Switch !O_CREAT case to use of do_last()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170 /*
171 * This does basic POSIX ACL permission checking
172 */
173 static int acl_permission_check(struct inode *inode, int mask,
174 int (*check_acl)(struct inode *inode, int mask))
175 {
176 umode_t mode = inode->i_mode;
177
178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179
180 if (current_fsuid() == inode->i_uid)
181 mode >>= 6;
182 else {
183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
184 int error = check_acl(inode, mask);
185 if (error != -EAGAIN)
186 return error;
187 }
188
189 if (in_group_p(inode->i_gid))
190 mode >>= 3;
191 }
192
193 /*
194 * If the DACs are ok we don't need any capability check.
195 */
196 if ((mask & ~mode) == 0)
197 return 0;
198 return -EACCES;
199 }
200
201 /**
202 * generic_permission - check for access rights on a Posix-like filesystem
203 * @inode: inode to check access rights for
204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
205 * @check_acl: optional callback to check for Posix ACLs
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things..
211 */
212 int generic_permission(struct inode *inode, int mask,
213 int (*check_acl)(struct inode *inode, int mask))
214 {
215 int ret;
216
217 /*
218 * Do the basic POSIX ACL permission checks.
219 */
220 ret = acl_permission_check(inode, mask, check_acl);
221 if (ret != -EACCES)
222 return ret;
223
224 /*
225 * Read/write DACs are always overridable.
226 * Executable DACs are overridable if at least one exec bit is set.
227 */
228 if (!(mask & MAY_EXEC) || execute_ok(inode))
229 if (capable(CAP_DAC_OVERRIDE))
230 return 0;
231
232 /*
233 * Searching includes executable on directories, else just read.
234 */
235 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
236 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
237 if (capable(CAP_DAC_READ_SEARCH))
238 return 0;
239
240 return -EACCES;
241 }
242
243 /**
244 * inode_permission - check for access rights to a given inode
245 * @inode: inode to check permission on
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
247 *
248 * Used to check for read/write/execute permissions on an inode.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 */
253 int inode_permission(struct inode *inode, int mask)
254 {
255 int retval;
256
257 if (mask & MAY_WRITE) {
258 umode_t mode = inode->i_mode;
259
260 /*
261 * Nobody gets write access to a read-only fs.
262 */
263 if (IS_RDONLY(inode) &&
264 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
265 return -EROFS;
266
267 /*
268 * Nobody gets write access to an immutable file.
269 */
270 if (IS_IMMUTABLE(inode))
271 return -EACCES;
272 }
273
274 if (inode->i_op->permission)
275 retval = inode->i_op->permission(inode, mask);
276 else
277 retval = generic_permission(inode, mask, inode->i_op->check_acl);
278
279 if (retval)
280 return retval;
281
282 retval = devcgroup_inode_permission(inode, mask);
283 if (retval)
284 return retval;
285
286 return security_inode_permission(inode,
287 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
288 }
289
290 /**
291 * file_permission - check for additional access rights to a given file
292 * @file: file to check access rights for
293 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
294 *
295 * Used to check for read/write/execute permissions on an already opened
296 * file.
297 *
298 * Note:
299 * Do not use this function in new code. All access checks should
300 * be done using inode_permission().
301 */
302 int file_permission(struct file *file, int mask)
303 {
304 return inode_permission(file->f_path.dentry->d_inode, mask);
305 }
306
307 /*
308 * get_write_access() gets write permission for a file.
309 * put_write_access() releases this write permission.
310 * This is used for regular files.
311 * We cannot support write (and maybe mmap read-write shared) accesses and
312 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
313 * can have the following values:
314 * 0: no writers, no VM_DENYWRITE mappings
315 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
316 * > 0: (i_writecount) users are writing to the file.
317 *
318 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
319 * except for the cases where we don't hold i_writecount yet. Then we need to
320 * use {get,deny}_write_access() - these functions check the sign and refuse
321 * to do the change if sign is wrong. Exclusion between them is provided by
322 * the inode->i_lock spinlock.
323 */
324
325 int get_write_access(struct inode * inode)
326 {
327 spin_lock(&inode->i_lock);
328 if (atomic_read(&inode->i_writecount) < 0) {
329 spin_unlock(&inode->i_lock);
330 return -ETXTBSY;
331 }
332 atomic_inc(&inode->i_writecount);
333 spin_unlock(&inode->i_lock);
334
335 return 0;
336 }
337
338 int deny_write_access(struct file * file)
339 {
340 struct inode *inode = file->f_path.dentry->d_inode;
341
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) > 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_dec(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351 }
352
353 /**
354 * path_get - get a reference to a path
355 * @path: path to get the reference to
356 *
357 * Given a path increment the reference count to the dentry and the vfsmount.
358 */
359 void path_get(struct path *path)
360 {
361 mntget(path->mnt);
362 dget(path->dentry);
363 }
364 EXPORT_SYMBOL(path_get);
365
366 /**
367 * path_put - put a reference to a path
368 * @path: path to put the reference to
369 *
370 * Given a path decrement the reference count to the dentry and the vfsmount.
371 */
372 void path_put(struct path *path)
373 {
374 dput(path->dentry);
375 mntput(path->mnt);
376 }
377 EXPORT_SYMBOL(path_put);
378
379 /**
380 * release_open_intent - free up open intent resources
381 * @nd: pointer to nameidata
382 */
383 void release_open_intent(struct nameidata *nd)
384 {
385 if (nd->intent.open.file->f_path.dentry == NULL)
386 put_filp(nd->intent.open.file);
387 else
388 fput(nd->intent.open.file);
389 }
390
391 static inline struct dentry *
392 do_revalidate(struct dentry *dentry, struct nameidata *nd)
393 {
394 int status = dentry->d_op->d_revalidate(dentry, nd);
395 if (unlikely(status <= 0)) {
396 /*
397 * The dentry failed validation.
398 * If d_revalidate returned 0 attempt to invalidate
399 * the dentry otherwise d_revalidate is asking us
400 * to return a fail status.
401 */
402 if (!status) {
403 if (!d_invalidate(dentry)) {
404 dput(dentry);
405 dentry = NULL;
406 }
407 } else {
408 dput(dentry);
409 dentry = ERR_PTR(status);
410 }
411 }
412 return dentry;
413 }
414
415 /*
416 * force_reval_path - force revalidation of a dentry
417 *
418 * In some situations the path walking code will trust dentries without
419 * revalidating them. This causes problems for filesystems that depend on
420 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
421 * (which indicates that it's possible for the dentry to go stale), force
422 * a d_revalidate call before proceeding.
423 *
424 * Returns 0 if the revalidation was successful. If the revalidation fails,
425 * either return the error returned by d_revalidate or -ESTALE if the
426 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
427 * invalidate the dentry. It's up to the caller to handle putting references
428 * to the path if necessary.
429 */
430 static int
431 force_reval_path(struct path *path, struct nameidata *nd)
432 {
433 int status;
434 struct dentry *dentry = path->dentry;
435
436 /*
437 * only check on filesystems where it's possible for the dentry to
438 * become stale. It's assumed that if this flag is set then the
439 * d_revalidate op will also be defined.
440 */
441 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
442 return 0;
443
444 status = dentry->d_op->d_revalidate(dentry, nd);
445 if (status > 0)
446 return 0;
447
448 if (!status) {
449 d_invalidate(dentry);
450 status = -ESTALE;
451 }
452 return status;
453 }
454
455 /*
456 * Short-cut version of permission(), for calling on directories
457 * during pathname resolution. Combines parts of permission()
458 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
459 *
460 * If appropriate, check DAC only. If not appropriate, or
461 * short-cut DAC fails, then call ->permission() to do more
462 * complete permission check.
463 */
464 static int exec_permission(struct inode *inode)
465 {
466 int ret;
467
468 if (inode->i_op->permission) {
469 ret = inode->i_op->permission(inode, MAY_EXEC);
470 if (!ret)
471 goto ok;
472 return ret;
473 }
474 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
475 if (!ret)
476 goto ok;
477
478 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
479 goto ok;
480
481 return ret;
482 ok:
483 return security_inode_permission(inode, MAY_EXEC);
484 }
485
486 static __always_inline void set_root(struct nameidata *nd)
487 {
488 if (!nd->root.mnt) {
489 struct fs_struct *fs = current->fs;
490 read_lock(&fs->lock);
491 nd->root = fs->root;
492 path_get(&nd->root);
493 read_unlock(&fs->lock);
494 }
495 }
496
497 static int link_path_walk(const char *, struct nameidata *);
498
499 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
500 {
501 if (IS_ERR(link))
502 goto fail;
503
504 if (*link == '/') {
505 set_root(nd);
506 path_put(&nd->path);
507 nd->path = nd->root;
508 path_get(&nd->root);
509 }
510
511 return link_path_walk(link, nd);
512 fail:
513 path_put(&nd->path);
514 return PTR_ERR(link);
515 }
516
517 static void path_put_conditional(struct path *path, struct nameidata *nd)
518 {
519 dput(path->dentry);
520 if (path->mnt != nd->path.mnt)
521 mntput(path->mnt);
522 }
523
524 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
525 {
526 dput(nd->path.dentry);
527 if (nd->path.mnt != path->mnt)
528 mntput(nd->path.mnt);
529 nd->path.mnt = path->mnt;
530 nd->path.dentry = path->dentry;
531 }
532
533 static __always_inline int
534 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
535 {
536 int error;
537 struct dentry *dentry = path->dentry;
538
539 touch_atime(path->mnt, dentry);
540 nd_set_link(nd, NULL);
541
542 if (path->mnt != nd->path.mnt) {
543 path_to_nameidata(path, nd);
544 dget(dentry);
545 }
546 mntget(path->mnt);
547 nd->last_type = LAST_BIND;
548 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
549 error = PTR_ERR(*p);
550 if (!IS_ERR(*p)) {
551 char *s = nd_get_link(nd);
552 error = 0;
553 if (s)
554 error = __vfs_follow_link(nd, s);
555 else if (nd->last_type == LAST_BIND) {
556 error = force_reval_path(&nd->path, nd);
557 if (error)
558 path_put(&nd->path);
559 }
560 }
561 return error;
562 }
563
564 /*
565 * This limits recursive symlink follows to 8, while
566 * limiting consecutive symlinks to 40.
