[PATCH vfs-2.6 6/6] vfs: add LOOKUP_RENAME_TARGET intent
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
188
189 if (current->fsuid == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask);
194 if (error == -EACCES)
195 goto check_capabilities;
196 else if (error != -EAGAIN)
197 return error;
198 }
199
200 if (in_group_p(inode->i_gid))
201 mode >>= 3;
202 }
203
204 /*
205 * If the DACs are ok we don't need any capability check.
206 */
207 if ((mask & ~mode) == 0)
208 return 0;
209
210 check_capabilities:
211 /*
212 * Read/write DACs are always overridable.
213 * Executable DACs are overridable if at least one exec bit is set.
214 */
215 if (!(mask & MAY_EXEC) ||
216 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
217 if (capable(CAP_DAC_OVERRIDE))
218 return 0;
219
220 /*
221 * Searching includes executable on directories, else just read.
222 */
223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 if (capable(CAP_DAC_READ_SEARCH))
225 return 0;
226
227 return -EACCES;
228 }
229
230 int inode_permission(struct inode *inode, int mask)
231 {
232 int retval;
233
234 if (mask & MAY_WRITE) {
235 umode_t mode = inode->i_mode;
236
237 /*
238 * Nobody gets write access to a read-only fs.
239 */
240 if (IS_RDONLY(inode) &&
241 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
242 return -EROFS;
243
244 /*
245 * Nobody gets write access to an immutable file.
246 */
247 if (IS_IMMUTABLE(inode))
248 return -EACCES;
249 }
250
251 /* Ordinary permission routines do not understand MAY_APPEND. */
252 if (inode->i_op && inode->i_op->permission) {
253 retval = inode->i_op->permission(inode, mask);
254 if (!retval) {
255 /*
256 * Exec permission on a regular file is denied if none
257 * of the execute bits are set.
258 *
259 * This check should be done by the ->permission()
260 * method.
261 */
262 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
263 !(inode->i_mode & S_IXUGO))
264 return -EACCES;
265 }
266 } else {
267 retval = generic_permission(inode, mask, NULL);
268 }
269 if (retval)
270 return retval;
271
272 retval = devcgroup_inode_permission(inode, mask);
273 if (retval)
274 return retval;
275
276 return security_inode_permission(inode,
277 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
278 }
279
280 /**
281 * vfs_permission - check for access rights to a given path
282 * @nd: lookup result that describes the path
283 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
284 *
285 * Used to check for read/write/execute permissions on a path.
286 * We use "fsuid" for this, letting us set arbitrary permissions
287 * for filesystem access without changing the "normal" uids which
288 * are used for other things.
289 */
290 int vfs_permission(struct nameidata *nd, int mask)
291 {
292 return inode_permission(nd->path.dentry->d_inode, mask);
293 }
294
295 /**
296 * file_permission - check for additional access rights to a given file
297 * @file: file to check access rights for
298 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299 *
300 * Used to check for read/write/execute permissions on an already opened
301 * file.
302 *
303 * Note:
304 * Do not use this function in new code. All access checks should
305 * be done using vfs_permission().
306 */
307 int file_permission(struct file *file, int mask)
308 {
309 return inode_permission(file->f_path.dentry->d_inode, mask);
310 }
311
312 /*
313 * get_write_access() gets write permission for a file.
314 * put_write_access() releases this write permission.
315 * This is used for regular files.
316 * We cannot support write (and maybe mmap read-write shared) accesses and
317 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
318 * can have the following values:
319 * 0: no writers, no VM_DENYWRITE mappings
320 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
321 * > 0: (i_writecount) users are writing to the file.
322 *
323 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
324 * except for the cases where we don't hold i_writecount yet. Then we need to
325 * use {get,deny}_write_access() - these functions check the sign and refuse
326 * to do the change if sign is wrong. Exclusion between them is provided by
327 * the inode->i_lock spinlock.
328 */
329
330 int get_write_access(struct inode * inode)
331 {
332 spin_lock(&inode->i_lock);
333 if (atomic_read(&inode->i_writecount) < 0) {
334 spin_unlock(&inode->i_lock);
335 return -ETXTBSY;
336 }
337 atomic_inc(&inode->i_writecount);
338 spin_unlock(&inode->i_lock);
339
340 return 0;
341 }
342
343 int deny_write_access(struct file * file)
344 {
345 struct inode *inode = file->f_path.dentry->d_inode;
346
347 spin_lock(&inode->i_lock);
348 if (atomic_read(&inode->i_writecount) > 0) {
349 spin_unlock(&inode->i_lock);
350 return -ETXTBSY;
351 }
352 atomic_dec(&inode->i_writecount);
353 spin_unlock(&inode->i_lock);
354
355 return 0;
356 }
357
358 /**
359 * path_get - get a reference to a path
360 * @path: path to get the reference to
361 *
362 * Given a path increment the reference count to the dentry and the vfsmount.
