84f1ec3b4a5d578201be890ab26e95c0c4df9715
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170 /*
171 * This does basic POSIX ACL permission checking
172 */
173 static int acl_permission_check(struct inode *inode, int mask,
174 int (*check_acl)(struct inode *inode, int mask))
175 {
176 umode_t mode = inode->i_mode;
177
178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179
180 if (current_fsuid() == inode->i_uid)
181 mode >>= 6;
182 else {
183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
184 int error = check_acl(inode, mask);
185 if (error != -EAGAIN)
186 return error;
187 }
188
189 if (in_group_p(inode->i_gid))
190 mode >>= 3;
191 }
192
193 /*
194 * If the DACs are ok we don't need any capability check.
195 */
196 if ((mask & ~mode) == 0)
197 return 0;
198 return -EACCES;
199 }
200
201 /**
202 * generic_permission - check for access rights on a Posix-like filesystem
203 * @inode: inode to check access rights for
204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
205 * @check_acl: optional callback to check for Posix ACLs
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things..
211 */
212 int generic_permission(struct inode *inode, int mask,
213 int (*check_acl)(struct inode *inode, int mask))
214 {
215 int ret;
216
217 /*
218 * Do the basic POSIX ACL permission checks.
219 */
220 ret = acl_permission_check(inode, mask, check_acl);
221 if (ret != -EACCES)
222 return ret;
223
224 /*
225 * Read/write DACs are always overridable.
226 * Executable DACs are overridable if at least one exec bit is set.
227 */
228 if (!(mask & MAY_EXEC) || execute_ok(inode))
229 if (capable(CAP_DAC_OVERRIDE))
230 return 0;
231
232 /*
233 * Searching includes executable on directories, else just read.
234 */
235 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
236 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
237 if (capable(CAP_DAC_READ_SEARCH))
238 return 0;
239
240 return -EACCES;
241 }
242
243 /**
244 * inode_permission - check for access rights to a given inode
245 * @inode: inode to check permission on
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
247 *
248 * Used to check for read/write/execute permissions on an inode.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 */
253 int inode_permission(struct inode *inode, int mask)
254 {
255 int retval;
256
257 if (mask & MAY_WRITE) {
258 umode_t mode = inode->i_mode;
259
260 /*
261 * Nobody gets write access to a read-only fs.
262 */
263 if (IS_RDONLY(inode) &&
264 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
265 return -EROFS;
266
267 /*
268 * Nobody gets write access to an immutable file.
269 */
270 if (IS_IMMUTABLE(inode))
271 return -EACCES;
272 }
273
274 if (inode->i_op->permission)
275 retval = inode->i_op->permission(inode, mask);
276 else
277 retval = generic_permission(inode, mask, inode->i_op->check_acl);
278
279 if (retval)
280 return retval;
281
282 retval = devcgroup_inode_permission(inode, mask);
283 if (retval)
284 return retval;
285
286 return security_inode_permission(inode,
287 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
288 }
289
290 /**
291 * file_permission - check for additional access rights to a given file
292 * @file: file to check access rights for
293 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
294 *
295 * Used to check for read/write/execute permissions on an already opened
296 * file.
297 *
298 * Note:
299 * Do not use this function in new code. All access checks should
300 * be done using inode_permission().
301 */
302 int file_permission(struct file *file, int mask)
303 {
304 return inode_permission(file->f_path.dentry->d_inode, mask);
305 }
306
307 /*
308 * get_write_access() gets write permission for a file.
309 * put_write_access() releases this write permission.
310 * This is used for regular files.
311 * We cannot support write (and maybe mmap read-write shared) accesses and
312 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
313 * can have the following values:
314 * 0: no writers, no VM_DENYWRITE mappings
315 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
316 * > 0: (i_writecount) users are writing to the file.
317 *
318 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
319 * except for the cases where we don't hold i_writecount yet. Then we need to
320 * use {get,deny}_write_access() - these functions check the sign and refuse
321 * to do the change if sign is wrong. Exclusion between them is provided by
322 * the inode->i_lock spinlock.
323 */
324
325 int get_write_access(struct inode * inode)
326 {
327 spin_lock(&inode->i_lock);
328 if (atomic_read(&inode->i_writecount) < 0) {
329 spin_unlock(&inode->i_lock);
330 return -ETXTBSY;
331 }
332 atomic_inc(&inode->i_writecount);
333 spin_unlock(&inode->i_lock);
334
335 return 0;
336 }
337
338 int deny_write_access(struct file * file)
339 {
340 struct inode *inode = file->f_path.dentry->d_inode;
341
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) > 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_dec(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351 }
352
353 /**
354 * path_get - get a reference to a path
355 * @path: path to get the reference to
356 *
357 * Given a path increment the reference count to the dentry and the vfsmount.
358 */
359 void path_get(struct path *path)
360 {
361 mntget(path->mnt);
362 dget(path->dentry);
363 }
364 EXPORT_SYMBOL(path_get);
365
366 /**
367 * path_put - put a reference to a path
368 * @path: path to put the reference to
369 *
370 * Given a path decrement the reference count to the dentry and the vfsmount.
371 */
372 void path_put(struct path *path)
373 {
374 dput(path->dentry);
375 mntput(path->mnt);
376 }
377 EXPORT_SYMBOL(path_put);
378
379 /**
380 * release_open_intent - free up open intent resources
381 * @nd: pointer to nameidata
382 */
383 void release_open_intent(struct nameidata *nd)
384 {
385 if (nd->intent.open.file->f_path.dentry == NULL)
386 put_filp(nd->intent.open.file);
387 else
388 fput(nd->intent.open.file);
389 }
390
391 static inline struct dentry *
392 do_revalidate(struct dentry *dentry, struct nameidata *nd)
393 {
394 int status = dentry->d_op->d_revalidate(dentry, nd);
395 if (unlikely(status <= 0)) {
396 /*
397 * The dentry failed validation.
398 * If d_revalidate returned 0 attempt to invalidate
399 * the dentry otherwise d_revalidate is asking us
400 * to return a fail status.
401 */
402 if (!status) {
403 if (!d_invalidate(dentry)) {
404 dput(dentry);
405 dentry = NULL;
406 }
407 } else {
408 dput(dentry);
409 dentry = ERR_PTR(status);
410 }
411 }
412 return dentry;
413 }
414
415 /*
416 * force_reval_path - force revalidation of a dentry
417 *
418 * In some situations the path walking code will trust dentries without
419 * revalidating them. This causes problems for filesystems that depend on
420 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
421 * (which indicates that it's possible for the dentry to go stale), force
422 * a d_revalidate call before proceeding.
423 *
424 * Returns 0 if the revalidation was successful. If the revalidation fails,
425 * either return the error returned by d_revalidate or -ESTALE if the
426 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
427 * invalidate the dentry. It's up to the caller to handle putting references
428 * to the path if necessary.
429 */
430 static int
431 force_reval_path(struct path *path, struct nameidata *nd)
432 {
433 int status;
434 struct dentry *dentry = path->dentry;
435
436 /*
437 * only check on filesystems where it's possible for the dentry to
438 * become stale. It's assumed that if this flag is set then the
439 * d_revalidate op will also be defined.
440 */
441 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
442 return 0;
443
444 status = dentry->d_op->d_revalidate(dentry, nd);
445 if (status > 0)
446 return 0;
447
448 if (!status) {
449 d_invalidate(dentry);
450 status = -ESTALE;
451 }
452 return status;
453 }
454
455 /*
456 * Short-cut version of permission(), for calling on directories
457 * during pathname resolution. Combines parts of permission()
458 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
459 *
460 * If appropriate, check DAC only. If not appropriate, or
461 * short-cut DAC fails, then call ->permission() to do more
462 * complete permission check.
463 */
464 static int exec_permission(struct inode *inode)
465 {
466 int ret;
467
468 if (inode->i_op->permission) {
469 ret = inode->i_op->permission(inode, MAY_EXEC);
470 if (!ret)
471 goto ok;
472 return ret;
473 }
474 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
475 if (!ret)
476 goto ok;
477
478 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
479 goto ok;
480
481 return ret;
482 ok:
483 return security_inode_permission(inode, MAY_EXEC);
484 }
485
486 static __always_inline void set_root(struct nameidata *nd)
487 {
488 if (!nd->root.mnt) {
489 struct fs_struct *fs = current->fs;
490 read_lock(&fs->lock);
491 nd->root = fs->root;
492 path_get(&nd->root);
493 read_unlock(&fs->lock);
494 }
495 }
496
497 static int link_path_walk(const char *, struct nameidata *);
498
499 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
500 {
501 int res = 0;
502 char *name;
503 if (IS_ERR(link))
504 goto fail;
505
506 if (*link == '/') {
507 set_root(nd);
508 path_put(&nd->path);
509 nd->path = nd->root;
510 path_get(&nd->root);
511 }
512
513 res = link_path_walk(link, nd);
514 if (nd->depth || res || nd->last_type!=LAST_NORM)
515 return res;
516 /*
517 * If it is an iterative symlinks resolution in open_namei() we
518 * have to copy the last component. And all that crap because of
519 * bloody create() on broken symlinks. Furrfu...
520 */
521 name = __getname();
522 if (unlikely(!name)) {
523 path_put(&nd->path);
524 return -ENOMEM;
525 }
526 strcpy(name, nd->last.name);
527 nd->last.name = name;
528 return 0;
529 fail:
530 path_put(&nd->path);
531 return PTR_ERR(link);
532 }
533
534 static void path_put_conditional(struct path *path, struct nameidata *nd)
535 {
536 dput(path->dentry);
537 if (path->mnt != nd->path.mnt)
538 mntput(path->mnt);
539 }
540
541 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
542 {
543 dput(nd->path.dentry);
544 if (nd->path.mnt != path->mnt)
545 mntput(nd->path.mnt);
546 nd->path.mnt = path->mnt;
547 nd->path.dentry = path->dentry;
548 }
549
550 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
551 {
552 int error;
553 void *cookie;
554 struct dentry *dentry = path->dentry;
555
556 touch_atime(path->mnt, dentry);
557 nd_set_link(nd, NULL);
558
559 if (path->mnt != nd->path.mnt) {
560 path_to_nameidata(path, nd);
561 dget(dentry);
562 }
563 mntget(path->mnt);
564 nd->last_type = LAST_BIND;
565 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
566 error = PTR_ERR(cookie);
567 if (!IS_ERR(cookie)) {
568 char *s = nd_get_link(nd);
569 error = 0;
570 if (s)
571 error = __vfs_follow_link(nd, s);
572 else if (nd->last_type == LAST_BIND) {
573 error = force_reval_path(&nd->path, nd);
574 if (error)
575 path_put(&nd->path);
576 }
577 if (dentry->d_inode->i_op->put_link)
578 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
579 }
580 return error;
581 }
582
583 /*
584 * This limits recursive symlink follows to 8, while
585 * limiting consecutive symlinks to 40.