567 *
568 * Without that kind of total limit, nasty chains of consecutive
569 * symlinks can cause almost arbitrarily long lookups.
570 */
571 static inline int do_follow_link(struct path *path, struct nameidata *nd)
572 {
573 void *cookie;
574 int err = -ELOOP;
575 if (current->link_count >= MAX_NESTED_LINKS)
576 goto loop;
577 if (current->total_link_count >= 40)
578 goto loop;
579 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
580 cond_resched();
581 err = security_inode_follow_link(path->dentry, nd);
582 if (err)
583 goto loop;
584 current->link_count++;
585 current->total_link_count++;
586 nd->depth++;
587 err = __do_follow_link(path, nd, &cookie);
588 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
589 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
590 path_put(path);
591 current->link_count--;
592 nd->depth--;
593 return err;
594 loop:
595 path_put_conditional(path, nd);
596 path_put(&nd->path);
597 return err;
598 }
599
600 int follow_up(struct path *path)
601 {
602 struct vfsmount *parent;
603 struct dentry *mountpoint;
604 spin_lock(&vfsmount_lock);
605 parent = path->mnt->mnt_parent;
606 if (parent == path->mnt) {
607 spin_unlock(&vfsmount_lock);
608 return 0;
609 }
610 mntget(parent);
611 mountpoint = dget(path->mnt->mnt_mountpoint);
612 spin_unlock(&vfsmount_lock);
613 dput(path->dentry);
614 path->dentry = mountpoint;
615 mntput(path->mnt);
616 path->mnt = parent;
617 return 1;
618 }
619
620 /* no need for dcache_lock, as serialization is taken care in
621 * namespace.c
622 */
623 static int __follow_mount(struct path *path)
624 {
625 int res = 0;
626 while (d_mountpoint(path->dentry)) {
627 struct vfsmount *mounted = lookup_mnt(path);
628 if (!mounted)
629 break;
630 dput(path->dentry);
631 if (res)
632 mntput(path->mnt);
633 path->mnt = mounted;
634 path->dentry = dget(mounted->mnt_root);
635 res = 1;
636 }
637 return res;
638 }
639
640 static void follow_mount(struct path *path)
641 {
642 while (d_mountpoint(path->dentry)) {
643 struct vfsmount *mounted = lookup_mnt(path);
644 if (!mounted)
645 break;
646 dput(path->dentry);
647 mntput(path->mnt);
648 path->mnt = mounted;
649 path->dentry = dget(mounted->mnt_root);
650 }
651 }
652
653 /* no need for dcache_lock, as serialization is taken care in
654 * namespace.c
655 */
656 int follow_down(struct path *path)
657 {
658 struct vfsmount *mounted;
659
660 mounted = lookup_mnt(path);
661 if (mounted) {
662 dput(path->dentry);
663 mntput(path->mnt);
664 path->mnt = mounted;
665 path->dentry = dget(mounted->mnt_root);
666 return 1;
667 }
668 return 0;
669 }
670
671 static __always_inline void follow_dotdot(struct nameidata *nd)
672 {
673 set_root(nd);
674
675 while(1) {
676 struct dentry *old = nd->path.dentry;
677
678 if (nd->path.dentry == nd->root.dentry &&
679 nd->path.mnt == nd->root.mnt) {
680 break;
681 }
682 if (nd->path.dentry != nd->path.mnt->mnt_root) {
683 /* rare case of legitimate dget_parent()... */
684 nd->path.dentry = dget_parent(nd->path.dentry);
685 dput(old);
686 break;
687 }
688 if (!follow_up(&nd->path))
689 break;
690 }
691 follow_mount(&nd->path);
692 }
693
694 /*
695 * It's more convoluted than I'd like it to be, but... it's still fairly
696 * small and for now I'd prefer to have fast path as straight as possible.
697 * It _is_ time-critical.
698 */
699 static int do_lookup(struct nameidata *nd, struct qstr *name,
700 struct path *path)
701 {
702 struct vfsmount *mnt = nd->path.mnt;
703 struct dentry *dentry, *parent;
704 struct inode *dir;
705 /*
706 * See if the low-level filesystem might want
707 * to use its own hash..
708 */
709 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
710 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
711 if (err < 0)
712 return err;
713 }
714
715 dentry = __d_lookup(nd->path.dentry, name);
716 if (!dentry)
717 goto need_lookup;
718 if (dentry->d_op && dentry->d_op->d_revalidate)
719 goto need_revalidate;
720 done:
721 path->mnt = mnt;
722 path->dentry = dentry;
723 __follow_mount(path);
724 return 0;
725
726 need_lookup:
727 parent = nd->path.dentry;
728 dir = parent->d_inode;
729
730 mutex_lock(&dir->i_mutex);
731 /*
732 * First re-do the cached lookup just in case it was created
733 * while we waited for the directory semaphore..
734 *
735 * FIXME! This could use version numbering or similar to
736 * avoid unnecessary cache lookups.
737 *
738 * The "dcache_lock" is purely to protect the RCU list walker
739 * from concurrent renames at this point (we mustn't get false
740 * negatives from the RCU list walk here, unlike the optimistic
741 * fast walk).
742 *
743 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
744 */
745 dentry = d_lookup(parent, name);
746 if (!dentry) {
747 struct dentry *new;
748
749 /* Don't create child dentry for a dead directory. */
750 dentry = ERR_PTR(-ENOENT);
751 if (IS_DEADDIR(dir))
752 goto out_unlock;
753
754 new = d_alloc(parent, name);
755 dentry = ERR_PTR(-ENOMEM);
756 if (new) {
757 dentry = dir->i_op->lookup(dir, new, nd);
758 if (dentry)
759 dput(new);
760 else
761 dentry = new;
762 }
763 out_unlock:
764 mutex_unlock(&dir->i_mutex);
765 if (IS_ERR(dentry))
766 goto fail;
767 goto done;
768 }
769
770 /*
771 * Uhhuh! Nasty case: the cache was re-populated while
772 * we waited on the semaphore. Need to revalidate.
773 */
774 mutex_unlock(&dir->i_mutex);
775 if (dentry->d_op && dentry->d_op->d_revalidate) {
776 dentry = do_revalidate(dentry, nd);
777 if (!dentry)
778 dentry = ERR_PTR(-ENOENT);
779 }
780 if (IS_ERR(dentry))
781 goto fail;
782 goto done;
783
784 need_revalidate:
785 dentry = do_revalidate(dentry, nd);
786 if (!dentry)
787 goto need_lookup;
788 if (IS_ERR(dentry))
789 goto fail;
790 goto done;
791
792 fail:
793 return PTR_ERR(dentry);
794 }
795
796 /*
797 * This is a temporary kludge to deal with "automount" symlinks; proper
798 * solution is to trigger them on follow_mount(), so that do_lookup()
799 * would DTRT. To be killed before 2.6.34-final.
800 */
801 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
802 {
803 return inode && unlikely(inode->i_op->follow_link) &&
804 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
805 }
806
807 /*
808 * Name resolution.
809 * This is the basic name resolution function, turning a pathname into
810 * the final dentry. We expect 'base' to be positive and a directory.
811 *
812 * Returns 0 and nd will have valid dentry and mnt on success.
813 * Returns error and drops reference to input namei data on failure.
814 */
815 static int link_path_walk(const char *name, struct nameidata *nd)
816 {
817 struct path next;
818 struct inode *inode;
819 int err;
820 unsigned int lookup_flags = nd->flags;
821
822 while (*name=='/')
823 name++;
824 if (!*name)
825 goto return_reval;
826
827 inode = nd->path.dentry->d_inode;
828 if (nd->depth)
829 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
830
831 /* At this point we know we have a real path component. */
832 for(;;) {
833 unsigned long hash;
834 struct qstr this;
835 unsigned int c;
836
837 nd->flags |= LOOKUP_CONTINUE;
838 err = exec_permission(inode);
839 if (err)
840 break;
841
842 this.name = name;
843 c = *(const unsigned char *)name;
844
845 hash = init_name_hash();
846 do {
847 name++;
848 hash = partial_name_hash(c, hash);
849 c = *(const unsigned char *)name;
850 } while (c && (c != '/'));
851 this.len = name - (const char *) this.name;
852 this.hash = end_name_hash(hash);
853
854 /* remove trailing slashes? */
855 if (!c)
856 goto last_component;
857 while (*++name == '/');
858 if (!*name)
859 goto last_with_slashes;
860
861 /*
862 * "." and ".." are special - ".." especially so because it has
863 * to be able to know about the current root directory and
864 * parent relationships.
865 */
866 if (this.name[0] == '.') switch (this.len) {
867 default:
868 break;
869 case 2:
870 if (this.name[1] != '.')
871 break;
872 follow_dotdot(nd);
873 inode = nd->path.dentry->d_inode;
874 /* fallthrough */
875 case 1:
876 continue;
877 }
878 /* This does the actual lookups.. */
879 err = do_lookup(nd, &this, &next);
880 if (err)
881 break;
882
883 err = -ENOENT;
884 inode = next.dentry->d_inode;
885 if (!inode)
886 goto out_dput;
887
888 if (inode->i_op->follow_link) {
889 err = do_follow_link(&next, nd);
890 if (err)
891 goto return_err;
892 err = -ENOENT;
893 inode = nd->path.dentry->d_inode;
894 if (!inode)
895 break;
896 } else
897 path_to_nameidata(&next, nd);
898 err = -ENOTDIR;
899 if (!inode->i_op->lookup)
900 break;
901 continue;
902 /* here ends the main loop */
903
904 last_with_slashes:
905 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
906 last_component:
907 /* Clear LOOKUP_CONTINUE iff it was previously unset */
908 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
909 if (lookup_flags & LOOKUP_PARENT)
910 goto lookup_parent;
911 if (this.name[0] == '.') switch (this.len) {
912 default:
913 break;
914 case 2:
915 if (this.name[1] != '.')
