71807dc7e402bf5b0b145510f670b726c01b255b
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39 #include "mount.h"
40
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
46 *
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
53 *
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
57 *
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
60 *
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
67 */
68
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
76 *
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
84 */
85
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
88 *
89 * [10-Sep-98 Alan Modra] Another symlink change.
90 */
91
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
99 *
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
105 */
106 /*
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
110 */
111
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139 }
140
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 char *result = __getname();
144 int retval;
145
146 if (!result)
147 return ERR_PTR(-ENOMEM);
148
149 retval = do_getname(filename, result);
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(result);
155 return ERR_PTR(retval);
156 }
157 }
158 audit_getname(result);
159 return result;
160 }
161
162 char *getname(const char __user * filename)
163 {
164 return getname_flags(filename, 0, 0);
165 }
166
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
169 {
170 if (unlikely(!audit_dummy_context()))
171 audit_putname(name);
172 else
173 __putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177
178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
182
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 if (!acl)
186 return -EAGAIN;
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
189 return -ECHILD;
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 }
192
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194
195 /*
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
199 *
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
202 */
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 if (IS_ERR(acl))
207 return PTR_ERR(acl);
208 } else {
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 return -EAGAIN;
211 }
212 }
213
214 if (acl) {
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
217 return error;
218 }
219 #endif
220
221 return -EAGAIN;
222 }
223
224 /*
225 * This does the basic permission checking
226 */
227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 unsigned int mode = inode->i_mode;
230
231 if (current_user_ns() != inode_userns(inode))
232 goto other_perms;
233
234 if (likely(current_fsuid() == inode->i_uid))
235 mode >>= 6;
236 else {
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
240 return error;
241 }
242
243 if (in_group_p(inode->i_gid))
244 mode >>= 3;
245 }
246
247 other_perms:
248 /*
249 * If the DACs are ok we don't need any capability check.
250 */
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 return 0;
253 return -EACCES;
254 }
255
256 /**
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260 *
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
265 *
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
269 */
270 int generic_permission(struct inode *inode, int mask)
271 {
272 int ret;
273
274 /*
275 * Do the basic permission checks.
276 */
277 ret = acl_permission_check(inode, mask);
278 if (ret != -EACCES)
279 return ret;
280
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 return 0;
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 return 0;
288 return -EACCES;
289 }
290 /*
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
294 */
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 return 0;
298
299 /*
300 * Searching includes executable on directories, else just read.
301 */
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 return 0;
306
307 return -EACCES;
308 }
309
310 /*
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
315 */
316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
321
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
326 }
327 return generic_permission(inode, mask);
328 }
329
330 /**
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334 *
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
339 *
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341 */
342 int inode_permission(struct inode *inode, int mask)
343 {
344 int retval;
345
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
348
349 /*
350 * Nobody gets write access to a read-only fs.
351 */
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 return -EROFS;
355
356 /*
357 * Nobody gets write access to an immutable file.
358 */
359 if (IS_IMMUTABLE(inode))
360 return -EACCES;
361 }
362
363 retval = do_inode_permission(inode, mask);
364 if (retval)
365 return retval;
366
367 retval = devcgroup_inode_permission(inode, mask);
368 if (retval)
369 return retval;
370
371 return security_inode_permission(inode, mask);
372 }
373
374 /**
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
377 *
378 * Given a path increment the reference count to the dentry and the vfsmount.
379 */
380 void path_get(struct path *path)
381 {
382 mntget(path->mnt);
383 dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386
387 /**
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
390 *
391 * Given a path decrement the reference count to the dentry and the vfsmount.
392 */
393 void path_put(struct path *path)
394 {
395 dput(path->dentry);
396 mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399
400 /*
401 * Path walking has 2 modes, rcu-walk and ref-walk (see
402 * Documentation/filesystems/path-lookup.txt). In situations when we can't
403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405 * mode. Refcounts are grabbed at the last known good point before rcu-walk
406 * got stuck, so ref-walk may continue from there. If this is not successful
407 * (eg. a seqcount has changed), then failure is returned and it's up to caller
408 * to restart the path walk from the beginning in ref-walk mode.
409 */
410
411 /**
412 * unlazy_walk - try to switch to ref-walk mode.
413 * @nd: nameidata pathwalk data
414 * @dentry: child of nd->path.dentry or NULL
415 * Returns: 0 on success, -ECHILD on failure
416 *
417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
419 * @nd or NULL. Must be called from rcu-walk context.
420 */
421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 struct fs_struct *fs = current->fs;
424 struct dentry *parent = nd->path.dentry;
425 int want_root = 0;
426
427 BUG_ON(!(nd->flags & LOOKUP_RCU));
428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 want_root = 1;
430 spin_lock(&fs->lock);
431 if (nd->root.mnt != fs->root.mnt ||
432 nd->root.dentry != fs->root.dentry)
433 goto err_root;
434 }
435 spin_lock(&parent->d_lock);
436 if (!dentry) {
437 if (!__d_rcu_to_refcount(parent, nd->seq))
438 goto err_parent;
439 BUG_ON(nd->inode != parent->d_inode);
440 } else {
441 if (dentry->d_parent != parent)
442 goto err_parent;
443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 if (!__d_rcu_to_refcount(dentry, nd->seq))
445 goto err_child;
446 /*
447 * If the sequence check on the child dentry passed, then
448 * the child has not been removed from its parent. This
449 * means the parent dentry must be valid and able to take
450 * a reference at this point.
451 */
452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 BUG_ON(!parent->d_count);
454 parent->d_count++;
455 spin_unlock(&dentry->d_lock);
456 }
457 spin_unlock(&parent->d_lock);
458 if (want_root) {
459 path_get(&nd->root);
460 spin_unlock(&fs->lock);
461 }
462 mntget(nd->path.mnt);
463
464 rcu_read_unlock();
465 br_read_unlock(vfsmount_lock);
466 nd->flags &= ~LOOKUP_RCU;
467 return 0;
468
469 err_child:
470 spin_unlock(&dentry->d_lock);
471 err_parent:
472 spin_unlock(&parent->d_lock);
473 err_root:
474 if (want_root)
475 spin_unlock(&fs->lock);
476 return -ECHILD;
477 }
478
479 /**
480 * release_open_intent - free up open intent resources
481 * @nd: pointer to nameidata
482 */
483 void release_open_intent(struct nameidata *nd)
484 {
485 struct file *file = nd->intent.open.file;
486
487 if (file && !IS_ERR(file)) {
488 if (file->f_path.dentry == NULL)
489 put_filp(file);
490 else
491 fput(file);
492 }
493 }
494
495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 return dentry->d_op->d_revalidate(dentry, nd);
498 }
499
500 /**
501 * complete_walk - successful completion of path walk
502 * @nd: pointer nameidata
503 *
504 * If we had been in RCU mode, drop out of it and legitimize nd->path.
505 * Revalidate the final result, unless we'd already done that during
506 * the path walk or the filesystem doesn't ask for it. Return 0 on
507 * success, -error on failure. In case of failure caller does not
508 * need to drop nd->path.
509 */
510 static int complete_walk(struct nameidata *nd)
511 {
512 struct dentry *dentry = nd->path.dentry;
513 int status;
514
515 if (nd->flags & LOOKUP_RCU) {
516 nd->flags &= ~LOOKUP_RCU;
517 if (!(nd->flags & LOOKUP_ROOT))
518 nd->root.mnt = NULL;
519 spin_lock(&dentry->d_lock);
520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 spin_unlock(&dentry->d_lock);
522 rcu_read_unlock();
523 br_read_unlock(vfsmount_lock);
524 return -ECHILD;
525 }
526 BUG_ON(nd->inode != dentry->d_inode);
527 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
529 rcu_read_unlock();
530 br_read_unlock(vfsmount_lock);
531 }
532
533 if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 return 0;
535
536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 return 0;
538
539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 return 0;
541
542 /* Note: we do not d_invalidate() */
543 status = d_revalidate(dentry, nd);
544 if (status > 0)
545 return 0;
546
547 if (!status)
548 status = -ESTALE;
549
550 path_put(&nd->path);
551 return status;
552 }
553
554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 if (!nd->root.mnt)
557 get_fs_root(current->fs, &nd->root);
558 }
559
560 static int link_path_walk(const char *, struct nameidata *);
561
562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 if (!nd->root.mnt) {
565 struct fs_struct *fs = current->fs;
566 unsigned seq;
567
568 do {
569 seq = read_seqcount_begin(&fs->seq);
570 nd->root = fs->root;
571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 } while (read_seqcount_retry(&fs->seq, seq));
573 }
574 }
575
576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 int ret;
579
580 if (IS_ERR(link))
581 goto fail;
582
583 if (*link == '/') {
584 set_root(nd);
585 path_put(&nd->path);
586 nd->path = nd->root;
587 path_get(&nd->root);
588 nd->flags |= LOOKUP_JUMPED;
589 }
590 nd->inode = nd->path.dentry->d_inode;
591
592 ret = link_path_walk(link, nd);
593 return ret;
594 fail:
595 path_put(&nd->path);
596 return PTR_ERR(link);
597 }
598
599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 dput(path->dentry);
602 if (path->mnt != nd->path.mnt)
603 mntput(path->mnt);
604 }
605
606 static inline void path_to_nameidata(const struct path *path,
607 struct nameidata *nd)
608 {
609 if (!(nd->flags & LOOKUP_RCU)) {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
613 }
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
616 }
617
618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 struct inode *inode = link->dentry->d_inode;
621 if (!IS_ERR(cookie) && inode->i_op->put_link)
622 inode->i_op->put_link(link->dentry, nd, cookie);
623 path_put(link);
624 }
625
626 static __always_inline int
627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 int error;
630 struct dentry *dentry = link->dentry;
631
632 BUG_ON(nd->flags & LOOKUP_RCU);
633
634 if (link->mnt == nd->path.mnt)
635 mntget(link->mnt);
636
637 if (unlikely(current->total_link_count >= 40)) {
638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 path_put(&nd->path);
640 return -ELOOP;
641 }
642 cond_resched();
643 current->total_link_count++;
644
645 touch_atime(link->mnt, dentry);
646 nd_set_link(nd, NULL);
647
648 error = security_inode_follow_link(link->dentry, nd);
649 if (error) {
650 *p = ERR_PTR(error); /* no ->put_link(), please */
651 path_put(&nd->path);
652 return error;
653 }
654
655 nd->last_type = LAST_BIND;
656 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 error = PTR_ERR(*p);
658 if (!IS_ERR(*p)) {
659 char *s = nd_get_link(nd);
660 error = 0;
661 if (s)
662 error = __vfs_follow_link(nd, s);
663 else if (nd->last_type == LAST_BIND) {
664 nd->flags |= LOOKUP_JUMPED;
665 nd->inode = nd->path.dentry->d_inode;
666 if (nd->inode->i_op->follow_link) {
667 /* stepped on a _really_ weird one */
668 path_put(&nd->path);
669 error = -ELOOP;
670 }
671 }
672 }
673 return error;
674 }
675
676 static int follow_up_rcu(struct path *path)
677 {
678 struct mount *mnt = real_mount(path->mnt);
679 struct mount *parent;
680 struct dentry *mountpoint;
681
682 parent = mnt->mnt_parent;
683 if (&parent->mnt == path->mnt)
684 return 0;
685 mountpoint = mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = &parent->mnt;
688 return 1;
689 }
690
691 int follow_up(struct path *path)
692 {
693 struct mount *mnt = real_mount(path->mnt);
694 struct mount *parent;
695 struct dentry *mountpoint;
696
697 br_read_lock(vfsmount_lock);
698 parent = mnt->mnt_parent;
699 if (&parent->mnt == path->mnt) {
700 br_read_unlock(vfsmount_lock);
701 return 0;
702 }
703 mntget(&parent->mnt);
704 mountpoint = dget(mnt->mnt_mountpoint);
705 br_read_unlock(vfsmount_lock);
706 dput(path->dentry);
707 path->dentry = mountpoint;
708 mntput(path->mnt);
709 path->mnt = &parent->mnt;
710 return 1;
711 }
712
713 /*
714 * Perform an automount
715 * - return -EISDIR to tell follow_managed() to stop and return the path we
716 * were called with.
