeof(unsigned long);
1689 a = load_unaligned_zeropad(name+len);
1690 b = a ^ REPEAT_BYTE('/');
1691 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1692
1693 adata = prep_zero_mask(a, adata, &constants);
1694 bdata = prep_zero_mask(b, bdata, &constants);
1695
1696 mask = create_zero_mask(adata | bdata);
1697
1698 hash += a & zero_bytemask(mask);
1699 len += find_zero(mask);
1700 return hashlen_create(fold_hash(hash), len);
1701 }
1702
1703 #else
1704
1705 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1706 {
1707 unsigned long hash = init_name_hash();
1708 while (len--)
1709 hash = partial_name_hash(*name++, hash);
1710 return end_name_hash(hash);
1711 }
1712 EXPORT_SYMBOL(full_name_hash);
1713
1714 /*
1715 * We know there's a real path component here of at least
1716 * one character.
1717 */
1718 static inline u64 hash_name(const char *name)
1719 {
1720 unsigned long hash = init_name_hash();
1721 unsigned long len = 0, c;
1722
1723 c = (unsigned char)*name;
1724 do {
1725 len++;
1726 hash = partial_name_hash(c, hash);
1727 c = (unsigned char)name[len];
1728 } while (c && c != '/');
1729 return hashlen_create(end_name_hash(hash), len);
1730 }
1731
1732 #endif
1733
1734 /*
1735 * Name resolution.
1736 * This is the basic name resolution function, turning a pathname into
1737 * the final dentry. We expect 'base' to be positive and a directory.
1738 *
1739 * Returns 0 and nd will have valid dentry and mnt on success.
1740 * Returns error and drops reference to input namei data on failure.
1741 */
1742 static int link_path_walk(const char *name, struct nameidata *nd)
1743 {
1744 struct path next;
1745 int err;
1746
1747 while (*name=='/')
1748 name++;
1749 if (!*name)
1750 return 0;
1751
1752 /* At this point we know we have a real path component. */
1753 for(;;) {
1754 u64 hash_len;
1755 int type;
1756
1757 err = may_lookup(nd);
1758 if (err)
1759 break;
1760
1761 hash_len = hash_name(name);
1762
1763 type = LAST_NORM;
1764 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1765 case 2:
1766 if (name[1] == '.') {
1767 type = LAST_DOTDOT;
1768 nd->flags |= LOOKUP_JUMPED;
1769 }
1770 break;
1771 case 1:
1772 type = LAST_DOT;
1773 }
1774 if (likely(type == LAST_NORM)) {
1775 struct dentry *parent = nd->path.dentry;
1776 nd->flags &= ~LOOKUP_JUMPED;
1777 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1778 struct qstr this = { { .hash_len = hash_len }, .name = name };
1779 err = parent->d_op->d_hash(parent, &this);
1780 if (err < 0)
1781 break;
1782 hash_len = this.hash_len;
1783 name = this.name;
1784 }
1785 }
1786
1787 nd->last.hash_len = hash_len;
1788 nd->last.name = name;
1789 nd->last_type = type;
1790
1791 name += hashlen_len(hash_len);
1792 if (!*name)
1793 return 0;
1794 /*
1795 * If it wasn't NUL, we know it was '/'. Skip that
1796 * slash, and continue until no more slashes.
1797 */
1798 do {
1799 name++;
1800 } while (unlikely(*name == '/'));
1801 if (!*name)
1802 return 0;
1803
1804 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1805 if (err < 0)
1806 return err;
1807
1808 if (err) {
1809 err = nested_symlink(&next, nd);
1810 if (err)
1811 return err;
1812 }
1813 if (!d_can_lookup(nd->path.dentry)) {
1814 err = -ENOTDIR;
1815 break;
1816 }
1817 }
1818 terminate_walk(nd);
1819 return err;
1820 }
1821
1822 static int path_init(int dfd, const char *name, unsigned int flags,
1823 struct nameidata *nd, struct file **fp)
1824 {
1825 int retval = 0;
1826
1827 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1828 nd->flags = flags | LOOKUP_JUMPED;
1829 nd->depth = 0;
1830 if (flags & LOOKUP_ROOT) {
1831 struct dentry *root = nd->root.dentry;
1832 struct inode *inode = root->d_inode;
1833 if (*name) {
1834 if (!d_can_lookup(root))
1835 return -ENOTDIR;
1836 retval = inode_permission(inode, MAY_EXEC);
1837 if (retval)
1838 return retval;
1839 }
1840 nd->path = nd->root;
1841 nd->inode = inode;
1842 if (flags & LOOKUP_RCU) {
1843 rcu_read_lock();
1844 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1845 nd->m_seq = read_seqbegin(&mount_lock);
1846 } else {
1847 path_get(&nd->path);
1848 }
1849 return 0;
1850 }
1851
1852 nd->root.mnt = NULL;
1853
1854 nd->m_seq = read_seqbegin(&mount_lock);
1855 if (*name=='/') {
1856 if (flags & LOOKUP_RCU) {
1857 rcu_read_lock();
1858 nd->seq = set_root_rcu(nd);
1859 } else {
1860 set_root(nd);
1861 path_get(&nd->root);
1862 }
1863 nd->path = nd->root;
1864 } else if (dfd == AT_FDCWD) {
1865 if (flags & LOOKUP_RCU) {
1866 struct fs_struct *fs = current->fs;
1867 unsigned seq;
1868
1869 rcu_read_lock();
1870
1871 do {
1872 seq = read_seqcount_begin(&fs->seq);
1873 nd->path = fs->pwd;
1874 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1875 } while (read_seqcount_retry(&fs->seq, seq));
1876 } else {
1877 get_fs_pwd(current->fs, &nd->path);
1878 }
1879 } else {
1880 /* Caller must check execute permissions on the starting path component */
1881 struct fd f = fdget_raw(dfd);
1882 struct dentry *dentry;
1883
1884 if (!f.file)
1885 return -EBADF;
1886
1887 dentry = f.file->f_path.dentry;
1888
1889 if (*name) {
1890 if (!d_can_lookup(dentry)) {
1891 fdput(f);
1892 return -ENOTDIR;
1893 }
1894 }
1895
1896 nd->path = f.file->f_path;
1897 if (flags & LOOKUP_RCU) {
1898 if (f.flags & FDPUT_FPUT)
1899 *fp = f.file;
1900 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1901 rcu_read_lock();
1902 } else {
1903 path_get(&nd->path);
1904 fdput(f);
1905 }
1906 }
1907
1908 nd->inode = nd->path.dentry->d_inode;
1909 if (!(flags & LOOKUP_RCU))
1910 return 0;
1911 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1912 return 0;
1913 if (!(nd->flags & LOOKUP_ROOT))
1914 nd->root.mnt = NULL;
1915 rcu_read_unlock();
1916 return -ECHILD;
1917 }
1918
1919 static inline int lookup_last(struct nameidata *nd, struct path *path)
1920 {
1921 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1922 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1923
1924 nd->flags &= ~LOOKUP_PARENT;
1925 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1926 }
1927
1928 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1929 static int path_lookupat(int dfd, const char *name,
1930 unsigned int flags, struct nameidata *nd)
1931 {
1932 struct file *base = NULL;
1933 struct path path;
1934 int err;
1935
1936 /*
1937 * Path walking is largely split up into 2 different synchronisation
1938 * schemes, rcu-walk and ref-walk (explained in
1939 * Documentation/filesystems/path-lookup.txt). These share much of the
1940 * path walk code, but some things particularly setup, cleanup, and
1941 * following mounts are sufficiently divergent that functions are
1942 * duplicated. Typically there is a function foo(), and its RCU
1943 * analogue, foo_rcu().
1944 *
1945 * -ECHILD is the error number of choice (just to avoid clashes) that
1946 * is returned if some aspect of an rcu-walk fails. Such an error must
1947 * be handled by restarting a traditional ref-walk (which will always
1948 * be able to complete).
1949 */
1950 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1951
1952 if (unlikely(err))
1953 goto out;
1954
1955 current->total_link_count = 0;
1956 err = link_path_walk(name, nd);
1957
1958 if (!err && !(flags & LOOKUP_PARENT)) {
1959 err = lookup_last(nd, &path);
1960 while (err > 0) {
1961 void *cookie;
1962 struct path link = path;
1963 err = may_follow_link(&link, nd);
1964 if (unlikely(err))
1965 break;
1966 nd->flags |= LOOKUP_PARENT;
1967 err = follow_link(&link, nd, &cookie);
1968 if (err)
1969 break;
1970 err = lookup_last(nd, &path);
1971 put_link(nd, &link, cookie);
1972 }
1973 }
1974
1975 if (!err)
1976 err = complete_walk(nd);
1977
1978 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1979 if (!d_can_lookup(nd->path.dentry)) {
1980 path_put(&nd->path);
1981 err = -ENOTDIR;
1982 }
1983 }
1984
1985 out:
1986 if (base)
1987 fput(base);
1988
1989 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1990 path_put(&nd->root);
1991 nd->root.mnt = NULL;
1992 }
1993 return err;
1994 }
1995
1996 static int filename_lookup(int dfd, struct filename *name,
1997 unsigned int flags, struct nameidata *nd)
1998 {
1999 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2000 if (unlikely(retval == -ECHILD))
2001 retval = path_lookupat(dfd, name->name, flags, nd);
2002 if (unlikely(retval == -ESTALE))
2003 retval = path_lookupat(dfd, name->name,
2004 flags | LOOKUP_REVAL, nd);
2005
2006 if (likely(!retval))
2007 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2008 return retval;
2009 }
2010
2011 static int do_path_lookup(int dfd, const char *name,
2012 unsigned int flags, struct nameidata *nd)
2013 {
2014 struct filename filename = { .name = name };
2015
2016 return filename_lookup(dfd, &filename, flags, nd);
2017 }
2018
2019 /* does lookup, returns the object with parent locked */
2020 struct dentry *kern_path_locked(const char *name, struct path *path)
2021 {
2022 struct nameidata nd;
2023 struct dentry *d;
2024 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2025 if (err)
2026 return ERR_PTR(err);
2027 if (nd.last_type != LAST_NORM) {
2028 path_put(&nd.path);
2029 return ERR_PTR(-EINVAL);
2030 }
2031 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2032 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2033 if (IS_ERR(d)) {
2034 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2035 path_put(&nd.path);
2036 return d;
2037 }
2038 *path = nd.path;
2039 return d;
2040 }
2041
2042 int kern_path(const char *name, unsigned int flags, struct path *path)
2043 {
2044 struct nameidata nd;
2045 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2046 if (!res)
2047 *path = nd.path;
2048 return res;
2049 }
2050 EXPORT_SYMBOL(kern_path);
2051
2052 /**
2053 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2054 * @dentry: pointer to dentry of the base directory
2055 * @mnt: pointer to vfs mount of the base directory
2056 * @name: pointer to file name
2057 * @flags: lookup flags
2058 * @path: pointer to struct path to fill
2059 */
2060 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2061 const char *name, unsigned int flags,
2062 struct path *path)
2063 {
2064 struct nameidata nd;
2065 int err;
2066 nd.root.dentry = dentry;
2067 nd.root.mnt = mnt;
2068 BUG_ON(flags & LOOKUP_PARENT);
2069 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2070 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2071 if (!err)
2072 *path = nd.path;
2073 return err;
2074 }
2075 EXPORT_SYMBOL(vfs_path_lookup);
2076
2077 /*
2078 * Restricted form of lookup. Doesn't follow links, single-component only,
2079 * needs parent already locked. Doesn't follow mounts.