916 break;
917 follow_dotdot(nd);
918 inode = nd->path.dentry->d_inode;
919 /* fallthrough */
920 case 1:
921 goto return_reval;
922 }
923 err = do_lookup(nd, &this, &next);
924 if (err)
925 break;
926 inode = next.dentry->d_inode;
927 if (follow_on_final(inode, lookup_flags)) {
928 err = do_follow_link(&next, nd);
929 if (err)
930 goto return_err;
931 inode = nd->path.dentry->d_inode;
932 } else
933 path_to_nameidata(&next, nd);
934 err = -ENOENT;
935 if (!inode)
936 break;
937 if (lookup_flags & LOOKUP_DIRECTORY) {
938 err = -ENOTDIR;
939 if (!inode->i_op->lookup)
940 break;
941 }
942 goto return_base;
943 lookup_parent:
944 nd->last = this;
945 nd->last_type = LAST_NORM;
946 if (this.name[0] != '.')
947 goto return_base;
948 if (this.len == 1)
949 nd->last_type = LAST_DOT;
950 else if (this.len == 2 && this.name[1] == '.')
951 nd->last_type = LAST_DOTDOT;
952 else
953 goto return_base;
954 return_reval:
955 /*
956 * We bypassed the ordinary revalidation routines.
957 * We may need to check the cached dentry for staleness.
958 */
959 if (nd->path.dentry && nd->path.dentry->d_sb &&
960 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
961 err = -ESTALE;
962 /* Note: we do not d_invalidate() */
963 if (!nd->path.dentry->d_op->d_revalidate(
964 nd->path.dentry, nd))
965 break;
966 }
967 return_base:
968 return 0;
969 out_dput:
970 path_put_conditional(&next, nd);
971 break;
972 }
973 path_put(&nd->path);
974 return_err:
975 return err;
976 }
977
978 static int path_walk(const char *name, struct nameidata *nd)
979 {
980 struct path save = nd->path;
981 int result;
982
983 current->total_link_count = 0;
984
985 /* make sure the stuff we saved doesn't go away */
986 path_get(&save);
987
988 result = link_path_walk(name, nd);
989 if (result == -ESTALE) {
990 /* nd->path had been dropped */
991 current->total_link_count = 0;
992 nd->path = save;
993 path_get(&nd->path);
994 nd->flags |= LOOKUP_REVAL;
995 result = link_path_walk(name, nd);
996 }
997
998 path_put(&save);
999
1000 return result;
1001 }
1002
1003 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1004 {
1005 int retval = 0;
1006 int fput_needed;
1007 struct file *file;
1008
1009 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1010 nd->flags = flags;
1011 nd->depth = 0;
1012 nd->root.mnt = NULL;
1013
1014 if (*name=='/') {
1015 set_root(nd);
1016 nd->path = nd->root;
1017 path_get(&nd->root);
1018 } else if (dfd == AT_FDCWD) {
1019 struct fs_struct *fs = current->fs;
1020 read_lock(&fs->lock);
1021 nd->path = fs->pwd;
1022 path_get(&fs->pwd);
1023 read_unlock(&fs->lock);
1024 } else {
1025 struct dentry *dentry;
1026
1027 file = fget_light(dfd, &fput_needed);
1028 retval = -EBADF;
1029 if (!file)
1030 goto out_fail;
1031
1032 dentry = file->f_path.dentry;
1033
1034 retval = -ENOTDIR;
1035 if (!S_ISDIR(dentry->d_inode->i_mode))
1036 goto fput_fail;
1037
1038 retval = file_permission(file, MAY_EXEC);
1039 if (retval)
1040 goto fput_fail;
1041
1042 nd->path = file->f_path;
1043 path_get(&file->f_path);
1044
1045 fput_light(file, fput_needed);
1046 }
1047 return 0;
1048
1049 fput_fail:
1050 fput_light(file, fput_needed);
1051 out_fail:
1052 return retval;
1053 }
1054
1055 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1056 static int do_path_lookup(int dfd, const char *name,
1057 unsigned int flags, struct nameidata *nd)
1058 {
1059 int retval = path_init(dfd, name, flags, nd);
1060 if (!retval)
1061 retval = path_walk(name, nd);
1062 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1063 nd->path.dentry->d_inode))
1064 audit_inode(name, nd->path.dentry);
1065 if (nd->root.mnt) {
1066 path_put(&nd->root);
1067 nd->root.mnt = NULL;
1068 }
1069 return retval;
1070 }
1071
1072 int path_lookup(const char *name, unsigned int flags,
1073 struct nameidata *nd)
1074 {
1075 return do_path_lookup(AT_FDCWD, name, flags, nd);
1076 }
1077
1078 int kern_path(const char *name, unsigned int flags, struct path *path)
1079 {
1080 struct nameidata nd;
1081 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1082 if (!res)
1083 *path = nd.path;
1084 return res;
1085 }
1086
1087 /**
1088 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1089 * @dentry: pointer to dentry of the base directory
1090 * @mnt: pointer to vfs mount of the base directory
1091 * @name: pointer to file name
1092 * @flags: lookup flags
1093 * @nd: pointer to nameidata
1094 */
1095 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1096 const char *name, unsigned int flags,
1097 struct nameidata *nd)
1098 {
1099 int retval;
1100
1101 /* same as do_path_lookup */
1102 nd->last_type = LAST_ROOT;
1103 nd->flags = flags;
1104 nd->depth = 0;
1105
1106 nd->path.dentry = dentry;
1107 nd->path.mnt = mnt;
1108 path_get(&nd->path);
1109 nd->root = nd->path;
1110 path_get(&nd->root);
1111
1112 retval = path_walk(name, nd);
1113 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1114 nd->path.dentry->d_inode))
1115 audit_inode(name, nd->path.dentry);
1116
1117 path_put(&nd->root);
1118 nd->root.mnt = NULL;
1119
1120 return retval;
1121 }
1122
1123 static struct dentry *__lookup_hash(struct qstr *name,
1124 struct dentry *base, struct nameidata *nd)
1125 {
1126 struct dentry *dentry;
1127 struct inode *inode;
1128 int err;
1129
1130 inode = base->d_inode;
1131
1132 /*
1133 * See if the low-level filesystem might want
1134 * to use its own hash..
1135 */
1136 if (base->d_op && base->d_op->d_hash) {
1137 err = base->d_op->d_hash(base, name);
1138 dentry = ERR_PTR(err);
1139 if (err < 0)
1140 goto out;
1141 }
1142
1143 dentry = __d_lookup(base, name);
1144
1145 /* lockess __d_lookup may fail due to concurrent d_move()
1146 * in some unrelated directory, so try with d_lookup
1147 */
1148 if (!dentry)
1149 dentry = d_lookup(base, name);
1150
1151 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1152 dentry = do_revalidate(dentry, nd);
1153
1154 if (!dentry) {
1155 struct dentry *new;
1156
1157 /* Don't create child dentry for a dead directory. */
1158 dentry = ERR_PTR(-ENOENT);
1159 if (IS_DEADDIR(inode))
1160 goto out;
1161
1162 new = d_alloc(base, name);
1163 dentry = ERR_PTR(-ENOMEM);
1164 if (!new)
1165 goto out;
1166 dentry = inode->i_op->lookup(inode, new, nd);
1167 if (!dentry)
1168 dentry = new;
1169 else
1170 dput(new);
1171 }
1172 out:
1173 return dentry;
1174 }
1175
1176 /*
1177 * Restricted form of lookup. Doesn't follow links, single-component only,
1178 * needs parent already locked. Doesn't follow mounts.
1179 * SMP-safe.
1180 */
1181 static struct dentry *lookup_hash(struct nameidata *nd)
1182 {
1183 int err;
1184
1185 err = exec_permission(nd->path.dentry->d_inode);
1186 if (err)
1187 return ERR_PTR(err);
1188 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1189 }
1190
1191 static int __lookup_one_len(const char *name, struct qstr *this,
1192 struct dentry *base, int len)
1193 {
1194 unsigned long hash;
1195 unsigned int c;
1196
1197 this->name = name;
1198 this->len = len;
1199 if (!len)
1200 return -EACCES;
1201
1202 hash = init_name_hash();
1203 while (len--) {
1204 c = *(const unsigned char *)name++;
1205 if (c == '/' || c == '\0')
1206 return -EACCES;
1207 hash = partial_name_hash(c, hash);
1208 }
1209 this->hash = end_name_hash(hash);
1210 return 0;
1211 }
1212
1213 /**
1214 * lookup_one_len - filesystem helper to lookup single pathname component
1215 * @name: pathname component to lookup
1216 * @base: base directory to lookup from
1217 * @len: maximum length @len should be interpreted to
1218 *
1219 * Note that this routine is purely a helper for filesystem usage and should
1220 * not be called by generic code. Also note that by using this function the
1221 * nameidata argument is passed to the filesystem methods and a filesystem
1222 * using this helper needs to be prepared for that.
1223 */
1224 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1225 {
1226 int err;
1227 struct qstr this;
1228
1229 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1230
1231 err = __lookup_one_len(name, &this, base, len);
1232 if (err)
1233 return ERR_PTR(err);
1234
1235 err = exec_permission(base->d_inode);
1236 if (err)
1237 return ERR_PTR(err);
1238 return __lookup_hash(&this, base, NULL);
1239 }
1240
1241 int user_path_at(int dfd, const char __user *name, unsigned flags,
1242 struct path *path)
1243 {
1244 struct nameidata nd;
1245 char *tmp = getname(name);
1246 int err = PTR_ERR(tmp);
1247 if (!IS_ERR(tmp)) {
1248
1249 BUG_ON(flags & LOOKUP_PARENT);
1250
1251 err = do_path_lookup(dfd, tmp, flags, &nd);
1252 putname(tmp);
1253 if (!err)
1254 *path = nd.path;
1255 }
1256 return err;
1257 }
1258
1259 static int user_path_parent(int dfd, const char __user *path,
1260 struct nameidata *nd, char **name)
1261 {
1262 char *s = getname(path);
1263 int error;
1264
1265 if (IS_ERR(s))
1266 return PTR_ERR(s);
1267
1268 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1269 if (error)
1270 putname(s);
1271 else
1272 *name = s;
1273
1274 return error;
1275 }
1276
1277 /*
1278 * It's inline, so penalty for filesystems that don't use sticky bit is
1279 * minimal.