717 */
718 static int follow_automount(struct path *path, unsigned flags,
719 bool *need_mntput)
720 {
721 struct vfsmount *mnt;
722 int err;
723
724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 return -EREMOTE;
726
727 /* We don't want to mount if someone's just doing a stat -
728 * unless they're stat'ing a directory and appended a '/' to
729 * the name.
730 *
731 * We do, however, want to mount if someone wants to open or
732 * create a file of any type under the mountpoint, wants to
733 * traverse through the mountpoint or wants to open the
734 * mounted directory. Also, autofs may mark negative dentries
735 * as being automount points. These will need the attentions
736 * of the daemon to instantiate them before they can be used.
737 */
738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 path->dentry->d_inode)
741 return -EISDIR;
742
743 current->total_link_count++;
744 if (current->total_link_count >= 40)
745 return -ELOOP;
746
747 mnt = path->dentry->d_op->d_automount(path);
748 if (IS_ERR(mnt)) {
749 /*
750 * The filesystem is allowed to return -EISDIR here to indicate
751 * it doesn't want to automount. For instance, autofs would do
752 * this so that its userspace daemon can mount on this dentry.
753 *
754 * However, we can only permit this if it's a terminal point in
755 * the path being looked up; if it wasn't then the remainder of
756 * the path is inaccessible and we should say so.
757 */
758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 return -EREMOTE;
760 return PTR_ERR(mnt);
761 }
762
763 if (!mnt) /* mount collision */
764 return 0;
765
766 if (!*need_mntput) {
767 /* lock_mount() may release path->mnt on error */
768 mntget(path->mnt);
769 *need_mntput = true;
770 }
771 err = finish_automount(mnt, path);
772
773 switch (err) {
774 case -EBUSY:
775 /* Someone else made a mount here whilst we were busy */
776 return 0;
777 case 0:
778 path_put(path);
779 path->mnt = mnt;
780 path->dentry = dget(mnt->mnt_root);
781 return 0;
782 default:
783 return err;
784 }
785
786 }
787
788 /*
789 * Handle a dentry that is managed in some way.
790 * - Flagged for transit management (autofs)
791 * - Flagged as mountpoint
792 * - Flagged as automount point
793 *
794 * This may only be called in refwalk mode.
795 *
796 * Serialization is taken care of in namespace.c
797 */
798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 unsigned managed;
802 bool need_mntput = false;
803 int ret = 0;
804
805 /* Given that we're not holding a lock here, we retain the value in a
806 * local variable for each dentry as we look at it so that we don't see
807 * the components of that value change under us */
808 while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 managed &= DCACHE_MANAGED_DENTRY,
810 unlikely(managed != 0)) {
811 /* Allow the filesystem to manage the transit without i_mutex
812 * being held. */
813 if (managed & DCACHE_MANAGE_TRANSIT) {
814 BUG_ON(!path->dentry->d_op);
815 BUG_ON(!path->dentry->d_op->d_manage);
816 ret = path->dentry->d_op->d_manage(path->dentry, false);
817 if (ret < 0)
818 break;
819 }
820
821 /* Transit to a mounted filesystem. */
822 if (managed & DCACHE_MOUNTED) {
823 struct vfsmount *mounted = lookup_mnt(path);
824 if (mounted) {
825 dput(path->dentry);
826 if (need_mntput)
827 mntput(path->mnt);
828 path->mnt = mounted;
829 path->dentry = dget(mounted->mnt_root);
830 need_mntput = true;
831 continue;
832 }
833
834 /* Something is mounted on this dentry in another
835 * namespace and/or whatever was mounted there in this
836 * namespace got unmounted before we managed to get the
837 * vfsmount_lock */
838 }
839
840 /* Handle an automount point */
841 if (managed & DCACHE_NEED_AUTOMOUNT) {
842 ret = follow_automount(path, flags, &need_mntput);
843 if (ret < 0)
844 break;
845 continue;
846 }
847
848 /* We didn't change the current path point */
849 break;
850 }
851
852 if (need_mntput && path->mnt == mnt)
853 mntput(path->mnt);
854 if (ret == -EISDIR)
855 ret = 0;
856 return ret < 0 ? ret : need_mntput;
857 }
858
859 int follow_down_one(struct path *path)
860 {
861 struct vfsmount *mounted;
862
863 mounted = lookup_mnt(path);
864 if (mounted) {
865 dput(path->dentry);
866 mntput(path->mnt);
867 path->mnt = mounted;
868 path->dentry = dget(mounted->mnt_root);
869 return 1;
870 }
871 return 0;
872 }
873
874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 dentry->d_op->d_manage(dentry, true) < 0);
878 }
879
880 /*
881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
882 * we meet a managed dentry that would need blocking.
883 */
884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 struct inode **inode)
886 {
887 for (;;) {
888 struct mount *mounted;
889 /*
890 * Don't forget we might have a non-mountpoint managed dentry
891 * that wants to block transit.
892 */
893 if (unlikely(managed_dentry_might_block(path->dentry)))
894 return false;
895
896 if (!d_mountpoint(path->dentry))
897 break;
898
899 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 if (!mounted)
901 break;
902 path->mnt = &mounted->mnt;
903 path->dentry = mounted->mnt.mnt_root;
904 nd->flags |= LOOKUP_JUMPED;
905 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 /*
907 * Update the inode too. We don't need to re-check the
908 * dentry sequence number here after this d_inode read,
909 * because a mount-point is always pinned.
910 */
911 *inode = path->dentry->d_inode;
912 }
913 return true;
914 }
915
916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 while (d_mountpoint(nd->path.dentry)) {
919 struct mount *mounted;
920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 if (!mounted)
922 break;
923 nd->path.mnt = &mounted->mnt;
924 nd->path.dentry = mounted->mnt.mnt_root;
925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 }
927 }
928
929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 set_root_rcu(nd);
932
933 while (1) {
934 if (nd->path.dentry == nd->root.dentry &&
935 nd->path.mnt == nd->root.mnt) {
936 break;
937 }
938 if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 struct dentry *old = nd->path.dentry;
940 struct dentry *parent = old->d_parent;
941 unsigned seq;
942
943 seq = read_seqcount_begin(&parent->d_seq);
944 if (read_seqcount_retry(&old->d_seq, nd->seq))
945 goto failed;
946 nd->path.dentry = parent;
947 nd->seq = seq;
948 break;
949 }
950 if (!follow_up_rcu(&nd->path))
951 break;
952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 }
954 follow_mount_rcu(nd);
955 nd->inode = nd->path.dentry->d_inode;
956 return 0;
957
958 failed:
959 nd->flags &= ~LOOKUP_RCU;
960 if (!(nd->flags & LOOKUP_ROOT))
961 nd->root.mnt = NULL;
962 rcu_read_unlock();
963 br_read_unlock(vfsmount_lock);
964 return -ECHILD;
965 }
966
967 /*
968 * Follow down to the covering mount currently visible to userspace. At each
969 * point, the filesystem owning that dentry may be queried as to whether the
970 * caller is permitted to proceed or not.
971 */
972 int follow_down(struct path *path)
973 {
974 unsigned managed;
975 int ret;
976
977 while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 /* Allow the filesystem to manage the transit without i_mutex
980 * being held.
981 *
982 * We indicate to the filesystem if someone is trying to mount
983 * something here. This gives autofs the chance to deny anyone
984 * other than its daemon the right to mount on its
985 * superstructure.
986 *
987 * The filesystem may sleep at this point.
988 */
989 if (managed & DCACHE_MANAGE_TRANSIT) {
990 BUG_ON(!path->dentry->d_op);
991 BUG_ON(!path->dentry->d_op->d_manage);
992 ret = path->dentry->d_op->d_manage(
993 path->dentry, false);
994 if (ret < 0)
995 return ret == -EISDIR ? 0 : ret;
996 }
997
998 /* Transit to a mounted filesystem. */
999 if (managed & DCACHE_MOUNTED) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1001 if (!mounted)
1002 break;
1003 dput(path->dentry);
1004 mntput(path->mnt);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1007 continue;
1008 }
1009
1010 /* Don't handle automount points here */
1011 break;
1012 }
1013 return 0;
1014 }
1015
1016 /*
1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018 */
1019 static void follow_mount(struct path *path)
1020 {
1021 while (d_mountpoint(path->dentry)) {
1022 struct vfsmount *mounted = lookup_mnt(path);
1023 if (!mounted)
1024 break;
1025 dput(path->dentry);
1026 mntput(path->mnt);
1027 path->mnt = mounted;
1028 path->dentry = dget(mounted->mnt_root);
1029 }
1030 }
1031
1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 set_root(nd);
1035
1036 while(1) {
1037 struct dentry *old = nd->path.dentry;
1038
1039 if (nd->path.dentry == nd->root.dentry &&
1040 nd->path.mnt == nd->root.mnt) {
1041 break;
1042 }
1043 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 /* rare case of legitimate dget_parent()... */
1045 nd->path.dentry = dget_parent(nd->path.dentry);
1046 dput(old);
1047 break;
1048 }
1049 if (!follow_up(&nd->path))
1050 break;
1051 }
1052 follow_mount(&nd->path);
1053 nd->inode = nd->path.dentry->d_inode;
1054 }
1055
1056 /*
1057 * Allocate a dentry with name and parent, and perform a parent
1058 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1059 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1060 * have verified that no child exists while under i_mutex.
1061 */
1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1063 struct qstr *name, struct nameidata *nd)
1064 {
1065 struct inode *inode = parent->d_inode;
1066 struct dentry *dentry;
1067 struct dentry *old;
1068
1069 /* Don't create child dentry for a dead directory. */
1070 if (unlikely(IS_DEADDIR(inode)))
1071 return ERR_PTR(-ENOENT);
1072
1073 dentry = d_alloc(parent, name);
1074 if (unlikely(!dentry))
1075 return ERR_PTR(-ENOMEM);
1076
1077 old = inode->i_op->lookup(inode, dentry, nd);
1078 if (unlikely(old)) {
1079 dput(dentry);
1080 dentry = old;
1081 }
1082 return dentry;
1083 }
1084
1085 /*
1086 * We already have a dentry, but require a lookup to be performed on the parent
1087 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1088 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1089 * child exists while under i_mutex.
1090 */
1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1092 struct nameidata *nd)
1093 {
1094 struct inode *inode = parent->d_inode;
1095 struct dentry *old;
1096
1097 /* Don't create child dentry for a dead directory. */
1098 if (unlikely(IS_DEADDIR(inode))) {
1099 dput(dentry);
1100 return ERR_PTR(-ENOENT);
1101 }
1102
1103 old = inode->i_op->lookup(inode, dentry, nd);
1104 if (unlikely(old)) {
1105 dput(dentry);
1106 dentry = old;
1107 }
1108 return dentry;
1109 }
1110
1111 /*
1112 * It's more convoluted than I'd like it to be, but... it's still fairly
1113 * small and for now I'd prefer to have fast path as straight as possible.