363 */
364 void path_get(struct path *path)
365 {
366 mntget(path->mnt);
367 dget(path->dentry);
368 }
369 EXPORT_SYMBOL(path_get);
370
371 /**
372 * path_put - put a reference to a path
373 * @path: path to put the reference to
374 *
375 * Given a path decrement the reference count to the dentry and the vfsmount.
376 */
377 void path_put(struct path *path)
378 {
379 dput(path->dentry);
380 mntput(path->mnt);
381 }
382 EXPORT_SYMBOL(path_put);
383
384 /**
385 * release_open_intent - free up open intent resources
386 * @nd: pointer to nameidata
387 */
388 void release_open_intent(struct nameidata *nd)
389 {
390 if (nd->intent.open.file->f_path.dentry == NULL)
391 put_filp(nd->intent.open.file);
392 else
393 fput(nd->intent.open.file);
394 }
395
396 static inline struct dentry *
397 do_revalidate(struct dentry *dentry, struct nameidata *nd)
398 {
399 int status = dentry->d_op->d_revalidate(dentry, nd);
400 if (unlikely(status <= 0)) {
401 /*
402 * The dentry failed validation.
403 * If d_revalidate returned 0 attempt to invalidate
404 * the dentry otherwise d_revalidate is asking us
405 * to return a fail status.
406 */
407 if (!status) {
408 if (!d_invalidate(dentry)) {
409 dput(dentry);
410 dentry = NULL;
411 }
412 } else {
413 dput(dentry);
414 dentry = ERR_PTR(status);
415 }
416 }
417 return dentry;
418 }
419
420 /*
421 * Internal lookup() using the new generic dcache.
422 * SMP-safe
423 */
424 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
425 {
426 struct dentry * dentry = __d_lookup(parent, name);
427
428 /* lockess __d_lookup may fail due to concurrent d_move()
429 * in some unrelated directory, so try with d_lookup
430 */
431 if (!dentry)
432 dentry = d_lookup(parent, name);
433
434 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
435 dentry = do_revalidate(dentry, nd);
436
437 return dentry;
438 }
439
440 /*
441 * Short-cut version of permission(), for calling by
442 * path_walk(), when dcache lock is held. Combines parts
443 * of permission() and generic_permission(), and tests ONLY for
444 * MAY_EXEC permission.
445 *
446 * If appropriate, check DAC only. If not appropriate, or
447 * short-cut DAC fails, then call permission() to do more
448 * complete permission check.
449 */
450 static int exec_permission_lite(struct inode *inode)
451 {
452 umode_t mode = inode->i_mode;
453
454 if (inode->i_op && inode->i_op->permission)
455 return -EAGAIN;
456
457 if (current->fsuid == inode->i_uid)
458 mode >>= 6;
459 else if (in_group_p(inode->i_gid))
460 mode >>= 3;
461
462 if (mode & MAY_EXEC)
463 goto ok;
464
465 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
466 goto ok;
467
468 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
469 goto ok;
470
471 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
472 goto ok;
473
474 return -EACCES;
475 ok:
476 return security_inode_permission(inode, MAY_EXEC);
477 }
478
479 /*
480 * This is called when everything else fails, and we actually have
481 * to go to the low-level filesystem to find out what we should do..
482 *
483 * We get the directory semaphore, and after getting that we also
484 * make sure that nobody added the entry to the dcache in the meantime..
485 * SMP-safe
486 */
487 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
488 {
489 struct dentry * result;
490 struct inode *dir = parent->d_inode;
491
492 mutex_lock(&dir->i_mutex);
493 /*
494 * First re-do the cached lookup just in case it was created
495 * while we waited for the directory semaphore..
496 *
497 * FIXME! This could use version numbering or similar to
498 * avoid unnecessary cache lookups.
499 *
500 * The "dcache_lock" is purely to protect the RCU list walker
501 * from concurrent renames at this point (we mustn't get false
502 * negatives from the RCU list walk here, unlike the optimistic
503 * fast walk).
504 *
505 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
506 */
507 result = d_lookup(parent, name);
508 if (!result) {
509 struct dentry *dentry;
510
511 /* Don't create child dentry for a dead directory. */
512 result = ERR_PTR(-ENOENT);
513 if (IS_DEADDIR(dir))
514 goto out_unlock;
515
516 dentry = d_alloc(parent, name);
517 result = ERR_PTR(-ENOMEM);
518 if (dentry) {
519 result = dir->i_op->lookup(dir, dentry, nd);
520 if (result)
521 dput(dentry);
522 else
523 result = dentry;
524 }
525 out_unlock:
526 mutex_unlock(&dir->i_mutex);
527 return result;
528 }
529
530 /*
531 * Uhhuh! Nasty case: the cache was re-populated while
532 * we waited on the semaphore. Need to revalidate.