1280 */
1281 static inline int check_sticky(struct inode *dir, struct inode *inode)
1282 {
1283 uid_t fsuid = current_fsuid();
1284
1285 if (!(dir->i_mode & S_ISVTX))
1286 return 0;
1287 if (inode->i_uid == fsuid)
1288 return 0;
1289 if (dir->i_uid == fsuid)
1290 return 0;
1291 return !capable(CAP_FOWNER);
1292 }
1293
1294 /*
1295 * Check whether we can remove a link victim from directory dir, check
1296 * whether the type of victim is right.
1297 * 1. We can't do it if dir is read-only (done in permission())
1298 * 2. We should have write and exec permissions on dir
1299 * 3. We can't remove anything from append-only dir
1300 * 4. We can't do anything with immutable dir (done in permission())
1301 * 5. If the sticky bit on dir is set we should either
1302 * a. be owner of dir, or
1303 * b. be owner of victim, or
1304 * c. have CAP_FOWNER capability
1305 * 6. If the victim is append-only or immutable we can't do antyhing with
1306 * links pointing to it.
1307 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1308 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1309 * 9. We can't remove a root or mountpoint.
1310 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1311 * nfs_async_unlink().
1312 */
1313 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1314 {
1315 int error;
1316
1317 if (!victim->d_inode)
1318 return -ENOENT;
1319
1320 BUG_ON(victim->d_parent->d_inode != dir);
1321 audit_inode_child(victim, dir);
1322
1323 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1324 if (error)
1325 return error;
1326 if (IS_APPEND(dir))
1327 return -EPERM;
1328 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1329 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1330 return -EPERM;
1331 if (isdir) {
1332 if (!S_ISDIR(victim->d_inode->i_mode))
1333 return -ENOTDIR;
1334 if (IS_ROOT(victim))
1335 return -EBUSY;
1336 } else if (S_ISDIR(victim->d_inode->i_mode))
1337 return -EISDIR;
1338 if (IS_DEADDIR(dir))
1339 return -ENOENT;
1340 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1341 return -EBUSY;
1342 return 0;
1343 }
1344
1345 /* Check whether we can create an object with dentry child in directory
1346 * dir.
1347 * 1. We can't do it if child already exists (open has special treatment for
1348 * this case, but since we are inlined it's OK)
1349 * 2. We can't do it if dir is read-only (done in permission())
1350 * 3. We should have write and exec permissions on dir
1351 * 4. We can't do it if dir is immutable (done in permission())
1352 */
1353 static inline int may_create(struct inode *dir, struct dentry *child)
1354 {
1355 if (child->d_inode)
1356 return -EEXIST;
1357 if (IS_DEADDIR(dir))
1358 return -ENOENT;
1359 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1360 }
1361
1362 /*
1363 * p1 and p2 should be directories on the same fs.
1364 */
1365 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1366 {
1367 struct dentry *p;
1368
1369 if (p1 == p2) {
1370 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1371 return NULL;
1372 }
1373
1374 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1375
1376 p = d_ancestor(p2, p1);
1377 if (p) {
1378 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1379 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1380 return p;
1381 }
1382
1383 p = d_ancestor(p1, p2);
1384 if (p) {
1385 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1386 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1387 return p;
1388 }
1389
1390 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1391 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1392 return NULL;
1393 }
1394
1395 void unlock_rename(struct dentry *p1, struct dentry *p2)
1396 {
1397 mutex_unlock(&p1->d_inode->i_mutex);
1398 if (p1 != p2) {
1399 mutex_unlock(&p2->d_inode->i_mutex);
1400 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1401 }
1402 }
1403
1404 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1405 struct nameidata *nd)
1406 {
1407 int error = may_create(dir, dentry);
1408
1409 if (error)
1410 return error;
1411
1412 if (!dir->i_op->create)
1413 return -EACCES; /* shouldn't it be ENOSYS? */
1414 mode &= S_IALLUGO;
1415 mode |= S_IFREG;
1416 error = security_inode_create(dir, dentry, mode);
1417 if (error)
1418 return error;
1419 vfs_dq_init(dir);
1420 error = dir->i_op->create(dir, dentry, mode, nd);
1421 if (!error)
1422 fsnotify_create(dir, dentry);
1423 return error;
1424 }
1425
1426 int may_open(struct path *path, int acc_mode, int flag)
1427 {
1428 struct dentry *dentry = path->dentry;
1429 struct inode *inode = dentry->d_inode;
1430 int error;
1431
1432 if (!inode)
1433 return -ENOENT;
1434
1435 switch (inode->i_mode & S_IFMT) {
1436 case S_IFLNK:
1437 return -ELOOP;
1438 case S_IFDIR:
1439 if (acc_mode & MAY_WRITE)
1440 return -EISDIR;
1441 break;
1442 case S_IFBLK:
1443 case S_IFCHR:
1444 if (path->mnt->mnt_flags & MNT_NODEV)
1445 return -EACCES;
1446 /*FALLTHRU*/
1447 case S_IFIFO:
1448 case S_IFSOCK:
1449 flag &= ~O_TRUNC;
1450 break;
1451 }
1452
1453 error = inode_permission(inode, acc_mode);
1454 if (error)
1455 return error;
1456
1457 /*
1458 * An append-only file must be opened in append mode for writing.
1459 */
1460 if (IS_APPEND(inode)) {
1461 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1462 return -EPERM;
1463 if (flag & O_TRUNC)
1464 return -EPERM;
1465 }
1466
1467 /* O_NOATIME can only be set by the owner or superuser */
1468 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1469 return -EPERM;
1470
1471 /*
1472 * Ensure there are no outstanding leases on the file.
1473 */
1474 return break_lease(inode, flag);
1475 }
1476
1477 static int handle_truncate(struct path *path)
1478 {
1479 struct inode *inode = path->dentry->d_inode;
1480 int error = get_write_access(inode);
1481 if (error)
1482 return error;
1483 /*
1484 * Refuse to truncate files with mandatory locks held on them.
1485 */
1486 error = locks_verify_locked(inode);
1487 if (!error)
1488 error = security_path_truncate(path, 0,
1489 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1490 if (!error) {
1491 error = do_truncate(path->dentry, 0,
1492 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1493 NULL);
1494 }
1495 put_write_access(inode);
1496 return error;
1497 }
1498
1499 /*
1500 * Be careful about ever adding any more callers of this
1501 * function. Its flags must be in the namei format, not
1502 * what get passed to sys_open().
1503 */
1504 static int __open_namei_create(struct nameidata *nd, struct path *path,
1505 int open_flag, int mode)
1506 {
1507 int error;
1508 struct dentry *dir = nd->path.dentry;
1509
1510 if (!IS_POSIXACL(dir->d_inode))
1511 mode &= ~current_umask();
1512 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1513 if (error)
1514 goto out_unlock;
1515 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1516 out_unlock:
1517 mutex_unlock(&dir->d_inode->i_mutex);
1518 dput(nd->path.dentry);
1519 nd->path.dentry = path->dentry;
1520 if (error)
1521 return error;
1522 /* Don't check for write permission, don't truncate */
1523 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1524 }
1525
1526 /*
1527 * Note that while the flag value (low two bits) for sys_open means:
1528 * 00 - read-only
1529 * 01 - write-only
1530 * 10 - read-write
1531 * 11 - special
1532 * it is changed into
1533 * 00 - no permissions needed
1534 * 01 - read-permission
1535 * 10 - write-permission
1536 * 11 - read-write
1537 * for the internal routines (ie open_namei()/follow_link() etc)
1538 * This is more logical, and also allows the 00 "no perm needed"
1539 * to be used for symlinks (where the permissions are checked
1540 * later).
1541 *
1542 */
1543 static inline int open_to_namei_flags(int flag)
1544 {
1545 if ((flag+1) & O_ACCMODE)
1546 flag++;
1547 return flag;
1548 }
1549
1550 static int open_will_truncate(int flag, struct inode *inode)
1551 {
1552 /*
1553 * We'll never write to the fs underlying
1554 * a device file.
1555 */
1556 if (special_file(inode->i_mode))
1557 return 0;
1558 return (flag & O_TRUNC);
1559 }
1560
1561 static struct file *finish_open(struct nameidata *nd,
1562 int open_flag, int acc_mode)
1563 {
1564 struct file *filp;
1565 int will_truncate;
1566 int error;
1567
1568 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1569 if (will_truncate) {
1570 error = mnt_want_write(nd->path.mnt);
1571 if (error)
1572 goto exit;
1573 }
1574 error = may_open(&nd->path, acc_mode, open_flag);
1575 if (error) {
1576 if (will_truncate)
1577 mnt_drop_write(nd->path.mnt);
1578 goto exit;
1579 }
1580 filp = nameidata_to_filp(nd);
1581 if (!IS_ERR(filp)) {
1582 error = ima_file_check(filp, acc_mode);
1583 if (error) {
1584 fput(filp);
1585 filp = ERR_PTR(error);
1586 }
1587 }
1588 if (!IS_ERR(filp)) {
1589 if (acc_mode & MAY_WRITE)
1590 vfs_dq_init(nd->path.dentry->d_inode);
1591
1592 if (will_truncate) {
1593 error = handle_truncate(&nd->path);
1594 if (error) {
1595 fput(filp);
1596 filp = ERR_PTR(error);
1597 }
1598 }
1599 }
1600 /*
1601 * It is now safe to drop the mnt write
1602 * because the filp has had a write taken
1603 * on its behalf.