1114 * It _is_ time-critical.
1115 */
1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 struct path *path, struct inode **inode)
1118 {
1119 struct vfsmount *mnt = nd->path.mnt;
1120 struct dentry *dentry, *parent = nd->path.dentry;
1121 int need_reval = 1;
1122 int status = 1;
1123 int err;
1124
1125 /*
1126 * Rename seqlock is not required here because in the off chance
1127 * of a false negative due to a concurrent rename, we're going to
1128 * do the non-racy lookup, below.
1129 */
1130 if (nd->flags & LOOKUP_RCU) {
1131 unsigned seq;
1132 *inode = nd->inode;
1133 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 if (!dentry)
1135 goto unlazy;
1136
1137 /* Memory barrier in read_seqcount_begin of child is enough */
1138 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 return -ECHILD;
1140 nd->seq = seq;
1141
1142 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 status = d_revalidate(dentry, nd);
1144 if (unlikely(status <= 0)) {
1145 if (status != -ECHILD)
1146 need_reval = 0;
1147 goto unlazy;
1148 }
1149 }
1150 if (unlikely(d_need_lookup(dentry)))
1151 goto unlazy;
1152 path->mnt = mnt;
1153 path->dentry = dentry;
1154 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 goto unlazy;
1156 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 goto unlazy;
1158 return 0;
1159 unlazy:
1160 if (unlazy_walk(nd, dentry))
1161 return -ECHILD;
1162 } else {
1163 dentry = __d_lookup(parent, name);
1164 }
1165
1166 if (dentry && unlikely(d_need_lookup(dentry))) {
1167 dput(dentry);
1168 dentry = NULL;
1169 }
1170 retry:
1171 if (unlikely(!dentry)) {
1172 struct inode *dir = parent->d_inode;
1173 BUG_ON(nd->inode != dir);
1174
1175 mutex_lock(&dir->i_mutex);
1176 dentry = d_lookup(parent, name);
1177 if (likely(!dentry)) {
1178 dentry = d_alloc_and_lookup(parent, name, nd);
1179 if (IS_ERR(dentry)) {
1180 mutex_unlock(&dir->i_mutex);
1181 return PTR_ERR(dentry);
1182 }
1183 /* known good */
1184 need_reval = 0;
1185 status = 1;
1186 } else if (unlikely(d_need_lookup(dentry))) {
1187 dentry = d_inode_lookup(parent, dentry, nd);
1188 if (IS_ERR(dentry)) {
1189 mutex_unlock(&dir->i_mutex);
1190 return PTR_ERR(dentry);
1191 }
1192 /* known good */
1193 need_reval = 0;
1194 status = 1;
1195 }
1196 mutex_unlock(&dir->i_mutex);
1197 }
1198 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 status = d_revalidate(dentry, nd);
1200 if (unlikely(status <= 0)) {
1201 if (status < 0) {
1202 dput(dentry);
1203 return status;
1204 }
1205 if (!d_invalidate(dentry)) {
1206 dput(dentry);
1207 dentry = NULL;
1208 need_reval = 1;
1209 goto retry;
1210 }
1211 }
1212
1213 path->mnt = mnt;
1214 path->dentry = dentry;
1215 err = follow_managed(path, nd->flags);
1216 if (unlikely(err < 0)) {
1217 path_put_conditional(path, nd);
1218 return err;
1219 }
1220 if (err)
1221 nd->flags |= LOOKUP_JUMPED;
1222 *inode = path->dentry->d_inode;
1223 return 0;
1224 }
1225
1226 static inline int may_lookup(struct nameidata *nd)
1227 {
1228 if (nd->flags & LOOKUP_RCU) {
1229 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1230 if (err != -ECHILD)
1231 return err;
1232 if (unlazy_walk(nd, NULL))
1233 return -ECHILD;
1234 }
1235 return inode_permission(nd->inode, MAY_EXEC);
1236 }
1237
1238 static inline int handle_dots(struct nameidata *nd, int type)
1239 {
1240 if (type == LAST_DOTDOT) {
1241 if (nd->flags & LOOKUP_RCU) {
1242 if (follow_dotdot_rcu(nd))
1243 return -ECHILD;
1244 } else
1245 follow_dotdot(nd);
1246 }
1247 return 0;
1248 }
1249
1250 static void terminate_walk(struct nameidata *nd)
1251 {
1252 if (!(nd->flags & LOOKUP_RCU)) {
1253 path_put(&nd->path);
1254 } else {
1255 nd->flags &= ~LOOKUP_RCU;
1256 if (!(nd->flags & LOOKUP_ROOT))
1257 nd->root.mnt = NULL;
1258 rcu_read_unlock();
1259 br_read_unlock(vfsmount_lock);
1260 }
1261 }
1262
1263 /*
1264 * Do we need to follow links? We _really_ want to be able
1265 * to do this check without having to look at inode->i_op,
1266 * so we keep a cache of "no, this doesn't need follow_link"
1267 * for the common case.
1268 */
1269 static inline int should_follow_link(struct inode *inode, int follow)
1270 {
1271 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1272 if (likely(inode->i_op->follow_link))
1273 return follow;
1274
1275 /* This gets set once for the inode lifetime */
1276 spin_lock(&inode->i_lock);
1277 inode->i_opflags |= IOP_NOFOLLOW;
1278 spin_unlock(&inode->i_lock);
1279 }
1280 return 0;
1281 }
1282
1283 static inline int walk_component(struct nameidata *nd, struct path *path,
1284 struct qstr *name, int type, int follow)
1285 {
1286 struct inode *inode;
1287 int err;
1288 /*
1289 * "." and ".." are special - ".." especially so because it has
1290 * to be able to know about the current root directory and
1291 * parent relationships.
1292 */
1293 if (unlikely(type != LAST_NORM))
1294 return handle_dots(nd, type);
1295 err = do_lookup(nd, name, path, &inode);
1296 if (unlikely(err)) {
1297 terminate_walk(nd);
1298 return err;
1299 }
1300 if (!inode) {
1301 path_to_nameidata(path, nd);
1302 terminate_walk(nd);
1303 return -ENOENT;
1304 }
1305 if (should_follow_link(inode, follow)) {
1306 if (nd->flags & LOOKUP_RCU) {
1307 if (unlikely(unlazy_walk(nd, path->dentry))) {
1308 terminate_walk(nd);
1309 return -ECHILD;
1310 }
1311 }
1312 BUG_ON(inode != path->dentry->d_inode);
1313 return 1;
1314 }
1315 path_to_nameidata(path, nd);
1316 nd->inode = inode;
1317 return 0;
1318 }
1319
1320 /*
1321 * This limits recursive symlink follows to 8, while
1322 * limiting consecutive symlinks to 40.
1323 *
1324 * Without that kind of total limit, nasty chains of consecutive
1325 * symlinks can cause almost arbitrarily long lookups.
1326 */
1327 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1328 {
1329 int res;
1330
1331 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1332 path_put_conditional(path, nd);
1333 path_put(&nd->path);
1334 return -ELOOP;
1335 }
1336 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1337
1338 nd->depth++;
1339 current->link_count++;
1340
1341 do {
1342 struct path link = *path;
1343 void *cookie;
1344
1345 res = follow_link(&link, nd, &cookie);
1346 if (!res)
1347 res = walk_component(nd, path, &nd->last,
1348 nd->last_type, LOOKUP_FOLLOW);
1349 put_link(nd, &link, cookie);
1350 } while (res > 0);
1351
1352 current->link_count--;
1353 nd->depth--;
1354 return res;
1355 }
1356
1357 /*
1358 * We really don't want to look at inode->i_op->lookup
1359 * when we don't have to. So we keep a cache bit in
1360 * the inode ->i_opflags field that says "yes, we can
1361 * do lookup on this inode".
1362 */
1363 static inline int can_lookup(struct inode *inode)
1364 {
1365 if (likely(inode->i_opflags & IOP_LOOKUP))
1366 return 1;
1367 if (likely(!inode->i_op->lookup))
1368 return 0;
1369
1370 /* We do this once for the lifetime of the inode */
1371 spin_lock(&inode->i_lock);
1372 inode->i_opflags |= IOP_LOOKUP;
1373 spin_unlock(&inode->i_lock);
1374 return 1;
1375 }
1376
1377 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1378 {
1379 unsigned long hash = init_name_hash();
1380 while (len--)
1381 hash = partial_name_hash(*name++, hash);
1382 return end_name_hash(hash);
1383 }
1384
1385 /*
1386 * We know there's a real path component here of at least
1387 * one character.
1388 */
1389 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1390 {
1391 unsigned long hash = init_name_hash();
1392 unsigned long len = 0, c;
1393
1394 c = (unsigned char)*name;
1395 do {
1396 len++;
1397 hash = partial_name_hash(c, hash);
1398 c = (unsigned char)name[len];
1399 } while (c && c != '/');
1400 *hashp = end_name_hash(hash);
1401 return len;
1402 }
1403
1404 /*
1405 * Name resolution.
1406 * This is the basic name resolution function, turning a pathname into
1407 * the final dentry. We expect 'base' to be positive and a directory.
1408 *
1409 * Returns 0 and nd will have valid dentry and mnt on success.
1410 * Returns error and drops reference to input namei data on failure.
1411 */
1412 static int link_path_walk(const char *name, struct nameidata *nd)
1413 {
1414 struct path next;
1415 int err;
1416
1417 while (*name=='/')
1418 name++;
1419 if (!*name)
1420 return 0;
1421
1422 /* At this point we know we have a real path component. */
1423 for(;;) {
1424 struct qstr this;
1425 long len;
1426 int type;
1427
1428 err = may_lookup(nd);
1429 if (err)
1430 break;
1431
1432 len = hash_name(name, &this.hash);
1433 this.name = name;
1434 this.len = len;
1435
1436 type = LAST_NORM;
1437 if (name[0] == '.') switch (len) {
1438 case 2:
1439 if (name[1] == '.') {
1440 type = LAST_DOTDOT;
1441 nd->flags |= LOOKUP_JUMPED;
1442 }
1443 break;
1444 case 1:
1445 type = LAST_DOT;
1446 }
1447 if (likely(type == LAST_NORM)) {
1448 struct dentry *parent = nd->path.dentry;
1449 nd->flags &= ~LOOKUP_JUMPED;
1450 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1451 err = parent->d_op->d_hash(parent, nd->inode,
1452 &this);
1453 if (err < 0)
1454 break;
1455 }
1456 }
1457
1458 if (!name[len])
1459 goto last_component;
1460 /*
1461 * If it wasn't NUL, we know it was '/'. Skip that
1462 * slash, and continue until no more slashes.