533 */
534 mutex_unlock(&dir->i_mutex);
535 if (result->d_op && result->d_op->d_revalidate) {
536 result = do_revalidate(result, nd);
537 if (!result)
538 result = ERR_PTR(-ENOENT);
539 }
540 return result;
541 }
542
543 /* SMP-safe */
544 static __always_inline void
545 walk_init_root(const char *name, struct nameidata *nd)
546 {
547 struct fs_struct *fs = current->fs;
548
549 read_lock(&fs->lock);
550 nd->path = fs->root;
551 path_get(&fs->root);
552 read_unlock(&fs->lock);
553 }
554
555 /*
556 * Wrapper to retry pathname resolution whenever the underlying
557 * file system returns an ESTALE.
558 *
559 * Retry the whole path once, forcing real lookup requests
560 * instead of relying on the dcache.
561 */
562 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
563 {
564 struct path save = nd->path;
565 int result;
566
567 /* make sure the stuff we saved doesn't go away */
568 path_get(&save);
569
570 result = __link_path_walk(name, nd);
571 if (result == -ESTALE) {
572 /* nd->path had been dropped */
573 nd->path = save;
574 path_get(&nd->path);
575 nd->flags |= LOOKUP_REVAL;
576 result = __link_path_walk(name, nd);
577 }
578
579 path_put(&save);
580
581 return result;
582 }
583
584 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
585 {
586 int res = 0;
587 char *name;
588 if (IS_ERR(link))
589 goto fail;
590
591 if (*link == '/') {
592 path_put(&nd->path);
593 walk_init_root(link, nd);
594 }
595 res = link_path_walk(link, nd);
596 if (nd->depth || res || nd->last_type!=LAST_NORM)
597 return res;
598 /*
599 * If it is an iterative symlinks resolution in open_namei() we
600 * have to copy the last component. And all that crap because of
601 * bloody create() on broken symlinks. Furrfu...
602 */
603 name = __getname();
604 if (unlikely(!name)) {
605 path_put(&nd->path);
606 return -ENOMEM;
607 }
608 strcpy(name, nd->last.name);
609 nd->last.name = name;
610 return 0;
611 fail:
612 path_put(&nd->path);
613 return PTR_ERR(link);
614 }
615
616 static void path_put_conditional(struct path *path, struct nameidata *nd)
617 {
618 dput(path->dentry);
619 if (path->mnt != nd->path.mnt)
620 mntput(path->mnt);
621 }
622
623 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
624 {
625 dput(nd->path.dentry);
626 if (nd->path.mnt != path->mnt)
627 mntput(nd->path.mnt);
628 nd->path.mnt = path->mnt;
629 nd->path.dentry = path->dentry;
630 }
631
632 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
633 {
634 int error;
635 void *cookie;
636 struct dentry *dentry = path->dentry;
637
638 touch_atime(path->mnt, dentry);
639 nd_set_link(nd, NULL);
640
641 if (path->mnt != nd->path.mnt) {
642 path_to_nameidata(path, nd);
643 dget(dentry);
644 }
645 mntget(path->mnt);
646 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
647 error = PTR_ERR(cookie);
648 if (!IS_ERR(cookie)) {
649 char *s = nd_get_link(nd);
650 error = 0;
651 if (s)
652 error = __vfs_follow_link(nd, s);
653 if (dentry->d_inode->i_op->put_link)
654 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
655 }
656 path_put(path);
657
658 return error;
659 }
660
661 /*
662 * This limits recursive symlink follows to 8, while
663 * limiting consecutive symlinks to 40.
664 *
665 * Without that kind of total limit, nasty chains of consecutive
666 * symlinks can cause almost arbitrarily long lookups.