586 *
587 * Without that kind of total limit, nasty chains of consecutive
588 * symlinks can cause almost arbitrarily long lookups.
589 */
590 static inline int do_follow_link(struct path *path, struct nameidata *nd)
591 {
592 int err = -ELOOP;
593 if (current->link_count >= MAX_NESTED_LINKS)
594 goto loop;
595 if (current->total_link_count >= 40)
596 goto loop;
597 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
598 cond_resched();
599 err = security_inode_follow_link(path->dentry, nd);
600 if (err)
601 goto loop;
602 current->link_count++;
603 current->total_link_count++;
604 nd->depth++;
605 err = __do_follow_link(path, nd);
606 path_put(path);
607 current->link_count--;
608 nd->depth--;
609 return err;
610 loop:
611 path_put_conditional(path, nd);
612 path_put(&nd->path);
613 return err;
614 }
615
616 int follow_up(struct path *path)
617 {
618 struct vfsmount *parent;
619 struct dentry *mountpoint;
620 spin_lock(&vfsmount_lock);
621 parent = path->mnt->mnt_parent;
622 if (parent == path->mnt) {
623 spin_unlock(&vfsmount_lock);
624 return 0;
625 }
626 mntget(parent);
627 mountpoint = dget(path->mnt->mnt_mountpoint);
628 spin_unlock(&vfsmount_lock);
629 dput(path->dentry);
630 path->dentry = mountpoint;
631 mntput(path->mnt);
632 path->mnt = parent;
633 return 1;
634 }
635
636 /* no need for dcache_lock, as serialization is taken care in
637 * namespace.c
638 */
639 static int __follow_mount(struct path *path)
640 {
641 int res = 0;
642 while (d_mountpoint(path->dentry)) {
643 struct vfsmount *mounted = lookup_mnt(path);
644 if (!mounted)
645 break;
646 dput(path->dentry);
647 if (res)
648 mntput(path->mnt);
649 path->mnt = mounted;
650 path->dentry = dget(mounted->mnt_root);
651 res = 1;
652 }
653 return res;
654 }
655
656 static void follow_mount(struct path *path)
657 {
658 while (d_mountpoint(path->dentry)) {
659 struct vfsmount *mounted = lookup_mnt(path);
660 if (!mounted)
661 break;
662 dput(path->dentry);
663 mntput(path->mnt);
664 path->mnt = mounted;
665 path->dentry = dget(mounted->mnt_root);
666 }
667 }
668
669 /* no need for dcache_lock, as serialization is taken care in
670 * namespace.c
671 */
672 int follow_down(struct path *path)
673 {
674 struct vfsmount *mounted;
675
676 mounted = lookup_mnt(path);
677 if (mounted) {
678 dput(path->dentry);
679 mntput(path->mnt);
680 path->mnt = mounted;
681 path->dentry = dget(mounted->mnt_root);
682 return 1;
683 }
684 return 0;
685 }
686
687 static __always_inline void follow_dotdot(struct nameidata *nd)
688 {
689 set_root(nd);
690
691 while(1) {
692 struct dentry *old = nd->path.dentry;
693
694 if (nd->path.dentry == nd->root.dentry &&
695 nd->path.mnt == nd->root.mnt) {
696 break;
697 }
698 if (nd->path.dentry != nd->path.mnt->mnt_root) {
699 /* rare case of legitimate dget_parent()... */
700 nd->path.dentry = dget_parent(nd->path.dentry);
701 dput(old);
702 break;
703 }
704 if (!follow_up(&nd->path))
705 break;
706 }
707 follow_mount(&nd->path);
708 }
709
710 /*
711 * It's more convoluted than I'd like it to be, but... it's still fairly
712 * small and for now I'd prefer to have fast path as straight as possible.
713 * It _is_ time-critical.
714 */
715 static int do_lookup(struct nameidata *nd, struct qstr *name,
716 struct path *path)
717 {
718 struct vfsmount *mnt = nd->path.mnt;
719 struct dentry *dentry, *parent;
720 struct inode *dir;
721 /*
722 * See if the low-level filesystem might want
723 * to use its own hash..
724 */
725 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
726 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
727 if (err < 0)
728 return err;
729 }
730
731 dentry = __d_lookup(nd->path.dentry, name);
732 if (!dentry)
733 goto need_lookup;
734 if (dentry->d_op && dentry->d_op->d_revalidate)
735 goto need_revalidate;
736 done:
737 path->mnt = mnt;
738 path->dentry = dentry;
739 __follow_mount(path);
740 return 0;
741
742 need_lookup:
743 parent = nd->path.dentry;
744 dir = parent->d_inode;
745
746 mutex_lock(&dir->i_mutex);
747 /*
748 * First re-do the cached lookup just in case it was created
749 * while we waited for the directory semaphore..
750 *
751 * FIXME! This could use version numbering or similar to
752 * avoid unnecessary cache lookups.
753 *
754 * The "dcache_lock" is purely to protect the RCU list walker
755 * from concurrent renames at this point (we mustn't get false
756 * negatives from the RCU list walk here, unlike the optimistic
757 * fast walk).
758 *
759 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
760 */
761 dentry = d_lookup(parent, name);
762 if (!dentry) {
763 struct dentry *new;
764
765 /* Don't create child dentry for a dead directory. */
766 dentry = ERR_PTR(-ENOENT);
767 if (IS_DEADDIR(dir))
768 goto out_unlock;
769
770 new = d_alloc(parent, name);
771 dentry = ERR_PTR(-ENOMEM);
772 if (new) {
773 dentry = dir->i_op->lookup(dir, new, nd);
774 if (dentry)
775 dput(new);
776 else
777 dentry = new;
778 }
779 out_unlock:
780 mutex_unlock(&dir->i_mutex);
781 if (IS_ERR(dentry))
782 goto fail;
783 goto done;
784 }
785
786 /*
787 * Uhhuh! Nasty case: the cache was re-populated while
788 * we waited on the semaphore. Need to revalidate.
789 */
790 mutex_unlock(&dir->i_mutex);
791 if (dentry->d_op && dentry->d_op->d_revalidate) {
792 dentry = do_revalidate(dentry, nd);
793 if (!dentry)
794 dentry = ERR_PTR(-ENOENT);
795 }
796 if (IS_ERR(dentry))
797 goto fail;
798 goto done;
799
800 need_revalidate:
801 dentry = do_revalidate(dentry, nd);
802 if (!dentry)
803 goto need_lookup;
804 if (IS_ERR(dentry))
805 goto fail;
806 goto done;
807
808 fail:
809 return PTR_ERR(dentry);
810 }
811
812 /*
813 * This is a temporary kludge to deal with "automount" symlinks; proper
814 * solution is to trigger them on follow_mount(), so that do_lookup()
815 * would DTRT. To be killed before 2.6.34-final.
816 */
817 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
818 {
819 return inode && unlikely(inode->i_op->follow_link) &&
820 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
821 }
822
823 /*
824 * Name resolution.
825 * This is the basic name resolution function, turning a pathname into
826 * the final dentry. We expect 'base' to be positive and a directory.
827 *
828 * Returns 0 and nd will have valid dentry and mnt on success.
829 * Returns error and drops reference to input namei data on failure.
830 */
831 static int link_path_walk(const char *name, struct nameidata *nd)
832 {
833 struct path next;
834 struct inode *inode;
835 int err;
836 unsigned int lookup_flags = nd->flags;
837
838 while (*name=='/')
839 name++;
840 if (!*name)
841 goto return_reval;
842
843 inode = nd->path.dentry->d_inode;
844 if (nd->depth)
845 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
846
847 /* At this point we know we have a real path component. */
848 for(;;) {
849 unsigned long hash;
850 struct qstr this;
851 unsigned int c;
852
853 nd->flags |= LOOKUP_CONTINUE;
854 err = exec_permission(inode);
855 if (err)
856 break;
857
858 this.name = name;
859 c = *(const unsigned char *)name;
860
861 hash = init_name_hash();
862 do {
863 name++;
864 hash = partial_name_hash(c, hash);
865 c = *(const unsigned char *)name;
866 } while (c && (c != '/'));
867 this.len = name - (const char *) this.name;
868 this.hash = end_name_hash(hash);
869
870 /* remove trailing slashes? */
871 if (!c)
872 goto last_component;
873 while (*++name == '/');
874 if (!*name)
875 goto last_with_slashes;
876
877 /*
878 * "." and ".." are special - ".." especially so because it has
879 * to be able to know about the current root directory and
880 * parent relationships.
881 */
882 if (this.name[0] == '.') switch (this.len) {
883 default:
884 break;
885 case 2:
886 if (this.name[1] != '.')
887 break;
888 follow_dotdot(nd);
889 inode = nd->path.dentry->d_inode;
890 /* fallthrough */
891 case 1:
892 continue;
893 }
894 /* This does the actual lookups.. */
895 err = do_lookup(nd, &this, &next);
896 if (err)
897 break;
898
899 err = -ENOENT;
900 inode = next.dentry->d_inode;
901 if (!inode)
902 goto out_dput;
903
904 if (inode->i_op->follow_link) {
905 err = do_follow_link(&next, nd);
906 if (err)
907 goto return_err;
908 err = -ENOENT;
909 inode = nd->path.dentry->d_inode;
910 if (!inode)
911 break;
912 } else
913 path_to_nameidata(&next, nd);
914 err = -ENOTDIR;
915 if (!inode->i_op->lookup)
916 break;
917 continue;
918 /* here ends the main loop */
919
920 last_with_slashes:
921 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
922 last_component:
923 /* Clear LOOKUP_CONTINUE iff it was previously unset */
924 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
925 if (lookup_flags & LOOKUP_PARENT)
926 goto lookup_parent;
927 if (this.name[0] == '.') switch (this.len) {
928 default:
929 break;
930 case 2:
931 if (this.name[1] != '.')