1463 */
1464 do {
1465 len++;
1466 } while (unlikely(name[len] == '/'));
1467 if (!name[len])
1468 goto last_component;
1469 name += len;
1470
1471 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1472 if (err < 0)
1473 return err;
1474
1475 if (err) {
1476 err = nested_symlink(&next, nd);
1477 if (err)
1478 return err;
1479 }
1480 if (can_lookup(nd->inode))
1481 continue;
1482 err = -ENOTDIR;
1483 break;
1484 /* here ends the main loop */
1485
1486 last_component:
1487 nd->last = this;
1488 nd->last_type = type;
1489 return 0;
1490 }
1491 terminate_walk(nd);
1492 return err;
1493 }
1494
1495 static int path_init(int dfd, const char *name, unsigned int flags,
1496 struct nameidata *nd, struct file **fp)
1497 {
1498 int retval = 0;
1499 int fput_needed;
1500 struct file *file;
1501
1502 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1503 nd->flags = flags | LOOKUP_JUMPED;
1504 nd->depth = 0;
1505 if (flags & LOOKUP_ROOT) {
1506 struct inode *inode = nd->root.dentry->d_inode;
1507 if (*name) {
1508 if (!inode->i_op->lookup)
1509 return -ENOTDIR;
1510 retval = inode_permission(inode, MAY_EXEC);
1511 if (retval)
1512 return retval;
1513 }
1514 nd->path = nd->root;
1515 nd->inode = inode;
1516 if (flags & LOOKUP_RCU) {
1517 br_read_lock(vfsmount_lock);
1518 rcu_read_lock();
1519 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1520 } else {
1521 path_get(&nd->path);
1522 }
1523 return 0;
1524 }
1525
1526 nd->root.mnt = NULL;
1527
1528 if (*name=='/') {
1529 if (flags & LOOKUP_RCU) {
1530 br_read_lock(vfsmount_lock);
1531 rcu_read_lock();
1532 set_root_rcu(nd);
1533 } else {
1534 set_root(nd);
1535 path_get(&nd->root);
1536 }
1537 nd->path = nd->root;
1538 } else if (dfd == AT_FDCWD) {
1539 if (flags & LOOKUP_RCU) {
1540 struct fs_struct *fs = current->fs;
1541 unsigned seq;
1542
1543 br_read_lock(vfsmount_lock);
1544 rcu_read_lock();
1545
1546 do {
1547 seq = read_seqcount_begin(&fs->seq);
1548 nd->path = fs->pwd;
1549 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1550 } while (read_seqcount_retry(&fs->seq, seq));
1551 } else {
1552 get_fs_pwd(current->fs, &nd->path);
1553 }
1554 } else {
1555 struct dentry *dentry;
1556
1557 file = fget_raw_light(dfd, &fput_needed);
1558 retval = -EBADF;
1559 if (!file)
1560 goto out_fail;
1561
1562 dentry = file->f_path.dentry;
1563
1564 if (*name) {
1565 retval = -ENOTDIR;
1566 if (!S_ISDIR(dentry->d_inode->i_mode))
1567 goto fput_fail;
1568
1569 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1570 if (retval)
1571 goto fput_fail;
1572 }
1573
1574 nd->path = file->f_path;
1575 if (flags & LOOKUP_RCU) {
1576 if (fput_needed)
1577 *fp = file;
1578 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1579 br_read_lock(vfsmount_lock);
1580 rcu_read_lock();
1581 } else {
1582 path_get(&file->f_path);
1583 fput_light(file, fput_needed);
1584 }
1585 }
1586
1587 nd->inode = nd->path.dentry->d_inode;
1588 return 0;
1589
1590 fput_fail:
1591 fput_light(file, fput_needed);
1592 out_fail:
1593 return retval;
1594 }
1595
1596 static inline int lookup_last(struct nameidata *nd, struct path *path)
1597 {
1598 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1599 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1600
1601 nd->flags &= ~LOOKUP_PARENT;
1602 return walk_component(nd, path, &nd->last, nd->last_type,
1603 nd->flags & LOOKUP_FOLLOW);
1604 }
1605
1606 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1607 static int path_lookupat(int dfd, const char *name,
1608 unsigned int flags, struct nameidata *nd)
1609 {
1610 struct file *base = NULL;
1611 struct path path;
1612 int err;
1613
1614 /*
1615 * Path walking is largely split up into 2 different synchronisation
1616 * schemes, rcu-walk and ref-walk (explained in
1617 * Documentation/filesystems/path-lookup.txt). These share much of the
1618 * path walk code, but some things particularly setup, cleanup, and
1619 * following mounts are sufficiently divergent that functions are
1620 * duplicated. Typically there is a function foo(), and its RCU
1621 * analogue, foo_rcu().
1622 *
1623 * -ECHILD is the error number of choice (just to avoid clashes) that
1624 * is returned if some aspect of an rcu-walk fails. Such an error must
1625 * be handled by restarting a traditional ref-walk (which will always
1626 * be able to complete).
1627 */
1628 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1629
1630 if (unlikely(err))
1631 return err;
1632
1633 current->total_link_count = 0;
1634 err = link_path_walk(name, nd);
1635
1636 if (!err && !(flags & LOOKUP_PARENT)) {
1637 err = lookup_last(nd, &path);
1638 while (err > 0) {
1639 void *cookie;
1640 struct path link = path;
1641 nd->flags |= LOOKUP_PARENT;
1642 err = follow_link(&link, nd, &cookie);
1643 if (!err)
1644 err = lookup_last(nd, &path);
1645 put_link(nd, &link, cookie);
1646 }
1647 }
1648
1649 if (!err)
1650 err = complete_walk(nd);
1651
1652 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1653 if (!nd->inode->i_op->lookup) {
1654 path_put(&nd->path);
1655 err = -ENOTDIR;
1656 }
1657 }
1658
1659 if (base)
1660 fput(base);
1661
1662 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1663 path_put(&nd->root);
1664 nd->root.mnt = NULL;
1665 }
1666 return err;
1667 }
1668
1669 static int do_path_lookup(int dfd, const char *name,
1670 unsigned int flags, struct nameidata *nd)
1671 {
1672 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1673 if (unlikely(retval == -ECHILD))
1674 retval = path_lookupat(dfd, name, flags, nd);
1675 if (unlikely(retval == -ESTALE))
1676 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1677
1678 if (likely(!retval)) {
1679 if (unlikely(!audit_dummy_context())) {
1680 if (nd->path.dentry && nd->inode)
1681 audit_inode(name, nd->path.dentry);
1682 }
1683 }
1684 return retval;
1685 }
1686
1687 int kern_path_parent(const char *name, struct nameidata *nd)
1688 {
1689 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1690 }
1691
1692 int kern_path(const char *name, unsigned int flags, struct path *path)
1693 {
1694 struct nameidata nd;
1695 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1696 if (!res)
1697 *path = nd.path;
1698 return res;
1699 }
1700
1701 /**
1702 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1703 * @dentry: pointer to dentry of the base directory
1704 * @mnt: pointer to vfs mount of the base directory
1705 * @name: pointer to file name
1706 * @flags: lookup flags
1707 * @path: pointer to struct path to fill
1708 */
1709 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1710 const char *name, unsigned int flags,
1711 struct path *path)
1712 {
1713 struct nameidata nd;
1714 int err;
1715 nd.root.dentry = dentry;
1716 nd.root.mnt = mnt;
1717 BUG_ON(flags & LOOKUP_PARENT);
1718 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1719 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1720 if (!err)
1721 *path = nd.path;
1722 return err;
1723 }
1724
1725 static struct dentry *__lookup_hash(struct qstr *name,
1726 struct dentry *base, struct nameidata *nd)
1727 {
1728 struct inode *inode = base->d_inode;
1729 struct dentry *dentry;
1730 int err;
1731
1732 err = inode_permission(inode, MAY_EXEC);
1733 if (err)
1734 return ERR_PTR(err);
1735
1736 /*
1737 * Don't bother with __d_lookup: callers are for creat as
1738 * well as unlink, so a lot of the time it would cost
1739 * a double lookup.
1740 */
1741 dentry = d_lookup(base, name);
1742
1743 if (dentry && d_need_lookup(dentry)) {
1744 /*
1745 * __lookup_hash is called with the parent dir's i_mutex already
1746 * held, so we are good to go here.
1747 */
1748 dentry = d_inode_lookup(base, dentry, nd);
1749 if (IS_ERR(dentry))
1750 return dentry;
1751 }
1752
1753 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1754 int status = d_revalidate(dentry, nd);
1755 if (unlikely(status <= 0)) {
1756 /*
1757 * The dentry failed validation.
1758 * If d_revalidate returned 0 attempt to invalidate
1759 * the dentry otherwise d_revalidate is asking us
1760 * to return a fail status.
1761 */
1762 if (status < 0) {
1763 dput(dentry);
1764 return ERR_PTR(status);
1765 } else if (!d_invalidate(dentry)) {
1766 dput(dentry);
1767 dentry = NULL;
1768 }
1769 }
1770 }
1771
1772 if (!dentry)
1773 dentry = d_alloc_and_lookup(base, name, nd);
1774
1775 return dentry;
1776 }
1777
1778 /*
1779 * Restricted form of lookup. Doesn't follow links, single-component only,
1780 * needs parent already locked. Doesn't follow mounts.
1781 * SMP-safe.
1782 */
1783 static struct dentry *lookup_hash(struct nameidata *nd)
1784 {
1785 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1786 }
1787
1788 /**
1789 * lookup_one_len - filesystem helper to lookup single pathname component
1790 * @name: pathname component to lookup
1791 * @base: base directory to lookup from
1792 * @len: maximum length @len should be interpreted to
1793 *
1794 * Note that this routine is purely a helper for filesystem usage and should
1795 * not be called by generic code. Also note that by using this function the
1796 * nameidata argument is passed to the filesystem methods and a filesystem
1797 * using this helper needs to be prepared for that.
1798 */
1799 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1800 {
1801 struct qstr this;
1802 unsigned int c;
1803
1804 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1805
1806 this.name = name;
1807 this.len = len;
1808 this.hash = full_name_hash(name, len);
1809 if (!len)
1810 return ERR_PTR(-EACCES);
1811
1812 while (len--) {
1813 c = *(const unsigned char *)name++;
1814 if (c == '/' || c == '\0')
1815 return ERR_PTR(-EACCES);
1816 }
1817 /*
1818 * See if the low-level filesystem might want
1819 * to use its own hash..
1820 */
1821 if (base->d_flags & DCACHE_OP_HASH) {
1822 int err = base->d_op->d_hash(base, base->d_inode, &this);
1823 if (err < 0)
1824 return ERR_PTR(err);
1825 }
1826
1827 return __lookup_hash(&this, base, NULL);
1828 }
1829
1830 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1831 struct path *path, int *empty)
1832 {
1833 struct nameidata nd;
1834 char *tmp = getname_flags(name, flags, empty);
1835 int err = PTR_ERR(tmp);
1836 if (!IS_ERR(tmp)) {
1837
1838 BUG_ON(flags & LOOKUP_PARENT);
1839
1840 err = do_path_lookup(dfd, tmp, flags, &nd);
1841 putname(tmp);
1842 if (!err)
1843 *path = nd.path;
1844 }
1845 return err;
1846 }
1847
1848 int user_path_at(int dfd, const char __user *name, unsigned flags,
1849 struct path *path)
1850 {
1851 return user_path_at_empty(dfd, name, flags, path, 0);
1852 }
1853
1854 static int user_path_parent(int dfd, const char __user *path,
1855 struct nameidata *nd, char **name)
1856 {
1857 char *s = getname(path);
1858 int error;
1859
1860 if (IS_ERR(s))
1861 return PTR_ERR(s);
1862
1863 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1864 if (error)
1865 putname(s);
1866 else
1867 *name = s;
1868
1869 return error;
1870 }
1871
1872 /*
1873 * It's inline, so penalty for filesystems that don't use sticky bit is
1874 * minimal.