667 */
668 static inline int do_follow_link(struct path *path, struct nameidata *nd)
669 {
670 int err = -ELOOP;
671 if (current->link_count >= MAX_NESTED_LINKS)
672 goto loop;
673 if (current->total_link_count >= 40)
674 goto loop;
675 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
676 cond_resched();
677 err = security_inode_follow_link(path->dentry, nd);
678 if (err)
679 goto loop;
680 current->link_count++;
681 current->total_link_count++;
682 nd->depth++;
683 err = __do_follow_link(path, nd);
684 current->link_count--;
685 nd->depth--;
686 return err;
687 loop:
688 path_put_conditional(path, nd);
689 path_put(&nd->path);
690 return err;
691 }
692
693 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
694 {
695 struct vfsmount *parent;
696 struct dentry *mountpoint;
697 spin_lock(&vfsmount_lock);
698 parent=(*mnt)->mnt_parent;
699 if (parent == *mnt) {
700 spin_unlock(&vfsmount_lock);
701 return 0;
702 }
703 mntget(parent);
704 mountpoint=dget((*mnt)->mnt_mountpoint);
705 spin_unlock(&vfsmount_lock);
706 dput(*dentry);
707 *dentry = mountpoint;
708 mntput(*mnt);
709 *mnt = parent;
710 return 1;
711 }
712
713 /* no need for dcache_lock, as serialization is taken care in
714 * namespace.c
715 */
716 static int __follow_mount(struct path *path)
717 {
718 int res = 0;
719 while (d_mountpoint(path->dentry)) {
720 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
721 if (!mounted)
722 break;
723 dput(path->dentry);
724 if (res)
725 mntput(path->mnt);
726 path->mnt = mounted;
727 path->dentry = dget(mounted->mnt_root);
728 res = 1;
729 }
730 return res;
731 }
732
733 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
734 {
735 while (d_mountpoint(*dentry)) {
736 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
737 if (!mounted)
738 break;
739 dput(*dentry);
740 mntput(*mnt);
741 *mnt = mounted;
742 *dentry = dget(mounted->mnt_root);
743 }
744 }
745
746 /* no need for dcache_lock, as serialization is taken care in
747 * namespace.c
748 */
749 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
750 {
751 struct vfsmount *mounted;
752
753 mounted = lookup_mnt(*mnt, *dentry);
754 if (mounted) {
755 dput(*dentry);
756 mntput(*mnt);
757 *mnt = mounted;
758 *dentry = dget(mounted->mnt_root);
759 return 1;
760 }
761 return 0;
762 }
763
764 static __always_inline void follow_dotdot(struct nameidata *nd)
765 {
766 struct fs_struct *fs = current->fs;
767
768 while(1) {
769 struct vfsmount *parent;
770 struct dentry *old = nd->path.dentry;
771
772 read_lock(&fs->lock);
773 if (nd->path.dentry == fs->root.dentry &&
774 nd->path.mnt == fs->root.mnt) {
775 read_unlock(&fs->lock);
776 break;
777 }
778 read_unlock(&fs->lock);
779 spin_lock(&dcache_lock);
780 if (nd->path.dentry != nd->path.mnt->mnt_root) {
781 nd->path.dentry = dget(nd->path.dentry->d_parent);
782 spin_unlock(&dcache_lock);
783 dput(old);
784 break;
785 }
786 spin_unlock(&dcache_lock);
787 spin_lock(&vfsmount_lock);
788 parent = nd->path.mnt->mnt_parent;
789 if (parent == nd->path.mnt) {
790 spin_unlock(&vfsmount_lock);
791 break;
792 }
793 mntget(parent);
794 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
795 spin_unlock(&vfsmount_lock);
796 dput(old);
797 mntput(nd->path.mnt);
798 nd->path.mnt = parent;
799 }
800 follow_mount(&nd->path.mnt, &nd->path.dentry);
801 }
802
803 /*
804 * It's more convoluted than I'd like it to be, but... it's still fairly
805 * small and for now I'd prefer to have fast path as straight as possible.
806 * It _is_ time-critical.
807 */
808 static int do_lookup(struct nameidata *nd, struct qstr *name,
809 struct path *path)
810 {
811 struct vfsmount *mnt = nd->path.mnt;
812 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
813
814 if (!dentry)
815 goto need_lookup;
816 if (dentry->d_op && dentry->d_op->d_revalidate)
817 goto need_revalidate;
818 done:
819 path->mnt = mnt;
820 path->dentry = dentry;
821 __follow_mount(path);
822 return 0;
823
824 need_lookup:
825 dentry = real_lookup(nd->path.dentry, name, nd);
826 if (IS_ERR(dentry))
827 goto fail;
828 goto done;
829
830 need_revalidate:
831 dentry = do_revalidate(dentry, nd);
832 if (!dentry)
833 goto need_lookup;
834 if (IS_ERR(dentry))
835 goto fail;
836 goto done;
837
838 fail:
839 return PTR_ERR(dentry);
840 }
841
842 /*
843 * Name resolution.
844 * This is the basic name resolution function, turning a pathname into
845 * the final dentry. We expect 'base' to be positive and a directory.
846 *
847 * Returns 0 and nd will have valid dentry and mnt on success.
848 * Returns error and drops reference to input namei data on failure.
849 */
850 static int __link_path_walk(const char *name, struct nameidata *nd)
851 {
852 struct path next;
853 struct inode *inode;
854 int err;
855 unsigned int lookup_flags = nd->flags;
856
857 while (*name=='/')
858 name++;
859 if (!*name)
860 goto return_reval;
861
862 inode = nd->path.dentry->d_inode;
863 if (nd->depth)
864 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
865
866 /* At this point we know we have a real path component. */
867 for(;;) {
868 unsigned long hash;
869 struct qstr this;
870 unsigned int c;
871
872 nd->flags |= LOOKUP_CONTINUE;
873 err = exec_permission_lite(inode);
874 if (err == -EAGAIN)
875 err = vfs_permission(nd, MAY_EXEC);
876 if (err)
877 break;
878
879 this.name = name;
880 c = *(const unsigned char *)name;
881
882 hash = init_name_hash();
883 do {
884 name++;
885 hash = partial_name_hash(c, hash);
886 c = *(const unsigned char *)name;
887 } while (c && (c != '/'));
888 this.len = name - (const char *) this.name;
889 this.hash = end_name_hash(hash);
890
891 /* remove trailing slashes? */
892 if (!c)
893 goto last_component;
894 while (*++name == '/');
895 if (!*name)
896 goto last_with_slashes;
897
898 /*
899 * "." and ".." are special - ".." especially so because it has
900 * to be able to know about the current root directory and
901 * parent relationships.