1604 */
1605 if (will_truncate)
1606 mnt_drop_write(nd->path.mnt);
1607 return filp;
1608
1609 exit:
1610 if (!IS_ERR(nd->intent.open.file))
1611 release_open_intent(nd);
1612 path_put(&nd->path);
1613 return ERR_PTR(error);
1614 }
1615
1616 static struct file *do_last(struct nameidata *nd, struct path *path,
1617 int open_flag, int acc_mode,
1618 int mode, const char *pathname,
1619 int *want_dir)
1620 {
1621 struct dentry *dir = nd->path.dentry;
1622 struct file *filp;
1623 int error = -EISDIR;
1624
1625 switch (nd->last_type) {
1626 case LAST_DOTDOT:
1627 follow_dotdot(nd);
1628 dir = nd->path.dentry;
1629 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1630 if (!dir->d_op->d_revalidate(dir, nd)) {
1631 error = -ESTALE;
1632 goto exit;
1633 }
1634 }
1635 /* fallthrough */
1636 case LAST_DOT:
1637 case LAST_ROOT:
1638 if (open_flag & O_CREAT)
1639 goto exit;
1640 /* fallthrough */
1641 case LAST_BIND:
1642 audit_inode(pathname, dir);
1643 goto ok;
1644 }
1645
1646 /* trailing slashes? */
1647 if (nd->last.name[nd->last.len]) {
1648 if (open_flag & O_CREAT)
1649 goto exit;
1650 *want_dir = 1;
1651 }
1652
1653 /* just plain open? */
1654 if (!(open_flag & O_CREAT)) {
1655 error = do_lookup(nd, &nd->last, path);
1656 if (error)
1657 goto exit;
1658 error = -ENOENT;
1659 if (!path->dentry->d_inode)
1660 goto exit_dput;
1661 if (path->dentry->d_inode->i_op->follow_link)
1662 return NULL;
1663 error = -ENOTDIR;
1664 if (*want_dir & !path->dentry->d_inode->i_op->lookup)
1665 goto exit_dput;
1666 path_to_nameidata(path, nd);
1667 audit_inode(pathname, nd->path.dentry);
1668 goto ok;
1669 }
1670
1671 /* OK, it's O_CREAT */
1672 mutex_lock(&dir->d_inode->i_mutex);
1673
1674 path->dentry = lookup_hash(nd);
1675 path->mnt = nd->path.mnt;
1676
1677 error = PTR_ERR(path->dentry);
1678 if (IS_ERR(path->dentry)) {
1679 mutex_unlock(&dir->d_inode->i_mutex);
1680 goto exit;
1681 }
1682
1683 if (IS_ERR(nd->intent.open.file)) {
1684 error = PTR_ERR(nd->intent.open.file);
1685 goto exit_mutex_unlock;
1686 }
1687
1688 /* Negative dentry, just create the file */
1689 if (!path->dentry->d_inode) {
1690 /*
1691 * This write is needed to ensure that a
1692 * ro->rw transition does not occur between
1693 * the time when the file is created and when
1694 * a permanent write count is taken through
1695 * the 'struct file' in nameidata_to_filp().
1696 */
1697 error = mnt_want_write(nd->path.mnt);
1698 if (error)
1699 goto exit_mutex_unlock;
1700 error = __open_namei_create(nd, path, open_flag, mode);
1701 if (error) {
1702 mnt_drop_write(nd->path.mnt);
1703 goto exit;
1704 }
1705 filp = nameidata_to_filp(nd);
1706 mnt_drop_write(nd->path.mnt);
1707 if (!IS_ERR(filp)) {
1708 error = ima_file_check(filp, acc_mode);
1709 if (error) {
1710 fput(filp);
1711 filp = ERR_PTR(error);
1712 }
1713 }
1714 return filp;
1715 }
1716
1717 /*
1718 * It already exists.
1719 */
1720 mutex_unlock(&dir->d_inode->i_mutex);
1721 audit_inode(pathname, path->dentry);
1722
1723 error = -EEXIST;
1724 if (open_flag & O_EXCL)
1725 goto exit_dput;
1726
1727 if (__follow_mount(path)) {
1728 error = -ELOOP;
1729 if (open_flag & O_NOFOLLOW)
1730 goto exit_dput;
1731 }
1732
1733 error = -ENOENT;
1734 if (!path->dentry->d_inode)
1735 goto exit_dput;
1736
1737 if (path->dentry->d_inode->i_op->follow_link)
1738 return NULL;
1739
1740 path_to_nameidata(path, nd);
1741 error = -EISDIR;
1742 if (S_ISDIR(path->dentry->d_inode->i_mode))
1743 goto exit;
1744 ok:
1745 filp = finish_open(nd, open_flag, acc_mode);
1746 return filp;
1747
1748 exit_mutex_unlock:
1749 mutex_unlock(&dir->d_inode->i_mutex);
1750 exit_dput:
1751 path_put_conditional(path, nd);
1752 exit:
1753 if (!IS_ERR(nd->intent.open.file))
1754 release_open_intent(nd);
1755 path_put(&nd->path);
1756 return ERR_PTR(error);
1757 }
1758
1759 /*
1760 * Note that the low bits of the passed in "open_flag"
1761 * are not the same as in the local variable "flag". See
1762 * open_to_namei_flags() for more details.
1763 */
1764 struct file *do_filp_open(int dfd, const char *pathname,
1765 int open_flag, int mode, int acc_mode)
1766 {
1767 struct file *filp;
1768 struct nameidata nd;
1769 int error;
1770 struct path path;
1771 int count = 0;
1772 int flag = open_to_namei_flags(open_flag);
1773 int force_reval = 0;
1774 int want_dir = open_flag & O_DIRECTORY;
1775
1776 if (!(open_flag & O_CREAT))
1777 mode = 0;
1778
1779 /*
1780 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1781 * check for O_DSYNC if the need any syncing at all we enforce it's
1782 * always set instead of having to deal with possibly weird behaviour
1783 * for malicious applications setting only __O_SYNC.
1784 */
1785 if (open_flag & __O_SYNC)
1786 open_flag |= O_DSYNC;
1787
1788 if (!acc_mode)
1789 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1790
1791 /* O_TRUNC implies we need access checks for write permissions */
1792 if (open_flag & O_TRUNC)
1793 acc_mode |= MAY_WRITE;
1794
1795 /* Allow the LSM permission hook to distinguish append
1796 access from general write access. */
1797 if (open_flag & O_APPEND)
1798 acc_mode |= MAY_APPEND;
1799
1800 /* find the parent */
1801 reval:
1802 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1803 if (error)
1804 return ERR_PTR(error);
1805 if (force_reval)
1806 nd.flags |= LOOKUP_REVAL;
1807
1808 current->total_link_count = 0;
1809 error = link_path_walk(pathname, &nd);
1810 if (error) {
1811 filp = ERR_PTR(error);
1812 goto out;
1813 }
1814 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1815 audit_inode(pathname, nd.path.dentry);
1816
1817 /*
1818 * We have the parent and last component.
1819 */
1820
1821 error = -ENFILE;
1822 filp = get_empty_filp();
1823 if (filp == NULL)
1824 goto exit_parent;
1825 nd.intent.open.file = filp;
1826 filp->f_flags = open_flag;
1827 nd.intent.open.flags = flag;
1828 nd.intent.open.create_mode = mode;
1829 nd.flags &= ~LOOKUP_PARENT;
1830 nd.flags |= LOOKUP_OPEN;
1831 if (open_flag & O_CREAT) {
1832 nd.flags |= LOOKUP_CREATE;
1833 if (open_flag & O_EXCL)
1834 nd.flags |= LOOKUP_EXCL;
1835 }
1836 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname, &want_dir);
1837 while (unlikely(!filp)) { /* trailing symlink */
1838 struct path holder;
1839 struct inode *inode = path.dentry->d_inode;
1840 void *cookie;
1841 error = -ELOOP;
1842 /* S_ISDIR part is a temporary automount kludge */
1843 if ((open_flag & O_NOFOLLOW) && !S_ISDIR(inode->i_mode))
1844 goto exit_dput;
1845 if (count++ == 32)
1846 goto exit_dput;
1847 /*
1848 * This is subtle. Instead of calling do_follow_link() we do
1849 * the thing by hands. The reason is that this way we have zero
1850 * link_count and path_walk() (called from ->follow_link)
1851 * honoring LOOKUP_PARENT. After that we have the parent and
1852 * last component, i.e. we are in the same situation as after
1853 * the first path_walk(). Well, almost - if the last component
1854 * is normal we get its copy stored in nd->last.name and we will
1855 * have to putname() it when we are done. Procfs-like symlinks
1856 * just set LAST_BIND.
1857 */
1858 nd.flags |= LOOKUP_PARENT;
1859 error = security_inode_follow_link(path.dentry, &nd);
1860 if (error)
1861 goto exit_dput;
1862 error = __do_follow_link(&path, &nd, &cookie);
1863 if (unlikely(error)) {
1864 /* nd.path had been dropped */
1865 if (!IS_ERR(cookie) && inode->i_op->put_link)
1866 inode->i_op->put_link(path.dentry, &nd, cookie);
1867 path_put(&path);
1868 release_open_intent(&nd);
1869 filp = ERR_PTR(error);
1870 goto out;
1871 }
1872 holder = path;
1873 nd.flags &= ~LOOKUP_PARENT;
1874 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname, &want_dir);
1875 if (inode->i_op->put_link)
1876 inode->i_op->put_link(holder.dentry, &nd, cookie);
1877 path_put(&holder);
1878 }
1879 out:
1880 if (nd.root.mnt)
1881 path_put(&nd.root);
1882 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1883 force_reval = 1;
1884 goto reval;
1885 }
1886 return filp;
1887
1888 exit_dput:
1889 path_put_conditional(&path, &nd);
1890 if (!IS_ERR(nd.intent.open.file))
1891 release_open_intent(&nd);
1892 exit_parent:
1893 path_put(&nd.path);
1894 filp = ERR_PTR(error);
1895 goto out;
1896 }
1897
1898 /**
1899 * filp_open - open file and return file pointer
1900 *
1901 * @filename: path to open
1902 * @flags: open flags as per the open(2) second argument
1903 * @mode: mode for the new file if O_CREAT is set, else ignored
1904 *
1905 * This is the helper to open a file from kernelspace if you really
1906 * have to. But in generally you should not do this, so please move
1907 * along, nothing to see here..