1875 */
1876 static inline int check_sticky(struct inode *dir, struct inode *inode)
1877 {
1878 uid_t fsuid = current_fsuid();
1879
1880 if (!(dir->i_mode & S_ISVTX))
1881 return 0;
1882 if (current_user_ns() != inode_userns(inode))
1883 goto other_userns;
1884 if (inode->i_uid == fsuid)
1885 return 0;
1886 if (dir->i_uid == fsuid)
1887 return 0;
1888
1889 other_userns:
1890 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1891 }
1892
1893 /*
1894 * Check whether we can remove a link victim from directory dir, check
1895 * whether the type of victim is right.
1896 * 1. We can't do it if dir is read-only (done in permission())
1897 * 2. We should have write and exec permissions on dir
1898 * 3. We can't remove anything from append-only dir
1899 * 4. We can't do anything with immutable dir (done in permission())
1900 * 5. If the sticky bit on dir is set we should either
1901 * a. be owner of dir, or
1902 * b. be owner of victim, or
1903 * c. have CAP_FOWNER capability
1904 * 6. If the victim is append-only or immutable we can't do antyhing with
1905 * links pointing to it.
1906 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1907 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1908 * 9. We can't remove a root or mountpoint.
1909 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1910 * nfs_async_unlink().
1911 */
1912 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1913 {
1914 int error;
1915
1916 if (!victim->d_inode)
1917 return -ENOENT;
1918
1919 BUG_ON(victim->d_parent->d_inode != dir);
1920 audit_inode_child(victim, dir);
1921
1922 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1923 if (error)
1924 return error;
1925 if (IS_APPEND(dir))
1926 return -EPERM;
1927 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1928 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1929 return -EPERM;
1930 if (isdir) {
1931 if (!S_ISDIR(victim->d_inode->i_mode))
1932 return -ENOTDIR;
1933 if (IS_ROOT(victim))
1934 return -EBUSY;
1935 } else if (S_ISDIR(victim->d_inode->i_mode))
1936 return -EISDIR;
1937 if (IS_DEADDIR(dir))
1938 return -ENOENT;
1939 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1940 return -EBUSY;
1941 return 0;
1942 }
1943
1944 /* Check whether we can create an object with dentry child in directory
1945 * dir.
1946 * 1. We can't do it if child already exists (open has special treatment for
1947 * this case, but since we are inlined it's OK)
1948 * 2. We can't do it if dir is read-only (done in permission())
1949 * 3. We should have write and exec permissions on dir
1950 * 4. We can't do it if dir is immutable (done in permission())
1951 */
1952 static inline int may_create(struct inode *dir, struct dentry *child)
1953 {
1954 if (child->d_inode)
1955 return -EEXIST;
1956 if (IS_DEADDIR(dir))
1957 return -ENOENT;
1958 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1959 }
1960
1961 /*
1962 * p1 and p2 should be directories on the same fs.
1963 */
1964 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1965 {
1966 struct dentry *p;
1967
1968 if (p1 == p2) {
1969 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1970 return NULL;
1971 }
1972
1973 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1974
1975 p = d_ancestor(p2, p1);
1976 if (p) {
1977 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1978 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1979 return p;
1980 }
1981
1982 p = d_ancestor(p1, p2);
1983 if (p) {
1984 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1985 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1986 return p;
1987 }
1988
1989 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1990 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1991 return NULL;
1992 }
1993
1994 void unlock_rename(struct dentry *p1, struct dentry *p2)
1995 {
1996 mutex_unlock(&p1->d_inode->i_mutex);
1997 if (p1 != p2) {
1998 mutex_unlock(&p2->d_inode->i_mutex);
1999 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2000 }
2001 }
2002
2003 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2004 struct nameidata *nd)
2005 {
2006 int error = may_create(dir, dentry);
2007
2008 if (error)
2009 return error;
2010
2011 if (!dir->i_op->create)
2012 return -EACCES; /* shouldn't it be ENOSYS? */
2013 mode &= S_IALLUGO;
2014 mode |= S_IFREG;
2015 error = security_inode_create(dir, dentry, mode);
2016 if (error)
2017 return error;
2018 error = dir->i_op->create(dir, dentry, mode, nd);
2019 if (!error)
2020 fsnotify_create(dir, dentry);
2021 return error;
2022 }
2023
2024 static int may_open(struct path *path, int acc_mode, int flag)
2025 {
2026 struct dentry *dentry = path->dentry;
2027 struct inode *inode = dentry->d_inode;
2028 int error;
2029
2030 /* O_PATH? */
2031 if (!acc_mode)
2032 return 0;
2033
2034 if (!inode)
2035 return -ENOENT;
2036
2037 switch (inode->i_mode & S_IFMT) {
2038 case S_IFLNK:
2039 return -ELOOP;
2040 case S_IFDIR:
2041 if (acc_mode & MAY_WRITE)
2042 return -EISDIR;
2043 break;
2044 case S_IFBLK:
2045 case S_IFCHR:
2046 if (path->mnt->mnt_flags & MNT_NODEV)
2047 return -EACCES;
2048 /*FALLTHRU*/
2049 case S_IFIFO:
2050 case S_IFSOCK:
2051 flag &= ~O_TRUNC;
2052 break;
2053 }
2054
2055 error = inode_permission(inode, acc_mode);
2056 if (error)
2057 return error;
2058
2059 /*
2060 * An append-only file must be opened in append mode for writing.
2061 */
2062 if (IS_APPEND(inode)) {
2063 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2064 return -EPERM;
2065 if (flag & O_TRUNC)
2066 return -EPERM;
2067 }
2068
2069 /* O_NOATIME can only be set by the owner or superuser */
2070 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2071 return -EPERM;
2072
2073 return 0;
2074 }
2075
2076 static int handle_truncate(struct file *filp)
2077 {
2078 struct path *path = &filp->f_path;
2079 struct inode *inode = path->dentry->d_inode;
2080 int error = get_write_access(inode);
2081 if (error)
2082 return error;
2083 /*
2084 * Refuse to truncate files with mandatory locks held on them.
2085 */
2086 error = locks_verify_locked(inode);
2087 if (!error)
2088 error = security_path_truncate(path);
2089 if (!error) {
2090 error = do_truncate(path->dentry, 0,
2091 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2092 filp);
2093 }
2094 put_write_access(inode);
2095 return error;
2096 }
2097
2098 static inline int open_to_namei_flags(int flag)
2099 {
2100 if ((flag & O_ACCMODE) == 3)
2101 flag--;
2102 return flag;
2103 }
2104
2105 /*
2106 * Handle the last step of open()
2107 */
2108 static struct file *do_last(struct nameidata *nd, struct path *path,
2109 const struct open_flags *op, const char *pathname)
2110 {
2111 struct dentry *dir = nd->path.dentry;
2112 struct dentry *dentry;
2113 int open_flag = op->open_flag;
2114 int will_truncate = open_flag & O_TRUNC;
2115 int want_write = 0;
2116 int acc_mode = op->acc_mode;
2117 struct file *filp;
2118 int error;
2119
2120 nd->flags &= ~LOOKUP_PARENT;
2121 nd->flags |= op->intent;
2122
2123 switch (nd->last_type) {
2124 case LAST_DOTDOT:
2125 case LAST_DOT:
2126 error = handle_dots(nd, nd->last_type);
2127 if (error)
2128 return ERR_PTR(error);
2129 /* fallthrough */
2130 case LAST_ROOT:
2131 error = complete_walk(nd);
2132 if (error)
2133 return ERR_PTR(error);
2134 audit_inode(pathname, nd->path.dentry);
2135 if (open_flag & O_CREAT) {
2136 error = -EISDIR;
2137 goto exit;
2138 }
2139 goto ok;
2140 case LAST_BIND:
2141 error = complete_walk(nd);
2142 if (error)
2143 return ERR_PTR(error);
2144 audit_inode(pathname, dir);
2145 goto ok;
2146 }
2147
2148 if (!(open_flag & O_CREAT)) {
2149 int symlink_ok = 0;
2150 if (nd->last.name[nd->last.len])
2151 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2152 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2153 symlink_ok = 1;
2154 /* we _can_ be in RCU mode here */
2155 error = walk_component(nd, path, &nd->last, LAST_NORM,
2156 !symlink_ok);
2157 if (error < 0)
2158 return ERR_PTR(error);
2159 if (error) /* symlink */
2160 return NULL;
2161 /* sayonara */
2162 error = complete_walk(nd);
2163 if (error)
2164 return ERR_PTR(-ECHILD);
2165
2166 error = -ENOTDIR;
2167 if (nd->flags & LOOKUP_DIRECTORY) {
2168 if (!nd->inode->i_op->lookup)
2169 goto exit;
2170 }
2171 audit_inode(pathname, nd->path.dentry);
2172 goto ok;
2173 }
2174
2175 /* create side of things */
2176 /*
2177 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2178 * cleared when we got to the last component we are about to look up
2179 */
2180 error = complete_walk(nd);
2181 if (error)
2182 return ERR_PTR(error);
2183
2184 audit_inode(pathname, dir);
2185 error = -EISDIR;
2186 /* trailing slashes? */
2187 if (nd->last.name[nd->last.len])
2188 goto exit;
2189
2190 mutex_lock(&dir->d_inode->i_mutex);
2191
2192 dentry = lookup_hash(nd);
2193 error = PTR_ERR(dentry);
2194 if (IS_ERR(dentry)) {
2195 mutex_unlock(&dir->d_inode->i_mutex);
2196 goto exit;
2197 }
2198
2199 path->dentry = dentry;
2200 path->mnt = nd->path.mnt;
2201
2202 /* Negative dentry, just create the file */
2203 if (!dentry->d_inode) {
2204 umode_t mode = op->mode;
2205 if (!IS_POSIXACL(dir->d_inode))
2206 mode &= ~current_umask();
2207 /*
2208 * This write is needed to ensure that a
2209 * rw->ro transition does not occur between
2210 * the time when the file is created and when
2211 * a permanent write count is taken through
2212 * the 'struct file' in nameidata_to_filp().
2213 */
2214 error = mnt_want_write(nd->path.mnt);
2215 if (error)
2216 goto exit_mutex_unlock;
2217 want_write = 1;
2218 /* Don't check for write permission, don't truncate */
2219 open_flag &= ~O_TRUNC;
2220 will_truncate = 0;
2221 acc_mode = MAY_OPEN;
2222 error = security_path_mknod(&nd->path, dentry, mode, 0);
2223 if (error)
2224 goto exit_mutex_unlock;
2225 error = vfs_create(dir->d_inode, dentry, mode, nd);
2226 if (error)
2227 goto exit_mutex_unlock;
2228 mutex_unlock(&dir->d_inode->i_mutex);
2229 dput(nd->path.dentry);
2230 nd->path.dentry = dentry;
2231 goto common;
2232 }
2233
2234 /*
2235 * It already exists.
