fs: use RCU in shrink_dentry_list to reduce lock nesting
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask,
173 int (*check_acl)(struct inode *inode, int mask))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 *
206 * Used to check for read/write/execute permissions on a file.
207 * We use "fsuid" for this, letting us set arbitrary permissions
208 * for filesystem access without changing the "normal" uids which
209 * are used for other things..
210 */
211 int generic_permission(struct inode *inode, int mask,
212 int (*check_acl)(struct inode *inode, int mask))
213 {
214 int ret;
215
216 /*
217 * Do the basic POSIX ACL permission checks.
218 */
219 ret = acl_permission_check(inode, mask, check_acl);
220 if (ret != -EACCES)
221 return ret;
222
223 /*
224 * Read/write DACs are always overridable.
225 * Executable DACs are overridable if at least one exec bit is set.
226 */
227 if (!(mask & MAY_EXEC) || execute_ok(inode))
228 if (capable(CAP_DAC_OVERRIDE))
229 return 0;
230
231 /*
232 * Searching includes executable on directories, else just read.
233 */
234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240 }
241
242 /**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode, mask);
286 }
287
288 /**
289 * file_permission - check for additional access rights to a given file
290 * @file: file to check access rights for
291 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292 *
293 * Used to check for read/write/execute permissions on an already opened
294 * file.
295 *
296 * Note:
297 * Do not use this function in new code. All access checks should
298 * be done using inode_permission().
299 */
300 int file_permission(struct file *file, int mask)
301 {
302 return inode_permission(file->f_path.dentry->d_inode, mask);
303 }
304
305 /*
306 * get_write_access() gets write permission for a file.
307 * put_write_access() releases this write permission.
308 * This is used for regular files.
309 * We cannot support write (and maybe mmap read-write shared) accesses and
310 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
311 * can have the following values:
312 * 0: no writers, no VM_DENYWRITE mappings
313 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
314 * > 0: (i_writecount) users are writing to the file.
315 *
316 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
317 * except for the cases where we don't hold i_writecount yet. Then we need to
318 * use {get,deny}_write_access() - these functions check the sign and refuse
319 * to do the change if sign is wrong. Exclusion between them is provided by
320 * the inode->i_lock spinlock.
321 */
322
323 int get_write_access(struct inode * inode)
324 {
325 spin_lock(&inode->i_lock);
326 if (atomic_read(&inode->i_writecount) < 0) {
327 spin_unlock(&inode->i_lock);
328 return -ETXTBSY;
329 }
330 atomic_inc(&inode->i_writecount);
331 spin_unlock(&inode->i_lock);
332
333 return 0;
334 }
335
336 int deny_write_access(struct file * file)
337 {
338 struct inode *inode = file->f_path.dentry->d_inode;
339
340 spin_lock(&inode->i_lock);
341 if (atomic_read(&inode->i_writecount) > 0) {
342 spin_unlock(&inode->i_lock);
343 return -ETXTBSY;
344 }
345 atomic_dec(&inode->i_writecount);
346 spin_unlock(&inode->i_lock);
347
348 return 0;
349 }
350
351 /**
352 * path_get - get a reference to a path
353 * @path: path to get the reference to
354 *
355 * Given a path increment the reference count to the dentry and the vfsmount.
356 */
357 void path_get(struct path *path)
358 {
359 mntget(path->mnt);
360 dget(path->dentry);
361 }
362 EXPORT_SYMBOL(path_get);
363
364 /**
365 * path_put - put a reference to a path
366 * @path: path to put the reference to
367 *
368 * Given a path decrement the reference count to the dentry and the vfsmount.
369 */
370 void path_put(struct path *path)
371 {
372 dput(path->dentry);
373 mntput(path->mnt);
374 }
375 EXPORT_SYMBOL(path_put);
376
377 /**
378 * release_open_intent - free up open intent resources
379 * @nd: pointer to nameidata
380 */
381 void release_open_intent(struct nameidata *nd)
382 {
383 if (nd->intent.open.file->f_path.dentry == NULL)
384 put_filp(nd->intent.open.file);
385 else
386 fput(nd->intent.open.file);
387 }
388
389 static inline struct dentry *
390 do_revalidate(struct dentry *dentry, struct nameidata *nd)
391 {
392 int status = dentry->d_op->d_revalidate(dentry, nd);
393 if (unlikely(status <= 0)) {
394 /*
395 * The dentry failed validation.
396 * If d_revalidate returned 0 attempt to invalidate
397 * the dentry otherwise d_revalidate is asking us
398 * to return a fail status.
399 */
400 if (!status) {
401 if (!d_invalidate(dentry)) {
402 dput(dentry);
403 dentry = NULL;
404 }
405 } else {
406 dput(dentry);
407 dentry = ERR_PTR(status);
408 }
409 }
410 return dentry;
411 }
412
413 /*
414 * force_reval_path - force revalidation of a dentry
415 *
416 * In some situations the path walking code will trust dentries without
417 * revalidating them. This causes problems for filesystems that depend on
418 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
419 * (which indicates that it's possible for the dentry to go stale), force
420 * a d_revalidate call before proceeding.
421 *
422 * Returns 0 if the revalidation was successful. If the revalidation fails,
423 * either return the error returned by d_revalidate or -ESTALE if the
424 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
425 * invalidate the dentry. It's up to the caller to handle putting references
426 * to the path if necessary.
427 */
428 static int
429 force_reval_path(struct path *path, struct nameidata *nd)
430 {
431 int status;
432 struct dentry *dentry = path->dentry;
433
434 /*
435 * only check on filesystems where it's possible for the dentry to
436 * become stale. It's assumed that if this flag is set then the
437 * d_revalidate op will also be defined.
438 */
439 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
440 return 0;
441
442 status = dentry->d_op->d_revalidate(dentry, nd);
443 if (status > 0)
444 return 0;
445
446 if (!status) {
447 d_invalidate(dentry);
448 status = -ESTALE;
449 }
450 return status;
451 }
452
453 /*
454 * Short-cut version of permission(), for calling on directories
455 * during pathname resolution. Combines parts of permission()
456 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
457 *
458 * If appropriate, check DAC only. If not appropriate, or
459 * short-cut DAC fails, then call ->permission() to do more
460 * complete permission check.
461 */
462 static int exec_permission(struct inode *inode)
463 {
464 int ret;
465
466 if (inode->i_op->permission) {
467 ret = inode->i_op->permission(inode, MAY_EXEC);
468 if (!ret)
469 goto ok;
470 return ret;
471 }
472 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
473 if (!ret)
474 goto ok;
475
476 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
477 goto ok;
478
479 return ret;
480 ok:
481 return security_inode_permission(inode, MAY_EXEC);
482 }
483
484 static __always_inline void set_root(struct nameidata *nd)
485 {
486 if (!nd->root.mnt)
487 get_fs_root(current->fs, &nd->root);
488 }
489
490 static int link_path_walk(const char *, struct nameidata *);
491
492 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
493 {
494 if (IS_ERR(link))
495 goto fail;
496
497 if (*link == '/') {
498 set_root(nd);
499 path_put(&nd->path);
500 nd->path = nd->root;
501 path_get(&nd->root);
502 }
503
504 return link_path_walk(link, nd);
505 fail:
506 path_put(&nd->path);
507 return PTR_ERR(link);
508 }
509
510 static void path_put_conditional(struct path *path, struct nameidata *nd)
511 {
512 dput(path->dentry);
513 if (path->mnt != nd->path.mnt)
514 mntput(path->mnt);
515 }
516
517 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
518 {
519 dput(nd->path.dentry);
520 if (nd->path.mnt != path->mnt) {
521 mntput(nd->path.mnt);
522 nd->path.mnt = path->mnt;
523 }
524 nd->path.dentry = path->dentry;
525 }
526
527 static __always_inline int
528 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
529 {
530 int error;
531 struct dentry *dentry = path->dentry;
532
533 touch_atime(path->mnt, dentry);
534 nd_set_link(nd, NULL);
535
536 if (path->mnt != nd->path.mnt) {
537 path_to_nameidata(path, nd);
538 dget(dentry);
539 }
540 mntget(path->mnt);
541 nd->last_type = LAST_BIND;
542 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
543 error = PTR_ERR(*p);
544 if (!IS_ERR(*p)) {
545 char *s = nd_get_link(nd);
546 error = 0;
547 if (s)
548 error = __vfs_follow_link(nd, s);
549 else if (nd->last_type == LAST_BIND) {
550 error = force_reval_path(&nd->path, nd);
551 if (error)
552 path_put(&nd->path);
553 }
554 }
555 return error;
556 }
557
558 /*
559 * This limits recursive symlink follows to 8, while
560 * limiting consecutive symlinks to 40.
561 *
562 * Without that kind of total limit, nasty chains of consecutive
563 * symlinks can cause almost arbitrarily long lookups.