932 break;
933 follow_dotdot(nd);
934 inode = nd->path.dentry->d_inode;
935 /* fallthrough */
936 case 1:
937 goto return_reval;
938 }
939 err = do_lookup(nd, &this, &next);
940 if (err)
941 break;
942 inode = next.dentry->d_inode;
943 if (follow_on_final(inode, lookup_flags)) {
944 err = do_follow_link(&next, nd);
945 if (err)
946 goto return_err;
947 inode = nd->path.dentry->d_inode;
948 } else
949 path_to_nameidata(&next, nd);
950 err = -ENOENT;
951 if (!inode)
952 break;
953 if (lookup_flags & LOOKUP_DIRECTORY) {
954 err = -ENOTDIR;
955 if (!inode->i_op->lookup)
956 break;
957 }
958 goto return_base;
959 lookup_parent:
960 nd->last = this;
961 nd->last_type = LAST_NORM;
962 if (this.name[0] != '.')
963 goto return_base;
964 if (this.len == 1)
965 nd->last_type = LAST_DOT;
966 else if (this.len == 2 && this.name[1] == '.')
967 nd->last_type = LAST_DOTDOT;
968 else
969 goto return_base;
970 return_reval:
971 /*
972 * We bypassed the ordinary revalidation routines.
973 * We may need to check the cached dentry for staleness.
974 */
975 if (nd->path.dentry && nd->path.dentry->d_sb &&
976 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
977 err = -ESTALE;
978 /* Note: we do not d_invalidate() */
979 if (!nd->path.dentry->d_op->d_revalidate(
980 nd->path.dentry, nd))
981 break;
982 }
983 return_base:
984 return 0;
985 out_dput:
986 path_put_conditional(&next, nd);
987 break;
988 }
989 path_put(&nd->path);
990 return_err:
991 return err;
992 }
993
994 static int path_walk(const char *name, struct nameidata *nd)
995 {
996 struct path save = nd->path;
997 int result;
998
999 current->total_link_count = 0;
1000
1001 /* make sure the stuff we saved doesn't go away */
1002 path_get(&save);
1003
1004 result = link_path_walk(name, nd);
1005 if (result == -ESTALE) {
1006 /* nd->path had been dropped */
1007 current->total_link_count = 0;
1008 nd->path = save;
1009 path_get(&nd->path);
1010 nd->flags |= LOOKUP_REVAL;
1011 result = link_path_walk(name, nd);
1012 }
1013
1014 path_put(&save);
1015
1016 return result;
1017 }
1018
1019 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1020 {
1021 int retval = 0;
1022 int fput_needed;
1023 struct file *file;
1024
1025 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1026 nd->flags = flags;
1027 nd->depth = 0;
1028 nd->root.mnt = NULL;
1029
1030 if (*name=='/') {
1031 set_root(nd);
1032 nd->path = nd->root;
1033 path_get(&nd->root);
1034 } else if (dfd == AT_FDCWD) {
1035 struct fs_struct *fs = current->fs;
1036 read_lock(&fs->lock);
1037 nd->path = fs->pwd;
1038 path_get(&fs->pwd);
1039 read_unlock(&fs->lock);
1040 } else {
1041 struct dentry *dentry;
1042
1043 file = fget_light(dfd, &fput_needed);
1044 retval = -EBADF;
1045 if (!file)
1046 goto out_fail;
1047
1048 dentry = file->f_path.dentry;
1049
1050 retval = -ENOTDIR;
1051 if (!S_ISDIR(dentry->d_inode->i_mode))
1052 goto fput_fail;
1053
1054 retval = file_permission(file, MAY_EXEC);
1055 if (retval)
1056 goto fput_fail;
1057
1058 nd->path = file->f_path;
1059 path_get(&file->f_path);
1060
1061 fput_light(file, fput_needed);
1062 }
1063 return 0;
1064
1065 fput_fail:
1066 fput_light(file, fput_needed);
1067 out_fail:
1068 return retval;
1069 }
1070
1071 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1072 static int do_path_lookup(int dfd, const char *name,
1073 unsigned int flags, struct nameidata *nd)
1074 {
1075 int retval = path_init(dfd, name, flags, nd);
1076 if (!retval)
1077 retval = path_walk(name, nd);
1078 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1079 nd->path.dentry->d_inode))
1080 audit_inode(name, nd->path.dentry);
1081 if (nd->root.mnt) {
1082 path_put(&nd->root);
1083 nd->root.mnt = NULL;
1084 }
1085 return retval;
1086 }
1087
1088 int path_lookup(const char *name, unsigned int flags,
1089 struct nameidata *nd)
1090 {
1091 return do_path_lookup(AT_FDCWD, name, flags, nd);
1092 }
1093
1094 int kern_path(const char *name, unsigned int flags, struct path *path)
1095 {
1096 struct nameidata nd;
1097 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1098 if (!res)
1099 *path = nd.path;
1100 return res;
1101 }
1102
1103 /**
1104 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1105 * @dentry: pointer to dentry of the base directory
1106 * @mnt: pointer to vfs mount of the base directory
1107 * @name: pointer to file name
1108 * @flags: lookup flags
1109 * @nd: pointer to nameidata
1110 */
1111 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1112 const char *name, unsigned int flags,
1113 struct nameidata *nd)
1114 {
1115 int retval;
1116
1117 /* same as do_path_lookup */
1118 nd->last_type = LAST_ROOT;
1119 nd->flags = flags;
1120 nd->depth = 0;
1121
1122 nd->path.dentry = dentry;
1123 nd->path.mnt = mnt;
1124 path_get(&nd->path);
1125 nd->root = nd->path;
1126 path_get(&nd->root);
1127
1128 retval = path_walk(name, nd);
1129 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1130 nd->path.dentry->d_inode))
1131 audit_inode(name, nd->path.dentry);
1132
1133 path_put(&nd->root);
1134 nd->root.mnt = NULL;
1135
1136 return retval;
1137 }
1138
1139 static struct dentry *__lookup_hash(struct qstr *name,
1140 struct dentry *base, struct nameidata *nd)
1141 {
1142 struct dentry *dentry;
1143 struct inode *inode;
1144 int err;
1145
1146 inode = base->d_inode;
1147
1148 /*
1149 * See if the low-level filesystem might want
1150 * to use its own hash..
1151 */
1152 if (base->d_op && base->d_op->d_hash) {
1153 err = base->d_op->d_hash(base, name);
1154 dentry = ERR_PTR(err);
1155 if (err < 0)
1156 goto out;
1157 }
1158
1159 dentry = __d_lookup(base, name);
1160
1161 /* lockess __d_lookup may fail due to concurrent d_move()
1162 * in some unrelated directory, so try with d_lookup
1163 */
1164 if (!dentry)
1165 dentry = d_lookup(base, name);
1166
1167 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1168 dentry = do_revalidate(dentry, nd);
1169
1170 if (!dentry) {
1171 struct dentry *new;
1172
1173 /* Don't create child dentry for a dead directory. */
1174 dentry = ERR_PTR(-ENOENT);
1175 if (IS_DEADDIR(inode))
1176 goto out;
1177
1178 new = d_alloc(base, name);
1179 dentry = ERR_PTR(-ENOMEM);
1180 if (!new)
1181 goto out;
1182 dentry = inode->i_op->lookup(inode, new, nd);
1183 if (!dentry)
1184 dentry = new;
1185 else
1186 dput(new);
1187 }
1188 out:
1189 return dentry;
1190 }
1191
1192 /*
1193 * Restricted form of lookup. Doesn't follow links, single-component only,
1194 * needs parent already locked. Doesn't follow mounts.
1195 * SMP-safe.
1196 */
1197 static struct dentry *lookup_hash(struct nameidata *nd)
1198 {
1199 int err;
1200
1201 err = exec_permission(nd->path.dentry->d_inode);
1202 if (err)
1203 return ERR_PTR(err);
1204 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1205 }
1206
1207 static int __lookup_one_len(const char *name, struct qstr *this,
1208 struct dentry *base, int len)
1209 {
1210 unsigned long hash;
1211 unsigned int c;
1212
1213 this->name = name;
1214 this->len = len;
1215 if (!len)
1216 return -EACCES;
1217
1218 hash = init_name_hash();
1219 while (len--) {
1220 c = *(const unsigned char *)name++;
1221 if (c == '/' || c == '\0')
1222 return -EACCES;
1223 hash = partial_name_hash(c, hash);
1224 }
1225 this->hash = end_name_hash(hash);
1226 return 0;
1227 }
1228
1229 /**
1230 * lookup_one_len - filesystem helper to lookup single pathname component
1231 * @name: pathname component to lookup
1232 * @base: base directory to lookup from
1233 * @len: maximum length @len should be interpreted to
1234 *
1235 * Note that this routine is purely a helper for filesystem usage and should
1236 * not be called by generic code. Also note that by using this function the
1237 * nameidata argument is passed to the filesystem methods and a filesystem
1238 * using this helper needs to be prepared for that.
1239 */
1240 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1241 {
1242 int err;
1243 struct qstr this;
1244
1245 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1246
1247 err = __lookup_one_len(name, &this, base, len);
1248 if (err)
1249 return ERR_PTR(err);
1250
1251 err = exec_permission(base->d_inode);
1252 if (err)
1253 return ERR_PTR(err);
1254 return __lookup_hash(&this, base, NULL);
1255 }
1256
1257 int user_path_at(int dfd, const char __user *name, unsigned flags,
1258 struct path *path)
1259 {
1260 struct nameidata nd;
1261 char *tmp = getname(name);
1262 int err = PTR_ERR(tmp);
1263 if (!IS_ERR(tmp)) {
1264
1265 BUG_ON(flags & LOOKUP_PARENT);
1266
1267 err = do_path_lookup(dfd, tmp, flags, &nd);
1268 putname(tmp);
1269 if (!err)
1270 *path = nd.path;
1271 }
1272 return err;
1273 }
1274
1275 static int user_path_parent(int dfd, const char __user *path,
1276 struct nameidata *nd, char **name)
1277 {
1278 char *s = getname(path);
1279 int error;
1280
1281 if (IS_ERR(s))
1282 return PTR_ERR(s);
1283
1284 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1285 if (error)
1286 putname(s);
1287 else
1288 *name = s;
1289
1290 return error;
1291 }
1292
1293 /*
1294 * It's inline, so penalty for filesystems that don't use sticky bit is
1295 * minimal.