902 */
903 if (this.name[0] == '.') switch (this.len) {
904 default:
905 break;
906 case 2:
907 if (this.name[1] != '.')
908 break;
909 follow_dotdot(nd);
910 inode = nd->path.dentry->d_inode;
911 /* fallthrough */
912 case 1:
913 continue;
914 }
915 /*
916 * See if the low-level filesystem might want
917 * to use its own hash..
918 */
919 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
920 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
921 &this);
922 if (err < 0)
923 break;
924 }
925 /* This does the actual lookups.. */
926 err = do_lookup(nd, &this, &next);
927 if (err)
928 break;
929
930 err = -ENOENT;
931 inode = next.dentry->d_inode;
932 if (!inode)
933 goto out_dput;
934 err = -ENOTDIR;
935 if (!inode->i_op)
936 goto out_dput;
937
938 if (inode->i_op->follow_link) {
939 err = do_follow_link(&next, nd);
940 if (err)
941 goto return_err;
942 err = -ENOENT;
943 inode = nd->path.dentry->d_inode;
944 if (!inode)
945 break;
946 err = -ENOTDIR;
947 if (!inode->i_op)
948 break;
949 } else
950 path_to_nameidata(&next, nd);
951 err = -ENOTDIR;
952 if (!inode->i_op->lookup)
953 break;
954 continue;
955 /* here ends the main loop */
956
957 last_with_slashes:
958 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
959 last_component:
960 /* Clear LOOKUP_CONTINUE iff it was previously unset */
961 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
962 if (lookup_flags & LOOKUP_PARENT)
963 goto lookup_parent;
964 if (this.name[0] == '.') switch (this.len) {
965 default:
966 break;
967 case 2:
968 if (this.name[1] != '.')
969 break;
970 follow_dotdot(nd);
971 inode = nd->path.dentry->d_inode;
972 /* fallthrough */
973 case 1:
974 goto return_reval;
975 }
976 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
977 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
978 &this);
979 if (err < 0)
980 break;
981 }
982 err = do_lookup(nd, &this, &next);
983 if (err)
984 break;
985 inode = next.dentry->d_inode;
986 if ((lookup_flags & LOOKUP_FOLLOW)
987 && inode && inode->i_op && inode->i_op->follow_link) {
988 err = do_follow_link(&next, nd);
989 if (err)
990 goto return_err;
991 inode = nd->path.dentry->d_inode;
992 } else
993 path_to_nameidata(&next, nd);
994 err = -ENOENT;
995 if (!inode)
996 break;
997 if (lookup_flags & LOOKUP_DIRECTORY) {
998 err = -ENOTDIR;
999 if (!inode->i_op || !inode->i_op->lookup)
1000 break;
1001 }
1002 goto return_base;
1003 lookup_parent:
1004 nd->last = this;
1005 nd->last_type = LAST_NORM;
1006 if (this.name[0] != '.')
1007 goto return_base;
1008 if (this.len == 1)
1009 nd->last_type = LAST_DOT;
1010 else if (this.len == 2 && this.name[1] == '.')
1011 nd->last_type = LAST_DOTDOT;
1012 else
1013 goto return_base;
1014 return_reval:
1015 /*
1016 * We bypassed the ordinary revalidation routines.
1017 * We may need to check the cached dentry for staleness.