2080 * SMP-safe.
2081 */
2082 static struct dentry *lookup_hash(struct nameidata *nd)
2083 {
2084 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2085 }
2086
2087 /**
2088 * lookup_one_len - filesystem helper to lookup single pathname component
2089 * @name: pathname component to lookup
2090 * @base: base directory to lookup from
2091 * @len: maximum length @len should be interpreted to
2092 *
2093 * Note that this routine is purely a helper for filesystem usage and should
2094 * not be called by generic code. Also note that by using this function the
2095 * nameidata argument is passed to the filesystem methods and a filesystem
2096 * using this helper needs to be prepared for that.
2097 */
2098 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2099 {
2100 struct qstr this;
2101 unsigned int c;
2102 int err;
2103
2104 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2105
2106 this.name = name;
2107 this.len = len;
2108 this.hash = full_name_hash(name, len);
2109 if (!len)
2110 return ERR_PTR(-EACCES);
2111
2112 if (unlikely(name[0] == '.')) {
2113 if (len < 2 || (len == 2 && name[1] == '.'))
2114 return ERR_PTR(-EACCES);
2115 }
2116
2117 while (len--) {
2118 c = *(const unsigned char *)name++;
2119 if (c == '/' || c == '\0')
2120 return ERR_PTR(-EACCES);
2121 }
2122 /*
2123 * See if the low-level filesystem might want
2124 * to use its own hash..
2125 */
2126 if (base->d_flags & DCACHE_OP_HASH) {
2127 int err = base->d_op->d_hash(base, &this);
2128 if (err < 0)
2129 return ERR_PTR(err);
2130 }
2131
2132 err = inode_permission(base->d_inode, MAY_EXEC);
2133 if (err)
2134 return ERR_PTR(err);
2135
2136 return __lookup_hash(&this, base, 0);
2137 }
2138 EXPORT_SYMBOL(lookup_one_len);
2139
2140 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2141 struct path *path, int *empty)
2142 {
2143 struct nameidata nd;
2144 struct filename *tmp = getname_flags(name, flags, empty);
2145 int err = PTR_ERR(tmp);
2146 if (!IS_ERR(tmp)) {
2147
2148 BUG_ON(flags & LOOKUP_PARENT);
2149
2150 err = filename_lookup(dfd, tmp, flags, &nd);
2151 putname(tmp);
2152 if (!err)
2153 *path = nd.path;
2154 }
2155 return err;
2156 }
2157
2158 int user_path_at(int dfd, const char __user *name, unsigned flags,
2159 struct path *path)
2160 {
2161 return user_path_at_empty(dfd, name, flags, path, NULL);
2162 }
2163 EXPORT_SYMBOL(user_path_at);
2164
2165 /*
2166 * NB: most callers don't do anything directly with the reference to the
2167 * to struct filename, but the nd->last pointer points into the name string
2168 * allocated by getname. So we must hold the reference to it until all
2169 * path-walking is complete.
2170 */
2171 static struct filename *
2172 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2173 unsigned int flags)
2174 {
2175 struct filename *s = getname(path);
2176 int error;
2177
2178 /* only LOOKUP_REVAL is allowed in extra flags */
2179 flags &= LOOKUP_REVAL;
2180
2181 if (IS_ERR(s))
2182 return s;
2183
2184 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2185 if (error) {
2186 putname(s);
2187 return ERR_PTR(error);
2188 }
2189
2190 return s;
2191 }
2192
2193 /**
2194 * mountpoint_last - look up last component for umount
2195 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2196 * @path: pointer to container for result
2197 *
2198 * This is a special lookup_last function just for umount. In this case, we
2199 * need to resolve the path without doing any revalidation.
2200 *
2201 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2202 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2203 * in almost all cases, this lookup will be served out of the dcache. The only
2204 * cases where it won't are if nd->last refers to a symlink or the path is
2205 * bogus and it doesn't exist.
2206 *
2207 * Returns:
2208 * -error: if there was an error during lookup. This includes -ENOENT if the
2209 * lookup found a negative dentry. The nd->path reference will also be
2210 * put in this case.
2211 *
2212 * 0: if we successfully resolved nd->path and found it to not to be a
2213 * symlink that needs to be followed. "path" will also be populated.
2214 * The nd->path reference will also be put.
2215 *
2216 * 1: if we successfully resolved nd->last and found it to be a symlink
2217 * that needs to be followed. "path" will be populated with the path
2218 * to the link, and nd->path will *not* be put.
2219 */
2220 static int
2221 mountpoint_last(struct nameidata *nd, struct path *path)
2222 {
2223 int error = 0;
2224 struct dentry *dentry;
2225 struct dentry *dir = nd->path.dentry;
2226
2227 /* If we're in rcuwalk, drop out of it to handle last component */
2228 if (nd->flags & LOOKUP_RCU) {
2229 if (unlazy_walk(nd, NULL)) {
2230 error = -ECHILD;
2231 goto out;
2232 }
2233 }
2234
2235 nd->flags &= ~LOOKUP_PARENT;
2236
2237 if (unlikely(nd->last_type != LAST_NORM)) {
2238 error = handle_dots(nd, nd->last_type);
2239 if (error)
2240 goto out;
2241 dentry = dget(nd->path.dentry);
2242 goto done;
2243 }
2244
2245 mutex_lock(&dir->d_inode->i_mutex);
2246 dentry = d_lookup(dir, &nd->last);
2247 if (!dentry) {
2248 /*
2249 * No cached dentry. Mounted dentries are pinned in the cache,
2250 * so that means that this dentry is probably a symlink or the
2251 * path doesn't actually point to a mounted dentry.
2252 */
2253 dentry = d_alloc(dir, &nd->last);
2254 if (!dentry) {
2255 error = -ENOMEM;
2256 mutex_unlock(&dir->d_inode->i_mutex);
2257 goto out;
2258 }
2259 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2260 error = PTR_ERR(dentry);
2261 if (IS_ERR(dentry)) {
2262 mutex_unlock(&dir->d_inode->i_mutex);
2263 goto out;
2264 }
2265 }
2266 mutex_unlock(&dir->d_inode->i_mutex);
2267
2268 done:
2269 if (!dentry->d_inode || d_is_negative(dentry)) {
2270 error = -ENOENT;
2271 dput(dentry);
2272 goto out;
2273 }
2274 path->dentry = dentry;
2275 path->mnt = nd->path.mnt;
2276 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2277 return 1;
2278 mntget(path->mnt);
2279 follow_mount(path);
2280 error = 0;
2281 out:
2282 terminate_walk(nd);
2283 return error;
2284 }
2285
2286 /**
2287 * path_mountpoint - look up a path to be umounted
2288 * @dfd: directory file descriptor to start walk from
2289 * @name: full pathname to walk
2290 * @path: pointer to container for result
2291 * @flags: lookup flags
2292 *
2293 * Look up the given name, but don't attempt to revalidate the last component.
2294 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2295 */
2296 static int
2297 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2298 {
2299 struct file *base = NULL;
2300 struct nameidata nd;
2301 int err;
2302
2303 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2304 if (unlikely(err))
2305 goto out;
2306
2307 current->total_link_count = 0;
2308 err = link_path_walk(name, &nd);
2309 if (err)
2310 goto out;
2311
2312 err = mountpoint_last(&nd, path);
2313 while (err > 0) {
2314 void *cookie;
2315 struct path link = *path;
2316 err = may_follow_link(&link, &nd);
2317 if (unlikely(err))
2318 break;
2319 nd.flags |= LOOKUP_PARENT;
2320 err = follow_link(&link, &nd, &cookie);
2321 if (err)
2322 break;
2323 err = mountpoint_last(&nd, path);
2324 put_link(&nd, &link, cookie);
2325 }
2326 out:
2327 if (base)
2328 fput(base);
2329
2330 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2331 path_put(&nd.root);
2332
2333 return err;
2334 }
2335
2336 static int
2337 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2338 unsigned int flags)
2339 {
2340 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2341 if (unlikely(error == -ECHILD))
2342 error = path_mountpoint(dfd, s->name, path, flags);
2343 if (unlikely(error == -ESTALE))
2344 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2345 if (likely(!error))
2346 audit_inode(s, path->dentry, 0);
2347 return error;
2348 }
2349
2350 /**
2351 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2352 * @dfd: directory file descriptor
2353 * @name: pathname from userland
2354 * @flags: lookup flags
2355 * @path: pointer to container to hold result
2356 *
2357 * A umount is a special case for path walking. We're not actually interested
2358 * in the inode in this situation, and ESTALE errors can be a problem. We
2359 * simply want track down the dentry and vfsmount attached at the mountpoint
2360 * and avoid revalidating the last component.
2361 *
2362 * Returns 0 and populates "path" on success.
2363 */
2364 int
2365 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2366 struct path *path)
2367 {
2368 struct filename *s = getname(name);
2369 int error;
2370 if (IS_ERR(s))
2371 return PTR_ERR(s);
2372 error = filename_mountpoint(dfd, s, path, flags);
2373 putname(s);
2374 return error;
2375 }
2376
2377 int
2378 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2379 unsigned int flags)
2380 {
2381 struct filename s = {.name = name};
2382 return filename_mountpoint(dfd, &s, path, flags);
2383 }
2384 EXPORT_SYMBOL(kern_path_mountpoint);
2385
2386 /*
2387 * It's inline, so penalty for filesystems that don't use sticky bit is
2388 * minimal.