564 */
565 static inline int do_follow_link(struct path *path, struct nameidata *nd)
566 {
567 void *cookie;
568 int err = -ELOOP;
569 if (current->link_count >= MAX_NESTED_LINKS)
570 goto loop;
571 if (current->total_link_count >= 40)
572 goto loop;
573 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
574 cond_resched();
575 err = security_inode_follow_link(path->dentry, nd);
576 if (err)
577 goto loop;
578 current->link_count++;
579 current->total_link_count++;
580 nd->depth++;
581 err = __do_follow_link(path, nd, &cookie);
582 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
583 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
584 path_put(path);
585 current->link_count--;
586 nd->depth--;
587 return err;
588 loop:
589 path_put_conditional(path, nd);
590 path_put(&nd->path);
591 return err;
592 }
593
594 int follow_up(struct path *path)
595 {
596 struct vfsmount *parent;
597 struct dentry *mountpoint;
598
599 br_read_lock(vfsmount_lock);
600 parent = path->mnt->mnt_parent;
601 if (parent == path->mnt) {
602 br_read_unlock(vfsmount_lock);
603 return 0;
604 }
605 mntget(parent);
606 mountpoint = dget(path->mnt->mnt_mountpoint);
607 br_read_unlock(vfsmount_lock);
608 dput(path->dentry);
609 path->dentry = mountpoint;
610 mntput(path->mnt);
611 path->mnt = parent;
612 return 1;
613 }
614
615 /*
616 * serialization is taken care of in namespace.c
617 */
618 static int __follow_mount(struct path *path)
619 {
620 int res = 0;
621 while (d_mountpoint(path->dentry)) {
622 struct vfsmount *mounted = lookup_mnt(path);
623 if (!mounted)
624 break;
625 dput(path->dentry);
626 if (res)
627 mntput(path->mnt);
628 path->mnt = mounted;
629 path->dentry = dget(mounted->mnt_root);
630 res = 1;
631 }
632 return res;
633 }
634
635 static void follow_mount(struct path *path)
636 {
637 while (d_mountpoint(path->dentry)) {
638 struct vfsmount *mounted = lookup_mnt(path);
639 if (!mounted)
640 break;
641 dput(path->dentry);
642 mntput(path->mnt);
643 path->mnt = mounted;
644 path->dentry = dget(mounted->mnt_root);
645 }
646 }
647
648 int follow_down(struct path *path)
649 {
650 struct vfsmount *mounted;
651
652 mounted = lookup_mnt(path);
653 if (mounted) {
654 dput(path->dentry);
655 mntput(path->mnt);
656 path->mnt = mounted;
657 path->dentry = dget(mounted->mnt_root);
658 return 1;
659 }
660 return 0;
661 }
662
663 static __always_inline void follow_dotdot(struct nameidata *nd)
664 {
665 set_root(nd);
666
667 while(1) {
668 struct dentry *old = nd->path.dentry;
669
670 if (nd->path.dentry == nd->root.dentry &&
671 nd->path.mnt == nd->root.mnt) {
672 break;
673 }
674 if (nd->path.dentry != nd->path.mnt->mnt_root) {
675 /* rare case of legitimate dget_parent()... */
676 nd->path.dentry = dget_parent(nd->path.dentry);
677 dput(old);
678 break;
679 }
680 if (!follow_up(&nd->path))
681 break;
682 }
683 follow_mount(&nd->path);
684 }
685
686 /*
687 * Allocate a dentry with name and parent, and perform a parent
688 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
689 * on error. parent->d_inode->i_mutex must be held. d_lookup must
690 * have verified that no child exists while under i_mutex.
691 */
692 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
693 struct qstr *name, struct nameidata *nd)
694 {
695 struct inode *inode = parent->d_inode;
696 struct dentry *dentry;
697 struct dentry *old;
698
699 /* Don't create child dentry for a dead directory. */
700 if (unlikely(IS_DEADDIR(inode)))
701 return ERR_PTR(-ENOENT);
702
703 dentry = d_alloc(parent, name);
704 if (unlikely(!dentry))
705 return ERR_PTR(-ENOMEM);
706
707 old = inode->i_op->lookup(inode, dentry, nd);
708 if (unlikely(old)) {
709 dput(dentry);
710 dentry = old;
711 }
712 return dentry;
713 }
714
715 /*
716 * It's more convoluted than I'd like it to be, but... it's still fairly
717 * small and for now I'd prefer to have fast path as straight as possible.
718 * It _is_ time-critical.
719 */
720 static int do_lookup(struct nameidata *nd, struct qstr *name,
721 struct path *path)
722 {
723 struct vfsmount *mnt = nd->path.mnt;
724 struct dentry *dentry, *parent;
725 struct inode *dir;
726 /*
727 * See if the low-level filesystem might want
728 * to use its own hash..
729 */
730 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
731 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
732 nd->path.dentry->d_inode, name);
733 if (err < 0)
734 return err;
735 }
736
737 /*
738 * Rename seqlock is not required here because in the off chance
739 * of a false negative due to a concurrent rename, we're going to
740 * do the non-racy lookup, below.
741 */
742 dentry = __d_lookup(nd->path.dentry, name);
743 if (!dentry)
744 goto need_lookup;
745 found:
746 if (dentry->d_op && dentry->d_op->d_revalidate)
747 goto need_revalidate;
748 done:
749 path->mnt = mnt;
750 path->dentry = dentry;
751 __follow_mount(path);
752 return 0;
753
754 need_lookup:
755 parent = nd->path.dentry;
756 dir = parent->d_inode;
757
758 mutex_lock(&dir->i_mutex);
759 /*
760 * First re-do the cached lookup just in case it was created
761 * while we waited for the directory semaphore, or the first
762 * lookup failed due to an unrelated rename.
763 *
764 * This could use version numbering or similar to avoid unnecessary
765 * cache lookups, but then we'd have to do the first lookup in the
766 * non-racy way. However in the common case here, everything should
767 * be hot in cache, so would it be a big win?
768 */
769 dentry = d_lookup(parent, name);
770 if (likely(!dentry)) {
771 dentry = d_alloc_and_lookup(parent, name, nd);
772 mutex_unlock(&dir->i_mutex);
773 if (IS_ERR(dentry))
774 goto fail;
775 goto done;
776 }
777 /*
778 * Uhhuh! Nasty case: the cache was re-populated while
779 * we waited on the semaphore. Need to revalidate.
780 */
781 mutex_unlock(&dir->i_mutex);
782 goto found;
783
784 need_revalidate:
785 dentry = do_revalidate(dentry, nd);
786 if (!dentry)
787 goto need_lookup;
788 if (IS_ERR(dentry))
789 goto fail;
790 goto done;
791
792 fail:
793 return PTR_ERR(dentry);
794 }
795
796 /*
797 * This is a temporary kludge to deal with "automount" symlinks; proper
798 * solution is to trigger them on follow_mount(), so that do_lookup()
799 * would DTRT. To be killed before 2.6.34-final.
800 */
801 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
802 {
803 return inode && unlikely(inode->i_op->follow_link) &&
804 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
805 }
806
807 /*
808 * Name resolution.
809 * This is the basic name resolution function, turning a pathname into
810 * the final dentry. We expect 'base' to be positive and a directory.
811 *
812 * Returns 0 and nd will have valid dentry and mnt on success.
813 * Returns error and drops reference to input namei data on failure.
814 */
815 static int link_path_walk(const char *name, struct nameidata *nd)
816 {
817 struct path next;
818 struct inode *inode;
819 int err;
820 unsigned int lookup_flags = nd->flags;
821
822 while (*name=='/')
823 name++;
824 if (!*name)
825 goto return_reval;
826
827 inode = nd->path.dentry->d_inode;
828 if (nd->depth)
829 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
830
831 /* At this point we know we have a real path component. */
832 for(;;) {
833 unsigned long hash;
834 struct qstr this;
835 unsigned int c;
836
837 nd->flags |= LOOKUP_CONTINUE;
838 err = exec_permission(inode);
839 if (err)
840 break;
841
842 this.name = name;
843 c = *(const unsigned char *)name;
844
845 hash = init_name_hash();
846 do {
847 name++;
848 hash = partial_name_hash(c, hash);
849 c = *(const unsigned char *)name;
850 } while (c && (c != '/'));
851 this.len = name - (const char *) this.name;
852 this.hash = end_name_hash(hash);
853
854 /* remove trailing slashes? */
855 if (!c)
856 goto last_component;
857 while (*++name == '/');
858 if (!*name)
859 goto last_with_slashes;
860
861 /*
862 * "." and ".." are special - ".." especially so because it has
863 * to be able to know about the current root directory and
864 * parent relationships.
865 */
866 if (this.name[0] == '.') switch (this.len) {
867 default:
868 break;
869 case 2:
870 if (this.name[1] != '.')
871 break;
872 follow_dotdot(nd);
873 inode = nd->path.dentry->d_inode;
874 /* fallthrough */
875 case 1:
876 continue;
877 }
878 /* This does the actual lookups.. */
879 err = do_lookup(nd, &this, &next);
880 if (err)
881 break;
882
883 err = -ENOENT;
884 inode = next.dentry->d_inode;
885 if (!inode)
886 goto out_dput;
887
888 if (inode->i_op->follow_link) {
889 err = do_follow_link(&next, nd);
890 if (err)
891 goto return_err;
892 err = -ENOENT;
893 inode = nd->path.dentry->d_inode;
894 if (!inode)
895 break;
896 } else
897 path_to_nameidata(&next, nd);
898 err = -ENOTDIR;
899 if (!inode->i_op->lookup)
900 break;
901 continue;
902 /* here ends the main loop */
903
904 last_with_slashes:
905 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
906 last_component:
907 /* Clear LOOKUP_CONTINUE iff it was previously unset */
908 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
909 if (lookup_flags & LOOKUP_PARENT)
910 goto lookup_parent;
911 if (this.name[0] == '.') switch (this.len) {
912 default:
913 break;
914 case 2:
915 if (this.name[1] != '.')
916 break;
917 follow_dotdot(nd);
918 inode = nd->path.dentry->d_inode;
919 /* fallthrough */
920 case 1:
921 goto return_reval;
922 }
923 err = do_lookup(nd, &this, &next);
924 if (err)
925 break;
926 inode = next.dentry->d_inode;
927 if (follow_on_final(inode, lookup_flags)) {
928 err = do_follow_link(&next, nd);
929 if (err)
930 goto return_err;
931 inode = nd->path.dentry->d_inode;
932 } else
933 path_to_nameidata(&next, nd);
934 err = -ENOENT;
935 if (!inode)
936 break;
937 if (lookup_flags & LOOKUP_DIRECTORY) {
938 err = -ENOTDIR;
939 if (!inode->i_op->lookup)
940 break;
941 }
942 goto return_base;
943 lookup_parent:
944 nd->last = this;
945 nd->last_type = LAST_NORM;
946 if (this.name[0] != '.')