1296 */
1297 static inline int check_sticky(struct inode *dir, struct inode *inode)
1298 {
1299 uid_t fsuid = current_fsuid();
1300
1301 if (!(dir->i_mode & S_ISVTX))
1302 return 0;
1303 if (inode->i_uid == fsuid)
1304 return 0;
1305 if (dir->i_uid == fsuid)
1306 return 0;
1307 return !capable(CAP_FOWNER);
1308 }
1309
1310 /*
1311 * Check whether we can remove a link victim from directory dir, check
1312 * whether the type of victim is right.
1313 * 1. We can't do it if dir is read-only (done in permission())
1314 * 2. We should have write and exec permissions on dir
1315 * 3. We can't remove anything from append-only dir
1316 * 4. We can't do anything with immutable dir (done in permission())
1317 * 5. If the sticky bit on dir is set we should either
1318 * a. be owner of dir, or
1319 * b. be owner of victim, or
1320 * c. have CAP_FOWNER capability
1321 * 6. If the victim is append-only or immutable we can't do antyhing with
1322 * links pointing to it.
1323 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1324 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1325 * 9. We can't remove a root or mountpoint.
1326 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1327 * nfs_async_unlink().
1328 */
1329 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1330 {
1331 int error;
1332
1333 if (!victim->d_inode)
1334 return -ENOENT;
1335
1336 BUG_ON(victim->d_parent->d_inode != dir);
1337 audit_inode_child(victim, dir);
1338
1339 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1340 if (error)
1341 return error;
1342 if (IS_APPEND(dir))
1343 return -EPERM;
1344 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1345 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1346 return -EPERM;
1347 if (isdir) {
1348 if (!S_ISDIR(victim->d_inode->i_mode))
1349 return -ENOTDIR;
1350 if (IS_ROOT(victim))
1351 return -EBUSY;
1352 } else if (S_ISDIR(victim->d_inode->i_mode))
1353 return -EISDIR;
1354 if (IS_DEADDIR(dir))
1355 return -ENOENT;
1356 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1357 return -EBUSY;
1358 return 0;
1359 }
1360
1361 /* Check whether we can create an object with dentry child in directory
1362 * dir.
1363 * 1. We can't do it if child already exists (open has special treatment for
1364 * this case, but since we are inlined it's OK)
1365 * 2. We can't do it if dir is read-only (done in permission())
1366 * 3. We should have write and exec permissions on dir
1367 * 4. We can't do it if dir is immutable (done in permission())
1368 */
1369 static inline int may_create(struct inode *dir, struct dentry *child)
1370 {
1371 if (child->d_inode)
1372 return -EEXIST;
1373 if (IS_DEADDIR(dir))
1374 return -ENOENT;
1375 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1376 }
1377
1378 /*
1379 * O_DIRECTORY translates into forcing a directory lookup.
1380 */
1381 static inline int lookup_flags(unsigned int f)
1382 {
1383 unsigned long retval = LOOKUP_FOLLOW;
1384
1385 if (f & O_NOFOLLOW)
1386 retval &= ~LOOKUP_FOLLOW;
1387
1388 if (f & O_DIRECTORY)
1389 retval |= LOOKUP_DIRECTORY;
1390
1391 return retval;
1392 }
1393
1394 /*
1395 * p1 and p2 should be directories on the same fs.
1396 */
1397 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1398 {
1399 struct dentry *p;
1400
1401 if (p1 == p2) {
1402 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1403 return NULL;
1404 }
1405
1406 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1407
1408 p = d_ancestor(p2, p1);
1409 if (p) {
1410 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1411 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1412 return p;
1413 }
1414
1415 p = d_ancestor(p1, p2);
1416 if (p) {
1417 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1418 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1419 return p;
1420 }
1421
1422 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1423 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1424 return NULL;
1425 }
1426
1427 void unlock_rename(struct dentry *p1, struct dentry *p2)
1428 {
1429 mutex_unlock(&p1->d_inode->i_mutex);
1430 if (p1 != p2) {
1431 mutex_unlock(&p2->d_inode->i_mutex);
1432 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1433 }
1434 }
1435
1436 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1437 struct nameidata *nd)
1438 {
1439 int error = may_create(dir, dentry);
1440
1441 if (error)
1442 return error;
1443
1444 if (!dir->i_op->create)
1445 return -EACCES; /* shouldn't it be ENOSYS? */
1446 mode &= S_IALLUGO;
1447 mode |= S_IFREG;
1448 error = security_inode_create(dir, dentry, mode);
1449 if (error)
1450 return error;
1451 vfs_dq_init(dir);
1452 error = dir->i_op->create(dir, dentry, mode, nd);
1453 if (!error)
1454 fsnotify_create(dir, dentry);
1455 return error;
1456 }
1457
1458 int may_open(struct path *path, int acc_mode, int flag)
1459 {
1460 struct dentry *dentry = path->dentry;
1461 struct inode *inode = dentry->d_inode;
1462 int error;
1463
1464 if (!inode)
1465 return -ENOENT;
1466
1467 switch (inode->i_mode & S_IFMT) {
1468 case S_IFLNK:
1469 return -ELOOP;
1470 case S_IFDIR:
1471 if (acc_mode & MAY_WRITE)
1472 return -EISDIR;
1473 break;
1474 case S_IFBLK:
1475 case S_IFCHR:
1476 if (path->mnt->mnt_flags & MNT_NODEV)
1477 return -EACCES;
1478 /*FALLTHRU*/
1479 case S_IFIFO:
1480 case S_IFSOCK:
1481 flag &= ~O_TRUNC;
1482 break;
1483 }
1484
1485 error = inode_permission(inode, acc_mode);
1486 if (error)
1487 return error;
1488
1489 /*
1490 * An append-only file must be opened in append mode for writing.
1491 */
1492 if (IS_APPEND(inode)) {
1493 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1494 return -EPERM;
1495 if (flag & O_TRUNC)
1496 return -EPERM;
1497 }
1498
1499 /* O_NOATIME can only be set by the owner or superuser */
1500 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1501 return -EPERM;
1502
1503 /*
1504 * Ensure there are no outstanding leases on the file.
1505 */
1506 return break_lease(inode, flag);
1507 }
1508
1509 static int handle_truncate(struct path *path)
1510 {
1511 struct inode *inode = path->dentry->d_inode;
1512 int error = get_write_access(inode);
1513 if (error)
1514 return error;
1515 /*
1516 * Refuse to truncate files with mandatory locks held on them.
1517 */
1518 error = locks_verify_locked(inode);
1519 if (!error)
1520 error = security_path_truncate(path, 0,
1521 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1522 if (!error) {
1523 error = do_truncate(path->dentry, 0,
1524 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1525 NULL);
1526 }
1527 put_write_access(inode);
1528 return error;
1529 }
1530
1531 /*
1532 * Be careful about ever adding any more callers of this
1533 * function. Its flags must be in the namei format, not
1534 * what get passed to sys_open().
1535 */
1536 static int __open_namei_create(struct nameidata *nd, struct path *path,
1537 int open_flag, int mode)
1538 {
1539 int error;
1540 struct dentry *dir = nd->path.dentry;
1541
1542 if (!IS_POSIXACL(dir->d_inode))
1543 mode &= ~current_umask();
1544 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1545 if (error)
1546 goto out_unlock;
1547 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1548 out_unlock:
1549 mutex_unlock(&dir->d_inode->i_mutex);
1550 dput(nd->path.dentry);
1551 nd->path.dentry = path->dentry;
1552 if (error)
1553 return error;
1554 /* Don't check for write permission, don't truncate */
1555 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1556 }
1557
1558 /*
1559 * Note that while the flag value (low two bits) for sys_open means:
1560 * 00 - read-only
1561 * 01 - write-only
1562 * 10 - read-write
1563 * 11 - special
1564 * it is changed into
1565 * 00 - no permissions needed
1566 * 01 - read-permission
1567 * 10 - write-permission
1568 * 11 - read-write
1569 * for the internal routines (ie open_namei()/follow_link() etc)
1570 * This is more logical, and also allows the 00 "no perm needed"
1571 * to be used for symlinks (where the permissions are checked
1572 * later).
1573 *
1574 */
1575 static inline int open_to_namei_flags(int flag)
1576 {
1577 if ((flag+1) & O_ACCMODE)
1578 flag++;
1579 return flag;
1580 }
1581
1582 static int open_will_truncate(int flag, struct inode *inode)
1583 {
1584 /*
1585 * We'll never write to the fs underlying
1586 * a device file.
1587 */
1588 if (special_file(inode->i_mode))
1589 return 0;
1590 return (flag & O_TRUNC);
1591 }
1592
1593 static struct file *finish_open(struct nameidata *nd,
1594 int open_flag, int flag, int acc_mode)
1595 {
1596 struct file *filp;
1597 int will_truncate;
1598 int error;
1599
1600 will_truncate = open_will_truncate(flag, nd->path.dentry->d_inode);
1601 if (will_truncate) {
1602 error = mnt_want_write(nd->path.mnt);
1603 if (error)
1604 goto exit;
1605 }
1606 error = may_open(&nd->path, acc_mode, open_flag);
1607 if (error) {
1608 if (will_truncate)
1609 mnt_drop_write(nd->path.mnt);
1610 goto exit;
1611 }
1612 filp = nameidata_to_filp(nd);
1613 if (!IS_ERR(filp)) {
1614 error = ima_file_check(filp, acc_mode);
1615 if (error) {
1616 fput(filp);
1617 filp = ERR_PTR(error);
1618 }
1619 }
1620 if (!IS_ERR(filp)) {
1621 if (acc_mode & MAY_WRITE)
1622 vfs_dq_init(nd->path.dentry->d_inode);
1623
1624 if (will_truncate) {
1625 error = handle_truncate(&nd->path);
1626 if (error) {
1627 fput(filp);
1628 filp = ERR_PTR(error);
1629 }
1630 }
1631 }
1632 /*
1633 * It is now safe to drop the mnt write
1634 * because the filp has had a write taken
1635 * on its behalf.