2389 */
2390 static inline int check_sticky(struct inode *dir, struct inode *inode)
2391 {
2392 kuid_t fsuid = current_fsuid();
2393
2394 if (!(dir->i_mode & S_ISVTX))
2395 return 0;
2396 if (uid_eq(inode->i_uid, fsuid))
2397 return 0;
2398 if (uid_eq(dir->i_uid, fsuid))
2399 return 0;
2400 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2401 }
2402
2403 /*
2404 * Check whether we can remove a link victim from directory dir, check
2405 * whether the type of victim is right.
2406 * 1. We can't do it if dir is read-only (done in permission())
2407 * 2. We should have write and exec permissions on dir
2408 * 3. We can't remove anything from append-only dir
2409 * 4. We can't do anything with immutable dir (done in permission())
2410 * 5. If the sticky bit on dir is set we should either
2411 * a. be owner of dir, or
2412 * b. be owner of victim, or
2413 * c. have CAP_FOWNER capability
2414 * 6. If the victim is append-only or immutable we can't do antyhing with
2415 * links pointing to it.
2416 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2417 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2418 * 9. We can't remove a root or mountpoint.
2419 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2420 * nfs_async_unlink().
2421 */
2422 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2423 {
2424 struct inode *inode = victim->d_inode;
2425 int error;
2426
2427 if (d_is_negative(victim))
2428 return -ENOENT;
2429 BUG_ON(!inode);
2430
2431 BUG_ON(victim->d_parent->d_inode != dir);
2432 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2433
2434 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2435 if (error)
2436 return error;
2437 if (IS_APPEND(dir))
2438 return -EPERM;
2439
2440 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2441 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2442 return -EPERM;
2443 if (isdir) {
2444 if (!d_is_dir(victim))
2445 return -ENOTDIR;
2446 if (IS_ROOT(victim))
2447 return -EBUSY;
2448 } else if (d_is_dir(victim))
2449 return -EISDIR;
2450 if (IS_DEADDIR(dir))
2451 return -ENOENT;
2452 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2453 return -EBUSY;
2454 return 0;
2455 }
2456
2457 /* Check whether we can create an object with dentry child in directory
2458 * dir.
2459 * 1. We can't do it if child already exists (open has special treatment for
2460 * this case, but since we are inlined it's OK)
2461 * 2. We can't do it if dir is read-only (done in permission())
2462 * 3. We should have write and exec permissions on dir
2463 * 4. We can't do it if dir is immutable (done in permission())
2464 */
2465 static inline int may_create(struct inode *dir, struct dentry *child)
2466 {
2467 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2468 if (child->d_inode)
2469 return -EEXIST;
2470 if (IS_DEADDIR(dir))
2471 return -ENOENT;
2472 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2473 }
2474
2475 /*
2476 * p1 and p2 should be directories on the same fs.
2477 */
2478 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2479 {
2480 struct dentry *p;
2481
2482 if (p1 == p2) {
2483 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2484 return NULL;
2485 }
2486
2487 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2488
2489 p = d_ancestor(p2, p1);
2490 if (p) {
2491 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2492 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2493 return p;
2494 }
2495
2496 p = d_ancestor(p1, p2);
2497 if (p) {
2498 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2499 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2500 return p;
2501 }
2502
2503 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2504 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2505 return NULL;
2506 }
2507 EXPORT_SYMBOL(lock_rename);
2508
2509 void unlock_rename(struct dentry *p1, struct dentry *p2)
2510 {
2511 mutex_unlock(&p1->d_inode->i_mutex);
2512 if (p1 != p2) {
2513 mutex_unlock(&p2->d_inode->i_mutex);
2514 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2515 }
2516 }
2517 EXPORT_SYMBOL(unlock_rename);
2518
2519 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2520 bool want_excl)
2521 {
2522 int error = may_create(dir, dentry);
2523 if (error)
2524 return error;
2525
2526 if (!dir->i_op->create)
2527 return -EACCES; /* shouldn't it be ENOSYS? */
2528 mode &= S_IALLUGO;
2529 mode |= S_IFREG;
2530 error = security_inode_create(dir, dentry, mode);
2531 if (error)
2532 return error;
2533 error = dir->i_op->create(dir, dentry, mode, want_excl);
2534 if (!error)
2535 fsnotify_create(dir, dentry);
2536 return error;
2537 }
2538 EXPORT_SYMBOL(vfs_create);
2539
2540 static int may_open(struct path *path, int acc_mode, int flag)
2541 {
2542 struct dentry *dentry = path->dentry;
2543 struct inode *inode = dentry->d_inode;
2544 int error;
2545
2546 /* O_PATH? */
2547 if (!acc_mode)
2548 return 0;
2549
2550 if (!inode)
2551 return -ENOENT;
2552
2553 switch (inode->i_mode & S_IFMT) {
2554 case S_IFLNK:
2555 return -ELOOP;
2556 case S_IFDIR:
2557 if (acc_mode & MAY_WRITE)
2558 return -EISDIR;
2559 break;
2560 case S_IFBLK:
2561 case S_IFCHR:
2562 if (path->mnt->mnt_flags & MNT_NODEV)
2563 return -EACCES;
2564 /*FALLTHRU*/
2565 case S_IFIFO:
2566 case S_IFSOCK:
2567 flag &= ~O_TRUNC;
2568 break;
2569 }
2570
2571 error = inode_permission(inode, acc_mode);
2572 if (error)
2573 return error;
2574
2575 /*
2576 * An append-only file must be opened in append mode for writing.
2577 */
2578 if (IS_APPEND(inode)) {
2579 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2580 return -EPERM;
2581 if (flag & O_TRUNC)
2582 return -EPERM;
2583 }
2584
2585 /* O_NOATIME can only be set by the owner or superuser */
2586 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2587 return -EPERM;
2588
2589 return 0;
2590 }
2591
2592 static int handle_truncate(struct file *filp)
2593 {
2594 struct path *path = &filp->f_path;
2595 struct inode *inode = path->dentry->d_inode;
2596 int error = get_write_access(inode);
2597 if (error)
2598 return error;
2599 /*
2600 * Refuse to truncate files with mandatory locks held on them.
2601 */
2602 error = locks_verify_locked(filp);
2603 if (!error)
2604 error = security_path_truncate(path);
2605 if (!error) {
2606 error = do_truncate(path->dentry, 0,
2607 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2608 filp);
2609 }
2610 put_write_access(inode);
2611 return error;
2612 }
2613
2614 static inline int open_to_namei_flags(int flag)
2615 {
2616 if ((flag & O_ACCMODE) == 3)
2617 flag--;
2618 return flag;
2619 }
2620
2621 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2622 {
2623 int error = security_path_mknod(dir, dentry, mode, 0);
2624 if (error)
2625 return error;
2626
2627 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2628 if (error)
2629 return error;
2630
2631 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2632 }
2633
2634 /*
2635 * Attempt to atomically look up, create and open a file from a negative
2636 * dentry.
2637 *
2638 * Returns 0 if successful. The file will have been created and attached to
2639 * @file by the filesystem calling finish_open().
2640 *
2641 * Returns 1 if the file was looked up only or didn't need creating. The
2642 * caller will need to perform the open themselves. @path will have been
2643 * updated to point to the new dentry. This may be negative.
2644 *
2645 * Returns an error code otherwise.
2646 */
2647 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2648 struct path *path, struct file *file,
2649 const struct open_flags *op,
2650 bool got_write, bool need_lookup,
2651 int *opened)
2652 {
2653 struct inode *dir = nd->path.dentry->d_inode;
2654 unsigned open_flag = open_to_namei_flags(op->open_flag);
2655 umode_t mode;
2656 int error;
2657 int acc_mode;
2658 int create_error = 0;
2659 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2660 bool excl;
2661
2662 BUG_ON(dentry->d_inode);
2663
2664 /* Don't create child dentry for a dead directory. */
2665 if (unlikely(IS_DEADDIR(dir))) {
2666 error = -ENOENT;
2667 goto out;
2668 }
2669
2670 mode = op->mode;
2671 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2672 mode &= ~current_umask();
2673
2674 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2675 if (excl)
2676 open_flag &= ~O_TRUNC;
2677
2678 /*
2679 * Checking write permission is tricky, bacuse we don't know if we are
2680 * going to actually need it: O_CREAT opens should work as long as the
2681 * file exists. But checking existence breaks atomicity. The trick is
2682 * to check access and if not granted clear O_CREAT from the flags.
2683 *
2684 * Another problem is returing the "right" error value (e.g. for an
2685 * O_EXCL open we want to return EEXIST not EROFS).
2686 */
2687 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2688 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2689 if (!(open_flag & O_CREAT)) {
2690 /*
2691 * No O_CREATE -> atomicity not a requirement -> fall
2692 * back to lookup + open
2693 */
2694 goto no_open;
2695 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2696 /* Fall back and fail with the right error */
2697 create_error = -EROFS;
2698 goto no_open;
2699 } else {
2700 /* No side effects, safe to clear O_CREAT */
2701 create_error = -EROFS;
2702 open_flag &= ~O_CREAT;
2703 }
2704 }
2705
2706 if (open_flag & O_CREAT) {
2707 error = may_o_create(&nd->path, dentry, mode);
2708 if (error) {
2709 create_error = error;
2710 if (open_flag & O_EXCL)
2711 goto no_open;
2712 open_flag &= ~O_CREAT;
2713 }
2714 }
2715
2716 if (nd->flags & LOOKUP_DIRECTORY)
2717 open_flag |= O_DIRECTORY;
2718
2719 file->f_path.dentry = DENTRY_NOT_SET;
2720 file->f_path.mnt = nd->path.mnt;
2721 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2722 opened);
2723 if (error < 0) {
2724 if (create_error && error == -ENOENT)
2725 error = create_error;
2726 goto out;
2727 }
2728
2729 if (error) { /* returned 1, that is */
2730 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2731 error = -EIO;
2732 goto out;
2733 }
2734 if (file->f_path.dentry) {
2735 dput(dentry);
2736 dentry = file->f_path.dentry;
2737 }
2738 if (*opened & FILE_CREATED)
2739 fsnotify_create(dir, dentry);
2740 if (!dentry->d_inode) {
2741 WARN_ON(*opened & FILE_CREATED);
2742 if (create_error) {
2743 error = create_error;
2744 goto out;
2745 }
2746 } else {
2747 if (excl && !(*opened & FILE_CREATED)) {
2748 error = -EEXIST;
2749 goto out;
2750 }
2751 }
2752 goto looked_up;
2753 }
2754
2755 /*
2756 * We didn't have the inode before the open, so check open permission
2757 * here.