2236 */
2237 mutex_unlock(&dir->d_inode->i_mutex);
2238 audit_inode(pathname, path->dentry);
2239
2240 error = -EEXIST;
2241 if (open_flag & O_EXCL)
2242 goto exit_dput;
2243
2244 error = follow_managed(path, nd->flags);
2245 if (error < 0)
2246 goto exit_dput;
2247
2248 if (error)
2249 nd->flags |= LOOKUP_JUMPED;
2250
2251 error = -ENOENT;
2252 if (!path->dentry->d_inode)
2253 goto exit_dput;
2254
2255 if (path->dentry->d_inode->i_op->follow_link)
2256 return NULL;
2257
2258 path_to_nameidata(path, nd);
2259 nd->inode = path->dentry->d_inode;
2260 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2261 error = complete_walk(nd);
2262 if (error)
2263 goto exit;
2264 error = -EISDIR;
2265 if (S_ISDIR(nd->inode->i_mode))
2266 goto exit;
2267 ok:
2268 if (!S_ISREG(nd->inode->i_mode))
2269 will_truncate = 0;
2270
2271 if (will_truncate) {
2272 error = mnt_want_write(nd->path.mnt);
2273 if (error)
2274 goto exit;
2275 want_write = 1;
2276 }
2277 common:
2278 error = may_open(&nd->path, acc_mode, open_flag);
2279 if (error)
2280 goto exit;
2281 filp = nameidata_to_filp(nd);
2282 if (!IS_ERR(filp)) {
2283 error = ima_file_check(filp, op->acc_mode);
2284 if (error) {
2285 fput(filp);
2286 filp = ERR_PTR(error);
2287 }
2288 }
2289 if (!IS_ERR(filp)) {
2290 if (will_truncate) {
2291 error = handle_truncate(filp);
2292 if (error) {
2293 fput(filp);
2294 filp = ERR_PTR(error);
2295 }
2296 }
2297 }
2298 out:
2299 if (want_write)
2300 mnt_drop_write(nd->path.mnt);
2301 path_put(&nd->path);
2302 return filp;
2303
2304 exit_mutex_unlock:
2305 mutex_unlock(&dir->d_inode->i_mutex);
2306 exit_dput:
2307 path_put_conditional(path, nd);
2308 exit:
2309 filp = ERR_PTR(error);
2310 goto out;
2311 }
2312
2313 static struct file *path_openat(int dfd, const char *pathname,
2314 struct nameidata *nd, const struct open_flags *op, int flags)
2315 {
2316 struct file *base = NULL;
2317 struct file *filp;
2318 struct path path;
2319 int error;
2320
2321 filp = get_empty_filp();
2322 if (!filp)
2323 return ERR_PTR(-ENFILE);
2324
2325 filp->f_flags = op->open_flag;
2326 nd->intent.open.file = filp;
2327 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2328 nd->intent.open.create_mode = op->mode;
2329
2330 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2331 if (unlikely(error))
2332 goto out_filp;
2333
2334 current->total_link_count = 0;
2335 error = link_path_walk(pathname, nd);
2336 if (unlikely(error))
2337 goto out_filp;
2338
2339 filp = do_last(nd, &path, op, pathname);
2340 while (unlikely(!filp)) { /* trailing symlink */
2341 struct path link = path;
2342 void *cookie;
2343 if (!(nd->flags & LOOKUP_FOLLOW)) {
2344 path_put_conditional(&path, nd);
2345 path_put(&nd->path);
2346 filp = ERR_PTR(-ELOOP);
2347 break;
2348 }
2349 nd->flags |= LOOKUP_PARENT;
2350 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2351 error = follow_link(&link, nd, &cookie);
2352 if (unlikely(error))
2353 filp = ERR_PTR(error);
2354 else
2355 filp = do_last(nd, &path, op, pathname);
2356 put_link(nd, &link, cookie);
2357 }
2358 out:
2359 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2360 path_put(&nd->root);
2361 if (base)
2362 fput(base);
2363 release_open_intent(nd);
2364 return filp;
2365
2366 out_filp:
2367 filp = ERR_PTR(error);
2368 goto out;
2369 }
2370
2371 struct file *do_filp_open(int dfd, const char *pathname,
2372 const struct open_flags *op, int flags)
2373 {
2374 struct nameidata nd;
2375 struct file *filp;
2376
2377 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2378 if (unlikely(filp == ERR_PTR(-ECHILD)))
2379 filp = path_openat(dfd, pathname, &nd, op, flags);
2380 if (unlikely(filp == ERR_PTR(-ESTALE)))
2381 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2382 return filp;
2383 }
2384
2385 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2386 const char *name, const struct open_flags *op, int flags)
2387 {
2388 struct nameidata nd;
2389 struct file *file;
2390
2391 nd.root.mnt = mnt;
2392 nd.root.dentry = dentry;
2393
2394 flags |= LOOKUP_ROOT;
2395
2396 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2397 return ERR_PTR(-ELOOP);
2398
2399 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2400 if (unlikely(file == ERR_PTR(-ECHILD)))
2401 file = path_openat(-1, name, &nd, op, flags);
2402 if (unlikely(file == ERR_PTR(-ESTALE)))
2403 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2404 return file;
2405 }
2406
2407 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2408 {
2409 struct dentry *dentry = ERR_PTR(-EEXIST);
2410 struct nameidata nd;
2411 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2412 if (error)
2413 return ERR_PTR(error);
2414
2415 /*
2416 * Yucky last component or no last component at all?
2417 * (foo/., foo/.., /////)
2418 */
2419 if (nd.last_type != LAST_NORM)
2420 goto out;
2421 nd.flags &= ~LOOKUP_PARENT;
2422 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2423 nd.intent.open.flags = O_EXCL;
2424
2425 /*
2426 * Do the final lookup.
2427 */
2428 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2429 dentry = lookup_hash(&nd);
2430 if (IS_ERR(dentry))
2431 goto fail;
2432
2433 if (dentry->d_inode)
2434 goto eexist;
2435 /*
2436 * Special case - lookup gave negative, but... we had foo/bar/
2437 * From the vfs_mknod() POV we just have a negative dentry -
2438 * all is fine. Let's be bastards - you had / on the end, you've
2439 * been asking for (non-existent) directory. -ENOENT for you.
2440 */
2441 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2442 dput(dentry);
2443 dentry = ERR_PTR(-ENOENT);
2444 goto fail;
2445 }
2446 *path = nd.path;
2447 return dentry;
2448 eexist:
2449 dput(dentry);
2450 dentry = ERR_PTR(-EEXIST);
2451 fail:
2452 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2453 out:
2454 path_put(&nd.path);
2455 return dentry;
2456 }
2457 EXPORT_SYMBOL(kern_path_create);
2458
2459 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2460 {
2461 char *tmp = getname(pathname);
2462 struct dentry *res;
2463 if (IS_ERR(tmp))
2464 return ERR_CAST(tmp);
2465 res = kern_path_create(dfd, tmp, path, is_dir);
2466 putname(tmp);
2467 return res;
2468 }
2469 EXPORT_SYMBOL(user_path_create);
2470
2471 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2472 {
2473 int error = may_create(dir, dentry);
2474
2475 if (error)
2476 return error;
2477
2478 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2479 !ns_capable(inode_userns(dir), CAP_MKNOD))
2480 return -EPERM;
2481
2482 if (!dir->i_op->mknod)
2483 return -EPERM;
2484
2485 error = devcgroup_inode_mknod(mode, dev);
2486 if (error)
2487 return error;
2488
2489 error = security_inode_mknod(dir, dentry, mode, dev);
2490 if (error)
2491 return error;
2492
2493 error = dir->i_op->mknod(dir, dentry, mode, dev);
2494 if (!error)
2495 fsnotify_create(dir, dentry);
2496 return error;
2497 }
2498
2499 static int may_mknod(umode_t mode)
2500 {
2501 switch (mode & S_IFMT) {
2502 case S_IFREG:
2503 case S_IFCHR:
2504 case S_IFBLK:
2505 case S_IFIFO:
2506 case S_IFSOCK:
2507 case 0: /* zero mode translates to S_IFREG */
2508 return 0;
2509 case S_IFDIR:
2510 return -EPERM;
2511 default:
2512 return -EINVAL;
2513 }
2514 }
2515
2516 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2517 unsigned, dev)
2518 {
2519 struct dentry *dentry;
2520 struct path path;
2521 int error;
2522
2523 if (S_ISDIR(mode))
2524 return -EPERM;
2525
2526 dentry = user_path_create(dfd, filename, &path, 0);
2527 if (IS_ERR(dentry))
2528 return PTR_ERR(dentry);
2529
2530 if (!IS_POSIXACL(path.dentry->d_inode))
2531 mode &= ~current_umask();
2532 error = may_mknod(mode);
2533 if (error)
2534 goto out_dput;
2535 error = mnt_want_write(path.mnt);
2536 if (error)
2537 goto out_dput;
2538 error = security_path_mknod(&path, dentry, mode, dev);
2539 if (error)
2540 goto out_drop_write;
2541 switch (mode & S_IFMT) {
2542 case 0: case S_IFREG:
2543 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2544 break;
2545 case S_IFCHR: case S_IFBLK:
2546 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2547 new_decode_dev(dev));
2548 break;
2549 case S_IFIFO: case S_IFSOCK:
2550 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2551 break;
2552 }
2553 out_drop_write:
2554 mnt_drop_write(path.mnt);
2555 out_dput:
2556 dput(dentry);
2557 mutex_unlock(&path.dentry->d_inode->i_mutex);
2558 path_put(&path);
2559
2560 return error;
2561 }
2562
2563 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2564 {
2565 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2566 }
2567
2568 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2569 {
2570 int error = may_create(dir, dentry);
2571
2572 if (error)
2573 return error;
2574
2575 if (!dir->i_op->mkdir)
2576 return -EPERM;
2577
2578 mode &= (S_IRWXUGO|S_ISVTX);
2579 error = security_inode_mkdir(dir, dentry, mode);
2580 if (error)
2581 return error;
2582
2583 error = dir->i_op->mkdir(dir, dentry, mode);
2584 if (!error)
2585 fsnotify_mkdir(dir, dentry);
2586 return error;
2587 }
2588
2589 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2590 {
2591 struct dentry *dentry;
2592 struct path path;
2593 int error;
2594
2595 dentry = user_path_create(dfd, pathname, &path, 1);
2596 if (IS_ERR(dentry))
2597 return PTR_ERR(dentry);
2598
2599 if (!IS_POSIXACL(path.dentry->d_inode))
2600 mode &= ~current_umask();
2601 error = mnt_want_write(path.mnt);
2602 if (error)
2603 goto out_dput;
2604 error = security_path_mkdir(&path, dentry, mode);
2605 if (error)
2606 goto out_drop_write;
2607 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2608 out_drop_write:
2609 mnt_drop_write(path.mnt);
2610 out_dput:
2611 dput(dentry);
2612 mutex_unlock(&path.dentry->d_inode->i_mutex);
2613 path_put(&path);
2614 return error;
2615 }
2616
2617 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2618 {
2619 return sys_mkdirat(AT_FDCWD, pathname, mode);
2620 }
2621
2622 /*
2623 * The dentry_unhash() helper will try to drop the dentry early: we
2624 * should have a usage count of 2 if we're the only user of this
2625 * dentry, and if that is true (possibly after pruning the dcache),
2626 * then we drop the dentry now.
2627 *
2628 * A low-level filesystem can, if it choses, legally
2629 * do a
2630 *
2631 * if (!d_unhashed(dentry))
2632 * return -EBUSY;
2633 *
2634 * if it cannot handle the case of removing a directory
2635 * that is still in use by something else..