1636 */
1637 if (will_truncate)
1638 mnt_drop_write(nd->path.mnt);
1639 return filp;
1640
1641 exit:
1642 if (!IS_ERR(nd->intent.open.file))
1643 release_open_intent(nd);
1644 path_put(&nd->path);
1645 return ERR_PTR(error);
1646 }
1647
1648 static struct file *do_last(struct nameidata *nd, struct path *path,
1649 int open_flag, int flag, int acc_mode,
1650 int mode, const char *pathname,
1651 int *is_link)
1652 {
1653 struct dentry *dir = nd->path.dentry;
1654 struct file *filp;
1655 int error;
1656
1657 *is_link = 0;
1658
1659 mutex_lock(&dir->d_inode->i_mutex);
1660
1661 path->dentry = lookup_hash(nd);
1662 path->mnt = nd->path.mnt;
1663
1664 error = PTR_ERR(path->dentry);
1665 if (IS_ERR(path->dentry)) {
1666 mutex_unlock(&dir->d_inode->i_mutex);
1667 goto exit;
1668 }
1669
1670 if (IS_ERR(nd->intent.open.file)) {
1671 error = PTR_ERR(nd->intent.open.file);
1672 goto exit_mutex_unlock;
1673 }
1674
1675 /* Negative dentry, just create the file */
1676 if (!path->dentry->d_inode) {
1677 /*
1678 * This write is needed to ensure that a
1679 * ro->rw transition does not occur between
1680 * the time when the file is created and when
1681 * a permanent write count is taken through
1682 * the 'struct file' in nameidata_to_filp().
1683 */
1684 error = mnt_want_write(nd->path.mnt);
1685 if (error)
1686 goto exit_mutex_unlock;
1687 error = __open_namei_create(nd, path, open_flag, mode);
1688 if (error) {
1689 mnt_drop_write(nd->path.mnt);
1690 goto exit;
1691 }
1692 filp = nameidata_to_filp(nd);
1693 mnt_drop_write(nd->path.mnt);
1694 if (!IS_ERR(filp)) {
1695 error = ima_file_check(filp, acc_mode);
1696 if (error) {
1697 fput(filp);
1698 filp = ERR_PTR(error);
1699 }
1700 }
1701 return filp;
1702 }
1703
1704 /*
1705 * It already exists.
1706 */
1707 mutex_unlock(&dir->d_inode->i_mutex);
1708 audit_inode(pathname, path->dentry);
1709
1710 error = -EEXIST;
1711 if (flag & O_EXCL)
1712 goto exit_dput;
1713
1714 if (__follow_mount(path)) {
1715 error = -ELOOP;
1716 if (flag & O_NOFOLLOW)
1717 goto exit_dput;
1718 }
1719
1720 error = -ENOENT;
1721 if (!path->dentry->d_inode)
1722 goto exit_dput;
1723 if (path->dentry->d_inode->i_op->follow_link) {
1724 *is_link = 1;
1725 return NULL;
1726 }
1727
1728 path_to_nameidata(path, nd);
1729 error = -EISDIR;
1730 if (S_ISDIR(path->dentry->d_inode->i_mode))
1731 goto exit;
1732 filp = finish_open(nd, open_flag, flag, acc_mode);
1733 return filp;
1734
1735 exit_mutex_unlock:
1736 mutex_unlock(&dir->d_inode->i_mutex);
1737 exit_dput:
1738 path_put_conditional(path, nd);
1739 exit:
1740 if (!IS_ERR(nd->intent.open.file))
1741 release_open_intent(nd);
1742 path_put(&nd->path);
1743 return ERR_PTR(error);
1744 }
1745
1746 /*
1747 * Note that the low bits of the passed in "open_flag"
1748 * are not the same as in the local variable "flag". See
1749 * open_to_namei_flags() for more details.
1750 */
1751 struct file *do_filp_open(int dfd, const char *pathname,
1752 int open_flag, int mode, int acc_mode)
1753 {
1754 struct file *filp;
1755 struct nameidata nd;
1756 int error;
1757 struct path path;
1758 int count = 0;
1759 int flag = open_to_namei_flags(open_flag);
1760 int force_reval = 0;
1761 int is_link;
1762
1763 /*
1764 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1765 * check for O_DSYNC if the need any syncing at all we enforce it's
1766 * always set instead of having to deal with possibly weird behaviour
1767 * for malicious applications setting only __O_SYNC.
1768 */
1769 if (open_flag & __O_SYNC)
1770 open_flag |= O_DSYNC;
1771
1772 if (!acc_mode)
1773 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1774
1775 /* O_TRUNC implies we need access checks for write permissions */
1776 if (flag & O_TRUNC)
1777 acc_mode |= MAY_WRITE;
1778
1779 /* Allow the LSM permission hook to distinguish append
1780 access from general write access. */
1781 if (flag & O_APPEND)
1782 acc_mode |= MAY_APPEND;
1783
1784 /*
1785 * The simplest case - just a plain lookup.
1786 */
1787 if (!(flag & O_CREAT)) {
1788 filp = get_empty_filp();
1789
1790 if (filp == NULL)
1791 return ERR_PTR(-ENFILE);
1792 nd.intent.open.file = filp;
1793 filp->f_flags = open_flag;
1794 nd.intent.open.flags = flag;
1795 nd.intent.open.create_mode = 0;
1796 error = do_path_lookup(dfd, pathname,
1797 lookup_flags(flag)|LOOKUP_OPEN, &nd);
1798 if (IS_ERR(nd.intent.open.file)) {
1799 if (error == 0) {
1800 error = PTR_ERR(nd.intent.open.file);
1801 path_put(&nd.path);
1802 }
1803 } else if (error)
1804 release_open_intent(&nd);
1805 if (error)
1806 return ERR_PTR(error);
1807 goto ok;
1808 }
1809
1810 /*
1811 * Create - we need to know the parent.
1812 */
1813 reval:
1814 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1815 if (error)
1816 return ERR_PTR(error);
1817 if (force_reval)
1818 nd.flags |= LOOKUP_REVAL;
1819 error = path_walk(pathname, &nd);
1820 if (error) {
1821 if (nd.root.mnt)
1822 path_put(&nd.root);
1823 return ERR_PTR(error);
1824 }
1825 if (unlikely(!audit_dummy_context()))
1826 audit_inode(pathname, nd.path.dentry);
1827
1828 /*
1829 * We have the parent and last component. First of all, check
1830 * that we are not asked to creat(2) an obvious directory - that
1831 * will not do.
1832 */
1833 error = -EISDIR;
1834 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1835 goto exit_parent;
1836
1837 error = -ENFILE;
1838 filp = get_empty_filp();
1839 if (filp == NULL)
1840 goto exit_parent;
1841 nd.intent.open.file = filp;
1842 filp->f_flags = open_flag;
1843 nd.intent.open.flags = flag;
1844 nd.intent.open.create_mode = mode;
1845 nd.flags &= ~LOOKUP_PARENT;
1846 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1847 if (flag & O_EXCL)
1848 nd.flags |= LOOKUP_EXCL;
1849 filp = do_last(&nd, &path, open_flag, flag, acc_mode, mode,
1850 pathname, &is_link);
1851 if (is_link)
1852 goto do_link;
1853 if (nd.root.mnt)
1854 path_put(&nd.root);
1855 return filp;
1856
1857 ok:
1858 filp = finish_open(&nd, open_flag, flag, acc_mode);
1859 if (nd.root.mnt)
1860 path_put(&nd.root);
1861 return filp;
1862
1863 exit_dput:
1864 path_put_conditional(&path, &nd);
1865 exit:
1866 if (!IS_ERR(nd.intent.open.file))
1867 release_open_intent(&nd);
1868 exit_parent:
1869 if (nd.root.mnt)
1870 path_put(&nd.root);
1871 path_put(&nd.path);
1872 return ERR_PTR(error);
1873
1874 do_link:
1875 error = -ELOOP;
1876 if ((flag & O_NOFOLLOW) || count++ == 32)
1877 goto exit_dput;
1878 /*
1879 * This is subtle. Instead of calling do_follow_link() we do the
1880 * thing by hands. The reason is that this way we have zero link_count
1881 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1882 * After that we have the parent and last component, i.e.
1883 * we are in the same situation as after the first path_walk().
1884 * Well, almost - if the last component is normal we get its copy
1885 * stored in nd->last.name and we will have to putname() it when we
1886 * are done. Procfs-like symlinks just set LAST_BIND.
1887 */
1888 nd.flags |= LOOKUP_PARENT;
1889 error = security_inode_follow_link(path.dentry, &nd);
1890 if (error)
1891 goto exit_dput;
1892 error = __do_follow_link(&path, &nd);
1893 path_put(&path);
1894 if (error) {
1895 /* Does someone understand code flow here? Or it is only
1896 * me so stupid? Anathema to whoever designed this non-sense
1897 * with "intent.open".
1898 */
1899 release_open_intent(&nd);
1900 if (nd.root.mnt)
1901 path_put(&nd.root);
1902 if (error == -ESTALE && !force_reval) {
1903 force_reval = 1;
1904 goto reval;
1905 }
1906 return ERR_PTR(error);
1907 }
1908 nd.flags &= ~LOOKUP_PARENT;
1909 if (nd.last_type == LAST_BIND)
1910 goto ok;
1911 error = -EISDIR;
1912 if (nd.last_type != LAST_NORM)
1913 goto exit;
1914 if (nd.last.name[nd.last.len]) {
1915 __putname(nd.last.name);
1916 goto exit;
1917 }
1918 filp = do_last(&nd, &path, open_flag, flag, acc_mode, mode,
1919 pathname, &is_link);
1920 __putname(nd.last.name);
1921 if (is_link)
1922 goto do_link;
1923 if (nd.root.mnt)
1924 path_put(&nd.root);
1925 return filp;
1926 }
1927
1928 /**
1929 * filp_open - open file and return file pointer
1930 *
1931 * @filename: path to open
1932 * @flags: open flags as per the open(2) second argument
1933 * @mode: mode for the new file if O_CREAT is set, else ignored
1934 *
1935 * This is the helper to open a file from kernelspace if you really
1936 * have to. But in generally you should not do this, so please move
1937 * along, nothing to see here..