1018 */
1019 if (nd->path.dentry && nd->path.dentry->d_sb &&
1020 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1021 err = -ESTALE;
1022 /* Note: we do not d_invalidate() */
1023 if (!nd->path.dentry->d_op->d_revalidate(
1024 nd->path.dentry, nd))
1025 break;
1026 }
1027 return_base:
1028 return 0;
1029 out_dput:
1030 path_put_conditional(&next, nd);
1031 break;
1032 }
1033 path_put(&nd->path);
1034 return_err:
1035 return err;
1036 }
1037
1038 static int path_walk(const char *name, struct nameidata *nd)
1039 {
1040 current->total_link_count = 0;
1041 return link_path_walk(name, nd);
1042 }
1043
1044 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1045 static int do_path_lookup(int dfd, const char *name,
1046 unsigned int flags, struct nameidata *nd)
1047 {
1048 int retval = 0;
1049 int fput_needed;
1050 struct file *file;
1051 struct fs_struct *fs = current->fs;
1052
1053 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1054 nd->flags = flags;
1055 nd->depth = 0;
1056
1057 if (*name=='/') {
1058 read_lock(&fs->lock);
1059 nd->path = fs->root;
1060 path_get(&fs->root);
1061 read_unlock(&fs->lock);
1062 } else if (dfd == AT_FDCWD) {
1063 read_lock(&fs->lock);
1064 nd->path = fs->pwd;
1065 path_get(&fs->pwd);
1066 read_unlock(&fs->lock);
1067 } else {
1068 struct dentry *dentry;
1069
1070 file = fget_light(dfd, &fput_needed);
1071 retval = -EBADF;
1072 if (!file)
1073 goto out_fail;
1074
1075 dentry = file->f_path.dentry;
1076
1077 retval = -ENOTDIR;
1078 if (!S_ISDIR(dentry->d_inode->i_mode))
1079 goto fput_fail;
1080
1081 retval = file_permission(file, MAY_EXEC);
1082 if (retval)
1083 goto fput_fail;
1084
1085 nd->path = file->f_path;
1086 path_get(&file->f_path);
1087
1088 fput_light(file, fput_needed);
1089 }
1090
1091 retval = path_walk(name, nd);
1092 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1093 nd->path.dentry->d_inode))
1094 audit_inode(name, nd->path.dentry);
1095 out_fail:
1096 return retval;
1097
1098 fput_fail:
1099 fput_light(file, fput_needed);
1100 goto out_fail;
1101 }
1102
1103 int path_lookup(const char *name, unsigned int flags,
1104 struct nameidata *nd)
1105 {
1106 return do_path_lookup(AT_FDCWD, name, flags, nd);
1107 }
1108
1109 int kern_path(const char *name, unsigned int flags, struct path *path)
1110 {
1111 struct nameidata nd;
1112 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1113 if (!res)
1114 *path = nd.path;
1115 return res;
1116 }
1117
1118 /**
1119 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1120 * @dentry: pointer to dentry of the base directory
1121 * @mnt: pointer to vfs mount of the base directory
1122 * @name: pointer to file name
1123 * @flags: lookup flags
1124 * @nd: pointer to nameidata
1125 */
1126 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1127 const char *name, unsigned int flags,
1128 struct nameidata *nd)
1129 {
1130 int retval;
1131
1132 /* same as do_path_lookup */
1133 nd->last_type = LAST_ROOT;
1134 nd->flags = flags;
1135 nd->depth = 0;
1136
1137 nd->path.dentry = dentry;
1138 nd->path.mnt = mnt;
1139 path_get(&nd->path);
1140
1141 retval = path_walk(name, nd);
1142 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1143 nd->path.dentry->d_inode))
1144 audit_inode(name, nd->path.dentry);
1145
1146 return retval;
1147
1148 }
1149
1150 /**
1151 * path_lookup_open - lookup a file path with open intent
1152 * @dfd: the directory to use as base, or AT_FDCWD
1153 * @name: pointer to file name
1154 * @lookup_flags: lookup intent flags
1155 * @nd: pointer to nameidata
1156 * @open_flags: open intent flags
1157 */
1158 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1159 struct nameidata *nd, int open_flags)
1160 {
1161 struct file *filp = get_empty_filp();
1162 int err;
1163
1164 if (filp == NULL)
1165 return -ENFILE;
1166 nd->intent.open.file = filp;
1167 nd->intent.open.flags = open_flags;
1168 nd->intent.open.create_mode = 0;
1169 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1170 if (IS_ERR(nd->intent.open.file)) {
1171 if (err == 0) {
1172 err = PTR_ERR(nd->intent.open.file);
1173 path_put(&nd->path);
1174 }
1175 } else if (err != 0)
1176 release_open_intent(nd);
1177 return err;
1178 }
1179
1180 static struct dentry *__lookup_hash(struct qstr *name,
1181 struct dentry *base, struct nameidata *nd)
1182 {
1183 struct dentry *dentry;
1184 struct inode *inode;
1185 int err;
1186
1187 inode = base->d_inode;
1188
1189 /*
1190 * See if the low-level filesystem might want
1191 * to use its own hash..
1192 */
1193 if (base->d_op && base->d_op->d_hash) {
1194 err = base->d_op->d_hash(base, name);
1195 dentry = ERR_PTR(err);
1196 if (err < 0)
1197 goto out;
1198 }
1199
1200 dentry = cached_lookup(base, name, nd);
1201 if (!dentry) {
1202 struct dentry *new;
1203
1204 /* Don't create child dentry for a dead directory. */
1205 dentry = ERR_PTR(-ENOENT);
1206 if (IS_DEADDIR(inode))
1207 goto out;
1208
1209 new = d_alloc(base, name);
1210 dentry = ERR_PTR(-ENOMEM);
1211 if (!new)
1212 goto out;
1213 dentry = inode->i_op->lookup(inode, new, nd);
1214 if (!dentry)
1215 dentry = new;
1216 else
1217 dput(new);
1218 }
1219 out:
1220 return dentry;
1221 }
1222
1223 /*
1224 * Restricted form of lookup. Doesn't follow links, single-component only,
1225 * needs parent already locked. Doesn't follow mounts.