2636 */
2637 void dentry_unhash(struct dentry *dentry)
2638 {
2639 shrink_dcache_parent(dentry);
2640 spin_lock(&dentry->d_lock);
2641 if (dentry->d_count == 1)
2642 __d_drop(dentry);
2643 spin_unlock(&dentry->d_lock);
2644 }
2645
2646 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2647 {
2648 int error = may_delete(dir, dentry, 1);
2649
2650 if (error)
2651 return error;
2652
2653 if (!dir->i_op->rmdir)
2654 return -EPERM;
2655
2656 dget(dentry);
2657 mutex_lock(&dentry->d_inode->i_mutex);
2658
2659 error = -EBUSY;
2660 if (d_mountpoint(dentry))
2661 goto out;
2662
2663 error = security_inode_rmdir(dir, dentry);
2664 if (error)
2665 goto out;
2666
2667 shrink_dcache_parent(dentry);
2668 error = dir->i_op->rmdir(dir, dentry);
2669 if (error)
2670 goto out;
2671
2672 dentry->d_inode->i_flags |= S_DEAD;
2673 dont_mount(dentry);
2674
2675 out:
2676 mutex_unlock(&dentry->d_inode->i_mutex);
2677 dput(dentry);
2678 if (!error)
2679 d_delete(dentry);
2680 return error;
2681 }
2682
2683 static long do_rmdir(int dfd, const char __user *pathname)
2684 {
2685 int error = 0;
2686 char * name;
2687 struct dentry *dentry;
2688 struct nameidata nd;
2689
2690 error = user_path_parent(dfd, pathname, &nd, &name);
2691 if (error)
2692 return error;
2693
2694 switch(nd.last_type) {
2695 case LAST_DOTDOT:
2696 error = -ENOTEMPTY;
2697 goto exit1;
2698 case LAST_DOT:
2699 error = -EINVAL;
2700 goto exit1;
2701 case LAST_ROOT:
2702 error = -EBUSY;
2703 goto exit1;
2704 }
2705
2706 nd.flags &= ~LOOKUP_PARENT;
2707
2708 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2709 dentry = lookup_hash(&nd);
2710 error = PTR_ERR(dentry);
2711 if (IS_ERR(dentry))
2712 goto exit2;
2713 if (!dentry->d_inode) {
2714 error = -ENOENT;
2715 goto exit3;
2716 }
2717 error = mnt_want_write(nd.path.mnt);
2718 if (error)
2719 goto exit3;
2720 error = security_path_rmdir(&nd.path, dentry);
2721 if (error)
2722 goto exit4;
2723 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2724 exit4:
2725 mnt_drop_write(nd.path.mnt);
2726 exit3:
2727 dput(dentry);
2728 exit2:
2729 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2730 exit1:
2731 path_put(&nd.path);
2732 putname(name);
2733 return error;
2734 }
2735
2736 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2737 {
2738 return do_rmdir(AT_FDCWD, pathname);
2739 }
2740
2741 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2742 {
2743 int error = may_delete(dir, dentry, 0);
2744
2745 if (error)
2746 return error;
2747
2748 if (!dir->i_op->unlink)
2749 return -EPERM;
2750
2751 mutex_lock(&dentry->d_inode->i_mutex);
2752 if (d_mountpoint(dentry))
2753 error = -EBUSY;
2754 else {
2755 error = security_inode_unlink(dir, dentry);
2756 if (!error) {
2757 error = dir->i_op->unlink(dir, dentry);
2758 if (!error)
2759 dont_mount(dentry);
2760 }
2761 }
2762 mutex_unlock(&dentry->d_inode->i_mutex);
2763
2764 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2765 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2766 fsnotify_link_count(dentry->d_inode);
2767 d_delete(dentry);
2768 }
2769
2770 return error;
2771 }
2772
2773 /*
2774 * Make sure that the actual truncation of the file will occur outside its
2775 * directory's i_mutex. Truncate can take a long time if there is a lot of
2776 * writeout happening, and we don't want to prevent access to the directory
2777 * while waiting on the I/O.
2778 */
2779 static long do_unlinkat(int dfd, const char __user *pathname)
2780 {
2781 int error;
2782 char *name;
2783 struct dentry *dentry;
2784 struct nameidata nd;
2785 struct inode *inode = NULL;
2786
2787 error = user_path_parent(dfd, pathname, &nd, &name);
2788 if (error)
2789 return error;
2790
2791 error = -EISDIR;
2792 if (nd.last_type != LAST_NORM)
2793 goto exit1;
2794
2795 nd.flags &= ~LOOKUP_PARENT;
2796
2797 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2798 dentry = lookup_hash(&nd);
2799 error = PTR_ERR(dentry);
2800 if (!IS_ERR(dentry)) {
2801 /* Why not before? Because we want correct error value */
2802 if (nd.last.name[nd.last.len])
2803 goto slashes;
2804 inode = dentry->d_inode;
2805 if (!inode)
2806 goto slashes;
2807 ihold(inode);
2808 error = mnt_want_write(nd.path.mnt);
2809 if (error)
2810 goto exit2;
2811 error = security_path_unlink(&nd.path, dentry);
2812 if (error)
2813 goto exit3;
2814 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2815 exit3:
2816 mnt_drop_write(nd.path.mnt);
2817 exit2:
2818 dput(dentry);
2819 }
2820 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2821 if (inode)
2822 iput(inode); /* truncate the inode here */
2823 exit1:
2824 path_put(&nd.path);
2825 putname(name);
2826 return error;
2827
2828 slashes:
2829 error = !dentry->d_inode ? -ENOENT :
2830 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2831 goto exit2;
2832 }
2833
2834 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2835 {
2836 if ((flag & ~AT_REMOVEDIR) != 0)
2837 return -EINVAL;
2838
2839 if (flag & AT_REMOVEDIR)
2840 return do_rmdir(dfd, pathname);
2841
2842 return do_unlinkat(dfd, pathname);
2843 }
2844
2845 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2846 {
2847 return do_unlinkat(AT_FDCWD, pathname);
2848 }
2849
2850 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2851 {
2852 int error = may_create(dir, dentry);
2853
2854 if (error)
2855 return error;
2856
2857 if (!dir->i_op->symlink)
2858 return -EPERM;
2859
2860 error = security_inode_symlink(dir, dentry, oldname);
2861 if (error)
2862 return error;
2863
2864 error = dir->i_op->symlink(dir, dentry, oldname);
2865 if (!error)
2866 fsnotify_create(dir, dentry);
2867 return error;
2868 }
2869
2870 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2871 int, newdfd, const char __user *, newname)
2872 {
2873 int error;
2874 char *from;
2875 struct dentry *dentry;
2876 struct path path;
2877
2878 from = getname(oldname);
2879 if (IS_ERR(from))
2880 return PTR_ERR(from);
2881
2882 dentry = user_path_create(newdfd, newname, &path, 0);
2883 error = PTR_ERR(dentry);
2884 if (IS_ERR(dentry))
2885 goto out_putname;
2886
2887 error = mnt_want_write(path.mnt);
2888 if (error)
2889 goto out_dput;
2890 error = security_path_symlink(&path, dentry, from);
2891 if (error)
2892 goto out_drop_write;
2893 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2894 out_drop_write:
2895 mnt_drop_write(path.mnt);
2896 out_dput:
2897 dput(dentry);
2898 mutex_unlock(&path.dentry->d_inode->i_mutex);
2899 path_put(&path);
2900 out_putname:
2901 putname(from);
2902 return error;
2903 }
2904
2905 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2906 {
2907 return sys_symlinkat(oldname, AT_FDCWD, newname);
2908 }
2909
2910 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2911 {
2912 struct inode *inode = old_dentry->d_inode;
2913 int error;
2914
2915 if (!inode)
2916 return -ENOENT;
2917
2918 error = may_create(dir, new_dentry);
2919 if (error)
2920 return error;
2921
2922 if (dir->i_sb != inode->i_sb)
2923 return -EXDEV;
2924
2925 /*
2926 * A link to an append-only or immutable file cannot be created.
2927 */
2928 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2929 return -EPERM;
2930 if (!dir->i_op->link)
2931 return -EPERM;
2932 if (S_ISDIR(inode->i_mode))
2933 return -EPERM;
2934
2935 error = security_inode_link(old_dentry, dir, new_dentry);
2936 if (error)
2937 return error;
2938
2939 mutex_lock(&inode->i_mutex);
2940 /* Make sure we don't allow creating hardlink to an unlinked file */
2941 if (inode->i_nlink == 0)
2942 error = -ENOENT;
2943 else
2944 error = dir->i_op->link(old_dentry, dir, new_dentry);
2945 mutex_unlock(&inode->i_mutex);
2946 if (!error)
2947 fsnotify_link(dir, inode, new_dentry);
2948 return error;
2949 }
2950
2951 /*
2952 * Hardlinks are often used in delicate situations. We avoid
2953 * security-related surprises by not following symlinks on the
2954 * newname. --KAB
2955 *
2956 * We don't follow them on the oldname either to be compatible
2957 * with linux 2.0, and to avoid hard-linking to directories
2958 * and other special files. --ADM
2959 */
2960 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2961 int, newdfd, const char __user *, newname, int, flags)
2962 {
2963 struct dentry *new_dentry;
2964 struct path old_path, new_path;
2965 int how = 0;
2966 int error;
2967
2968 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2969 return -EINVAL;
2970 /*
2971 * To use null names we require CAP_DAC_READ_SEARCH
2972 * This ensures that not everyone will be able to create
2973 * handlink using the passed filedescriptor.
2974 */
2975 if (flags & AT_EMPTY_PATH) {
2976 if (!capable(CAP_DAC_READ_SEARCH))
2977 return -ENOENT;
2978 how = LOOKUP_EMPTY;
2979 }
2980
2981 if (flags & AT_SYMLINK_FOLLOW)
2982 how |= LOOKUP_FOLLOW;
2983
2984 error = user_path_at(olddfd, oldname, how, &old_path);
2985 if (error)
2986 return error;
2987
2988 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2989 error = PTR_ERR(new_dentry);
2990 if (IS_ERR(new_dentry))
2991 goto out;
2992
2993 error = -EXDEV;
2994 if (old_path.mnt != new_path.mnt)
2995 goto out_dput;
2996 error = mnt_want_write(new_path.mnt);
2997 if (error)
2998 goto out_dput;
2999 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3000 if (error)
3001 goto out_drop_write;
3002 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3003 out_drop_write:
3004 mnt_drop_write(new_path.mnt);
3005 out_dput:
3006 dput(new_dentry);
3007 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3008 path_put(&new_path);
3009 out:
3010 path_put(&old_path);
3011
3012 return error;
3013 }
3014
3015 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3016 {
3017 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3018 }
3019
3020 /*
3021 * The worst of all namespace operations - renaming directory. "Perverted"
3022 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3023 * Problems:
3024 * a) we can get into loop creation. Check is done in is_subdir().
3025 * b) race potential - two innocent renames can create a loop together.
3026 * That's where 4.4 screws up. Current fix: serialization on
3027 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3028 * story.
3029 * c) we have to lock _three_ objects - parents and victim (if it exists).
3030 * And that - after we got ->i_mutex on parents (until then we don't know
3031 * whether the target exists). Solution: try to be smart with locking
3032 * order for inodes. We rely on the fact that tree topology may change
3033 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3034 * move will be locked. Thus we can rank directories by the tree
3035 * (ancestors first) and rank all non-directories after them.
3036 * That works since everybody except rename does "lock parent, lookup,
3037 * lock child" and rename is under ->s_vfs_rename_mutex.
3038 * HOWEVER, it relies on the assumption that any object with ->lookup()
3039 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3040 * we'd better make sure that there's no link(2) for them.