2758 */
2759 acc_mode = op->acc_mode;
2760 if (*opened & FILE_CREATED) {
2761 WARN_ON(!(open_flag & O_CREAT));
2762 fsnotify_create(dir, dentry);
2763 acc_mode = MAY_OPEN;
2764 }
2765 error = may_open(&file->f_path, acc_mode, open_flag);
2766 if (error)
2767 fput(file);
2768
2769 out:
2770 dput(dentry);
2771 return error;
2772
2773 no_open:
2774 if (need_lookup) {
2775 dentry = lookup_real(dir, dentry, nd->flags);
2776 if (IS_ERR(dentry))
2777 return PTR_ERR(dentry);
2778
2779 if (create_error) {
2780 int open_flag = op->open_flag;
2781
2782 error = create_error;
2783 if ((open_flag & O_EXCL)) {
2784 if (!dentry->d_inode)
2785 goto out;
2786 } else if (!dentry->d_inode) {
2787 goto out;
2788 } else if ((open_flag & O_TRUNC) &&
2789 S_ISREG(dentry->d_inode->i_mode)) {
2790 goto out;
2791 }
2792 /* will fail later, go on to get the right error */
2793 }
2794 }
2795 looked_up:
2796 path->dentry = dentry;
2797 path->mnt = nd->path.mnt;
2798 return 1;
2799 }
2800
2801 /*
2802 * Look up and maybe create and open the last component.
2803 *
2804 * Must be called with i_mutex held on parent.
2805 *
2806 * Returns 0 if the file was successfully atomically created (if necessary) and
2807 * opened. In this case the file will be returned attached to @file.
2808 *
2809 * Returns 1 if the file was not completely opened at this time, though lookups
2810 * and creations will have been performed and the dentry returned in @path will
2811 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2812 * specified then a negative dentry may be returned.
2813 *
2814 * An error code is returned otherwise.
2815 *
2816 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2817 * cleared otherwise prior to returning.
2818 */
2819 static int lookup_open(struct nameidata *nd, struct path *path,
2820 struct file *file,
2821 const struct open_flags *op,
2822 bool got_write, int *opened)
2823 {
2824 struct dentry *dir = nd->path.dentry;
2825 struct inode *dir_inode = dir->d_inode;
2826 struct dentry *dentry;
2827 int error;
2828 bool need_lookup;
2829
2830 *opened &= ~FILE_CREATED;
2831 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2832 if (IS_ERR(dentry))
2833 return PTR_ERR(dentry);
2834
2835 /* Cached positive dentry: will open in f_op->open */
2836 if (!need_lookup && dentry->d_inode)
2837 goto out_no_open;
2838
2839 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2840 return atomic_open(nd, dentry, path, file, op, got_write,
2841 need_lookup, opened);
2842 }
2843
2844 if (need_lookup) {
2845 BUG_ON(dentry->d_inode);
2846
2847 dentry = lookup_real(dir_inode, dentry, nd->flags);
2848 if (IS_ERR(dentry))
2849 return PTR_ERR(dentry);
2850 }
2851
2852 /* Negative dentry, just create the file */
2853 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2854 umode_t mode = op->mode;
2855 if (!IS_POSIXACL(dir->d_inode))
2856 mode &= ~current_umask();
2857 /*
2858 * This write is needed to ensure that a
2859 * rw->ro transition does not occur between
2860 * the time when the file is created and when
2861 * a permanent write count is taken through
2862 * the 'struct file' in finish_open().
2863 */
2864 if (!got_write) {
2865 error = -EROFS;
2866 goto out_dput;
2867 }
2868 *opened |= FILE_CREATED;
2869 error = security_path_mknod(&nd->path, dentry, mode, 0);
2870 if (error)
2871 goto out_dput;
2872 error = vfs_create(dir->d_inode, dentry, mode,
2873 nd->flags & LOOKUP_EXCL);
2874 if (error)
2875 goto out_dput;
2876 }
2877 out_no_open:
2878 path->dentry = dentry;
2879 path->mnt = nd->path.mnt;
2880 return 1;
2881
2882 out_dput:
2883 dput(dentry);
2884 return error;
2885 }
2886
2887 /*
2888 * Handle the last step of open()
2889 */
2890 static int do_last(struct nameidata *nd, struct path *path,
2891 struct file *file, const struct open_flags *op,
2892 int *opened, struct filename *name)
2893 {
2894 struct dentry *dir = nd->path.dentry;
2895 int open_flag = op->open_flag;
2896 bool will_truncate = (open_flag & O_TRUNC) != 0;
2897 bool got_write = false;
2898 int acc_mode = op->acc_mode;
2899 struct inode *inode;
2900 bool symlink_ok = false;
2901 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2902 bool retried = false;
2903 int error;
2904
2905 nd->flags &= ~LOOKUP_PARENT;
2906 nd->flags |= op->intent;
2907
2908 if (nd->last_type != LAST_NORM) {
2909 error = handle_dots(nd, nd->last_type);
2910 if (error)
2911 return error;
2912 goto finish_open;
2913 }
2914
2915 if (!(open_flag & O_CREAT)) {
2916 if (nd->last.name[nd->last.len])
2917 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2918 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2919 symlink_ok = true;
2920 /* we _can_ be in RCU mode here */
2921 error = lookup_fast(nd, path, &inode);
2922 if (likely(!error))
2923 goto finish_lookup;
2924
2925 if (error < 0)
2926 goto out;
2927
2928 BUG_ON(nd->inode != dir->d_inode);
2929 } else {
2930 /* create side of things */
2931 /*
2932 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2933 * has been cleared when we got to the last component we are
2934 * about to look up
2935 */
2936 error = complete_walk(nd);
2937 if (error)
2938 return error;
2939
2940 audit_inode(name, dir, LOOKUP_PARENT);
2941 error = -EISDIR;
2942 /* trailing slashes? */
2943 if (nd->last.name[nd->last.len])
2944 goto out;
2945 }
2946
2947 retry_lookup:
2948 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2949 error = mnt_want_write(nd->path.mnt);
2950 if (!error)
2951 got_write = true;
2952 /*
2953 * do _not_ fail yet - we might not need that or fail with
2954 * a different error; let lookup_open() decide; we'll be
2955 * dropping this one anyway.
2956 */
2957 }
2958 mutex_lock(&dir->d_inode->i_mutex);
2959 error = lookup_open(nd, path, file, op, got_write, opened);
2960 mutex_unlock(&dir->d_inode->i_mutex);
2961
2962 if (error <= 0) {
2963 if (error)
2964 goto out;
2965
2966 if ((*opened & FILE_CREATED) ||
2967 !S_ISREG(file_inode(file)->i_mode))
2968 will_truncate = false;
2969
2970 audit_inode(name, file->f_path.dentry, 0);
2971 goto opened;
2972 }
2973
2974 if (*opened & FILE_CREATED) {
2975 /* Don't check for write permission, don't truncate */
2976 open_flag &= ~O_TRUNC;
2977 will_truncate = false;
2978 acc_mode = MAY_OPEN;
2979 path_to_nameidata(path, nd);
2980 goto finish_open_created;
2981 }
2982
2983 /*
2984 * create/update audit record if it already exists.
2985 */
2986 if (d_is_positive(path->dentry))
2987 audit_inode(name, path->dentry, 0);
2988
2989 /*
2990 * If atomic_open() acquired write access it is dropped now due to
2991 * possible mount and symlink following (this might be optimized away if
2992 * necessary...)