1908 */
1909 struct file *filp_open(const char *filename, int flags, int mode)
1910 {
1911 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1912 }
1913 EXPORT_SYMBOL(filp_open);
1914
1915 /**
1916 * lookup_create - lookup a dentry, creating it if it doesn't exist
1917 * @nd: nameidata info
1918 * @is_dir: directory flag
1919 *
1920 * Simple function to lookup and return a dentry and create it
1921 * if it doesn't exist. Is SMP-safe.
1922 *
1923 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1924 */
1925 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1926 {
1927 struct dentry *dentry = ERR_PTR(-EEXIST);
1928
1929 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1930 /*
1931 * Yucky last component or no last component at all?
1932 * (foo/., foo/.., /////)
1933 */
1934 if (nd->last_type != LAST_NORM)
1935 goto fail;
1936 nd->flags &= ~LOOKUP_PARENT;
1937 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1938 nd->intent.open.flags = O_EXCL;
1939
1940 /*
1941 * Do the final lookup.
1942 */
1943 dentry = lookup_hash(nd);
1944 if (IS_ERR(dentry))
1945 goto fail;
1946
1947 if (dentry->d_inode)
1948 goto eexist;
1949 /*
1950 * Special case - lookup gave negative, but... we had foo/bar/
1951 * From the vfs_mknod() POV we just have a negative dentry -
1952 * all is fine. Let's be bastards - you had / on the end, you've
1953 * been asking for (non-existent) directory. -ENOENT for you.
1954 */
1955 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1956 dput(dentry);
1957 dentry = ERR_PTR(-ENOENT);
1958 }
1959 return dentry;
1960 eexist:
1961 dput(dentry);
1962 dentry = ERR_PTR(-EEXIST);
1963 fail:
1964 return dentry;
1965 }
1966 EXPORT_SYMBOL_GPL(lookup_create);
1967
1968 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1969 {
1970 int error = may_create(dir, dentry);
1971
1972 if (error)
1973 return error;
1974
1975 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1976 return -EPERM;
1977
1978 if (!dir->i_op->mknod)
1979 return -EPERM;
1980
1981 error = devcgroup_inode_mknod(mode, dev);
1982 if (error)
1983 return error;
1984
1985 error = security_inode_mknod(dir, dentry, mode, dev);
1986 if (error)
1987 return error;
1988
1989 vfs_dq_init(dir);
1990 error = dir->i_op->mknod(dir, dentry, mode, dev);
1991 if (!error)
1992 fsnotify_create(dir, dentry);
1993 return error;
1994 }
1995
1996 static int may_mknod(mode_t mode)
1997 {
1998 switch (mode & S_IFMT) {
1999 case S_IFREG:
2000 case S_IFCHR:
2001 case S_IFBLK:
2002 case S_IFIFO:
2003 case S_IFSOCK:
2004 case 0: /* zero mode translates to S_IFREG */
2005 return 0;
2006 case S_IFDIR:
2007 return -EPERM;
2008 default:
2009 return -EINVAL;
2010 }
2011 }
2012
2013 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2014 unsigned, dev)
2015 {
2016 int error;
2017 char *tmp;
2018 struct dentry *dentry;
2019 struct nameidata nd;
2020
2021 if (S_ISDIR(mode))
2022 return -EPERM;
2023
2024 error = user_path_parent(dfd, filename, &nd, &tmp);
2025 if (error)
2026 return error;
2027
2028 dentry = lookup_create(&nd, 0);
2029 if (IS_ERR(dentry)) {
2030 error = PTR_ERR(dentry);
2031 goto out_unlock;
2032 }
2033 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2034 mode &= ~current_umask();
2035 error = may_mknod(mode);
2036 if (error)
2037 goto out_dput;
2038 error = mnt_want_write(nd.path.mnt);
2039 if (error)
2040 goto out_dput;
2041 error = security_path_mknod(&nd.path, dentry, mode, dev);
2042 if (error)
2043 goto out_drop_write;
2044 switch (mode & S_IFMT) {
2045 case 0: case S_IFREG:
2046 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2047 break;
2048 case S_IFCHR: case S_IFBLK:
2049 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2050 new_decode_dev(dev));
2051 break;
2052 case S_IFIFO: case S_IFSOCK:
2053 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2054 break;
2055 }
2056 out_drop_write:
2057 mnt_drop_write(nd.path.mnt);
2058 out_dput:
2059 dput(dentry);
2060 out_unlock:
2061 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2062 path_put(&nd.path);
2063 putname(tmp);
2064
2065 return error;
2066 }
2067
2068 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2069 {
2070 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2071 }
2072
2073 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2074 {
2075 int error = may_create(dir, dentry);
2076
2077 if (error)
2078 return error;
2079
2080 if (!dir->i_op->mkdir)
2081 return -EPERM;
2082
2083 mode &= (S_IRWXUGO|S_ISVTX);
2084 error = security_inode_mkdir(dir, dentry, mode);
2085 if (error)
2086 return error;
2087
2088 vfs_dq_init(dir);
2089 error = dir->i_op->mkdir(dir, dentry, mode);
2090 if (!error)
2091 fsnotify_mkdir(dir, dentry);
2092 return error;
2093 }
2094
2095 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2096 {
2097 int error = 0;
2098 char * tmp;
2099 struct dentry *dentry;
2100 struct nameidata nd;
2101
2102 error = user_path_parent(dfd, pathname, &nd, &tmp);
2103 if (error)
2104 goto out_err;
2105
2106 dentry = lookup_create(&nd, 1);
2107 error = PTR_ERR(dentry);
2108 if (IS_ERR(dentry))
2109 goto out_unlock;
2110
2111 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2112 mode &= ~current_umask();
2113 error = mnt_want_write(nd.path.mnt);
2114 if (error)
2115 goto out_dput;
2116 error = security_path_mkdir(&nd.path, dentry, mode);
2117 if (error)
2118 goto out_drop_write;
2119 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2120 out_drop_write:
2121 mnt_drop_write(nd.path.mnt);
2122 out_dput:
2123 dput(dentry);
2124 out_unlock:
2125 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2126 path_put(&nd.path);
2127 putname(tmp);
2128 out_err:
2129 return error;
2130 }
2131
2132 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2133 {
2134 return sys_mkdirat(AT_FDCWD, pathname, mode);
2135 }
2136
2137 /*
2138 * We try to drop the dentry early: we should have
2139 * a usage count of 2 if we're the only user of this
2140 * dentry, and if that is true (possibly after pruning
2141 * the dcache), then we drop the dentry now.
2142 *
2143 * A low-level filesystem can, if it choses, legally
2144 * do a
2145 *
2146 * if (!d_unhashed(dentry))
2147 * return -EBUSY;
2148 *
2149 * if it cannot handle the case of removing a directory
2150 * that is still in use by something else..
2151 */
2152 void dentry_unhash(struct dentry *dentry)
2153 {
2154 dget(dentry);
2155 shrink_dcache_parent(dentry);
2156 spin_lock(&dcache_lock);
2157 spin_lock(&dentry->d_lock);
2158 if (atomic_read(&dentry->d_count) == 2)
2159 __d_drop(dentry);
2160 spin_unlock(&dentry->d_lock);
2161 spin_unlock(&dcache_lock);
2162 }
2163
2164 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2165 {
2166 int error = may_delete(dir, dentry, 1);
2167
2168 if (error)
2169 return error;
2170
2171 if (!dir->i_op->rmdir)
2172 return -EPERM;
2173
2174 vfs_dq_init(dir);
2175
2176 mutex_lock(&dentry->d_inode->i_mutex);
2177 dentry_unhash(dentry);
2178 if (d_mountpoint(dentry))
2179 error = -EBUSY;
2180 else {
2181 error = security_inode_rmdir(dir, dentry);
2182 if (!error) {
2183 error = dir->i_op->rmdir(dir, dentry);
2184 if (!error)
2185 dentry->d_inode->i_flags |= S_DEAD;
2186 }
2187 }
2188 mutex_unlock(&dentry->d_inode->i_mutex);
2189 if (!error) {
2190 d_delete(dentry);
2191 }
2192 dput(dentry);
2193
2194 return error;
2195 }
2196
2197 static long do_rmdir(int dfd, const char __user *pathname)
2198 {
2199 int error = 0;
2200 char * name;
2201 struct dentry *dentry;
2202 struct nameidata nd;
2203
2204 error = user_path_parent(dfd, pathname, &nd, &name);
2205 if (error)
2206 return error;
2207
2208 switch(nd.last_type) {
2209 case LAST_DOTDOT:
2210 error = -ENOTEMPTY;
2211 goto exit1;
2212 case LAST_DOT:
2213 error = -EINVAL;
2214 goto exit1;
2215 case LAST_ROOT:
2216 error = -EBUSY;
2217 goto exit1;
2218 }
2219
2220 nd.flags &= ~LOOKUP_PARENT;
2221
2222 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2223 dentry = lookup_hash(&nd);
2224 error = PTR_ERR(dentry);
2225 if (IS_ERR(dentry))
2226 goto exit2;
2227 error = mnt_want_write(nd.path.mnt);
2228 if (error)
2229 goto exit3;
2230 error = security_path_rmdir(&nd.path, dentry);
2231 if (error)
2232 goto exit4;
2233 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2234 exit4:
2235 mnt_drop_write(nd.path.mnt);
2236 exit3:
2237 dput(dentry);
2238 exit2:
2239 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2240 exit1:
2241 path_put(&nd.path);
2242 putname(name);
2243 return error;
2244 }
2245
2246 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2247 {
2248 return do_rmdir(AT_FDCWD, pathname);
2249 }
2250
2251 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2252 {
2253 int error = may_delete(dir, dentry, 0);
2254
2255 if (error)
2256 return error;
2257
2258 if (!dir->i_op->unlink)
2259 return -EPERM;
2260
2261 vfs_dq_init(dir);
2262
2263 mutex_lock(&dentry->d_inode->i_mutex);
2264 if (d_mountpoint(dentry))
2265 error = -EBUSY;
2266 else {
2267 error = security_inode_unlink(dir, dentry);
2268 if (!error) {
2269 error = dir->i_op->unlink(dir, dentry);
2270 if (!error)
2271 dentry->d_inode->i_flags |= S_DEAD;
2272 }
2273 }
2274 mutex_unlock(&dentry->d_inode->i_mutex);
2275
2276 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2277 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2278 fsnotify_link_count(dentry->d_inode);
2279 d_delete(dentry);
2280 }
2281
2282 return error;
2283 }
2284
2285 /*
2286 * Make sure that the actual truncation of the file will occur outside its
2287 * directory's i_mutex. Truncate can take a long time if there is a lot of
2288 * writeout happening, and we don't want to prevent access to the directory
2289 * while waiting on the I/O.