947 goto return_base;
948 if (this.len == 1)
949 nd->last_type = LAST_DOT;
950 else if (this.len == 2 && this.name[1] == '.')
951 nd->last_type = LAST_DOTDOT;
952 else
953 goto return_base;
954 return_reval:
955 /*
956 * We bypassed the ordinary revalidation routines.
957 * We may need to check the cached dentry for staleness.
958 */
959 if (nd->path.dentry && nd->path.dentry->d_sb &&
960 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
961 err = -ESTALE;
962 /* Note: we do not d_invalidate() */
963 if (!nd->path.dentry->d_op->d_revalidate(
964 nd->path.dentry, nd))
965 break;
966 }
967 return_base:
968 return 0;
969 out_dput:
970 path_put_conditional(&next, nd);
971 break;
972 }
973 path_put(&nd->path);
974 return_err:
975 return err;
976 }
977
978 static int path_walk(const char *name, struct nameidata *nd)
979 {
980 struct path save = nd->path;
981 int result;
982
983 current->total_link_count = 0;
984
985 /* make sure the stuff we saved doesn't go away */
986 path_get(&save);
987
988 result = link_path_walk(name, nd);
989 if (result == -ESTALE) {
990 /* nd->path had been dropped */
991 current->total_link_count = 0;
992 nd->path = save;
993 path_get(&nd->path);
994 nd->flags |= LOOKUP_REVAL;
995 result = link_path_walk(name, nd);
996 }
997
998 path_put(&save);
999
1000 return result;
1001 }
1002
1003 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1004 {
1005 int retval = 0;
1006 int fput_needed;
1007 struct file *file;
1008
1009 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1010 nd->flags = flags;
1011 nd->depth = 0;
1012 nd->root.mnt = NULL;
1013
1014 if (*name=='/') {
1015 set_root(nd);
1016 nd->path = nd->root;
1017 path_get(&nd->root);
1018 } else if (dfd == AT_FDCWD) {
1019 get_fs_pwd(current->fs, &nd->path);
1020 } else {
1021 struct dentry *dentry;
1022
1023 file = fget_light(dfd, &fput_needed);
1024 retval = -EBADF;
1025 if (!file)
1026 goto out_fail;
1027
1028 dentry = file->f_path.dentry;
1029
1030 retval = -ENOTDIR;
1031 if (!S_ISDIR(dentry->d_inode->i_mode))
1032 goto fput_fail;
1033
1034 retval = file_permission(file, MAY_EXEC);
1035 if (retval)
1036 goto fput_fail;
1037
1038 nd->path = file->f_path;
1039 path_get(&file->f_path);
1040
1041 fput_light(file, fput_needed);
1042 }
1043 return 0;
1044
1045 fput_fail:
1046 fput_light(file, fput_needed);
1047 out_fail:
1048 return retval;
1049 }
1050
1051 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1052 static int do_path_lookup(int dfd, const char *name,
1053 unsigned int flags, struct nameidata *nd)
1054 {
1055 int retval = path_init(dfd, name, flags, nd);
1056 if (!retval)
1057 retval = path_walk(name, nd);
1058 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1059 nd->path.dentry->d_inode))
1060 audit_inode(name, nd->path.dentry);
1061 if (nd->root.mnt) {
1062 path_put(&nd->root);
1063 nd->root.mnt = NULL;
1064 }
1065 return retval;
1066 }
1067
1068 int path_lookup(const char *name, unsigned int flags,
1069 struct nameidata *nd)
1070 {
1071 return do_path_lookup(AT_FDCWD, name, flags, nd);
1072 }
1073
1074 int kern_path(const char *name, unsigned int flags, struct path *path)
1075 {
1076 struct nameidata nd;
1077 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1078 if (!res)
1079 *path = nd.path;
1080 return res;
1081 }
1082
1083 /**
1084 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1085 * @dentry: pointer to dentry of the base directory
1086 * @mnt: pointer to vfs mount of the base directory
1087 * @name: pointer to file name
1088 * @flags: lookup flags
1089 * @nd: pointer to nameidata
1090 */
1091 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1092 const char *name, unsigned int flags,
1093 struct nameidata *nd)
1094 {
1095 int retval;
1096
1097 /* same as do_path_lookup */
1098 nd->last_type = LAST_ROOT;
1099 nd->flags = flags;
1100 nd->depth = 0;
1101
1102 nd->path.dentry = dentry;
1103 nd->path.mnt = mnt;
1104 path_get(&nd->path);
1105 nd->root = nd->path;
1106 path_get(&nd->root);
1107
1108 retval = path_walk(name, nd);
1109 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1110 nd->path.dentry->d_inode))
1111 audit_inode(name, nd->path.dentry);
1112
1113 path_put(&nd->root);
1114 nd->root.mnt = NULL;
1115
1116 return retval;
1117 }
1118
1119 static struct dentry *__lookup_hash(struct qstr *name,
1120 struct dentry *base, struct nameidata *nd)
1121 {
1122 struct inode *inode = base->d_inode;
1123 struct dentry *dentry;
1124 int err;
1125
1126 err = exec_permission(inode);
1127 if (err)
1128 return ERR_PTR(err);
1129
1130 /*
1131 * See if the low-level filesystem might want
1132 * to use its own hash..
1133 */
1134 if (base->d_op && base->d_op->d_hash) {
1135 err = base->d_op->d_hash(base, inode, name);
1136 dentry = ERR_PTR(err);
1137 if (err < 0)
1138 goto out;
1139 }
1140
1141 /*
1142 * Don't bother with __d_lookup: callers are for creat as
1143 * well as unlink, so a lot of the time it would cost
1144 * a double lookup.
1145 */
1146 dentry = d_lookup(base, name);
1147
1148 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1149 dentry = do_revalidate(dentry, nd);
1150
1151 if (!dentry)
1152 dentry = d_alloc_and_lookup(base, name, nd);
1153 out:
1154 return dentry;
1155 }
1156
1157 /*
1158 * Restricted form of lookup. Doesn't follow links, single-component only,
1159 * needs parent already locked. Doesn't follow mounts.
1160 * SMP-safe.
1161 */
1162 static struct dentry *lookup_hash(struct nameidata *nd)
1163 {
1164 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1165 }
1166
1167 static int __lookup_one_len(const char *name, struct qstr *this,
1168 struct dentry *base, int len)
1169 {
1170 unsigned long hash;
1171 unsigned int c;
1172
1173 this->name = name;
1174 this->len = len;
1175 if (!len)
1176 return -EACCES;
1177
1178 hash = init_name_hash();
1179 while (len--) {
1180 c = *(const unsigned char *)name++;
1181 if (c == '/' || c == '\0')
1182 return -EACCES;
1183 hash = partial_name_hash(c, hash);
1184 }
1185 this->hash = end_name_hash(hash);
1186 return 0;
1187 }
1188
1189 /**
1190 * lookup_one_len - filesystem helper to lookup single pathname component
1191 * @name: pathname component to lookup
1192 * @base: base directory to lookup from
1193 * @len: maximum length @len should be interpreted to
1194 *
1195 * Note that this routine is purely a helper for filesystem usage and should
1196 * not be called by generic code. Also note that by using this function the
1197 * nameidata argument is passed to the filesystem methods and a filesystem
1198 * using this helper needs to be prepared for that.
1199 */
1200 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1201 {
1202 int err;
1203 struct qstr this;
1204
1205 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1206
1207 err = __lookup_one_len(name, &this, base, len);
1208 if (err)
1209 return ERR_PTR(err);
1210
1211 return __lookup_hash(&this, base, NULL);
1212 }
1213
1214 int user_path_at(int dfd, const char __user *name, unsigned flags,
1215 struct path *path)
1216 {
1217 struct nameidata nd;
1218 char *tmp = getname(name);
1219 int err = PTR_ERR(tmp);
1220 if (!IS_ERR(tmp)) {
1221
1222 BUG_ON(flags & LOOKUP_PARENT);
1223
1224 err = do_path_lookup(dfd, tmp, flags, &nd);
1225 putname(tmp);
1226 if (!err)
1227 *path = nd.path;
1228 }
1229 return err;
1230 }
1231
1232 static int user_path_parent(int dfd, const char __user *path,
1233 struct nameidata *nd, char **name)
1234 {
1235 char *s = getname(path);
1236 int error;
1237
1238 if (IS_ERR(s))
1239 return PTR_ERR(s);
1240
1241 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1242 if (error)
1243 putname(s);
1244 else
1245 *name = s;
1246
1247 return error;
1248 }
1249
1250 /*
1251 * It's inline, so penalty for filesystems that don't use sticky bit is
1252 * minimal.
1253 */
1254 static inline int check_sticky(struct inode *dir, struct inode *inode)
1255 {
1256 uid_t fsuid = current_fsuid();
1257
1258 if (!(dir->i_mode & S_ISVTX))
1259 return 0;
1260 if (inode->i_uid == fsuid)
1261 return 0;
1262 if (dir->i_uid == fsuid)
1263 return 0;
1264 return !capable(CAP_FOWNER);
1265 }
1266
1267 /*
1268 * Check whether we can remove a link victim from directory dir, check
1269 * whether the type of victim is right.
1270 * 1. We can't do it if dir is read-only (done in permission())
1271 * 2. We should have write and exec permissions on dir
1272 * 3. We can't remove anything from append-only dir
1273 * 4. We can't do anything with immutable dir (done in permission())
1274 * 5. If the sticky bit on dir is set we should either
1275 * a. be owner of dir, or
1276 * b. be owner of victim, or
1277 * c. have CAP_FOWNER capability
1278 * 6. If the victim is append-only or immutable we can't do antyhing with
1279 * links pointing to it.