1938 */
1939 struct file *filp_open(const char *filename, int flags, int mode)
1940 {
1941 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1942 }
1943 EXPORT_SYMBOL(filp_open);
1944
1945 /**
1946 * lookup_create - lookup a dentry, creating it if it doesn't exist
1947 * @nd: nameidata info
1948 * @is_dir: directory flag
1949 *
1950 * Simple function to lookup and return a dentry and create it
1951 * if it doesn't exist. Is SMP-safe.
1952 *
1953 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1954 */
1955 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1956 {
1957 struct dentry *dentry = ERR_PTR(-EEXIST);
1958
1959 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1960 /*
1961 * Yucky last component or no last component at all?
1962 * (foo/., foo/.., /////)
1963 */
1964 if (nd->last_type != LAST_NORM)
1965 goto fail;
1966 nd->flags &= ~LOOKUP_PARENT;
1967 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1968 nd->intent.open.flags = O_EXCL;
1969
1970 /*
1971 * Do the final lookup.
1972 */
1973 dentry = lookup_hash(nd);
1974 if (IS_ERR(dentry))
1975 goto fail;
1976
1977 if (dentry->d_inode)
1978 goto eexist;
1979 /*
1980 * Special case - lookup gave negative, but... we had foo/bar/
1981 * From the vfs_mknod() POV we just have a negative dentry -
1982 * all is fine. Let's be bastards - you had / on the end, you've
1983 * been asking for (non-existent) directory. -ENOENT for you.
1984 */
1985 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1986 dput(dentry);
1987 dentry = ERR_PTR(-ENOENT);
1988 }
1989 return dentry;
1990 eexist:
1991 dput(dentry);
1992 dentry = ERR_PTR(-EEXIST);
1993 fail:
1994 return dentry;
1995 }
1996 EXPORT_SYMBOL_GPL(lookup_create);
1997
1998 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1999 {
2000 int error = may_create(dir, dentry);
2001
2002 if (error)
2003 return error;
2004
2005 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2006 return -EPERM;
2007
2008 if (!dir->i_op->mknod)
2009 return -EPERM;
2010
2011 error = devcgroup_inode_mknod(mode, dev);
2012 if (error)
2013 return error;
2014
2015 error = security_inode_mknod(dir, dentry, mode, dev);
2016 if (error)
2017 return error;
2018
2019 vfs_dq_init(dir);
2020 error = dir->i_op->mknod(dir, dentry, mode, dev);
2021 if (!error)
2022 fsnotify_create(dir, dentry);
2023 return error;
2024 }
2025
2026 static int may_mknod(mode_t mode)
2027 {
2028 switch (mode & S_IFMT) {
2029 case S_IFREG:
2030 case S_IFCHR:
2031 case S_IFBLK:
2032 case S_IFIFO:
2033 case S_IFSOCK:
2034 case 0: /* zero mode translates to S_IFREG */
2035 return 0;
2036 case S_IFDIR:
2037 return -EPERM;
2038 default:
2039 return -EINVAL;
2040 }
2041 }
2042
2043 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2044 unsigned, dev)
2045 {
2046 int error;
2047 char *tmp;
2048 struct dentry *dentry;
2049 struct nameidata nd;
2050
2051 if (S_ISDIR(mode))
2052 return -EPERM;
2053
2054 error = user_path_parent(dfd, filename, &nd, &tmp);
2055 if (error)
2056 return error;
2057
2058 dentry = lookup_create(&nd, 0);
2059 if (IS_ERR(dentry)) {
2060 error = PTR_ERR(dentry);
2061 goto out_unlock;
2062 }
2063 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2064 mode &= ~current_umask();
2065 error = may_mknod(mode);
2066 if (error)
2067 goto out_dput;
2068 error = mnt_want_write(nd.path.mnt);
2069 if (error)
2070 goto out_dput;
2071 error = security_path_mknod(&nd.path, dentry, mode, dev);
2072 if (error)
2073 goto out_drop_write;
2074 switch (mode & S_IFMT) {
2075 case 0: case S_IFREG:
2076 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2077 break;
2078 case S_IFCHR: case S_IFBLK:
2079 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2080 new_decode_dev(dev));
2081 break;
2082 case S_IFIFO: case S_IFSOCK:
2083 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2084 break;
2085 }
2086 out_drop_write:
2087 mnt_drop_write(nd.path.mnt);
2088 out_dput:
2089 dput(dentry);
2090 out_unlock:
2091 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2092 path_put(&nd.path);
2093 putname(tmp);
2094
2095 return error;
2096 }
2097
2098 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2099 {
2100 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2101 }
2102
2103 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2104 {
2105 int error = may_create(dir, dentry);
2106
2107 if (error)
2108 return error;
2109
2110 if (!dir->i_op->mkdir)
2111 return -EPERM;
2112
2113 mode &= (S_IRWXUGO|S_ISVTX);
2114 error = security_inode_mkdir(dir, dentry, mode);
2115 if (error)
2116 return error;
2117
2118 vfs_dq_init(dir);
2119 error = dir->i_op->mkdir(dir, dentry, mode);
2120 if (!error)
2121 fsnotify_mkdir(dir, dentry);
2122 return error;
2123 }
2124
2125 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2126 {
2127 int error = 0;
2128 char * tmp;
2129 struct dentry *dentry;
2130 struct nameidata nd;
2131
2132 error = user_path_parent(dfd, pathname, &nd, &tmp);
2133 if (error)
2134 goto out_err;
2135
2136 dentry = lookup_create(&nd, 1);
2137 error = PTR_ERR(dentry);
2138 if (IS_ERR(dentry))
2139 goto out_unlock;
2140
2141 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2142 mode &= ~current_umask();
2143 error = mnt_want_write(nd.path.mnt);
2144 if (error)
2145 goto out_dput;
2146 error = security_path_mkdir(&nd.path, dentry, mode);
2147 if (error)
2148 goto out_drop_write;
2149 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2150 out_drop_write:
2151 mnt_drop_write(nd.path.mnt);
2152 out_dput:
2153 dput(dentry);
2154 out_unlock:
2155 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2156 path_put(&nd.path);
2157 putname(tmp);
2158 out_err:
2159 return error;
2160 }
2161
2162 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2163 {
2164 return sys_mkdirat(AT_FDCWD, pathname, mode);
2165 }
2166
2167 /*
2168 * We try to drop the dentry early: we should have
2169 * a usage count of 2 if we're the only user of this
2170 * dentry, and if that is true (possibly after pruning
2171 * the dcache), then we drop the dentry now.
2172 *
2173 * A low-level filesystem can, if it choses, legally
2174 * do a
2175 *
2176 * if (!d_unhashed(dentry))
2177 * return -EBUSY;
2178 *
2179 * if it cannot handle the case of removing a directory
2180 * that is still in use by something else..
2181 */
2182 void dentry_unhash(struct dentry *dentry)
2183 {
2184 dget(dentry);
2185 shrink_dcache_parent(dentry);
2186 spin_lock(&dcache_lock);
2187 spin_lock(&dentry->d_lock);
2188 if (atomic_read(&dentry->d_count) == 2)
2189 __d_drop(dentry);
2190 spin_unlock(&dentry->d_lock);
2191 spin_unlock(&dcache_lock);
2192 }
2193
2194 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2195 {
2196 int error = may_delete(dir, dentry, 1);
2197
2198 if (error)
2199 return error;
2200
2201 if (!dir->i_op->rmdir)
2202 return -EPERM;
2203
2204 vfs_dq_init(dir);
2205
2206 mutex_lock(&dentry->d_inode->i_mutex);
2207 dentry_unhash(dentry);
2208 if (d_mountpoint(dentry))
2209 error = -EBUSY;
2210 else {
2211 error = security_inode_rmdir(dir, dentry);
2212 if (!error) {
2213 error = dir->i_op->rmdir(dir, dentry);
2214 if (!error)
2215 dentry->d_inode->i_flags |= S_DEAD;
2216 }
2217 }
2218 mutex_unlock(&dentry->d_inode->i_mutex);
2219 if (!error) {
2220 d_delete(dentry);
2221 }
2222 dput(dentry);
2223
2224 return error;
2225 }
2226
2227 static long do_rmdir(int dfd, const char __user *pathname)
2228 {
2229 int error = 0;
2230 char * name;
2231 struct dentry *dentry;
2232 struct nameidata nd;
2233
2234 error = user_path_parent(dfd, pathname, &nd, &name);
2235 if (error)
2236 return error;
2237
2238 switch(nd.last_type) {
2239 case LAST_DOTDOT:
2240 error = -ENOTEMPTY;
2241 goto exit1;
2242 case LAST_DOT:
2243 error = -EINVAL;
2244 goto exit1;
2245 case LAST_ROOT:
2246 error = -EBUSY;
2247 goto exit1;
2248 }
2249
2250 nd.flags &= ~LOOKUP_PARENT;
2251
2252 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2253 dentry = lookup_hash(&nd);
2254 error = PTR_ERR(dentry);
2255 if (IS_ERR(dentry))
2256 goto exit2;
2257 error = mnt_want_write(nd.path.mnt);
2258 if (error)
2259 goto exit3;
2260 error = security_path_rmdir(&nd.path, dentry);
2261 if (error)
2262 goto exit4;
2263 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2264 exit4:
2265 mnt_drop_write(nd.path.mnt);
2266 exit3:
2267 dput(dentry);
2268 exit2:
2269 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2270 exit1:
2271 path_put(&nd.path);
2272 putname(name);
2273 return error;
2274 }
2275
2276 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2277 {
2278 return do_rmdir(AT_FDCWD, pathname);
2279 }
2280
2281 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2282 {
2283 int error = may_delete(dir, dentry, 0);
2284
2285 if (error)
2286 return error;
2287
2288 if (!dir->i_op->unlink)
2289 return -EPERM;
2290
2291 vfs_dq_init(dir);
2292
2293 mutex_lock(&dentry->d_inode->i_mutex);
2294 if (d_mountpoint(dentry))
2295 error = -EBUSY;
2296 else {
2297 error = security_inode_unlink(dir, dentry);
2298 if (!error) {
2299 error = dir->i_op->unlink(dir, dentry);
2300 if (!error)
2301 dentry->d_inode->i_flags |= S_DEAD;
2302 }
2303 }
2304 mutex_unlock(&dentry->d_inode->i_mutex);
2305
2306 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2307 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2308 fsnotify_link_count(dentry->d_inode);
2309 d_delete(dentry);
2310 }
2311
2312 return error;
2313 }
2314
2315 /*
2316 * Make sure that the actual truncation of the file will occur outside its
2317 * directory's i_mutex. Truncate can take a long time if there is a lot of
2318 * writeout happening, and we don't want to prevent access to the directory
2319 * while waiting on the I/O.