2290 */
2291 static long do_unlinkat(int dfd, const char __user *pathname)
2292 {
2293 int error;
2294 char *name;
2295 struct dentry *dentry;
2296 struct nameidata nd;
2297 struct inode *inode = NULL;
2298
2299 error = user_path_parent(dfd, pathname, &nd, &name);
2300 if (error)
2301 return error;
2302
2303 error = -EISDIR;
2304 if (nd.last_type != LAST_NORM)
2305 goto exit1;
2306
2307 nd.flags &= ~LOOKUP_PARENT;
2308
2309 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2310 dentry = lookup_hash(&nd);
2311 error = PTR_ERR(dentry);
2312 if (!IS_ERR(dentry)) {
2313 /* Why not before? Because we want correct error value */
2314 if (nd.last.name[nd.last.len])
2315 goto slashes;
2316 inode = dentry->d_inode;
2317 if (inode)
2318 atomic_inc(&inode->i_count);
2319 error = mnt_want_write(nd.path.mnt);
2320 if (error)
2321 goto exit2;
2322 error = security_path_unlink(&nd.path, dentry);
2323 if (error)
2324 goto exit3;
2325 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2326 exit3:
2327 mnt_drop_write(nd.path.mnt);
2328 exit2:
2329 dput(dentry);
2330 }
2331 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2332 if (inode)
2333 iput(inode); /* truncate the inode here */
2334 exit1:
2335 path_put(&nd.path);
2336 putname(name);
2337 return error;
2338
2339 slashes:
2340 error = !dentry->d_inode ? -ENOENT :
2341 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2342 goto exit2;
2343 }
2344
2345 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2346 {
2347 if ((flag & ~AT_REMOVEDIR) != 0)
2348 return -EINVAL;
2349
2350 if (flag & AT_REMOVEDIR)
2351 return do_rmdir(dfd, pathname);
2352
2353 return do_unlinkat(dfd, pathname);
2354 }
2355
2356 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2357 {
2358 return do_unlinkat(AT_FDCWD, pathname);
2359 }
2360
2361 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2362 {
2363 int error = may_create(dir, dentry);
2364
2365 if (error)
2366 return error;
2367
2368 if (!dir->i_op->symlink)
2369 return -EPERM;
2370
2371 error = security_inode_symlink(dir, dentry, oldname);
2372 if (error)
2373 return error;
2374
2375 vfs_dq_init(dir);
2376 error = dir->i_op->symlink(dir, dentry, oldname);
2377 if (!error)
2378 fsnotify_create(dir, dentry);
2379 return error;
2380 }
2381
2382 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2383 int, newdfd, const char __user *, newname)
2384 {
2385 int error;
2386 char *from;
2387 char *to;
2388 struct dentry *dentry;
2389 struct nameidata nd;
2390
2391 from = getname(oldname);
2392 if (IS_ERR(from))
2393 return PTR_ERR(from);
2394
2395 error = user_path_parent(newdfd, newname, &nd, &to);
2396 if (error)
2397 goto out_putname;
2398
2399 dentry = lookup_create(&nd, 0);
2400 error = PTR_ERR(dentry);
2401 if (IS_ERR(dentry))
2402 goto out_unlock;
2403
2404 error = mnt_want_write(nd.path.mnt);
2405 if (error)
2406 goto out_dput;
2407 error = security_path_symlink(&nd.path, dentry, from);
2408 if (error)
2409 goto out_drop_write;
2410 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2411 out_drop_write:
2412 mnt_drop_write(nd.path.mnt);
2413 out_dput:
2414 dput(dentry);
2415 out_unlock:
2416 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2417 path_put(&nd.path);
2418 putname(to);
2419 out_putname:
2420 putname(from);
2421 return error;
2422 }
2423
2424 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2425 {
2426 return sys_symlinkat(oldname, AT_FDCWD, newname);
2427 }
2428
2429 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2430 {
2431 struct inode *inode = old_dentry->d_inode;
2432 int error;
2433
2434 if (!inode)
2435 return -ENOENT;
2436
2437 error = may_create(dir, new_dentry);
2438 if (error)
2439 return error;
2440
2441 if (dir->i_sb != inode->i_sb)
2442 return -EXDEV;
2443
2444 /*
2445 * A link to an append-only or immutable file cannot be created.
2446 */
2447 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2448 return -EPERM;
2449 if (!dir->i_op->link)
2450 return -EPERM;
2451 if (S_ISDIR(inode->i_mode))
2452 return -EPERM;
2453
2454 error = security_inode_link(old_dentry, dir, new_dentry);
2455 if (error)
2456 return error;
2457
2458 mutex_lock(&inode->i_mutex);
2459 vfs_dq_init(dir);
2460 error = dir->i_op->link(old_dentry, dir, new_dentry);
2461 mutex_unlock(&inode->i_mutex);
2462 if (!error)
2463 fsnotify_link(dir, inode, new_dentry);
2464 return error;
2465 }
2466
2467 /*
2468 * Hardlinks are often used in delicate situations. We avoid
2469 * security-related surprises by not following symlinks on the
2470 * newname. --KAB
2471 *
2472 * We don't follow them on the oldname either to be compatible
2473 * with linux 2.0, and to avoid hard-linking to directories
2474 * and other special files. --ADM
2475 */
2476 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2477 int, newdfd, const char __user *, newname, int, flags)
2478 {
2479 struct dentry *new_dentry;
2480 struct nameidata nd;
2481 struct path old_path;
2482 int error;
2483 char *to;
2484
2485 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2486 return -EINVAL;
2487
2488 error = user_path_at(olddfd, oldname,
2489 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2490 &old_path);
2491 if (error)
2492 return error;
2493
2494 error = user_path_parent(newdfd, newname, &nd, &to);
2495 if (error)
2496 goto out;
2497 error = -EXDEV;
2498 if (old_path.mnt != nd.path.mnt)
2499 goto out_release;
2500 new_dentry = lookup_create(&nd, 0);
2501 error = PTR_ERR(new_dentry);
2502 if (IS_ERR(new_dentry))
2503 goto out_unlock;
2504 error = mnt_want_write(nd.path.mnt);
2505 if (error)
2506 goto out_dput;
2507 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2508 if (error)
2509 goto out_drop_write;
2510 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2511 out_drop_write:
2512 mnt_drop_write(nd.path.mnt);
2513 out_dput:
2514 dput(new_dentry);
2515 out_unlock:
2516 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2517 out_release:
2518 path_put(&nd.path);
2519 putname(to);
2520 out:
2521 path_put(&old_path);
2522
2523 return error;
2524 }
2525
2526 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2527 {
2528 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2529 }
2530
2531 /*
2532 * The worst of all namespace operations - renaming directory. "Perverted"
2533 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2534 * Problems:
2535 * a) we can get into loop creation. Check is done in is_subdir().
2536 * b) race potential - two innocent renames can create a loop together.
2537 * That's where 4.4 screws up. Current fix: serialization on
2538 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2539 * story.
2540 * c) we have to lock _three_ objects - parents and victim (if it exists).
2541 * And that - after we got ->i_mutex on parents (until then we don't know
2542 * whether the target exists). Solution: try to be smart with locking
2543 * order for inodes. We rely on the fact that tree topology may change
2544 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2545 * move will be locked. Thus we can rank directories by the tree
2546 * (ancestors first) and rank all non-directories after them.
2547 * That works since everybody except rename does "lock parent, lookup,
2548 * lock child" and rename is under ->s_vfs_rename_mutex.
2549 * HOWEVER, it relies on the assumption that any object with ->lookup()
2550 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2551 * we'd better make sure that there's no link(2) for them.
2552 * d) some filesystems don't support opened-but-unlinked directories,
2553 * either because of layout or because they are not ready to deal with
2554 * all cases correctly. The latter will be fixed (taking this sort of
2555 * stuff into VFS), but the former is not going away. Solution: the same
2556 * trick as in rmdir().
2557 * e) conversion from fhandle to dentry may come in the wrong moment - when
2558 * we are removing the target. Solution: we will have to grab ->i_mutex
2559 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2560 * ->i_mutex on parents, which works but leads to some truely excessive
2561 * locking].
2562 */
2563 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2564 struct inode *new_dir, struct dentry *new_dentry)
2565 {
2566 int error = 0;
2567 struct inode *target;
2568
2569 /*
2570 * If we are going to change the parent - check write permissions,
2571 * we'll need to flip '..'.