1226 * SMP-safe.
1227 */
1228 static struct dentry *lookup_hash(struct nameidata *nd)
1229 {
1230 int err;
1231
1232 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1233 if (err)
1234 return ERR_PTR(err);
1235 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1236 }
1237
1238 static int __lookup_one_len(const char *name, struct qstr *this,
1239 struct dentry *base, int len)
1240 {
1241 unsigned long hash;
1242 unsigned int c;
1243
1244 this->name = name;
1245 this->len = len;
1246 if (!len)
1247 return -EACCES;
1248
1249 hash = init_name_hash();
1250 while (len--) {
1251 c = *(const unsigned char *)name++;
1252 if (c == '/' || c == '\0')
1253 return -EACCES;
1254 hash = partial_name_hash(c, hash);
1255 }
1256 this->hash = end_name_hash(hash);
1257 return 0;
1258 }
1259
1260 /**
1261 * lookup_one_len - filesystem helper to lookup single pathname component
1262 * @name: pathname component to lookup
1263 * @base: base directory to lookup from
1264 * @len: maximum length @len should be interpreted to
1265 *
1266 * Note that this routine is purely a helper for filesystem usage and should
1267 * not be called by generic code. Also note that by using this function the
1268 * nameidata argument is passed to the filesystem methods and a filesystem
1269 * using this helper needs to be prepared for that.
1270 */
1271 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1272 {
1273 int err;
1274 struct qstr this;
1275
1276 err = __lookup_one_len(name, &this, base, len);
1277 if (err)
1278 return ERR_PTR(err);
1279
1280 err = inode_permission(base->d_inode, MAY_EXEC);
1281 if (err)
1282 return ERR_PTR(err);
1283 return __lookup_hash(&this, base, NULL);
1284 }
1285
1286 /**
1287 * lookup_one_noperm - bad hack for sysfs
1288 * @name: pathname component to lookup
1289 * @base: base directory to lookup from
1290 *
1291 * This is a variant of lookup_one_len that doesn't perform any permission
1292 * checks. It's a horrible hack to work around the braindead sysfs
1293 * architecture and should not be used anywhere else.
1294 *
1295 * DON'T USE THIS FUNCTION EVER, thanks.
1296 */
1297 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1298 {
1299 int err;
1300 struct qstr this;
1301
1302 err = __lookup_one_len(name, &this, base, strlen(name));
1303 if (err)
1304 return ERR_PTR(err);
1305 return __lookup_hash(&this, base, NULL);
1306 }
1307
1308 int user_path_at(int dfd, const char __user *name, unsigned flags,
1309 struct path *path)
1310 {
1311 struct nameidata nd;
1312 char *tmp = getname(name);
1313 int err = PTR_ERR(tmp);
1314 if (!IS_ERR(tmp)) {
1315
1316 BUG_ON(flags & LOOKUP_PARENT);
1317
1318 err = do_path_lookup(dfd, tmp, flags, &nd);
1319 putname(tmp);
1320 if (!err)
1321 *path = nd.path;
1322 }
1323 return err;
1324 }
1325
1326 static int user_path_parent(int dfd, const char __user *path,
1327 struct nameidata *nd, char **name)
1328 {
1329 char *s = getname(path);
1330 int error;
1331
1332 if (IS_ERR(s))
1333 return PTR_ERR(s);
1334
1335 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1336 if (error)
1337 putname(s);
1338 else
1339 *name = s;
1340
1341 return error;
1342 }
1343
1344 /*
1345 * It's inline, so penalty for filesystems that don't use sticky bit is
1346 * minimal.
1347 */
1348 static inline int check_sticky(struct inode *dir, struct inode *inode)
1349 {
1350 if (!(dir->i_mode & S_ISVTX))
1351 return 0;
1352 if (inode->i_uid == current->fsuid)
1353 return 0;
1354 if (dir->i_uid == current->fsuid)
1355 return 0;
1356 return !capable(CAP_FOWNER);
1357 }
1358
1359 /*
1360 * Check whether we can remove a link victim from directory dir, check
1361 * whether the type of victim is right.
1362 * 1. We can't do it if dir is read-only (done in permission())
1363 * 2. We should have write and exec permissions on dir
1364 * 3. We can't remove anything from append-only dir
1365 * 4. We can't do anything with immutable dir (done in permission())
1366 * 5. If the sticky bit on dir is set we should either
1367 * a. be owner of dir, or
1368 * b. be owner of victim, or
1369 * c. have CAP_FOWNER capability
1370 * 6. If the victim is append-only or immutable we can't do antyhing with
1371 * links pointing to it.