2320 */
2321 static long do_unlinkat(int dfd, const char __user *pathname)
2322 {
2323 int error;
2324 char *name;
2325 struct dentry *dentry;
2326 struct nameidata nd;
2327 struct inode *inode = NULL;
2328
2329 error = user_path_parent(dfd, pathname, &nd, &name);
2330 if (error)
2331 return error;
2332
2333 error = -EISDIR;
2334 if (nd.last_type != LAST_NORM)
2335 goto exit1;
2336
2337 nd.flags &= ~LOOKUP_PARENT;
2338
2339 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2340 dentry = lookup_hash(&nd);
2341 error = PTR_ERR(dentry);
2342 if (!IS_ERR(dentry)) {
2343 /* Why not before? Because we want correct error value */
2344 if (nd.last.name[nd.last.len])
2345 goto slashes;
2346 inode = dentry->d_inode;
2347 if (inode)
2348 atomic_inc(&inode->i_count);
2349 error = mnt_want_write(nd.path.mnt);
2350 if (error)
2351 goto exit2;
2352 error = security_path_unlink(&nd.path, dentry);
2353 if (error)
2354 goto exit3;
2355 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2356 exit3:
2357 mnt_drop_write(nd.path.mnt);
2358 exit2:
2359 dput(dentry);
2360 }
2361 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2362 if (inode)
2363 iput(inode); /* truncate the inode here */
2364 exit1:
2365 path_put(&nd.path);
2366 putname(name);
2367 return error;
2368
2369 slashes:
2370 error = !dentry->d_inode ? -ENOENT :
2371 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2372 goto exit2;
2373 }
2374
2375 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2376 {
2377 if ((flag & ~AT_REMOVEDIR) != 0)
2378 return -EINVAL;
2379
2380 if (flag & AT_REMOVEDIR)
2381 return do_rmdir(dfd, pathname);
2382
2383 return do_unlinkat(dfd, pathname);
2384 }
2385
2386 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2387 {
2388 return do_unlinkat(AT_FDCWD, pathname);
2389 }
2390
2391 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2392 {
2393 int error = may_create(dir, dentry);
2394
2395 if (error)
2396 return error;
2397
2398 if (!dir->i_op->symlink)
2399 return -EPERM;
2400
2401 error = security_inode_symlink(dir, dentry, oldname);
2402 if (error)
2403 return error;
2404
2405 vfs_dq_init(dir);
2406 error = dir->i_op->symlink(dir, dentry, oldname);
2407 if (!error)
2408 fsnotify_create(dir, dentry);
2409 return error;
2410 }
2411
2412 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2413 int, newdfd, const char __user *, newname)
2414 {
2415 int error;
2416 char *from;
2417 char *to;
2418 struct dentry *dentry;
2419 struct nameidata nd;
2420
2421 from = getname(oldname);
2422 if (IS_ERR(from))
2423 return PTR_ERR(from);
2424
2425 error = user_path_parent(newdfd, newname, &nd, &to);
2426 if (error)
2427 goto out_putname;
2428
2429 dentry = lookup_create(&nd, 0);
2430 error = PTR_ERR(dentry);
2431 if (IS_ERR(dentry))
2432 goto out_unlock;
2433
2434 error = mnt_want_write(nd.path.mnt);
2435 if (error)
2436 goto out_dput;
2437 error = security_path_symlink(&nd.path, dentry, from);
2438 if (error)
2439 goto out_drop_write;
2440 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2441 out_drop_write:
2442 mnt_drop_write(nd.path.mnt);
2443 out_dput:
2444 dput(dentry);
2445 out_unlock:
2446 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2447 path_put(&nd.path);
2448 putname(to);
2449 out_putname:
2450 putname(from);
2451 return error;
2452 }
2453
2454 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2455 {
2456 return sys_symlinkat(oldname, AT_FDCWD, newname);
2457 }
2458
2459 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2460 {
2461 struct inode *inode = old_dentry->d_inode;
2462 int error;
2463
2464 if (!inode)
2465 return -ENOENT;
2466
2467 error = may_create(dir, new_dentry);
2468 if (error)
2469 return error;
2470
2471 if (dir->i_sb != inode->i_sb)
2472 return -EXDEV;
2473
2474 /*
2475 * A link to an append-only or immutable file cannot be created.
2476 */
2477 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2478 return -EPERM;
2479 if (!dir->i_op->link)
2480 return -EPERM;
2481 if (S_ISDIR(inode->i_mode))
2482 return -EPERM;
2483
2484 error = security_inode_link(old_dentry, dir, new_dentry);
2485 if (error)
2486 return error;
2487
2488 mutex_lock(&inode->i_mutex);
2489 vfs_dq_init(dir);
2490 error = dir->i_op->link(old_dentry, dir, new_dentry);
2491 mutex_unlock(&inode->i_mutex);
2492 if (!error)
2493 fsnotify_link(dir, inode, new_dentry);
2494 return error;
2495 }
2496
2497 /*
2498 * Hardlinks are often used in delicate situations. We avoid
2499 * security-related surprises by not following symlinks on the
2500 * newname. --KAB
2501 *
2502 * We don't follow them on the oldname either to be compatible
2503 * with linux 2.0, and to avoid hard-linking to directories
2504 * and other special files. --ADM
2505 */
2506 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2507 int, newdfd, const char __user *, newname, int, flags)
2508 {
2509 struct dentry *new_dentry;
2510 struct nameidata nd;
2511 struct path old_path;
2512 int error;
2513 char *to;
2514
2515 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2516 return -EINVAL;
2517
2518 error = user_path_at(olddfd, oldname,
2519 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2520 &old_path);
2521 if (error)
2522 return error;
2523
2524 error = user_path_parent(newdfd, newname, &nd, &to);
2525 if (error)
2526 goto out;
2527 error = -EXDEV;
2528 if (old_path.mnt != nd.path.mnt)
2529 goto out_release;
2530 new_dentry = lookup_create(&nd, 0);
2531 error = PTR_ERR(new_dentry);
2532 if (IS_ERR(new_dentry))
2533 goto out_unlock;
2534 error = mnt_want_write(nd.path.mnt);
2535 if (error)
2536 goto out_dput;
2537 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2538 if (error)
2539 goto out_drop_write;
2540 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2541 out_drop_write:
2542 mnt_drop_write(nd.path.mnt);
2543 out_dput:
2544 dput(new_dentry);
2545 out_unlock:
2546 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2547 out_release:
2548 path_put(&nd.path);
2549 putname(to);
2550 out:
2551 path_put(&old_path);
2552
2553 return error;
2554 }
2555
2556 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2557 {
2558 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2559 }
2560
2561 /*
2562 * The worst of all namespace operations - renaming directory. "Perverted"
2563 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2564 * Problems:
2565 * a) we can get into loop creation. Check is done in is_subdir().
2566 * b) race potential - two innocent renames can create a loop together.
2567 * That's where 4.4 screws up. Current fix: serialization on
2568 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2569 * story.
2570 * c) we have to lock _three_ objects - parents and victim (if it exists).
2571 * And that - after we got ->i_mutex on parents (until then we don't know
2572 * whether the target exists). Solution: try to be smart with locking
2573 * order for inodes. We rely on the fact that tree topology may change
2574 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2575 * move will be locked. Thus we can rank directories by the tree
2576 * (ancestors first) and rank all non-directories after them.
2577 * That works since everybody except rename does "lock parent, lookup,
2578 * lock child" and rename is under ->s_vfs_rename_mutex.
2579 * HOWEVER, it relies on the assumption that any object with ->lookup()
2580 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2581 * we'd better make sure that there's no link(2) for them.
2582 * d) some filesystems don't support opened-but-unlinked directories,
2583 * either because of layout or because they are not ready to deal with
2584 * all cases correctly. The latter will be fixed (taking this sort of
2585 * stuff into VFS), but the former is not going away. Solution: the same
2586 * trick as in rmdir().
2587 * e) conversion from fhandle to dentry may come in the wrong moment - when
2588 * we are removing the target. Solution: we will have to grab ->i_mutex
2589 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2590 * ->i_mutex on parents, which works but leads to some truely excessive
2591 * locking].
2592 */
2593 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2594 struct inode *new_dir, struct dentry *new_dentry)
2595 {
2596 int error = 0;
2597 struct inode *target;
2598
2599 /*
2600 * If we are going to change the parent - check write permissions,
2601 * we'll need to flip '..'.