2993 */
2994 if (got_write) {
2995 mnt_drop_write(nd->path.mnt);
2996 got_write = false;
2997 }
2998
2999 error = -EEXIST;
3000 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3001 goto exit_dput;
3002
3003 error = follow_managed(path, nd->flags);
3004 if (error < 0)
3005 goto exit_dput;
3006
3007 if (error)
3008 nd->flags |= LOOKUP_JUMPED;
3009
3010 BUG_ON(nd->flags & LOOKUP_RCU);
3011 inode = path->dentry->d_inode;
3012 finish_lookup:
3013 /* we _can_ be in RCU mode here */
3014 error = -ENOENT;
3015 if (!inode || d_is_negative(path->dentry)) {
3016 path_to_nameidata(path, nd);
3017 goto out;
3018 }
3019
3020 if (should_follow_link(path->dentry, !symlink_ok)) {
3021 if (nd->flags & LOOKUP_RCU) {
3022 if (unlikely(unlazy_walk(nd, path->dentry))) {
3023 error = -ECHILD;
3024 goto out;
3025 }
3026 }
3027 BUG_ON(inode != path->dentry->d_inode);
3028 return 1;
3029 }
3030
3031 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3032 path_to_nameidata(path, nd);
3033 } else {
3034 save_parent.dentry = nd->path.dentry;
3035 save_parent.mnt = mntget(path->mnt);
3036 nd->path.dentry = path->dentry;
3037
3038 }
3039 nd->inode = inode;
3040 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3041 finish_open:
3042 error = complete_walk(nd);
3043 if (error) {
3044 path_put(&save_parent);
3045 return error;
3046 }
3047 audit_inode(name, nd->path.dentry, 0);
3048 error = -EISDIR;
3049 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3050 goto out;
3051 error = -ENOTDIR;
3052 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3053 goto out;
3054 if (!S_ISREG(nd->inode->i_mode))
3055 will_truncate = false;
3056
3057 if (will_truncate) {
3058 error = mnt_want_write(nd->path.mnt);
3059 if (error)
3060 goto out;
3061 got_write = true;
3062 }
3063 finish_open_created:
3064 error = may_open(&nd->path, acc_mode, open_flag);
3065 if (error)
3066 goto out;
3067 file->f_path.mnt = nd->path.mnt;
3068 error = finish_open(file, nd->path.dentry, NULL, opened);
3069 if (error) {
3070 if (error == -EOPENSTALE)
3071 goto stale_open;
3072 goto out;
3073 }
3074 opened:
3075 error = open_check_o_direct(file);
3076 if (error)
3077 goto exit_fput;
3078 error = ima_file_check(file, op->acc_mode, *opened);
3079 if (error)
3080 goto exit_fput;
3081
3082 if (will_truncate) {
3083 error = handle_truncate(file);
3084 if (error)
3085 goto exit_fput;
3086 }
3087 out:
3088 if (got_write)
3089 mnt_drop_write(nd->path.mnt);
3090 path_put(&save_parent);
3091 terminate_walk(nd);
3092 return error;
3093
3094 exit_dput:
3095 path_put_conditional(path, nd);
3096 goto out;
3097 exit_fput:
3098 fput(file);
3099 goto out;
3100
3101 stale_open:
3102 /* If no saved parent or already retried then can't retry */
3103 if (!save_parent.dentry || retried)
3104 goto out;
3105
3106 BUG_ON(save_parent.dentry != dir);
3107 path_put(&nd->path);
3108 nd->path = save_parent;
3109 nd->inode = dir->d_inode;
3110 save_parent.mnt = NULL;
3111 save_parent.dentry = NULL;
3112 if (got_write) {
3113 mnt_drop_write(nd->path.mnt);
3114 got_write = false;
3115 }
3116 retried = true;
3117 goto retry_lookup;
3118 }
3119
3120 static int do_tmpfile(int dfd, struct filename *pathname,
3121 struct nameidata *nd, int flags,
3122 const struct open_flags *op,
3123 struct file *file, int *opened)
3124 {
3125 static const struct qstr name = QSTR_INIT("/", 1);
3126 struct dentry *dentry, *child;
3127 struct inode *dir;
3128 int error = path_lookupat(dfd, pathname->name,
3129 flags | LOOKUP_DIRECTORY, nd);
3130 if (unlikely(error))
3131 return error;
3132 error = mnt_want_write(nd->path.mnt);
3133 if (unlikely(error))
3134 goto out;
3135 /* we want directory to be writable */
3136 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3137 if (error)
3138 goto out2;
3139 dentry = nd->path.dentry;
3140 dir = dentry->d_inode;
3141 if (!dir->i_op->tmpfile) {
3142 error = -EOPNOTSUPP;
3143 goto out2;
3144 }
3145 child = d_alloc(dentry, &name);
3146 if (unlikely(!child)) {
3147 error = -ENOMEM;
3148 goto out2;
3149 }
3150 nd->flags &= ~LOOKUP_DIRECTORY;
3151 nd->flags |= op->intent;
3152 dput(nd->path.dentry);
3153 nd->path.dentry = child;
3154 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3155 if (error)
3156 goto out2;
3157 audit_inode(pathname, nd->path.dentry, 0);
3158 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3159 if (error)
3160 goto out2;
3161 file->f_path.mnt = nd->path.mnt;
3162 error = finish_open(file, nd->path.dentry, NULL, opened);
3163 if (error)
3164 goto out2;
3165 error = open_check_o_direct(file);
3166 if (error) {
3167 fput(file);
3168 } else if (!(op->open_flag & O_EXCL)) {
3169 struct inode *inode = file_inode(file);
3170 spin_lock(&inode->i_lock);
3171 inode->i_state |= I_LINKABLE;
3172 spin_unlock(&inode->i_lock);
3173 }
3174 out2:
3175 mnt_drop_write(nd->path.mnt);
3176 out:
3177 path_put(&nd->path);
3178 return error;
3179 }
3180
3181 static struct file *path_openat(int dfd, struct filename *pathname,
3182 struct nameidata *nd, const struct open_flags *op, int flags)
3183 {
3184 struct file *base = NULL;
3185 struct file *file;
3186 struct path path;
3187 int opened = 0;
3188 int error;
3189
3190 file = get_empty_filp();
3191 if (IS_ERR(file))
3192 return file;
3193
3194 file->f_flags = op->open_flag;
3195
3196 if (unlikely(file->f_flags & __O_TMPFILE)) {
3197 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3198 goto out;
3199 }
3200
3201 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3202 if (unlikely(error))
3203 goto out;
3204
3205 current->total_link_count = 0;
3206 error = link_path_walk(pathname->name, nd);
3207 if (unlikely(error))
3208 goto out;
3209
3210 error = do_last(nd, &path, file, op, &opened, pathname);
3211 while (unlikely(error > 0)) { /* trailing symlink */
3212 struct path link = path;
3213 void *cookie;
3214 if (!(nd->flags & LOOKUP_FOLLOW)) {
3215 path_put_conditional(&path, nd);
3216 path_put(&nd->path);
3217 error = -ELOOP;
3218 break;
3219 }
3220 error = may_follow_link(&link, nd);
3221 if (unlikely(error))
3222 break;
3223 nd->flags |= LOOKUP_PARENT;
3224 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3225 error = follow_link(&link, nd, &cookie);
3226 if (unlikely(error))
3227 break;
3228 error = do_last(nd, &path, file, op, &opened, pathname);
3229 put_link(nd, &link, cookie);
3230 }
3231 out:
3232 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3233 path_put(&nd->root);
3234 if (base)
3235 fput(base);
3236 if (!(opened & FILE_OPENED)) {
3237 BUG_ON(!error);
3238 put_filp(file);
3239 }
3240 if (unlikely(error)) {
3241 if (error == -EOPENSTALE) {
3242 if (flags & LOOKUP_RCU)
3243 error = -ECHILD;
3244 else
3245 error = -ESTALE;
3246 }
3247 file = ERR_PTR(error);
3248 }
3249 return file;
3250 }
3251
3252 struct file *do_filp_open(int dfd, struct filename *pathname,
3253 const struct open_flags *op)
3254 {
3255 struct nameidata nd;
3256 int flags = op->lookup_flags;
3257 struct file *filp;
3258
3259 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3260 if (unlikely(filp == ERR_PTR(-ECHILD)))
3261 filp = path_openat(dfd, pathname, &nd, op, flags);
3262 if (unlikely(filp == ERR_PTR(-ESTALE)))
3263 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3264 return filp;
3265 }
3266
3267 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3268 const char *name, const struct open_flags *op)
3269 {
3270 struct nameidata nd;
3271 struct file *file;
3272 struct filename filename = { .name = name };
3273 int flags = op->lookup_flags | LOOKUP_ROOT;
3274
3275 nd.root.mnt = mnt;
3276 nd.root.dentry = dentry;
3277
3278 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3279 return ERR_PTR(-ELOOP);
3280
3281 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3282 if (unlikely(file == ERR_PTR(-ECHILD)))
3283 file = path_openat(-1, &filename, &nd, op, flags);
3284 if (unlikely(file == ERR_PTR(-ESTALE)))
3285 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3286 return file;
3287 }
3288
3289 struct dentry *kern_path_create(int dfd, const char *pathname,
3290 struct path *path, unsigned int lookup_flags)
3291 {
3292 struct dentry *dentry = ERR_PTR(-EEXIST);
3293 struct nameidata nd;
3294 int err2;
3295 int error;
3296 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3297
3298 /*
3299 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3300 * other flags passed in are ignored!
3301 */
3302 lookup_flags &= LOOKUP_REVAL;
3303
3304 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3305 if (error)
3306 return ERR_PTR(error);
3307
3308 /*
3309 * Yucky last component or no last component at all?
3310 * (foo/., foo/.., /////)
3311 */
3312 if (nd.last_type != LAST_NORM)
3313 goto out;
3314 nd.flags &= ~LOOKUP_PARENT;
3315 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3316
3317 /* don't fail immediately if it's r/o, at least try to report other errors */
3318 err2 = mnt_want_write(nd.path.mnt);
3319 /*
3320 * Do the final lookup.
3321 */
3322 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3323 dentry = lookup_hash(&nd);
3324 if (IS_ERR(dentry))
3325 goto unlock;
3326
3327 error = -EEXIST;
3328 if (d_is_positive(dentry))
3329 goto fail;
3330
3331 /*
3332 * Special case - lookup gave negative, but... we had foo/bar/
3333 * From the vfs_mknod() POV we just have a negative dentry -
3334 * all is fine. Let's be bastards - you had / on the end, you've
3335 * been asking for (non-existent) directory. -ENOENT for you.
3336 */
3337 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3338 error = -ENOENT;
3339 goto fail;
3340 }
3341 if (unlikely(err2)) {
3342 error = err2;
3343 goto fail;
3344 }
3345 *path = nd.path;
3346 return dentry;
3347 fail:
3348 dput(dentry);
3349 dentry = ERR_PTR(error);
3350 unlock:
3351 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3352 if (!err2)
3353 mnt_drop_write(nd.path.mnt);
3354 out:
3355 path_put(&nd.path);
3356 return dentry;
3357 }
3358 EXPORT_SYMBOL(kern_path_create);
3359
3360 void done_path_create(struct path *path, struct dentry *dentry)
3361 {
3362 dput(dentry);
3363 mutex_unlock(&path->dentry->d_inode->i_mutex);
3364 mnt_drop_write(path->mnt);
3365 path_put(path);
3366 }
3367 EXPORT_SYMBOL(done_path_create);
3368
3369 struct dentry *user_path_create(int dfd, const char __user *pathname,
3370 struct path *path, unsigned int lookup_flags)
3371 {
3372 struct filename *tmp = getname(pathname);
3373 struct dentry *res;
3374 if (IS_ERR(tmp))
3375 return ERR_CAST(tmp);
3376 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3377 putname(tmp);
3378 return res;
3379 }
3380 EXPORT_SYMBOL(user_path_create);
3381
3382 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3383 {
3384 int error = may_create(dir, dentry);
3385
3386 if (error)
3387 return error;
3388
3389 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3390 return -EPERM;
3391
3392 if (!dir->i_op->mknod)
3393 return -EPERM;
3394
3395 error = devcgroup_inode_mknod(mode, dev);
3396 if (error)
3397 return error;
3398
3399 error = security_inode_mknod(dir, dentry, mode, dev);
3400 if (error)
3401 return error;
3402
3403 error = dir->i_op->mknod(dir, dentry, mode, dev);
3404 if (!error)
3405 fsnotify_create(dir, dentry);
3406 return error;
3407 }
3408 EXPORT_SYMBOL(vfs_mknod);
3409
3410 static int may_mknod(umode_t mode)
3411 {
3412 switch (mode & S_IFMT) {
3413 case S_IFREG:
3414 case S_IFCHR:
3415 case S_IFBLK:
3416 case S_IFIFO:
3417 case S_IFSOCK:
3418 case 0: /* zero mode translates to S_IFREG */
3419 return 0;
3420 case S_IFDIR:
3421 return -EPERM;
3422 default:
3423 return -EINVAL;
3424 }
3425 }
3426
3427 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3428 unsigned, dev)
3429 {
3430 struct dentry *dentry;
3431 struct path path;
3432 int error;
3433 unsigned int lookup_flags = 0;
3434
3435 error = may_mknod(mode);
3436 if (error)
3437 return error;
3438 retry:
3439 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3440 if (IS_ERR(dentry))
3441 return PTR_ERR(dentry);
3442
3443 if (!IS_POSIXACL(path.dentry->d_inode))
3444 mode &= ~current_umask();
3445 error = security_path_mknod(&path, dentry, mode, dev);
3446 if (error)
3447 goto out;
3448 switch (mode & S_IFMT) {
3449 case 0: case S_IFREG:
3450 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3451 break;
3452 case S_IFCHR: case S_IFBLK:
3453 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3454 new_decode_dev(dev));
3455 break;
3456 case S_IFIFO: case S_IFSOCK:
3457 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3458 break;
3459 }
3460 out:
3461 done_path_create(&path, dentry);
3462 if (retry_estale(error, lookup_flags)) {
3463 lookup_flags |= LOOKUP_REVAL;
3464 goto retry;
3465 }
3466 return error;
3467 }
3468
3469 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3470 {
3471 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3472 }
3473
3474 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3475 {
3476 int error = may_create(dir, dentry);
3477 unsigned max_links = dir->i_sb->s_max_links;
3478
3479 if (error)
3480 return error;
3481
3482 if (!dir->i_op->mkdir)
3483 return -EPERM;
3484
3485 mode &= (S_IRWXUGO|S_ISVTX);
3486 error = security_inode_mkdir(dir, dentry, mode);
3487 if (error)
3488 return error;
3489
3490 if (max_links && dir->i_nlink >= max_links)
3491 return -EMLINK;
3492
3493 error = dir->i_op->mkdir(dir, dentry, mode);
3494 if (!error)
3495 fsnotify_mkdir(dir, dentry);
3496 return error;
3497 }
3498 EXPORT_SYMBOL(vfs_mkdir);
3499
3500 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3501 {
3502 struct dentry *dentry;
3503 struct path path;
3504 int error;
3505 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3506
3507 retry:
3508 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3509 if (IS_ERR(dentry))
3510 return PTR_ERR(dentry);
3511
3512 if (!IS_POSIXACL(path.dentry->d_inode))
3513 mode &= ~current_umask();
3514 error = security_path_mkdir(&path, dentry, mode);
3515 if (!error)
3516 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3517 done_path_create(&path, dentry);
3518 if (retry_estale(error, lookup_flags)) {
3519 lookup_flags |= LOOKUP_REVAL;
3520 goto retry;
3521 }
3522 return error;
3523 }
3524
3525 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3526 {
3527 return sys_mkdirat(AT_FDCWD, pathname, mode);
3528 }
3529
3530 /*
3531 * The dentry_unhash() helper will try to drop the dentry early: we
3532 * should have a usage count of 1 if we're the only user of this
3533 * dentry, and if that is true (possibly after pruning the dcache),
3534 * then we drop the dentry now.