3041 * d) conversion from fhandle to dentry may come in the wrong moment - when
3042 * we are removing the target. Solution: we will have to grab ->i_mutex
3043 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3044 * ->i_mutex on parents, which works but leads to some truly excessive
3045 * locking].
3046 */
3047 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3048 struct inode *new_dir, struct dentry *new_dentry)
3049 {
3050 int error = 0;
3051 struct inode *target = new_dentry->d_inode;
3052
3053 /*
3054 * If we are going to change the parent - check write permissions,
3055 * we'll need to flip '..'.
3056 */
3057 if (new_dir != old_dir) {
3058 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3059 if (error)
3060 return error;
3061 }
3062
3063 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3064 if (error)
3065 return error;
3066
3067 dget(new_dentry);
3068 if (target)
3069 mutex_lock(&target->i_mutex);
3070
3071 error = -EBUSY;
3072 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3073 goto out;
3074
3075 if (target)
3076 shrink_dcache_parent(new_dentry);
3077 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3078 if (error)
3079 goto out;
3080
3081 if (target) {
3082 target->i_flags |= S_DEAD;
3083 dont_mount(new_dentry);
3084 }
3085 out:
3086 if (target)
3087 mutex_unlock(&target->i_mutex);
3088 dput(new_dentry);
3089 if (!error)
3090 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3091 d_move(old_dentry,new_dentry);
3092 return error;
3093 }
3094
3095 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3096 struct inode *new_dir, struct dentry *new_dentry)
3097 {
3098 struct inode *target = new_dentry->d_inode;
3099 int error;
3100
3101 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3102 if (error)
3103 return error;
3104
3105 dget(new_dentry);
3106 if (target)
3107 mutex_lock(&target->i_mutex);
3108
3109 error = -EBUSY;
3110 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3111 goto out;
3112
3113 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3114 if (error)
3115 goto out;
3116
3117 if (target)
3118 dont_mount(new_dentry);
3119 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3120 d_move(old_dentry, new_dentry);
3121 out:
3122 if (target)
3123 mutex_unlock(&target->i_mutex);
3124 dput(new_dentry);
3125 return error;
3126 }
3127
3128 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3129 struct inode *new_dir, struct dentry *new_dentry)
3130 {
3131 int error;
3132 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3133 const unsigned char *old_name;
3134
3135 if (old_dentry->d_inode == new_dentry->d_inode)
3136 return 0;
3137
3138 error = may_delete(old_dir, old_dentry, is_dir);
3139 if (error)
3140 return error;
3141
3142 if (!new_dentry->d_inode)
3143 error = may_create(new_dir, new_dentry);
3144 else
3145 error = may_delete(new_dir, new_dentry, is_dir);
3146 if (error)
3147 return error;
3148
3149 if (!old_dir->i_op->rename)
3150 return -EPERM;
3151
3152 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3153
3154 if (is_dir)
3155 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3156 else
3157 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3158 if (!error)
3159 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3160 new_dentry->d_inode, old_dentry);
3161 fsnotify_oldname_free(old_name);
3162
3163 return error;
3164 }
3165
3166 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3167 int, newdfd, const char __user *, newname)
3168 {
3169 struct dentry *old_dir, *new_dir;
3170 struct dentry *old_dentry, *new_dentry;
3171 struct dentry *trap;
3172 struct nameidata oldnd, newnd;
3173 char *from;
3174 char *to;
3175 int error;
3176
3177 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3178 if (error)
3179 goto exit;
3180
3181 error = user_path_parent(newdfd, newname, &newnd, &to);
3182 if (error)
3183 goto exit1;
3184
3185 error = -EXDEV;
3186 if (oldnd.path.mnt != newnd.path.mnt)
3187 goto exit2;
3188
3189 old_dir = oldnd.path.dentry;
3190 error = -EBUSY;
3191 if (oldnd.last_type != LAST_NORM)
3192 goto exit2;
3193
3194 new_dir = newnd.path.dentry;
3195 if (newnd.last_type != LAST_NORM)
3196 goto exit2;
3197
3198 oldnd.flags &= ~LOOKUP_PARENT;
3199 newnd.flags &= ~LOOKUP_PARENT;
3200 newnd.flags |= LOOKUP_RENAME_TARGET;
3201
3202 trap = lock_rename(new_dir, old_dir);
3203
3204 old_dentry = lookup_hash(&oldnd);
3205 error = PTR_ERR(old_dentry);
3206 if (IS_ERR(old_dentry))
3207 goto exit3;
3208 /* source must exist */
3209 error = -ENOENT;
3210 if (!old_dentry->d_inode)
3211 goto exit4;
3212 /* unless the source is a directory trailing slashes give -ENOTDIR */
3213 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3214 error = -ENOTDIR;
3215 if (oldnd.last.name[oldnd.last.len])
3216 goto exit4;
3217 if (newnd.last.name[newnd.last.len])
3218 goto exit4;
3219 }
3220 /* source should not be ancestor of target */
3221 error = -EINVAL;
3222 if (old_dentry == trap)
3223 goto exit4;
3224 new_dentry = lookup_hash(&newnd);
3225 error = PTR_ERR(new_dentry);
3226 if (IS_ERR(new_dentry))
3227 goto exit4;
3228 /* target should not be an ancestor of source */
3229 error = -ENOTEMPTY;
3230 if (new_dentry == trap)
3231 goto exit5;
3232
3233 error = mnt_want_write(oldnd.path.mnt);
3234 if (error)
3235 goto exit5;
3236 error = security_path_rename(&oldnd.path, old_dentry,
3237 &newnd.path, new_dentry);
3238 if (error)
3239 goto exit6;
3240 error = vfs_rename(old_dir->d_inode, old_dentry,
3241 new_dir->d_inode, new_dentry);
3242 exit6:
3243 mnt_drop_write(oldnd.path.mnt);
3244 exit5:
3245 dput(new_dentry);
3246 exit4:
3247 dput(old_dentry);
3248 exit3:
3249 unlock_rename(new_dir, old_dir);
3250 exit2:
3251 path_put(&newnd.path);
3252 putname(to);
3253 exit1:
3254 path_put(&oldnd.path);
3255 putname(from);
3256 exit:
3257 return error;
3258 }
3259
3260 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3261 {
3262 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3263 }
3264
3265 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3266 {
3267 int len;
3268
3269 len = PTR_ERR(link);
3270 if (IS_ERR(link))
3271 goto out;
3272
3273 len = strlen(link);
3274 if (len > (unsigned) buflen)
3275 len = buflen;
3276 if (copy_to_user(buffer, link, len))
3277 len = -EFAULT;
3278 out:
3279 return len;
3280 }
3281
3282 /*
3283 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3284 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3285 * using) it for any given inode is up to filesystem.
3286 */
3287 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3288 {
3289 struct nameidata nd;
3290 void *cookie;
3291 int res;
3292
3293 nd.depth = 0;
3294 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3295 if (IS_ERR(cookie))
3296 return PTR_ERR(cookie);
3297
3298 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3299 if (dentry->d_inode->i_op->put_link)
3300 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3301 return res;
3302 }
3303
3304 int vfs_follow_link(struct nameidata *nd, const char *link)
3305 {
3306 return __vfs_follow_link(nd, link);
3307 }
3308
3309 /* get the link contents into pagecache */
3310 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3311 {
3312 char *kaddr;
3313 struct page *page;
3314 struct address_space *mapping = dentry->d_inode->i_mapping;
3315 page = read_mapping_page(mapping, 0, NULL);
3316 if (IS_ERR(page))
3317 return (char*)page;
3318 *ppage = page;
3319 kaddr = kmap(page);
3320 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3321 return kaddr;
3322 }
3323
3324 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3325 {
3326 struct page *page = NULL;
3327 char *s = page_getlink(dentry, &page);
3328 int res = vfs_readlink(dentry,buffer,buflen,s);
3329 if (page) {
3330 kunmap(page);
3331 page_cache_release(page);
3332 }
3333 return res;
3334 }
3335
3336 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3337 {
3338 struct page *page = NULL;
3339 nd_set_link(nd, page_getlink(dentry, &page));
3340 return page;
3341 }
3342
3343 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3344 {
3345 struct page *page = cookie;
3346
3347 if (page) {
3348 kunmap(page);
3349 page_cache_release(page);
3350 }
3351 }
3352
3353 /*
3354 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3355 */
3356 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3357 {
3358 struct address_space *mapping = inode->i_mapping;
3359 struct page *page;
3360 void *fsdata;
3361 int err;
3362 char *kaddr;
3363 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3364 if (nofs)
3365 flags |= AOP_FLAG_NOFS;
3366
3367 retry:
3368 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3369 flags, &page, &fsdata);
3370 if (err)
3371 goto fail;
3372
3373 kaddr = kmap_atomic(page, KM_USER0);
3374 memcpy(kaddr, symname, len-1);
3375 kunmap_atomic(kaddr, KM_USER0);
3376
3377 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3378 page, fsdata);
3379 if (err < 0)
3380 goto fail;
3381 if (err < len-1)
3382 goto retry;
3383
3384 mark_inode_dirty(inode);
3385 return 0;
3386 fail:
3387 return err;
3388 }
3389
3390 int page_symlink(struct inode *inode, const char *symname, int len)
3391 {
3392 return __page_symlink(inode, symname, len,
3393 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3394 }
3395
3396 const struct inode_operations page_symlink_inode_operations = {
3397 .readlink = generic_readlink,
3398 .follow_link = page_follow_link_light,
3399 .put_link = page_put_link,
3400 };
3401
3402 EXPORT_SYMBOL(user_path_at);
3403 EXPORT_SYMBOL(follow_down_one);
3404 EXPORT_SYMBOL(follow_down);
3405 EXPORT_SYMBOL(follow_up);
3406 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3407 EXPORT_SYMBOL(getname);
3408 EXPORT_SYMBOL(lock_rename);
3409 EXPORT_SYMBOL(lookup_one_len);
3410 EXPORT_SYMBOL(page_follow_link_light);
3411 EXPORT_SYMBOL(page_put_link);
3412 EXPORT_SYMBOL(page_readlink);
3413 EXPORT_SYMBOL(__page_symlink);
3414 EXPORT_SYMBOL(page_symlink);
3415 EXPORT_SYMBOL(page_symlink_inode_operations);
3416 EXPORT_SYMBOL(kern_path);
3417 EXPORT_SYMBOL(vfs_path_lookup);
3418 EXPORT_SYMBOL(inode_permission);
3419 EXPORT_SYMBOL(unlock_rename);
3420 EXPORT_SYMBOL(vfs_create);
3421 EXPORT_SYMBOL(vfs_follow_link);
3422 EXPORT_SYMBOL(vfs_link);
3423 EXPORT_SYMBOL(vfs_mkdir);
3424 EXPORT_SYMBOL(vfs_mknod);
3425 EXPORT_SYMBOL(generic_permission);
3426 EXPORT_SYMBOL(vfs_readlink);
3427 EXPORT_SYMBOL(vfs_rename);
3428 EXPORT_SYMBOL(vfs_rmdir);
3429 EXPORT_SYMBOL(vfs_symlink);
3430 EXPORT_SYMBOL(vfs_unlink);
3431 EXPORT_SYMBOL(dentry_unhash);
3432 EXPORT_SYMBOL(generic_readlink);
This page took 0.09861 seconds and 4 git commands to generate.