1280 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1281 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1282 * 9. We can't remove a root or mountpoint.
1283 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1284 * nfs_async_unlink().
1285 */
1286 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1287 {
1288 int error;
1289
1290 if (!victim->d_inode)
1291 return -ENOENT;
1292
1293 BUG_ON(victim->d_parent->d_inode != dir);
1294 audit_inode_child(victim, dir);
1295
1296 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1297 if (error)
1298 return error;
1299 if (IS_APPEND(dir))
1300 return -EPERM;
1301 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1302 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1303 return -EPERM;
1304 if (isdir) {
1305 if (!S_ISDIR(victim->d_inode->i_mode))
1306 return -ENOTDIR;
1307 if (IS_ROOT(victim))
1308 return -EBUSY;
1309 } else if (S_ISDIR(victim->d_inode->i_mode))
1310 return -EISDIR;
1311 if (IS_DEADDIR(dir))
1312 return -ENOENT;
1313 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1314 return -EBUSY;
1315 return 0;
1316 }
1317
1318 /* Check whether we can create an object with dentry child in directory
1319 * dir.
1320 * 1. We can't do it if child already exists (open has special treatment for
1321 * this case, but since we are inlined it's OK)
1322 * 2. We can't do it if dir is read-only (done in permission())
1323 * 3. We should have write and exec permissions on dir
1324 * 4. We can't do it if dir is immutable (done in permission())
1325 */
1326 static inline int may_create(struct inode *dir, struct dentry *child)
1327 {
1328 if (child->d_inode)
1329 return -EEXIST;
1330 if (IS_DEADDIR(dir))
1331 return -ENOENT;
1332 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1333 }
1334
1335 /*
1336 * p1 and p2 should be directories on the same fs.
1337 */
1338 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1339 {
1340 struct dentry *p;
1341
1342 if (p1 == p2) {
1343 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1344 return NULL;
1345 }
1346
1347 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1348
1349 p = d_ancestor(p2, p1);
1350 if (p) {
1351 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1352 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1353 return p;
1354 }
1355
1356 p = d_ancestor(p1, p2);
1357 if (p) {
1358 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1359 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1360 return p;
1361 }
1362
1363 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1364 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1365 return NULL;
1366 }
1367
1368 void unlock_rename(struct dentry *p1, struct dentry *p2)
1369 {
1370 mutex_unlock(&p1->d_inode->i_mutex);
1371 if (p1 != p2) {
1372 mutex_unlock(&p2->d_inode->i_mutex);
1373 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1374 }
1375 }
1376
1377 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1378 struct nameidata *nd)
1379 {
1380 int error = may_create(dir, dentry);
1381
1382 if (error)
1383 return error;
1384
1385 if (!dir->i_op->create)
1386 return -EACCES; /* shouldn't it be ENOSYS? */
1387 mode &= S_IALLUGO;
1388 mode |= S_IFREG;
1389 error = security_inode_create(dir, dentry, mode);
1390 if (error)
1391 return error;
1392 error = dir->i_op->create(dir, dentry, mode, nd);
1393 if (!error)
1394 fsnotify_create(dir, dentry);
1395 return error;
1396 }
1397
1398 int may_open(struct path *path, int acc_mode, int flag)
1399 {
1400 struct dentry *dentry = path->dentry;
1401 struct inode *inode = dentry->d_inode;
1402 int error;
1403
1404 if (!inode)
1405 return -ENOENT;
1406
1407 switch (inode->i_mode & S_IFMT) {
1408 case S_IFLNK:
1409 return -ELOOP;
1410 case S_IFDIR:
1411 if (acc_mode & MAY_WRITE)
1412 return -EISDIR;
1413 break;
1414 case S_IFBLK:
1415 case S_IFCHR:
1416 if (path->mnt->mnt_flags & MNT_NODEV)
1417 return -EACCES;
1418 /*FALLTHRU*/
1419 case S_IFIFO:
1420 case S_IFSOCK:
1421 flag &= ~O_TRUNC;
1422 break;
1423 }
1424
1425 error = inode_permission(inode, acc_mode);
1426 if (error)
1427 return error;
1428
1429 /*
1430 * An append-only file must be opened in append mode for writing.
1431 */
1432 if (IS_APPEND(inode)) {
1433 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1434 return -EPERM;
1435 if (flag & O_TRUNC)
1436 return -EPERM;
1437 }
1438
1439 /* O_NOATIME can only be set by the owner or superuser */
1440 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1441 return -EPERM;
1442
1443 /*
1444 * Ensure there are no outstanding leases on the file.
1445 */
1446 return break_lease(inode, flag);
1447 }
1448
1449 static int handle_truncate(struct path *path)
1450 {
1451 struct inode *inode = path->dentry->d_inode;
1452 int error = get_write_access(inode);
1453 if (error)
1454 return error;
1455 /*
1456 * Refuse to truncate files with mandatory locks held on them.
1457 */
1458 error = locks_verify_locked(inode);
1459 if (!error)
1460 error = security_path_truncate(path);
1461 if (!error) {
1462 error = do_truncate(path->dentry, 0,
1463 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1464 NULL);
1465 }
1466 put_write_access(inode);
1467 return error;
1468 }
1469
1470 /*
1471 * Be careful about ever adding any more callers of this
1472 * function. Its flags must be in the namei format, not
1473 * what get passed to sys_open().
1474 */
1475 static int __open_namei_create(struct nameidata *nd, struct path *path,
1476 int open_flag, int mode)
1477 {
1478 int error;
1479 struct dentry *dir = nd->path.dentry;
1480
1481 if (!IS_POSIXACL(dir->d_inode))
1482 mode &= ~current_umask();
1483 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1484 if (error)
1485 goto out_unlock;
1486 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1487 out_unlock:
1488 mutex_unlock(&dir->d_inode->i_mutex);
1489 dput(nd->path.dentry);
1490 nd->path.dentry = path->dentry;
1491 if (error)
1492 return error;
1493 /* Don't check for write permission, don't truncate */
1494 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1495 }
1496
1497 /*
1498 * Note that while the flag value (low two bits) for sys_open means:
1499 * 00 - read-only
1500 * 01 - write-only
1501 * 10 - read-write
1502 * 11 - special
1503 * it is changed into
1504 * 00 - no permissions needed
1505 * 01 - read-permission
1506 * 10 - write-permission
1507 * 11 - read-write
1508 * for the internal routines (ie open_namei()/follow_link() etc)
1509 * This is more logical, and also allows the 00 "no perm needed"
1510 * to be used for symlinks (where the permissions are checked
1511 * later).
1512 *
1513 */
1514 static inline int open_to_namei_flags(int flag)
1515 {
1516 if ((flag+1) & O_ACCMODE)
1517 flag++;
1518 return flag;
1519 }
1520
1521 static int open_will_truncate(int flag, struct inode *inode)
1522 {
1523 /*
1524 * We'll never write to the fs underlying
1525 * a device file.
1526 */
1527 if (special_file(inode->i_mode))
1528 return 0;
1529 return (flag & O_TRUNC);
1530 }
1531
1532 static struct file *finish_open(struct nameidata *nd,
1533 int open_flag, int acc_mode)
1534 {
1535 struct file *filp;
1536 int will_truncate;
1537 int error;
1538
1539 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1540 if (will_truncate) {
1541 error = mnt_want_write(nd->path.mnt);
1542 if (error)
1543 goto exit;
1544 }
1545 error = may_open(&nd->path, acc_mode, open_flag);
1546 if (error) {
1547 if (will_truncate)
1548 mnt_drop_write(nd->path.mnt);
1549 goto exit;
1550 }
1551 filp = nameidata_to_filp(nd);
1552 if (!IS_ERR(filp)) {
1553 error = ima_file_check(filp, acc_mode);
1554 if (error) {
1555 fput(filp);
1556 filp = ERR_PTR(error);
1557 }
1558 }
1559 if (!IS_ERR(filp)) {
1560 if (will_truncate) {
1561 error = handle_truncate(&nd->path);
1562 if (error) {
1563 fput(filp);
1564 filp = ERR_PTR(error);
1565 }
1566 }
1567 }
1568 /*
1569 * It is now safe to drop the mnt write
1570 * because the filp has had a write taken
1571 * on its behalf.