3535 *
3536 * A low-level filesystem can, if it choses, legally
3537 * do a
3538 *
3539 * if (!d_unhashed(dentry))
3540 * return -EBUSY;
3541 *
3542 * if it cannot handle the case of removing a directory
3543 * that is still in use by something else..
3544 */
3545 void dentry_unhash(struct dentry *dentry)
3546 {
3547 shrink_dcache_parent(dentry);
3548 spin_lock(&dentry->d_lock);
3549 if (dentry->d_lockref.count == 1)
3550 __d_drop(dentry);
3551 spin_unlock(&dentry->d_lock);
3552 }
3553 EXPORT_SYMBOL(dentry_unhash);
3554
3555 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3556 {
3557 int error = may_delete(dir, dentry, 1);
3558
3559 if (error)
3560 return error;
3561
3562 if (!dir->i_op->rmdir)
3563 return -EPERM;
3564
3565 dget(dentry);
3566 mutex_lock(&dentry->d_inode->i_mutex);
3567
3568 error = -EBUSY;
3569 if (is_local_mountpoint(dentry))
3570 goto out;
3571
3572 error = security_inode_rmdir(dir, dentry);
3573 if (error)
3574 goto out;
3575
3576 shrink_dcache_parent(dentry);
3577 error = dir->i_op->rmdir(dir, dentry);
3578 if (error)
3579 goto out;
3580
3581 dentry->d_inode->i_flags |= S_DEAD;
3582 dont_mount(dentry);
3583 detach_mounts(dentry);
3584
3585 out:
3586 mutex_unlock(&dentry->d_inode->i_mutex);
3587 dput(dentry);
3588 if (!error)
3589 d_delete(dentry);
3590 return error;
3591 }
3592 EXPORT_SYMBOL(vfs_rmdir);
3593
3594 static long do_rmdir(int dfd, const char __user *pathname)
3595 {
3596 int error = 0;
3597 struct filename *name;
3598 struct dentry *dentry;
3599 struct nameidata nd;
3600 unsigned int lookup_flags = 0;
3601 retry:
3602 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3603 if (IS_ERR(name))
3604 return PTR_ERR(name);
3605
3606 switch(nd.last_type) {
3607 case LAST_DOTDOT:
3608 error = -ENOTEMPTY;
3609 goto exit1;
3610 case LAST_DOT:
3611 error = -EINVAL;
3612 goto exit1;
3613 case LAST_ROOT:
3614 error = -EBUSY;
3615 goto exit1;
3616 }
3617
3618 nd.flags &= ~LOOKUP_PARENT;
3619 error = mnt_want_write(nd.path.mnt);
3620 if (error)
3621 goto exit1;
3622
3623 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3624 dentry = lookup_hash(&nd);
3625 error = PTR_ERR(dentry);
3626 if (IS_ERR(dentry))
3627 goto exit2;
3628 if (!dentry->d_inode) {
3629 error = -ENOENT;
3630 goto exit3;
3631 }
3632 error = security_path_rmdir(&nd.path, dentry);
3633 if (error)
3634 goto exit3;
3635 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3636 exit3:
3637 dput(dentry);
3638 exit2:
3639 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3640 mnt_drop_write(nd.path.mnt);
3641 exit1:
3642 path_put(&nd.path);
3643 putname(name);
3644 if (retry_estale(error, lookup_flags)) {
3645 lookup_flags |= LOOKUP_REVAL;
3646 goto retry;
3647 }
3648 return error;
3649 }
3650
3651 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3652 {
3653 return do_rmdir(AT_FDCWD, pathname);
3654 }
3655
3656 /**
3657 * vfs_unlink - unlink a filesystem object
3658 * @dir: parent directory
3659 * @dentry: victim
3660 * @delegated_inode: returns victim inode, if the inode is delegated.
3661 *
3662 * The caller must hold dir->i_mutex.
3663 *
3664 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3665 * return a reference to the inode in delegated_inode. The caller
3666 * should then break the delegation on that inode and retry. Because
3667 * breaking a delegation may take a long time, the caller should drop
3668 * dir->i_mutex before doing so.
3669 *
3670 * Alternatively, a caller may pass NULL for delegated_inode. This may
3671 * be appropriate for callers that expect the underlying filesystem not
3672 * to be NFS exported.
3673 */
3674 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3675 {
3676 struct inode *target = dentry->d_inode;
3677 int error = may_delete(dir, dentry, 0);
3678
3679 if (error)
3680 return error;
3681
3682 if (!dir->i_op->unlink)
3683 return -EPERM;
3684
3685 mutex_lock(&target->i_mutex);
3686 if (is_local_mountpoint(dentry))
3687 error = -EBUSY;
3688 else {
3689 error = security_inode_unlink(dir, dentry);
3690 if (!error) {
3691 error = try_break_deleg(target, delegated_inode);
3692 if (error)
3693 goto out;
3694 error = dir->i_op->unlink(dir, dentry);
3695 if (!error) {
3696 dont_mount(dentry);
3697 detach_mounts(dentry);
3698 }
3699 }
3700 }
3701 out:
3702 mutex_unlock(&target->i_mutex);
3703
3704 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3705 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3706 fsnotify_link_count(target);
3707 d_delete(dentry);
3708 }
3709
3710 return error;
3711 }
3712 EXPORT_SYMBOL(vfs_unlink);
3713
3714 /*
3715 * Make sure that the actual truncation of the file will occur outside its
3716 * directory's i_mutex. Truncate can take a long time if there is a lot of
3717 * writeout happening, and we don't want to prevent access to the directory
3718 * while waiting on the I/O.
3719 */
3720 static long do_unlinkat(int dfd, const char __user *pathname)
3721 {
3722 int error;
3723 struct filename *name;
3724 struct dentry *dentry;
3725 struct nameidata nd;
3726 struct inode *inode = NULL;
3727 struct inode *delegated_inode = NULL;
3728 unsigned int lookup_flags = 0;
3729 retry:
3730 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3731 if (IS_ERR(name))
3732 return PTR_ERR(name);
3733
3734 error = -EISDIR;
3735 if (nd.last_type != LAST_NORM)
3736 goto exit1;
3737
3738 nd.flags &= ~LOOKUP_PARENT;
3739 error = mnt_want_write(nd.path.mnt);
3740 if (error)
3741 goto exit1;
3742 retry_deleg:
3743 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3744 dentry = lookup_hash(&nd);
3745 error = PTR_ERR(dentry);
3746 if (!IS_ERR(dentry)) {
3747 /* Why not before? Because we want correct error value */
3748 if (nd.last.name[nd.last.len])
3749 goto slashes;
3750 inode = dentry->d_inode;
3751 if (d_is_negative(dentry))
3752 goto slashes;
3753 ihold(inode);
3754 error = security_path_unlink(&nd.path, dentry);
3755 if (error)
3756 goto exit2;
3757 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3758 exit2:
3759 dput(dentry);
3760 }
3761 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3762 if (inode)
3763 iput(inode); /* truncate the inode here */
3764 inode = NULL;
3765 if (delegated_inode) {
3766 error = break_deleg_wait(&delegated_inode);
3767 if (!error)
3768 goto retry_deleg;
3769 }
3770 mnt_drop_write(nd.path.mnt);
3771 exit1:
3772 path_put(&nd.path);
3773 putname(name);
3774 if (retry_estale(error, lookup_flags)) {
3775 lookup_flags |= LOOKUP_REVAL;
3776 inode = NULL;
3777 goto retry;
3778 }
3779 return error;
3780
3781 slashes:
3782 if (d_is_negative(dentry))
3783 error = -ENOENT;
3784 else if (d_is_dir(dentry))
3785 error = -EISDIR;
3786 else
3787 error = -ENOTDIR;
3788 goto exit2;
3789 }
3790
3791 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3792 {
3793 if ((flag & ~AT_REMOVEDIR) != 0)
3794 return -EINVAL;
3795
3796 if (flag & AT_REMOVEDIR)
3797 return do_rmdir(dfd, pathname);
3798
3799 return do_unlinkat(dfd, pathname);
3800 }
3801
3802 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3803 {
3804 return do_unlinkat(AT_FDCWD, pathname);
3805 }
3806
3807 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3808 {
3809 int error = may_create(dir, dentry);
3810
3811 if (error)
3812 return error;
3813
3814 if (!dir->i_op->symlink)
3815 return -EPERM;
3816
3817 error = security_inode_symlink(dir, dentry, oldname);
3818 if (error)
3819 return error;
3820
3821 error = dir->i_op->symlink(dir, dentry, oldname);
3822 if (!error)
3823 fsnotify_create(dir, dentry);
3824 return error;
3825 }
3826 EXPORT_SYMBOL(vfs_symlink);
3827
3828 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3829 int, newdfd, const char __user *, newname)
3830 {
3831 int error;
3832 struct filename *from;
3833 struct dentry *dentry;
3834 struct path path;
3835 unsigned int lookup_flags = 0;
3836
3837 from = getname(oldname);
3838 if (IS_ERR(from))
3839 return PTR_ERR(from);
3840 retry:
3841 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3842 error = PTR_ERR(dentry);
3843 if (IS_ERR(dentry))
3844 goto out_putname;
3845
3846 error = security_path_symlink(&path, dentry, from->name);
3847 if (!error)
3848 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3849 done_path_create(&path, dentry);
3850 if (retry_estale(error, lookup_flags)) {
3851 lookup_flags |= LOOKUP_REVAL;
3852 goto retry;
3853 }
3854 out_putname:
3855 putname(from);
3856 return error;
3857 }
3858
3859 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3860 {
3861 return sys_symlinkat(oldname, AT_FDCWD, newname);
3862 }
3863
3864 /**
3865 * vfs_link - create a new link
3866 * @old_dentry: object to be linked
3867 * @dir: new parent
3868 * @new_dentry: where to create the new link
3869 * @delegated_inode: returns inode needing a delegation break
3870 *
3871 * The caller must hold dir->i_mutex
3872 *
3873 * If vfs_link discovers a delegation on the to-be-linked file in need
3874 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3875 * inode in delegated_inode. The caller should then break the delegation
3876 * and retry. Because breaking a delegation may take a long time, the
3877 * caller should drop the i_mutex before doing so.