2572 */
2573 if (new_dir != old_dir) {
2574 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2575 if (error)
2576 return error;
2577 }
2578
2579 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2580 if (error)
2581 return error;
2582
2583 target = new_dentry->d_inode;
2584 if (target) {
2585 mutex_lock(&target->i_mutex);
2586 dentry_unhash(new_dentry);
2587 }
2588 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2589 error = -EBUSY;
2590 else
2591 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2592 if (target) {
2593 if (!error)
2594 target->i_flags |= S_DEAD;
2595 mutex_unlock(&target->i_mutex);
2596 if (d_unhashed(new_dentry))
2597 d_rehash(new_dentry);
2598 dput(new_dentry);
2599 }
2600 if (!error)
2601 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2602 d_move(old_dentry,new_dentry);
2603 return error;
2604 }
2605
2606 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2607 struct inode *new_dir, struct dentry *new_dentry)
2608 {
2609 struct inode *target;
2610 int error;
2611
2612 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2613 if (error)
2614 return error;
2615
2616 dget(new_dentry);
2617 target = new_dentry->d_inode;
2618 if (target)
2619 mutex_lock(&target->i_mutex);
2620 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2621 error = -EBUSY;
2622 else
2623 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2624 if (!error) {
2625 if (target)
2626 target->i_flags |= S_DEAD;
2627 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2628 d_move(old_dentry, new_dentry);
2629 }
2630 if (target)
2631 mutex_unlock(&target->i_mutex);
2632 dput(new_dentry);
2633 return error;
2634 }
2635
2636 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2637 struct inode *new_dir, struct dentry *new_dentry)
2638 {
2639 int error;
2640 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2641 const char *old_name;
2642
2643 if (old_dentry->d_inode == new_dentry->d_inode)
2644 return 0;
2645
2646 error = may_delete(old_dir, old_dentry, is_dir);
2647 if (error)
2648 return error;
2649
2650 if (!new_dentry->d_inode)
2651 error = may_create(new_dir, new_dentry);
2652 else
2653 error = may_delete(new_dir, new_dentry, is_dir);
2654 if (error)
2655 return error;
2656
2657 if (!old_dir->i_op->rename)
2658 return -EPERM;
2659
2660 vfs_dq_init(old_dir);
2661 vfs_dq_init(new_dir);
2662
2663 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2664
2665 if (is_dir)
2666 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2667 else
2668 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2669 if (!error)
2670 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2671 new_dentry->d_inode, old_dentry);
2672 fsnotify_oldname_free(old_name);
2673
2674 return error;
2675 }
2676
2677 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2678 int, newdfd, const char __user *, newname)
2679 {
2680 struct dentry *old_dir, *new_dir;
2681 struct dentry *old_dentry, *new_dentry;
2682 struct dentry *trap;
2683 struct nameidata oldnd, newnd;
2684 char *from;
2685 char *to;
2686 int error;
2687
2688 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2689 if (error)
2690 goto exit;
2691
2692 error = user_path_parent(newdfd, newname, &newnd, &to);
2693 if (error)
2694 goto exit1;
2695
2696 error = -EXDEV;
2697 if (oldnd.path.mnt != newnd.path.mnt)
2698 goto exit2;
2699
2700 old_dir = oldnd.path.dentry;
2701 error = -EBUSY;
2702 if (oldnd.last_type != LAST_NORM)
2703 goto exit2;
2704
2705 new_dir = newnd.path.dentry;
2706 if (newnd.last_type != LAST_NORM)
2707 goto exit2;
2708
2709 oldnd.flags &= ~LOOKUP_PARENT;
2710 newnd.flags &= ~LOOKUP_PARENT;
2711 newnd.flags |= LOOKUP_RENAME_TARGET;
2712
2713 trap = lock_rename(new_dir, old_dir);
2714
2715 old_dentry = lookup_hash(&oldnd);
2716 error = PTR_ERR(old_dentry);
2717 if (IS_ERR(old_dentry))
2718 goto exit3;
2719 /* source must exist */
2720 error = -ENOENT;
2721 if (!old_dentry->d_inode)
2722 goto exit4;
2723 /* unless the source is a directory trailing slashes give -ENOTDIR */
2724 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2725 error = -ENOTDIR;
2726 if (oldnd.last.name[oldnd.last.len])
2727 goto exit4;
2728 if (newnd.last.name[newnd.last.len])
2729 goto exit4;
2730 }
2731 /* source should not be ancestor of target */
2732 error = -EINVAL;
2733 if (old_dentry == trap)
2734 goto exit4;
2735 new_dentry = lookup_hash(&newnd);
2736 error = PTR_ERR(new_dentry);
2737 if (IS_ERR(new_dentry))
2738 goto exit4;
2739 /* target should not be an ancestor of source */
2740 error = -ENOTEMPTY;
2741 if (new_dentry == trap)
2742 goto exit5;
2743
2744 error = mnt_want_write(oldnd.path.mnt);
2745 if (error)
2746 goto exit5;
2747 error = security_path_rename(&oldnd.path, old_dentry,
2748 &newnd.path, new_dentry);
2749 if (error)
2750 goto exit6;
2751 error = vfs_rename(old_dir->d_inode, old_dentry,
2752 new_dir->d_inode, new_dentry);
2753 exit6:
2754 mnt_drop_write(oldnd.path.mnt);
2755 exit5:
2756 dput(new_dentry);
2757 exit4:
2758 dput(old_dentry);
2759 exit3:
2760 unlock_rename(new_dir, old_dir);
2761 exit2:
2762 path_put(&newnd.path);
2763 putname(to);
2764 exit1:
2765 path_put(&oldnd.path);
2766 putname(from);
2767 exit:
2768 return error;
2769 }
2770
2771 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2772 {
2773 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2774 }
2775
2776 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2777 {
2778 int len;
2779
2780 len = PTR_ERR(link);
2781 if (IS_ERR(link))
2782 goto out;
2783
2784 len = strlen(link);
2785 if (len > (unsigned) buflen)
2786 len = buflen;
2787 if (copy_to_user(buffer, link, len))
2788 len = -EFAULT;
2789 out:
2790 return len;
2791 }
2792
2793 /*
2794 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2795 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2796 * using) it for any given inode is up to filesystem.
2797 */
2798 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2799 {
2800 struct nameidata nd;
2801 void *cookie;
2802 int res;
2803
2804 nd.depth = 0;
2805 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2806 if (IS_ERR(cookie))
2807 return PTR_ERR(cookie);
2808
2809 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2810 if (dentry->d_inode->i_op->put_link)
2811 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2812 return res;
2813 }
2814
2815 int vfs_follow_link(struct nameidata *nd, const char *link)
2816 {
2817 return __vfs_follow_link(nd, link);
2818 }
2819
2820 /* get the link contents into pagecache */
2821 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2822 {
2823 char *kaddr;
2824 struct page *page;
2825 struct address_space *mapping = dentry->d_inode->i_mapping;
2826 page = read_mapping_page(mapping, 0, NULL);
2827 if (IS_ERR(page))
2828 return (char*)page;
2829 *ppage = page;
2830 kaddr = kmap(page);
2831 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2832 return kaddr;
2833 }
2834
2835 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2836 {
2837 struct page *page = NULL;
2838 char *s = page_getlink(dentry, &page);
2839 int res = vfs_readlink(dentry,buffer,buflen,s);
2840 if (page) {
2841 kunmap(page);
2842 page_cache_release(page);
2843 }
2844 return res;
2845 }
2846
2847 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2848 {
2849 struct page *page = NULL;
2850 nd_set_link(nd, page_getlink(dentry, &page));
2851 return page;
2852 }
2853
2854 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2855 {
2856 struct page *page = cookie;
2857
2858 if (page) {
2859 kunmap(page);
2860 page_cache_release(page);
2861 }
2862 }
2863
2864 /*
2865 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2866 */
2867 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2868 {
2869 struct address_space *mapping = inode->i_mapping;
2870 struct page *page;
2871 void *fsdata;
2872 int err;
2873 char *kaddr;
2874 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2875 if (nofs)
2876 flags |= AOP_FLAG_NOFS;
2877
2878 retry:
2879 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2880 flags, &page, &fsdata);
2881 if (err)
2882 goto fail;
2883
2884 kaddr = kmap_atomic(page, KM_USER0);
2885 memcpy(kaddr, symname, len-1);
2886 kunmap_atomic(kaddr, KM_USER0);
2887
2888 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2889 page, fsdata);
2890 if (err < 0)
2891 goto fail;
2892 if (err < len-1)
2893 goto retry;
2894
2895 mark_inode_dirty(inode);
2896 return 0;
2897 fail:
2898 return err;
2899 }
2900
2901 int page_symlink(struct inode *inode, const char *symname, int len)
2902 {
2903 return __page_symlink(inode, symname, len,
2904 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2905 }
2906
2907 const struct inode_operations page_symlink_inode_operations = {
2908 .readlink = generic_readlink,
2909 .follow_link = page_follow_link_light,
2910 .put_link = page_put_link,
2911 };
2912
2913 EXPORT_SYMBOL(user_path_at);
2914 EXPORT_SYMBOL(follow_down);
2915 EXPORT_SYMBOL(follow_up);
2916 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2917 EXPORT_SYMBOL(getname);
2918 EXPORT_SYMBOL(lock_rename);
2919 EXPORT_SYMBOL(lookup_one_len);
2920 EXPORT_SYMBOL(page_follow_link_light);
2921 EXPORT_SYMBOL(page_put_link);
2922 EXPORT_SYMBOL(page_readlink);
2923 EXPORT_SYMBOL(__page_symlink);
2924 EXPORT_SYMBOL(page_symlink);
2925 EXPORT_SYMBOL(page_symlink_inode_operations);
2926 EXPORT_SYMBOL(path_lookup);
2927 EXPORT_SYMBOL(kern_path);
2928 EXPORT_SYMBOL(vfs_path_lookup);
2929 EXPORT_SYMBOL(inode_permission);
2930 EXPORT_SYMBOL(file_permission);
2931 EXPORT_SYMBOL(unlock_rename);
2932 EXPORT_SYMBOL(vfs_create);
2933 EXPORT_SYMBOL(vfs_follow_link);
2934 EXPORT_SYMBOL(vfs_link);
2935 EXPORT_SYMBOL(vfs_mkdir);
2936 EXPORT_SYMBOL(vfs_mknod);
2937 EXPORT_SYMBOL(generic_permission);
2938 EXPORT_SYMBOL(vfs_readlink);
2939 EXPORT_SYMBOL(vfs_rename);
2940 EXPORT_SYMBOL(vfs_rmdir);
2941 EXPORT_SYMBOL(vfs_symlink);
2942 EXPORT_SYMBOL(vfs_unlink);
2943 EXPORT_SYMBOL(dentry_unhash);
2944 EXPORT_SYMBOL(generic_readlink);
This page took 0.092693 seconds and 5 git commands to generate.