1572 */
1573 if (will_truncate)
1574 mnt_drop_write(nd->path.mnt);
1575 path_put(&nd->path);
1576 return filp;
1577
1578 exit:
1579 if (!IS_ERR(nd->intent.open.file))
1580 release_open_intent(nd);
1581 path_put(&nd->path);
1582 return ERR_PTR(error);
1583 }
1584
1585 static struct file *do_last(struct nameidata *nd, struct path *path,
1586 int open_flag, int acc_mode,
1587 int mode, const char *pathname)
1588 {
1589 struct dentry *dir = nd->path.dentry;
1590 struct file *filp;
1591 int error = -EISDIR;
1592
1593 switch (nd->last_type) {
1594 case LAST_DOTDOT:
1595 follow_dotdot(nd);
1596 dir = nd->path.dentry;
1597 case LAST_DOT:
1598 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1599 if (!dir->d_op->d_revalidate(dir, nd)) {
1600 error = -ESTALE;
1601 goto exit;
1602 }
1603 }
1604 /* fallthrough */
1605 case LAST_ROOT:
1606 if (open_flag & O_CREAT)
1607 goto exit;
1608 /* fallthrough */
1609 case LAST_BIND:
1610 audit_inode(pathname, dir);
1611 goto ok;
1612 }
1613
1614 /* trailing slashes? */
1615 if (nd->last.name[nd->last.len]) {
1616 if (open_flag & O_CREAT)
1617 goto exit;
1618 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1619 }
1620
1621 /* just plain open? */
1622 if (!(open_flag & O_CREAT)) {
1623 error = do_lookup(nd, &nd->last, path);
1624 if (error)
1625 goto exit;
1626 error = -ENOENT;
1627 if (!path->dentry->d_inode)
1628 goto exit_dput;
1629 if (path->dentry->d_inode->i_op->follow_link)
1630 return NULL;
1631 error = -ENOTDIR;
1632 if (nd->flags & LOOKUP_DIRECTORY) {
1633 if (!path->dentry->d_inode->i_op->lookup)
1634 goto exit_dput;
1635 }
1636 path_to_nameidata(path, nd);
1637 audit_inode(pathname, nd->path.dentry);
1638 goto ok;
1639 }
1640
1641 /* OK, it's O_CREAT */
1642 mutex_lock(&dir->d_inode->i_mutex);
1643
1644 path->dentry = lookup_hash(nd);
1645 path->mnt = nd->path.mnt;
1646
1647 error = PTR_ERR(path->dentry);
1648 if (IS_ERR(path->dentry)) {
1649 mutex_unlock(&dir->d_inode->i_mutex);
1650 goto exit;
1651 }
1652
1653 if (IS_ERR(nd->intent.open.file)) {
1654 error = PTR_ERR(nd->intent.open.file);
1655 goto exit_mutex_unlock;
1656 }
1657
1658 /* Negative dentry, just create the file */
1659 if (!path->dentry->d_inode) {
1660 /*
1661 * This write is needed to ensure that a
1662 * ro->rw transition does not occur between
1663 * the time when the file is created and when
1664 * a permanent write count is taken through
1665 * the 'struct file' in nameidata_to_filp().
1666 */
1667 error = mnt_want_write(nd->path.mnt);
1668 if (error)
1669 goto exit_mutex_unlock;
1670 error = __open_namei_create(nd, path, open_flag, mode);
1671 if (error) {
1672 mnt_drop_write(nd->path.mnt);
1673 goto exit;
1674 }
1675 filp = nameidata_to_filp(nd);
1676 mnt_drop_write(nd->path.mnt);
1677 path_put(&nd->path);
1678 if (!IS_ERR(filp)) {
1679 error = ima_file_check(filp, acc_mode);
1680 if (error) {
1681 fput(filp);
1682 filp = ERR_PTR(error);
1683 }
1684 }
1685 return filp;
1686 }
1687
1688 /*
1689 * It already exists.
1690 */
1691 mutex_unlock(&dir->d_inode->i_mutex);
1692 audit_inode(pathname, path->dentry);
1693
1694 error = -EEXIST;
1695 if (open_flag & O_EXCL)
1696 goto exit_dput;
1697
1698 if (__follow_mount(path)) {
1699 error = -ELOOP;
1700 if (open_flag & O_NOFOLLOW)
1701 goto exit_dput;
1702 }
1703
1704 error = -ENOENT;
1705 if (!path->dentry->d_inode)
1706 goto exit_dput;
1707
1708 if (path->dentry->d_inode->i_op->follow_link)
1709 return NULL;
1710
1711 path_to_nameidata(path, nd);
1712 error = -EISDIR;
1713 if (S_ISDIR(path->dentry->d_inode->i_mode))
1714 goto exit;
1715 ok:
1716 filp = finish_open(nd, open_flag, acc_mode);
1717 return filp;
1718
1719 exit_mutex_unlock:
1720 mutex_unlock(&dir->d_inode->i_mutex);
1721 exit_dput:
1722 path_put_conditional(path, nd);
1723 exit:
1724 if (!IS_ERR(nd->intent.open.file))
1725 release_open_intent(nd);
1726 path_put(&nd->path);
1727 return ERR_PTR(error);
1728 }
1729
1730 /*
1731 * Note that the low bits of the passed in "open_flag"
1732 * are not the same as in the local variable "flag". See
1733 * open_to_namei_flags() for more details.
1734 */
1735 struct file *do_filp_open(int dfd, const char *pathname,
1736 int open_flag, int mode, int acc_mode)
1737 {
1738 struct file *filp;
1739 struct nameidata nd;
1740 int error;
1741 struct path path;
1742 int count = 0;
1743 int flag = open_to_namei_flags(open_flag);
1744 int force_reval = 0;
1745
1746 if (!(open_flag & O_CREAT))
1747 mode = 0;
1748
1749 /* Must never be set by userspace */
1750 open_flag &= ~FMODE_NONOTIFY;
1751
1752 /*
1753 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1754 * check for O_DSYNC if the need any syncing at all we enforce it's
1755 * always set instead of having to deal with possibly weird behaviour
1756 * for malicious applications setting only __O_SYNC.
1757 */
1758 if (open_flag & __O_SYNC)
1759 open_flag |= O_DSYNC;
1760
1761 if (!acc_mode)
1762 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1763
1764 /* O_TRUNC implies we need access checks for write permissions */
1765 if (open_flag & O_TRUNC)
1766 acc_mode |= MAY_WRITE;
1767
1768 /* Allow the LSM permission hook to distinguish append
1769 access from general write access. */
1770 if (open_flag & O_APPEND)
1771 acc_mode |= MAY_APPEND;
1772
1773 /* find the parent */
1774 reval:
1775 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1776 if (error)
1777 return ERR_PTR(error);
1778 if (force_reval)
1779 nd.flags |= LOOKUP_REVAL;
1780
1781 current->total_link_count = 0;
1782 error = link_path_walk(pathname, &nd);
1783 if (error) {
1784 filp = ERR_PTR(error);
1785 goto out;
1786 }
1787 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1788 audit_inode(pathname, nd.path.dentry);
1789
1790 /*
1791 * We have the parent and last component.
1792 */
1793
1794 error = -ENFILE;
1795 filp = get_empty_filp();
1796 if (filp == NULL)
1797 goto exit_parent;
1798 nd.intent.open.file = filp;
1799 filp->f_flags = open_flag;
1800 nd.intent.open.flags = flag;
1801 nd.intent.open.create_mode = mode;
1802 nd.flags &= ~LOOKUP_PARENT;
1803 nd.flags |= LOOKUP_OPEN;
1804 if (open_flag & O_CREAT) {
1805 nd.flags |= LOOKUP_CREATE;
1806 if (open_flag & O_EXCL)
1807 nd.flags |= LOOKUP_EXCL;
1808 }
1809 if (open_flag & O_DIRECTORY)
1810 nd.flags |= LOOKUP_DIRECTORY;
1811 if (!(open_flag & O_NOFOLLOW))
1812 nd.flags |= LOOKUP_FOLLOW;
1813 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1814 while (unlikely(!filp)) { /* trailing symlink */
1815 struct path holder;
1816 struct inode *inode = path.dentry->d_inode;
1817 void *cookie;
1818 error = -ELOOP;
1819 /* S_ISDIR part is a temporary automount kludge */
1820 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1821 goto exit_dput;
1822 if (count++ == 32)
1823 goto exit_dput;
1824 /*
1825 * This is subtle. Instead of calling do_follow_link() we do
1826 * the thing by hands. The reason is that this way we have zero
1827 * link_count and path_walk() (called from ->follow_link)
1828 * honoring LOOKUP_PARENT. After that we have the parent and
1829 * last component, i.e. we are in the same situation as after
1830 * the first path_walk(). Well, almost - if the last component
1831 * is normal we get its copy stored in nd->last.name and we will
1832 * have to putname() it when we are done. Procfs-like symlinks
1833 * just set LAST_BIND.
1834 */
1835 nd.flags |= LOOKUP_PARENT;
1836 error = security_inode_follow_link(path.dentry, &nd);
1837 if (error)
1838 goto exit_dput;
1839 error = __do_follow_link(&path, &nd, &cookie);
1840 if (unlikely(error)) {
1841 /* nd.path had been dropped */
1842 if (!IS_ERR(cookie) && inode->i_op->put_link)
1843 inode->i_op->put_link(path.dentry, &nd, cookie);
1844 path_put(&path);
1845 release_open_intent(&nd);
1846 filp = ERR_PTR(error);
1847 goto out;
1848 }
1849 holder = path;
1850 nd.flags &= ~LOOKUP_PARENT;
1851 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1852 if (inode->i_op->put_link)
1853 inode->i_op->put_link(holder.dentry, &nd, cookie);
1854 path_put(&holder);
1855 }
1856 out:
1857 if (nd.root.mnt)
1858 path_put(&nd.root);
1859 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1860 force_reval = 1;
1861 goto reval;
1862 }
1863 return filp;
1864
1865 exit_dput:
1866 path_put_conditional(&path, &nd);
1867 if (!IS_ERR(nd.intent.open.file))
1868 release_open_intent(&nd);
1869 exit_parent:
1870 path_put(&nd.path);
1871 filp = ERR_PTR(error);
1872 goto out;
1873 }
1874
1875 /**
1876 * filp_open - open file and return file pointer
1877 *
1878 * @filename: path to open
1879 * @flags: open flags as per the open(2) second argument
1880 * @mode: mode for the new file if O_CREAT is set, else ignored
1881 *
1882 * This is the helper to open a file from kernelspace if you really
1883 * have to. But in generally you should not do this, so please move
1884 * along, nothing to see here..
1885 */
1886 struct file *filp_open(const char *filename, int flags, int mode)
1887 {
1888 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1889 }
1890 EXPORT_SYMBOL(filp_open);
1891
1892 /**
1893 * lookup_create - lookup a dentry, creating it if it doesn't exist
1894 * @nd: nameidata info
1895 * @is_dir: directory flag
1896 *
1897 * Simple function to lookup and return a dentry and create it
1898 * if it doesn't exist. Is SMP-safe.