3878 *
3879 * Alternatively, a caller may pass NULL for delegated_inode. This may
3880 * be appropriate for callers that expect the underlying filesystem not
3881 * to be NFS exported.
3882 */
3883 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3884 {
3885 struct inode *inode = old_dentry->d_inode;
3886 unsigned max_links = dir->i_sb->s_max_links;
3887 int error;
3888
3889 if (!inode)
3890 return -ENOENT;
3891
3892 error = may_create(dir, new_dentry);
3893 if (error)
3894 return error;
3895
3896 if (dir->i_sb != inode->i_sb)
3897 return -EXDEV;
3898
3899 /*
3900 * A link to an append-only or immutable file cannot be created.
3901 */
3902 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3903 return -EPERM;
3904 if (!dir->i_op->link)
3905 return -EPERM;
3906 if (S_ISDIR(inode->i_mode))
3907 return -EPERM;
3908
3909 error = security_inode_link(old_dentry, dir, new_dentry);
3910 if (error)
3911 return error;
3912
3913 mutex_lock(&inode->i_mutex);
3914 /* Make sure we don't allow creating hardlink to an unlinked file */
3915 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3916 error = -ENOENT;
3917 else if (max_links && inode->i_nlink >= max_links)
3918 error = -EMLINK;
3919 else {
3920 error = try_break_deleg(inode, delegated_inode);
3921 if (!error)
3922 error = dir->i_op->link(old_dentry, dir, new_dentry);
3923 }
3924
3925 if (!error && (inode->i_state & I_LINKABLE)) {
3926 spin_lock(&inode->i_lock);
3927 inode->i_state &= ~I_LINKABLE;
3928 spin_unlock(&inode->i_lock);
3929 }
3930 mutex_unlock(&inode->i_mutex);
3931 if (!error)
3932 fsnotify_link(dir, inode, new_dentry);
3933 return error;
3934 }
3935 EXPORT_SYMBOL(vfs_link);
3936
3937 /*
3938 * Hardlinks are often used in delicate situations. We avoid
3939 * security-related surprises by not following symlinks on the
3940 * newname. --KAB
3941 *
3942 * We don't follow them on the oldname either to be compatible
3943 * with linux 2.0, and to avoid hard-linking to directories
3944 * and other special files. --ADM
3945 */
3946 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3947 int, newdfd, const char __user *, newname, int, flags)
3948 {
3949 struct dentry *new_dentry;
3950 struct path old_path, new_path;
3951 struct inode *delegated_inode = NULL;
3952 int how = 0;
3953 int error;
3954
3955 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3956 return -EINVAL;
3957 /*
3958 * To use null names we require CAP_DAC_READ_SEARCH
3959 * This ensures that not everyone will be able to create
3960 * handlink using the passed filedescriptor.
3961 */
3962 if (flags & AT_EMPTY_PATH) {
3963 if (!capable(CAP_DAC_READ_SEARCH))
3964 return -ENOENT;
3965 how = LOOKUP_EMPTY;
3966 }
3967
3968 if (flags & AT_SYMLINK_FOLLOW)
3969 how |= LOOKUP_FOLLOW;
3970 retry:
3971 error = user_path_at(olddfd, oldname, how, &old_path);
3972 if (error)
3973 return error;
3974
3975 new_dentry = user_path_create(newdfd, newname, &new_path,
3976 (how & LOOKUP_REVAL));
3977 error = PTR_ERR(new_dentry);
3978 if (IS_ERR(new_dentry))
3979 goto out;
3980
3981 error = -EXDEV;
3982 if (old_path.mnt != new_path.mnt)
3983 goto out_dput;
3984 error = may_linkat(&old_path);
3985 if (unlikely(error))
3986 goto out_dput;
3987 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3988 if (error)
3989 goto out_dput;
3990 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3991 out_dput:
3992 done_path_create(&new_path, new_dentry);
3993 if (delegated_inode) {
3994 error = break_deleg_wait(&delegated_inode);
3995 if (!error) {
3996 path_put(&old_path);
3997 goto retry;
3998 }
3999 }
4000 if (retry_estale(error, how)) {
4001 path_put(&old_path);
4002 how |= LOOKUP_REVAL;
4003 goto retry;
4004 }
4005 out:
4006 path_put(&old_path);
4007
4008 return error;
4009 }
4010
4011 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4012 {
4013 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4014 }
4015
4016 /**
4017 * vfs_rename - rename a filesystem object
4018 * @old_dir: parent of source
4019 * @old_dentry: source
4020 * @new_dir: parent of destination
4021 * @new_dentry: destination
4022 * @delegated_inode: returns an inode needing a delegation break
4023 * @flags: rename flags
4024 *
4025 * The caller must hold multiple mutexes--see lock_rename()).
4026 *
4027 * If vfs_rename discovers a delegation in need of breaking at either
4028 * the source or destination, it will return -EWOULDBLOCK and return a
4029 * reference to the inode in delegated_inode. The caller should then
4030 * break the delegation and retry. Because breaking a delegation may
4031 * take a long time, the caller should drop all locks before doing
4032 * so.
4033 *
4034 * Alternatively, a caller may pass NULL for delegated_inode. This may
4035 * be appropriate for callers that expect the underlying filesystem not
4036 * to be NFS exported.
4037 *
4038 * The worst of all namespace operations - renaming directory. "Perverted"
4039 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4040 * Problems:
4041 * a) we can get into loop creation.
4042 * b) race potential - two innocent renames can create a loop together.
4043 * That's where 4.4 screws up. Current fix: serialization on
4044 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4045 * story.
4046 * c) we have to lock _four_ objects - parents and victim (if it exists),
4047 * and source (if it is not a directory).
4048 * And that - after we got ->i_mutex on parents (until then we don't know
4049 * whether the target exists). Solution: try to be smart with locking
4050 * order for inodes. We rely on the fact that tree topology may change
4051 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4052 * move will be locked. Thus we can rank directories by the tree
4053 * (ancestors first) and rank all non-directories after them.
4054 * That works since everybody except rename does "lock parent, lookup,
4055 * lock child" and rename is under ->s_vfs_rename_mutex.
4056 * HOWEVER, it relies on the assumption that any object with ->lookup()
4057 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4058 * we'd better make sure that there's no link(2) for them.
4059 * d) conversion from fhandle to dentry may come in the wrong moment - when
4060 * we are removing the target. Solution: we will have to grab ->i_mutex
4061 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4062 * ->i_mutex on parents, which works but leads to some truly excessive
4063 * locking].
4064 */
4065 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4066 struct inode *new_dir, struct dentry *new_dentry,
4067 struct inode **delegated_inode, unsigned int flags)
4068 {
4069 int error;
4070 bool is_dir = d_is_dir(old_dentry);
4071 const unsigned char *old_name;
4072 struct inode *source = old_dentry->d_inode;
4073 struct inode *target = new_dentry->d_inode;
4074 bool new_is_dir = false;
4075 unsigned max_links = new_dir->i_sb->s_max_links;
4076
4077 if (source == target)
4078 return 0;
4079
4080 error = may_delete(old_dir, old_dentry, is_dir);
4081 if (error)
4082 return error;
4083
4084 if (!target) {
4085 error = may_create(new_dir, new_dentry);
4086 } else {
4087 new_is_dir = d_is_dir(new_dentry);
4088
4089 if (!(flags & RENAME_EXCHANGE))
4090 error = may_delete(new_dir, new_dentry, is_dir);
4091 else
4092 error = may_delete(new_dir, new_dentry, new_is_dir);
4093 }
4094 if (error)
4095 return error;
4096
4097 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4098 return -EPERM;
4099
4100 if (flags && !old_dir->i_op->rename2)
4101 return -EINVAL;
4102
4103 /*
4104 * If we are going to change the parent - check write permissions,
4105 * we'll need to flip '..'.