2602 */
2603 if (new_dir != old_dir) {
2604 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2605 if (error)
2606 return error;
2607 }
2608
2609 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2610 if (error)
2611 return error;
2612
2613 target = new_dentry->d_inode;
2614 if (target) {
2615 mutex_lock(&target->i_mutex);
2616 dentry_unhash(new_dentry);
2617 }
2618 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2619 error = -EBUSY;
2620 else
2621 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2622 if (target) {
2623 if (!error)
2624 target->i_flags |= S_DEAD;
2625 mutex_unlock(&target->i_mutex);
2626 if (d_unhashed(new_dentry))
2627 d_rehash(new_dentry);
2628 dput(new_dentry);
2629 }
2630 if (!error)
2631 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2632 d_move(old_dentry,new_dentry);
2633 return error;
2634 }
2635
2636 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2637 struct inode *new_dir, struct dentry *new_dentry)
2638 {
2639 struct inode *target;
2640 int error;
2641
2642 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2643 if (error)
2644 return error;
2645
2646 dget(new_dentry);
2647 target = new_dentry->d_inode;
2648 if (target)
2649 mutex_lock(&target->i_mutex);
2650 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2651 error = -EBUSY;
2652 else
2653 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2654 if (!error) {
2655 if (target)
2656 target->i_flags |= S_DEAD;
2657 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2658 d_move(old_dentry, new_dentry);
2659 }
2660 if (target)
2661 mutex_unlock(&target->i_mutex);
2662 dput(new_dentry);
2663 return error;
2664 }
2665
2666 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2667 struct inode *new_dir, struct dentry *new_dentry)
2668 {
2669 int error;
2670 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2671 const char *old_name;
2672
2673 if (old_dentry->d_inode == new_dentry->d_inode)
2674 return 0;
2675
2676 error = may_delete(old_dir, old_dentry, is_dir);
2677 if (error)
2678 return error;
2679
2680 if (!new_dentry->d_inode)
2681 error = may_create(new_dir, new_dentry);
2682 else
2683 error = may_delete(new_dir, new_dentry, is_dir);
2684 if (error)
2685 return error;
2686
2687 if (!old_dir->i_op->rename)
2688 return -EPERM;
2689
2690 vfs_dq_init(old_dir);
2691 vfs_dq_init(new_dir);
2692
2693 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2694
2695 if (is_dir)
2696 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2697 else
2698 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2699 if (!error)
2700 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2701 new_dentry->d_inode, old_dentry);
2702 fsnotify_oldname_free(old_name);
2703
2704 return error;
2705 }
2706
2707 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2708 int, newdfd, const char __user *, newname)
2709 {
2710 struct dentry *old_dir, *new_dir;
2711 struct dentry *old_dentry, *new_dentry;
2712 struct dentry *trap;
2713 struct nameidata oldnd, newnd;
2714 char *from;
2715 char *to;
2716 int error;
2717
2718 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2719 if (error)
2720 goto exit;
2721
2722 error = user_path_parent(newdfd, newname, &newnd, &to);
2723 if (error)
2724 goto exit1;
2725
2726 error = -EXDEV;
2727 if (oldnd.path.mnt != newnd.path.mnt)
2728 goto exit2;
2729
2730 old_dir = oldnd.path.dentry;
2731 error = -EBUSY;
2732 if (oldnd.last_type != LAST_NORM)
2733 goto exit2;
2734
2735 new_dir = newnd.path.dentry;
2736 if (newnd.last_type != LAST_NORM)
2737 goto exit2;
2738
2739 oldnd.flags &= ~LOOKUP_PARENT;
2740 newnd.flags &= ~LOOKUP_PARENT;
2741 newnd.flags |= LOOKUP_RENAME_TARGET;
2742
2743 trap = lock_rename(new_dir, old_dir);
2744
2745 old_dentry = lookup_hash(&oldnd);
2746 error = PTR_ERR(old_dentry);
2747 if (IS_ERR(old_dentry))
2748 goto exit3;
2749 /* source must exist */
2750 error = -ENOENT;
2751 if (!old_dentry->d_inode)
2752 goto exit4;
2753 /* unless the source is a directory trailing slashes give -ENOTDIR */
2754 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2755 error = -ENOTDIR;
2756 if (oldnd.last.name[oldnd.last.len])
2757 goto exit4;
2758 if (newnd.last.name[newnd.last.len])
2759 goto exit4;
2760 }
2761 /* source should not be ancestor of target */
2762 error = -EINVAL;
2763 if (old_dentry == trap)
2764 goto exit4;
2765 new_dentry = lookup_hash(&newnd);
2766 error = PTR_ERR(new_dentry);
2767 if (IS_ERR(new_dentry))
2768 goto exit4;
2769 /* target should not be an ancestor of source */
2770 error = -ENOTEMPTY;
2771 if (new_dentry == trap)
2772 goto exit5;
2773
2774 error = mnt_want_write(oldnd.path.mnt);
2775 if (error)
2776 goto exit5;
2777 error = security_path_rename(&oldnd.path, old_dentry,
2778 &newnd.path, new_dentry);
2779 if (error)
2780 goto exit6;
2781 error = vfs_rename(old_dir->d_inode, old_dentry,
2782 new_dir->d_inode, new_dentry);
2783 exit6:
2784 mnt_drop_write(oldnd.path.mnt);
2785 exit5:
2786 dput(new_dentry);
2787 exit4:
2788 dput(old_dentry);
2789 exit3:
2790 unlock_rename(new_dir, old_dir);
2791 exit2:
2792 path_put(&newnd.path);
2793 putname(to);
2794 exit1:
2795 path_put(&oldnd.path);
2796 putname(from);
2797 exit:
2798 return error;
2799 }
2800
2801 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2802 {
2803 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2804 }
2805
2806 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2807 {
2808 int len;
2809
2810 len = PTR_ERR(link);
2811 if (IS_ERR(link))
2812 goto out;
2813
2814 len = strlen(link);
2815 if (len > (unsigned) buflen)
2816 len = buflen;
2817 if (copy_to_user(buffer, link, len))
2818 len = -EFAULT;
2819 out:
2820 return len;
2821 }
2822
2823 /*
2824 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2825 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2826 * using) it for any given inode is up to filesystem.
2827 */
2828 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2829 {
2830 struct nameidata nd;
2831 void *cookie;
2832 int res;
2833
2834 nd.depth = 0;
2835 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2836 if (IS_ERR(cookie))
2837 return PTR_ERR(cookie);
2838
2839 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2840 if (dentry->d_inode->i_op->put_link)
2841 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2842 return res;
2843 }
2844
2845 int vfs_follow_link(struct nameidata *nd, const char *link)
2846 {
2847 return __vfs_follow_link(nd, link);
2848 }
2849
2850 /* get the link contents into pagecache */
2851 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2852 {
2853 char *kaddr;
2854 struct page *page;
2855 struct address_space *mapping = dentry->d_inode->i_mapping;
2856 page = read_mapping_page(mapping, 0, NULL);
2857 if (IS_ERR(page))
2858 return (char*)page;
2859 *ppage = page;
2860 kaddr = kmap(page);
2861 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2862 return kaddr;
2863 }
2864
2865 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2866 {
2867 struct page *page = NULL;
2868 char *s = page_getlink(dentry, &page);
2869 int res = vfs_readlink(dentry,buffer,buflen,s);
2870 if (page) {
2871 kunmap(page);
2872 page_cache_release(page);
2873 }
2874 return res;
2875 }
2876
2877 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2878 {
2879 struct page *page = NULL;
2880 nd_set_link(nd, page_getlink(dentry, &page));
2881 return page;
2882 }
2883
2884 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2885 {
2886 struct page *page = cookie;
2887
2888 if (page) {
2889 kunmap(page);
2890 page_cache_release(page);
2891 }
2892 }
2893
2894 /*
2895 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2896 */
2897 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2898 {
2899 struct address_space *mapping = inode->i_mapping;
2900 struct page *page;
2901 void *fsdata;
2902 int err;
2903 char *kaddr;
2904 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2905 if (nofs)
2906 flags |= AOP_FLAG_NOFS;
2907
2908 retry:
2909 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2910 flags, &page, &fsdata);
2911 if (err)
2912 goto fail;
2913
2914 kaddr = kmap_atomic(page, KM_USER0);
2915 memcpy(kaddr, symname, len-1);
2916 kunmap_atomic(kaddr, KM_USER0);
2917
2918 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2919 page, fsdata);
2920 if (err < 0)
2921 goto fail;
2922 if (err < len-1)
2923 goto retry;
2924
2925 mark_inode_dirty(inode);
2926 return 0;
2927 fail:
2928 return err;
2929 }
2930
2931 int page_symlink(struct inode *inode, const char *symname, int len)
2932 {
2933 return __page_symlink(inode, symname, len,
2934 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2935 }
2936
2937 const struct inode_operations page_symlink_inode_operations = {
2938 .readlink = generic_readlink,
2939 .follow_link = page_follow_link_light,
2940 .put_link = page_put_link,
2941 };
2942
2943 EXPORT_SYMBOL(user_path_at);
2944 EXPORT_SYMBOL(follow_down);
2945 EXPORT_SYMBOL(follow_up);
2946 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2947 EXPORT_SYMBOL(getname);
2948 EXPORT_SYMBOL(lock_rename);
2949 EXPORT_SYMBOL(lookup_one_len);
2950 EXPORT_SYMBOL(page_follow_link_light);
2951 EXPORT_SYMBOL(page_put_link);
2952 EXPORT_SYMBOL(page_readlink);
2953 EXPORT_SYMBOL(__page_symlink);
2954 EXPORT_SYMBOL(page_symlink);
2955 EXPORT_SYMBOL(page_symlink_inode_operations);
2956 EXPORT_SYMBOL(path_lookup);
2957 EXPORT_SYMBOL(kern_path);
2958 EXPORT_SYMBOL(vfs_path_lookup);
2959 EXPORT_SYMBOL(inode_permission);
2960 EXPORT_SYMBOL(file_permission);
2961 EXPORT_SYMBOL(unlock_rename);
2962 EXPORT_SYMBOL(vfs_create);
2963 EXPORT_SYMBOL(vfs_follow_link);
2964 EXPORT_SYMBOL(vfs_link);
2965 EXPORT_SYMBOL(vfs_mkdir);
2966 EXPORT_SYMBOL(vfs_mknod);
2967 EXPORT_SYMBOL(generic_permission);
2968 EXPORT_SYMBOL(vfs_readlink);
2969 EXPORT_SYMBOL(vfs_rename);
2970 EXPORT_SYMBOL(vfs_rmdir);
2971 EXPORT_SYMBOL(vfs_symlink);
2972 EXPORT_SYMBOL(vfs_unlink);
2973 EXPORT_SYMBOL(dentry_unhash);
2974 EXPORT_SYMBOL(generic_readlink);
This page took 0.095837 seconds and 4 git commands to generate.