1899 *
1900 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1901 */
1902 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1903 {
1904 struct dentry *dentry = ERR_PTR(-EEXIST);
1905
1906 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1907 /*
1908 * Yucky last component or no last component at all?
1909 * (foo/., foo/.., /////)
1910 */
1911 if (nd->last_type != LAST_NORM)
1912 goto fail;
1913 nd->flags &= ~LOOKUP_PARENT;
1914 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1915 nd->intent.open.flags = O_EXCL;
1916
1917 /*
1918 * Do the final lookup.
1919 */
1920 dentry = lookup_hash(nd);
1921 if (IS_ERR(dentry))
1922 goto fail;
1923
1924 if (dentry->d_inode)
1925 goto eexist;
1926 /*
1927 * Special case - lookup gave negative, but... we had foo/bar/
1928 * From the vfs_mknod() POV we just have a negative dentry -
1929 * all is fine. Let's be bastards - you had / on the end, you've
1930 * been asking for (non-existent) directory. -ENOENT for you.
1931 */
1932 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1933 dput(dentry);
1934 dentry = ERR_PTR(-ENOENT);
1935 }
1936 return dentry;
1937 eexist:
1938 dput(dentry);
1939 dentry = ERR_PTR(-EEXIST);
1940 fail:
1941 return dentry;
1942 }
1943 EXPORT_SYMBOL_GPL(lookup_create);
1944
1945 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1946 {
1947 int error = may_create(dir, dentry);
1948
1949 if (error)
1950 return error;
1951
1952 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1953 return -EPERM;
1954
1955 if (!dir->i_op->mknod)
1956 return -EPERM;
1957
1958 error = devcgroup_inode_mknod(mode, dev);
1959 if (error)
1960 return error;
1961
1962 error = security_inode_mknod(dir, dentry, mode, dev);
1963 if (error)
1964 return error;
1965
1966 error = dir->i_op->mknod(dir, dentry, mode, dev);
1967 if (!error)
1968 fsnotify_create(dir, dentry);
1969 return error;
1970 }
1971
1972 static int may_mknod(mode_t mode)
1973 {
1974 switch (mode & S_IFMT) {
1975 case S_IFREG:
1976 case S_IFCHR:
1977 case S_IFBLK:
1978 case S_IFIFO:
1979 case S_IFSOCK:
1980 case 0: /* zero mode translates to S_IFREG */
1981 return 0;
1982 case S_IFDIR:
1983 return -EPERM;
1984 default:
1985 return -EINVAL;
1986 }
1987 }
1988
1989 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1990 unsigned, dev)
1991 {
1992 int error;
1993 char *tmp;
1994 struct dentry *dentry;
1995 struct nameidata nd;
1996
1997 if (S_ISDIR(mode))
1998 return -EPERM;
1999
2000 error = user_path_parent(dfd, filename, &nd, &tmp);
2001 if (error)
2002 return error;
2003
2004 dentry = lookup_create(&nd, 0);
2005 if (IS_ERR(dentry)) {
2006 error = PTR_ERR(dentry);
2007 goto out_unlock;
2008 }
2009 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2010 mode &= ~current_umask();
2011 error = may_mknod(mode);
2012 if (error)
2013 goto out_dput;
2014 error = mnt_want_write(nd.path.mnt);
2015 if (error)
2016 goto out_dput;
2017 error = security_path_mknod(&nd.path, dentry, mode, dev);
2018 if (error)
2019 goto out_drop_write;
2020 switch (mode & S_IFMT) {
2021 case 0: case S_IFREG:
2022 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2023 break;
2024 case S_IFCHR: case S_IFBLK:
2025 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2026 new_decode_dev(dev));
2027 break;
2028 case S_IFIFO: case S_IFSOCK:
2029 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2030 break;
2031 }
2032 out_drop_write:
2033 mnt_drop_write(nd.path.mnt);
2034 out_dput:
2035 dput(dentry);
2036 out_unlock:
2037 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2038 path_put(&nd.path);
2039 putname(tmp);
2040
2041 return error;
2042 }
2043
2044 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2045 {
2046 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2047 }
2048
2049 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2050 {
2051 int error = may_create(dir, dentry);
2052
2053 if (error)
2054 return error;
2055
2056 if (!dir->i_op->mkdir)
2057 return -EPERM;
2058
2059 mode &= (S_IRWXUGO|S_ISVTX);
2060 error = security_inode_mkdir(dir, dentry, mode);
2061 if (error)
2062 return error;
2063
2064 error = dir->i_op->mkdir(dir, dentry, mode);
2065 if (!error)
2066 fsnotify_mkdir(dir, dentry);
2067 return error;
2068 }
2069
2070 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2071 {
2072 int error = 0;
2073 char * tmp;
2074 struct dentry *dentry;
2075 struct nameidata nd;
2076
2077 error = user_path_parent(dfd, pathname, &nd, &tmp);
2078 if (error)
2079 goto out_err;
2080
2081 dentry = lookup_create(&nd, 1);
2082 error = PTR_ERR(dentry);
2083 if (IS_ERR(dentry))
2084 goto out_unlock;
2085
2086 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2087 mode &= ~current_umask();
2088 error = mnt_want_write(nd.path.mnt);
2089 if (error)
2090 goto out_dput;
2091 error = security_path_mkdir(&nd.path, dentry, mode);
2092 if (error)
2093 goto out_drop_write;
2094 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2095 out_drop_write:
2096 mnt_drop_write(nd.path.mnt);
2097 out_dput:
2098 dput(dentry);
2099 out_unlock:
2100 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2101 path_put(&nd.path);
2102 putname(tmp);
2103 out_err:
2104 return error;
2105 }
2106
2107 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2108 {
2109 return sys_mkdirat(AT_FDCWD, pathname, mode);
2110 }
2111
2112 /*
2113 * We try to drop the dentry early: we should have
2114 * a usage count of 2 if we're the only user of this
2115 * dentry, and if that is true (possibly after pruning
2116 * the dcache), then we drop the dentry now.
2117 *
2118 * A low-level filesystem can, if it choses, legally
2119 * do a
2120 *
2121 * if (!d_unhashed(dentry))
2122 * return -EBUSY;
2123 *
2124 * if it cannot handle the case of removing a directory
2125 * that is still in use by something else..
2126 */
2127 void dentry_unhash(struct dentry *dentry)
2128 {
2129 dget(dentry);
2130 shrink_dcache_parent(dentry);
2131 spin_lock(&dentry->d_lock);
2132 if (dentry->d_count == 2)
2133 __d_drop(dentry);
2134 spin_unlock(&dentry->d_lock);
2135 }
2136
2137 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2138 {
2139 int error = may_delete(dir, dentry, 1);
2140
2141 if (error)
2142 return error;
2143
2144 if (!dir->i_op->rmdir)
2145 return -EPERM;
2146
2147 mutex_lock(&dentry->d_inode->i_mutex);
2148 dentry_unhash(dentry);
2149 if (d_mountpoint(dentry))
2150 error = -EBUSY;
2151 else {
2152 error = security_inode_rmdir(dir, dentry);
2153 if (!error) {
2154 error = dir->i_op->rmdir(dir, dentry);
2155 if (!error) {
2156 dentry->d_inode->i_flags |= S_DEAD;
2157 dont_mount(dentry);
2158 }
2159 }
2160 }
2161 mutex_unlock(&dentry->d_inode->i_mutex);
2162 if (!error) {
2163 d_delete(dentry);
2164 }
2165 dput(dentry);
2166
2167 return error;
2168 }
2169
2170 static long do_rmdir(int dfd, const char __user *pathname)
2171 {
2172 int error = 0;
2173 char * name;
2174 struct dentry *dentry;
2175 struct nameidata nd;
2176
2177 error = user_path_parent(dfd, pathname, &nd, &name);
2178 if (error)
2179 return error;
2180
2181 switch(nd.last_type) {
2182 case LAST_DOTDOT:
2183 error = -ENOTEMPTY;
2184 goto exit1;
2185 case LAST_DOT:
2186 error = -EINVAL;
2187 goto exit1;
2188 case LAST_ROOT:
2189 error = -EBUSY;
2190 goto exit1;
2191 }
2192
2193 nd.flags &= ~LOOKUP_PARENT;
2194
2195 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2196 dentry = lookup_hash(&nd);
2197 error = PTR_ERR(dentry);
2198 if (IS_ERR(dentry))
2199 goto exit2;
2200 error = mnt_want_write(nd.path.mnt);
2201 if (error)
2202 goto exit3;
2203 error = security_path_rmdir(&nd.path, dentry);
2204 if (error)
2205 goto exit4;
2206 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2207 exit4:
2208 mnt_drop_write(nd.path.mnt);
2209 exit3:
2210 dput(dentry);
2211 exit2:
2212 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2213 exit1:
2214 path_put(&nd.path);
2215 putname(name);
2216 return error;
2217 }
2218
2219 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2220 {
2221 return do_rmdir(AT_FDCWD, pathname);
2222 }
2223
2224 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2225 {
2226 int error = may_delete(dir, dentry, 0);
2227
2228 if (error)
2229 return error;
2230
2231 if (!dir->i_op->unlink)
2232 return -EPERM;
2233
2234 mutex_lock(&dentry->d_inode->i_mutex);
2235 if (d_mountpoint(dentry))
2236 error = -EBUSY;
2237 else {
2238 error = security_inode_unlink(dir, dentry);
2239 if (!error) {
2240 error = dir->i_op->unlink(dir, dentry);
2241 if (!error)
2242 dont_mount(dentry);
2243 }
2244 }
2245 mutex_unlock(&dentry->d_inode->i_mutex);
2246
2247 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2248 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2249 fsnotify_link_count(dentry->d_inode);
2250 d_delete(dentry);
2251 }
2252
2253 return error;
2254 }
2255
2256 /*
2257 * Make sure that the actual truncation of the file will occur outside its
2258 * directory's i_mutex. Truncate can take a long time if there is a lot of
2259 * writeout happening, and we don't want to prevent access to the directory
2260 * while waiting on the I/O.