4106 */
4107 if (new_dir != old_dir) {
4108 if (is_dir) {
4109 error = inode_permission(source, MAY_WRITE);
4110 if (error)
4111 return error;
4112 }
4113 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4114 error = inode_permission(target, MAY_WRITE);
4115 if (error)
4116 return error;
4117 }
4118 }
4119
4120 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4121 flags);
4122 if (error)
4123 return error;
4124
4125 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4126 dget(new_dentry);
4127 if (!is_dir || (flags & RENAME_EXCHANGE))
4128 lock_two_nondirectories(source, target);
4129 else if (target)
4130 mutex_lock(&target->i_mutex);
4131
4132 error = -EBUSY;
4133 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4134 goto out;
4135
4136 if (max_links && new_dir != old_dir) {
4137 error = -EMLINK;
4138 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4139 goto out;
4140 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4141 old_dir->i_nlink >= max_links)
4142 goto out;
4143 }
4144 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4145 shrink_dcache_parent(new_dentry);
4146 if (!is_dir) {
4147 error = try_break_deleg(source, delegated_inode);
4148 if (error)
4149 goto out;
4150 }
4151 if (target && !new_is_dir) {
4152 error = try_break_deleg(target, delegated_inode);
4153 if (error)
4154 goto out;
4155 }
4156 if (!old_dir->i_op->rename2) {
4157 error = old_dir->i_op->rename(old_dir, old_dentry,
4158 new_dir, new_dentry);
4159 } else {
4160 WARN_ON(old_dir->i_op->rename != NULL);
4161 error = old_dir->i_op->rename2(old_dir, old_dentry,
4162 new_dir, new_dentry, flags);
4163 }
4164 if (error)
4165 goto out;
4166
4167 if (!(flags & RENAME_EXCHANGE) && target) {
4168 if (is_dir)
4169 target->i_flags |= S_DEAD;
4170 dont_mount(new_dentry);
4171 detach_mounts(new_dentry);
4172 }
4173 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4174 if (!(flags & RENAME_EXCHANGE))
4175 d_move(old_dentry, new_dentry);
4176 else
4177 d_exchange(old_dentry, new_dentry);
4178 }
4179 out:
4180 if (!is_dir || (flags & RENAME_EXCHANGE))
4181 unlock_two_nondirectories(source, target);
4182 else if (target)
4183 mutex_unlock(&target->i_mutex);
4184 dput(new_dentry);
4185 if (!error) {
4186 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4187 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4188 if (flags & RENAME_EXCHANGE) {
4189 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4190 new_is_dir, NULL, new_dentry);
4191 }
4192 }
4193 fsnotify_oldname_free(old_name);
4194
4195 return error;
4196 }
4197 EXPORT_SYMBOL(vfs_rename);
4198
4199 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4200 int, newdfd, const char __user *, newname, unsigned int, flags)
4201 {
4202 struct dentry *old_dir, *new_dir;
4203 struct dentry *old_dentry, *new_dentry;
4204 struct dentry *trap;
4205 struct nameidata oldnd, newnd;
4206 struct inode *delegated_inode = NULL;
4207 struct filename *from;
4208 struct filename *to;
4209 unsigned int lookup_flags = 0;
4210 bool should_retry = false;
4211 int error;
4212
4213 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4214 return -EINVAL;
4215
4216 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4217 return -EINVAL;
4218
4219 retry:
4220 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4221 if (IS_ERR(from)) {
4222 error = PTR_ERR(from);
4223 goto exit;
4224 }
4225
4226 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4227 if (IS_ERR(to)) {
4228 error = PTR_ERR(to);
4229 goto exit1;
4230 }
4231
4232 error = -EXDEV;
4233 if (oldnd.path.mnt != newnd.path.mnt)
4234 goto exit2;
4235
4236 old_dir = oldnd.path.dentry;
4237 error = -EBUSY;
4238 if (oldnd.last_type != LAST_NORM)
4239 goto exit2;
4240
4241 new_dir = newnd.path.dentry;
4242 if (flags & RENAME_NOREPLACE)
4243 error = -EEXIST;
4244 if (newnd.last_type != LAST_NORM)
4245 goto exit2;
4246
4247 error = mnt_want_write(oldnd.path.mnt);
4248 if (error)
4249 goto exit2;
4250
4251 oldnd.flags &= ~LOOKUP_PARENT;
4252 newnd.flags &= ~LOOKUP_PARENT;
4253 if (!(flags & RENAME_EXCHANGE))
4254 newnd.flags |= LOOKUP_RENAME_TARGET;
4255
4256 retry_deleg:
4257 trap = lock_rename(new_dir, old_dir);
4258
4259 old_dentry = lookup_hash(&oldnd);
4260 error = PTR_ERR(old_dentry);
4261 if (IS_ERR(old_dentry))
4262 goto exit3;
4263 /* source must exist */
4264 error = -ENOENT;
4265 if (d_is_negative(old_dentry))
4266 goto exit4;
4267 new_dentry = lookup_hash(&newnd);
4268 error = PTR_ERR(new_dentry);
4269 if (IS_ERR(new_dentry))
4270 goto exit4;
4271 error = -EEXIST;
4272 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4273 goto exit5;
4274 if (flags & RENAME_EXCHANGE) {
4275 error = -ENOENT;
4276 if (d_is_negative(new_dentry))
4277 goto exit5;
4278
4279 if (!d_is_dir(new_dentry)) {
4280 error = -ENOTDIR;
4281 if (newnd.last.name[newnd.last.len])
4282 goto exit5;
4283 }
4284 }
4285 /* unless the source is a directory trailing slashes give -ENOTDIR */
4286 if (!d_is_dir(old_dentry)) {
4287 error = -ENOTDIR;
4288 if (oldnd.last.name[oldnd.last.len])
4289 goto exit5;
4290 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4291 goto exit5;
4292 }
4293 /* source should not be ancestor of target */
4294 error = -EINVAL;
4295 if (old_dentry == trap)
4296 goto exit5;
4297 /* target should not be an ancestor of source */
4298 if (!(flags & RENAME_EXCHANGE))
4299 error = -ENOTEMPTY;
4300 if (new_dentry == trap)
4301 goto exit5;
4302
4303 error = security_path_rename(&oldnd.path, old_dentry,
4304 &newnd.path, new_dentry, flags);
4305 if (error)
4306 goto exit5;
4307 error = vfs_rename(old_dir->d_inode, old_dentry,
4308 new_dir->d_inode, new_dentry,
4309 &delegated_inode, flags);
4310 exit5:
4311 dput(new_dentry);
4312 exit4:
4313 dput(old_dentry);
4314 exit3:
4315 unlock_rename(new_dir, old_dir);
4316 if (delegated_inode) {
4317 error = break_deleg_wait(&delegated_inode);
4318 if (!error)
4319 goto retry_deleg;
4320 }
4321 mnt_drop_write(oldnd.path.mnt);
4322 exit2:
4323 if (retry_estale(error, lookup_flags))
4324 should_retry = true;
4325 path_put(&newnd.path);
4326 putname(to);
4327 exit1:
4328 path_put(&oldnd.path);
4329 putname(from);
4330 if (should_retry) {
4331 should_retry = false;
4332 lookup_flags |= LOOKUP_REVAL;
4333 goto retry;
4334 }
4335 exit:
4336 return error;
4337 }
4338
4339 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4340 int, newdfd, const char __user *, newname)
4341 {
4342 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4343 }
4344
4345 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4346 {
4347 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4348 }
4349
4350 int readlink_copy(char __user *buffer, int buflen, const char *link)
4351 {
4352 int len = PTR_ERR(link);
4353 if (IS_ERR(link))
4354 goto out;
4355
4356 len = strlen(link);
4357 if (len > (unsigned) buflen)
4358 len = buflen;
4359 if (copy_to_user(buffer, link, len))
4360 len = -EFAULT;
4361 out:
4362 return len;
4363 }
4364 EXPORT_SYMBOL(readlink_copy);
4365
4366 /*
4367 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4368 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4369 * using) it for any given inode is up to filesystem.
4370 */
4371 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4372 {
4373 struct nameidata nd;
4374 void *cookie;
4375 int res;
4376
4377 nd.depth = 0;
4378 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4379 if (IS_ERR(cookie))
4380 return PTR_ERR(cookie);
4381
4382 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4383 if (dentry->d_inode->i_op->put_link)
4384 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4385 return res;
4386 }
4387 EXPORT_SYMBOL(generic_readlink);
4388
4389 /* get the link contents into pagecache */
4390 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4391 {
4392 char *kaddr;
4393 struct page *page;
4394 struct address_space *mapping = dentry->d_inode->i_mapping;
4395 page = read_mapping_page(mapping, 0, NULL);
4396 if (IS_ERR(page))
4397 return (char*)page;
4398 *ppage = page;
4399 kaddr = kmap(page);
4400 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4401 return kaddr;
4402 }
4403
4404 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4405 {
4406 struct page *page = NULL;
4407 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4408 if (page) {
4409 kunmap(page);
4410 page_cache_release(page);
4411 }
4412 return res;
4413 }
4414 EXPORT_SYMBOL(page_readlink);
4415
4416 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4417 {
4418 struct page *page = NULL;
4419 nd_set_link(nd, page_getlink(dentry, &page));
4420 return page;
4421 }
4422 EXPORT_SYMBOL(page_follow_link_light);
4423
4424 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4425 {
4426 struct page *page = cookie;
4427
4428 if (page) {
4429 kunmap(page);
4430 page_cache_release(page);
4431 }
4432 }
4433 EXPORT_SYMBOL(page_put_link);
4434
4435 /*
4436 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4437 */
4438 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4439 {
4440 struct address_space *mapping = inode->i_mapping;
4441 struct page *page;
4442 void *fsdata;
4443 int err;
4444 char *kaddr;
4445 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4446 if (nofs)
4447 flags |= AOP_FLAG_NOFS;
4448
4449 retry:
4450 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4451 flags, &page, &fsdata);
4452 if (err)
4453 goto fail;
4454
4455 kaddr = kmap_atomic(page);
4456 memcpy(kaddr, symname, len-1);
4457 kunmap_atomic(kaddr);
4458
4459 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4460 page, fsdata);
4461 if (err < 0)
4462 goto fail;
4463 if (err < len-1)
4464 goto retry;
4465
4466 mark_inode_dirty(inode);
4467 return 0;
4468 fail:
4469 return err;
4470 }
4471 EXPORT_SYMBOL(__page_symlink);
4472
4473 int page_symlink(struct inode *inode, const char *symname, int len)
4474 {
4475 return __page_symlink(inode, symname, len,
4476 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4477 }
4478 EXPORT_SYMBOL(page_symlink);
4479
4480 const struct inode_operations page_symlink_inode_operations = {
4481 .readlink = generic_readlink,
4482 .follow_link = page_follow_link_light,
4483 .put_link = page_put_link,
4484 };
4485 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.26917 seconds and 5 git commands to generate.