2261 */
2262 static long do_unlinkat(int dfd, const char __user *pathname)
2263 {
2264 int error;
2265 char *name;
2266 struct dentry *dentry;
2267 struct nameidata nd;
2268 struct inode *inode = NULL;
2269
2270 error = user_path_parent(dfd, pathname, &nd, &name);
2271 if (error)
2272 return error;
2273
2274 error = -EISDIR;
2275 if (nd.last_type != LAST_NORM)
2276 goto exit1;
2277
2278 nd.flags &= ~LOOKUP_PARENT;
2279
2280 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2281 dentry = lookup_hash(&nd);
2282 error = PTR_ERR(dentry);
2283 if (!IS_ERR(dentry)) {
2284 /* Why not before? Because we want correct error value */
2285 if (nd.last.name[nd.last.len])
2286 goto slashes;
2287 inode = dentry->d_inode;
2288 if (inode)
2289 ihold(inode);
2290 error = mnt_want_write(nd.path.mnt);
2291 if (error)
2292 goto exit2;
2293 error = security_path_unlink(&nd.path, dentry);
2294 if (error)
2295 goto exit3;
2296 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2297 exit3:
2298 mnt_drop_write(nd.path.mnt);
2299 exit2:
2300 dput(dentry);
2301 }
2302 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2303 if (inode)
2304 iput(inode); /* truncate the inode here */
2305 exit1:
2306 path_put(&nd.path);
2307 putname(name);
2308 return error;
2309
2310 slashes:
2311 error = !dentry->d_inode ? -ENOENT :
2312 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2313 goto exit2;
2314 }
2315
2316 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2317 {
2318 if ((flag & ~AT_REMOVEDIR) != 0)
2319 return -EINVAL;
2320
2321 if (flag & AT_REMOVEDIR)
2322 return do_rmdir(dfd, pathname);
2323
2324 return do_unlinkat(dfd, pathname);
2325 }
2326
2327 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2328 {
2329 return do_unlinkat(AT_FDCWD, pathname);
2330 }
2331
2332 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2333 {
2334 int error = may_create(dir, dentry);
2335
2336 if (error)
2337 return error;
2338
2339 if (!dir->i_op->symlink)
2340 return -EPERM;
2341
2342 error = security_inode_symlink(dir, dentry, oldname);
2343 if (error)
2344 return error;
2345
2346 error = dir->i_op->symlink(dir, dentry, oldname);
2347 if (!error)
2348 fsnotify_create(dir, dentry);
2349 return error;
2350 }
2351
2352 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2353 int, newdfd, const char __user *, newname)
2354 {
2355 int error;
2356 char *from;
2357 char *to;
2358 struct dentry *dentry;
2359 struct nameidata nd;
2360
2361 from = getname(oldname);
2362 if (IS_ERR(from))
2363 return PTR_ERR(from);
2364
2365 error = user_path_parent(newdfd, newname, &nd, &to);
2366 if (error)
2367 goto out_putname;
2368
2369 dentry = lookup_create(&nd, 0);
2370 error = PTR_ERR(dentry);
2371 if (IS_ERR(dentry))
2372 goto out_unlock;
2373
2374 error = mnt_want_write(nd.path.mnt);
2375 if (error)
2376 goto out_dput;
2377 error = security_path_symlink(&nd.path, dentry, from);
2378 if (error)
2379 goto out_drop_write;
2380 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2381 out_drop_write:
2382 mnt_drop_write(nd.path.mnt);
2383 out_dput:
2384 dput(dentry);
2385 out_unlock:
2386 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2387 path_put(&nd.path);
2388 putname(to);
2389 out_putname:
2390 putname(from);
2391 return error;
2392 }
2393
2394 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2395 {
2396 return sys_symlinkat(oldname, AT_FDCWD, newname);
2397 }
2398
2399 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2400 {
2401 struct inode *inode = old_dentry->d_inode;
2402 int error;
2403
2404 if (!inode)
2405 return -ENOENT;
2406
2407 error = may_create(dir, new_dentry);
2408 if (error)
2409 return error;
2410
2411 if (dir->i_sb != inode->i_sb)
2412 return -EXDEV;
2413
2414 /*
2415 * A link to an append-only or immutable file cannot be created.
2416 */
2417 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2418 return -EPERM;
2419 if (!dir->i_op->link)
2420 return -EPERM;
2421 if (S_ISDIR(inode->i_mode))
2422 return -EPERM;
2423
2424 error = security_inode_link(old_dentry, dir, new_dentry);
2425 if (error)
2426 return error;
2427
2428 mutex_lock(&inode->i_mutex);
2429 error = dir->i_op->link(old_dentry, dir, new_dentry);
2430 mutex_unlock(&inode->i_mutex);
2431 if (!error)
2432 fsnotify_link(dir, inode, new_dentry);
2433 return error;
2434 }
2435
2436 /*
2437 * Hardlinks are often used in delicate situations. We avoid
2438 * security-related surprises by not following symlinks on the
2439 * newname. --KAB
2440 *
2441 * We don't follow them on the oldname either to be compatible
2442 * with linux 2.0, and to avoid hard-linking to directories
2443 * and other special files. --ADM
2444 */
2445 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2446 int, newdfd, const char __user *, newname, int, flags)
2447 {
2448 struct dentry *new_dentry;
2449 struct nameidata nd;
2450 struct path old_path;
2451 int error;
2452 char *to;
2453
2454 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2455 return -EINVAL;
2456
2457 error = user_path_at(olddfd, oldname,
2458 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2459 &old_path);
2460 if (error)
2461 return error;
2462
2463 error = user_path_parent(newdfd, newname, &nd, &to);
2464 if (error)
2465 goto out;
2466 error = -EXDEV;
2467 if (old_path.mnt != nd.path.mnt)
2468 goto out_release;
2469 new_dentry = lookup_create(&nd, 0);
2470 error = PTR_ERR(new_dentry);
2471 if (IS_ERR(new_dentry))
2472 goto out_unlock;
2473 error = mnt_want_write(nd.path.mnt);
2474 if (error)
2475 goto out_dput;
2476 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2477 if (error)
2478 goto out_drop_write;
2479 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2480 out_drop_write:
2481 mnt_drop_write(nd.path.mnt);
2482 out_dput:
2483 dput(new_dentry);
2484 out_unlock:
2485 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2486 out_release:
2487 path_put(&nd.path);
2488 putname(to);
2489 out:
2490 path_put(&old_path);
2491
2492 return error;
2493 }
2494
2495 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2496 {
2497 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2498 }
2499
2500 /*
2501 * The worst of all namespace operations - renaming directory. "Perverted"
2502 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2503 * Problems:
2504 * a) we can get into loop creation. Check is done in is_subdir().
2505 * b) race potential - two innocent renames can create a loop together.
2506 * That's where 4.4 screws up. Current fix: serialization on
2507 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2508 * story.
2509 * c) we have to lock _three_ objects - parents and victim (if it exists).
2510 * And that - after we got ->i_mutex on parents (until then we don't know
2511 * whether the target exists). Solution: try to be smart with locking
2512 * order for inodes. We rely on the fact that tree topology may change
2513 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2514 * move will be locked. Thus we can rank directories by the tree
2515 * (ancestors first) and rank all non-directories after them.
2516 * That works since everybody except rename does "lock parent, lookup,
2517 * lock child" and rename is under ->s_vfs_rename_mutex.
2518 * HOWEVER, it relies on the assumption that any object with ->lookup()
2519 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2520 * we'd better make sure that there's no link(2) for them.
2521 * d) some filesystems don't support opened-but-unlinked directories,
2522 * either because of layout or because they are not ready to deal with
2523 * all cases correctly. The latter will be fixed (taking this sort of
2524 * stuff into VFS), but the former is not going away. Solution: the same
2525 * trick as in rmdir().
2526 * e) conversion from fhandle to dentry may come in the wrong moment - when
2527 * we are removing the target. Solution: we will have to grab ->i_mutex
2528 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2529 * ->i_mutex on parents, which works but leads to some truly excessive
2530 * locking].
2531 */
2532 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2533 struct inode *new_dir, struct dentry *new_dentry)
2534 {
2535 int error = 0;
2536 struct inode *target;
2537
2538 /*
2539 * If we are going to change the parent - check write permissions,
2540 * we'll need to flip '..'.
2541 */
2542 if (new_dir != old_dir) {
2543 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2544 if (error)
2545 return error;
2546 }
2547
2548 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2549 if (error)
2550 return error;
2551
2552 target = new_dentry->d_inode;
2553 if (target)
2554 mutex_lock(&target->i_mutex);
2555 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2556 error = -EBUSY;
2557 else {
2558 if (target)
2559 dentry_unhash(new_dentry);
2560 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2561 }
2562 if (target) {
2563 if (!error) {
2564 target->i_flags |= S_DEAD;
2565 dont_mount(new_dentry);
2566 }
2567 mutex_unlock(&target->i_mutex);
2568 if (d_unhashed(new_dentry))
2569 d_rehash(new_dentry);
2570 dput(new_dentry);
2571 }
2572 if (!error)
2573 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2574 d_move(old_dentry,new_dentry);
2575 return error;
2576 }
2577
2578 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2579 struct inode *new_dir, struct dentry *new_dentry)
2580 {
2581 struct inode *target;
2582 int error;
2583
2584 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2585 if (error)
2586 return error;
2587
2588 dget(new_dentry);
2589 target = new_dentry->d_inode;
2590 if (target)
2591 mutex_lock(&target->i_mutex);
2592 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2593 error = -EBUSY;
2594 else
2595 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2596 if (!error) {
2597 if (target)
2598 dont_mount(new_dentry);
2599 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2600 d_move(old_dentry, new_dentry);
2601 }
2602 if (target)
2603 mutex_unlock(&target->i_mutex);
2604 dput(new_dentry);
2605 return error;
2606 }
2607
2608 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2609 struct inode *new_dir, struct dentry *new_dentry)
2610 {
2611 int error;
2612 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2613 const unsigned char *old_name;
2614
2615 if (old_dentry->d_inode == new_dentry->d_inode)
2616 return 0;
2617
2618 error = may_delete(old_dir, old_dentry, is_dir);
2619 if (error)
2620 return error;
2621
2622 if (!new_dentry->d_inode)
2623 error = may_create(new_dir, new_dentry);
2624 else
2625 error = may_delete(new_dir, new_dentry, is_dir);
2626 if (error)
2627 return error;
2628
2629 if (!old_dir->i_op->rename)
2630 return -EPERM;
2631
2632 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2633
2634 if (is_dir)
2635 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2636 else
2637 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2638 if (!error)
2639 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2640 new_dentry->d_inode, old_dentry);
2641 fsnotify_oldname_free(old_name);
2642
2643 return error;
2644 }
2645
2646 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2647 int, newdfd, const char __user *, newname)
2648 {
2649 struct dentry *old_dir, *new_dir;
2650 struct dentry *old_dentry, *new_dentry;
2651 struct dentry *trap;
2652 struct nameidata oldnd, newnd;
2653 char *from;
2654 char *to;
2655 int error;
2656
2657 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2658 if (error)
2659 goto exit;
2660
2661 error = user_path_parent(newdfd, newname, &newnd, &to);
2662 if (error)
2663 goto exit1;
2664
2665 error = -EXDEV;
2666 if (oldnd.path.mnt != newnd.path.mnt)
2667 goto exit2;
2668
2669 old_dir = oldnd.path.dentry;
2670 error = -EBUSY;
2671 if (oldnd.last_type != LAST_NORM)
2672 goto exit2;
2673
2674 new_dir = newnd.path.dentry;
2675 if (newnd.last_type != LAST_NORM)
2676 goto exit2;
2677
2678 oldnd.flags &= ~LOOKUP_PARENT;
2679 newnd.flags &= ~LOOKUP_PARENT;
2680 newnd.flags |= LOOKUP_RENAME_TARGET;
2681
2682 trap = lock_rename(new_dir, old_dir);
2683
2684 old_dentry = lookup_hash(&oldnd);
2685 error = PTR_ERR(old_dentry);
2686 if (IS_ERR(old_dentry))
2687 goto exit3;
2688 /* source must exist */
2689 error = -ENOENT;
2690 if (!old_dentry->d_inode)
2691 goto exit4;
2692 /* unless the source is a directory trailing slashes give -ENOTDIR */
2693 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2694 error = -ENOTDIR;
2695 if (oldnd.last.name[oldnd.last.len])
2696 goto exit4;
2697 if (newnd.last.name[newnd.last.len])
2698 goto exit4;
2699 }
2700 /* source should not be ancestor of target */
2701 error = -EINVAL;
2702 if (old_dentry == trap)
2703 goto exit4;
2704 new_dentry = lookup_hash(&newnd);
2705 error = PTR_ERR(new_dentry);
2706 if (IS_ERR(new_dentry))
2707 goto exit4;
2708 /* target should not be an ancestor of source */
2709 error = -ENOTEMPTY;
2710 if (new_dentry == trap)
2711 goto exit5;
2712
2713 error = mnt_want_write(oldnd.path.mnt);
2714 if (error)
2715 goto exit5;
2716 error = security_path_rename(&oldnd.path, old_dentry,
2717 &newnd.path, new_dentry);
2718 if (error)
2719 goto exit6;
2720 error = vfs_rename(old_dir->d_inode, old_dentry,
2721 new_dir->d_inode, new_dentry);
2722 exit6:
2723 mnt_drop_write(oldnd.path.mnt);
2724 exit5:
2725 dput(new_dentry);
2726 exit4:
2727 dput(old_dentry);
2728 exit3:
2729 unlock_rename(new_dir, old_dir);
2730 exit2:
2731 path_put(&newnd.path);
2732 putname(to);
2733 exit1:
2734 path_put(&oldnd.path);
2735 putname(from);
2736 exit:
2737 return error;
2738 }
2739
2740 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2741 {
2742 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2743 }
2744
2745 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2746 {
2747 int len;
2748
2749 len = PTR_ERR(link);
2750 if (IS_ERR(link))
2751 goto out;
2752
2753 len = strlen(link);
2754 if (len > (unsigned) buflen)
2755 len = buflen;
2756 if (copy_to_user(buffer, link, len))
2757 len = -EFAULT;
2758 out:
2759 return len;
2760 }
2761
2762 /*
2763 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2764 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2765 * using) it for any given inode is up to filesystem.
2766 */
2767 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2768 {
2769 struct nameidata nd;
2770 void *cookie;
2771 int res;
2772
2773 nd.depth = 0;
2774 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2775 if (IS_ERR(cookie))
2776 return PTR_ERR(cookie);
2777
2778 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2779 if (dentry->d_inode->i_op->put_link)
2780 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2781 return res;
2782 }
2783
2784 int vfs_follow_link(struct nameidata *nd, const char *link)
2785 {
2786 return __vfs_follow_link(nd, link);
2787 }
2788
2789 /* get the link contents into pagecache */
2790 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2791 {
2792 char *kaddr;
2793 struct page *page;
2794 struct address_space *mapping = dentry->d_inode->i_mapping;
2795 page = read_mapping_page(mapping, 0, NULL);
2796 if (IS_ERR(page))
2797 return (char*)page;
2798 *ppage = page;
2799 kaddr = kmap(page);
2800 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2801 return kaddr;
2802 }
2803
2804 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2805 {
2806 struct page *page = NULL;
2807 char *s = page_getlink(dentry, &page);
2808 int res = vfs_readlink(dentry,buffer,buflen,s);
2809 if (page) {
2810 kunmap(page);
2811 page_cache_release(page);
2812 }
2813 return res;
2814 }
2815
2816 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2817 {
2818 struct page *page = NULL;
2819 nd_set_link(nd, page_getlink(dentry, &page));
2820 return page;
2821 }
2822
2823 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2824 {
2825 struct page *page = cookie;
2826
2827 if (page) {
2828 kunmap(page);
2829 page_cache_release(page);
2830 }
2831 }
2832
2833 /*
2834 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2835 */
2836 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2837 {
2838 struct address_space *mapping = inode->i_mapping;
2839 struct page *page;
2840 void *fsdata;
2841 int err;
2842 char *kaddr;
2843 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2844 if (nofs)
2845 flags |= AOP_FLAG_NOFS;
2846
2847 retry:
2848 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2849 flags, &page, &fsdata);
2850 if (err)
2851 goto fail;
2852
2853 kaddr = kmap_atomic(page, KM_USER0);
2854 memcpy(kaddr, symname, len-1);
2855 kunmap_atomic(kaddr, KM_USER0);
2856
2857 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2858 page, fsdata);
2859 if (err < 0)
2860 goto fail;
2861 if (err < len-1)
2862 goto retry;
2863
2864 mark_inode_dirty(inode);
2865 return 0;
2866 fail:
2867 return err;
2868 }
2869
2870 int page_symlink(struct inode *inode, const char *symname, int len)
2871 {
2872 return __page_symlink(inode, symname, len,
2873 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2874 }
2875
2876 const struct inode_operations page_symlink_inode_operations = {
2877 .readlink = generic_readlink,
2878 .follow_link = page_follow_link_light,
2879 .put_link = page_put_link,
2880 };
2881
2882 EXPORT_SYMBOL(user_path_at);
2883 EXPORT_SYMBOL(follow_down);
2884 EXPORT_SYMBOL(follow_up);
2885 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2886 EXPORT_SYMBOL(getname);
2887 EXPORT_SYMBOL(lock_rename);
2888 EXPORT_SYMBOL(lookup_one_len);
2889 EXPORT_SYMBOL(page_follow_link_light);
2890 EXPORT_SYMBOL(page_put_link);
2891 EXPORT_SYMBOL(page_readlink);
2892 EXPORT_SYMBOL(__page_symlink);
2893 EXPORT_SYMBOL(page_symlink);
2894 EXPORT_SYMBOL(page_symlink_inode_operations);
2895 EXPORT_SYMBOL(path_lookup);
2896 EXPORT_SYMBOL(kern_path);
2897 EXPORT_SYMBOL(vfs_path_lookup);
2898 EXPORT_SYMBOL(inode_permission);
2899 EXPORT_SYMBOL(file_permission);
2900 EXPORT_SYMBOL(unlock_rename);
2901 EXPORT_SYMBOL(vfs_create);
2902 EXPORT_SYMBOL(vfs_follow_link);
2903 EXPORT_SYMBOL(vfs_link);
2904 EXPORT_SYMBOL(vfs_mkdir);
2905 EXPORT_SYMBOL(vfs_mknod);
2906 EXPORT_SYMBOL(generic_permission);
2907 EXPORT_SYMBOL(vfs_readlink);
2908 EXPORT_SYMBOL(vfs_rename);
2909 EXPORT_SYMBOL(vfs_rmdir);
2910 EXPORT_SYMBOL(vfs_symlink);
2911 EXPORT_SYMBOL(vfs_unlink);
2912 EXPORT_SYMBOL(dentry_unhash);
2913 EXPORT_SYMBOL(generic_readlink);
This page took 0.092259 seconds and 5 git commands to generate.