1372 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1373 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1374 * 9. We can't remove a root or mountpoint.
1375 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1376 * nfs_async_unlink().
1377 */
1378 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1379 {
1380 int error;
1381
1382 if (!victim->d_inode)
1383 return -ENOENT;
1384
1385 BUG_ON(victim->d_parent->d_inode != dir);
1386 audit_inode_child(victim->d_name.name, victim, dir);
1387
1388 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1389 if (error)
1390 return error;
1391 if (IS_APPEND(dir))
1392 return -EPERM;
1393 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1394 IS_IMMUTABLE(victim->d_inode))
1395 return -EPERM;
1396 if (isdir) {
1397 if (!S_ISDIR(victim->d_inode->i_mode))
1398 return -ENOTDIR;
1399 if (IS_ROOT(victim))
1400 return -EBUSY;
1401 } else if (S_ISDIR(victim->d_inode->i_mode))
1402 return -EISDIR;
1403 if (IS_DEADDIR(dir))
1404 return -ENOENT;
1405 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1406 return -EBUSY;
1407 return 0;
1408 }
1409
1410 /* Check whether we can create an object with dentry child in directory
1411 * dir.
1412 * 1. We can't do it if child already exists (open has special treatment for
1413 * this case, but since we are inlined it's OK)
1414 * 2. We can't do it if dir is read-only (done in permission())
1415 * 3. We should have write and exec permissions on dir
1416 * 4. We can't do it if dir is immutable (done in permission())
1417 */
1418 static inline int may_create(struct inode *dir, struct dentry *child)
1419 {
1420 if (child->d_inode)
1421 return -EEXIST;
1422 if (IS_DEADDIR(dir))
1423 return -ENOENT;
1424 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1425 }
1426
1427 /*
1428 * O_DIRECTORY translates into forcing a directory lookup.
1429 */
1430 static inline int lookup_flags(unsigned int f)
1431 {
1432 unsigned long retval = LOOKUP_FOLLOW;
1433
1434 if (f & O_NOFOLLOW)
1435 retval &= ~LOOKUP_FOLLOW;
1436
1437 if (f & O_DIRECTORY)
1438 retval |= LOOKUP_DIRECTORY;
1439
1440 return retval;
1441 }
1442
1443 /*
1444 * p1 and p2 should be directories on the same fs.
1445 */
1446 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1447 {
1448 struct dentry *p;
1449
1450 if (p1 == p2) {
1451 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1452 return NULL;
1453 }
1454
1455 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1456
1457 p = d_ancestor(p2, p1);
1458 if (p) {
1459 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1460 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1461 return p;
1462 }
1463
1464 p = d_ancestor(p1, p2);
1465 if (p) {
1466 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1467 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1468 return p;
1469 }
1470
1471 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1472 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1473 return NULL;
1474 }
1475
1476 void unlock_rename(struct dentry *p1, struct dentry *p2)
1477 {
1478 mutex_unlock(&p1->d_inode->i_mutex);
1479 if (p1 != p2) {
1480 mutex_unlock(&p2->d_inode->i_mutex);
1481 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1482 }
1483 }
1484
1485 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1486 struct nameidata *nd)
1487 {
1488 int error = may_create(dir, dentry);
1489
1490 if (error)
1491 return error;
1492
1493 if (!dir->i_op || !dir->i_op->create)
1494 return -EACCES; /* shouldn't it be ENOSYS? */
1495 mode &= S_IALLUGO;
1496 mode |= S_IFREG;
1497 error = security_inode_create(dir, dentry, mode);
1498 if (error)
1499 return error;
1500 DQUOT_INIT(dir);
1501 error = dir->i_op->create(dir, dentry, mode, nd);
1502 if (!error)
1503 fsnotify_create(dir, dentry);
1504 return error;
1505 }
1506
1507 int may_open(struct nameidata *nd, int acc_mode, int flag)
1508 {
1509 struct dentry *dentry = nd->path.dentry;
1510 struct inode *inode = dentry->d_inode;
1511 int error;
1512
1513 if (!inode)
1514 return -ENOENT;
1515
1516 if (S_ISLNK(inode->i_mode))
1517 return -ELOOP;
1518
1519 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1520 return -EISDIR;
1521
1522 /*
1523 * FIFO's, sockets and device files are special: they don't
1524 * actually live on the filesystem itself, and as such you
1525 * can write to them even if the filesystem is read-only.
1526 */
1527 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1528 flag &= ~O_TRUNC;
1529 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1530 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1531 return -EACCES;
1532
1533 flag &= ~O_TRUNC;
1534 }
1535
1536 error = vfs_permission(nd, acc_mode);
1537 if (error)
1538 return error;
1539 /*
1540 * An append-only file must be opened in append mode for writing.
1541 */
1542 if (IS_APPEND(inode)) {
1543 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1544 return -EPERM;
1545 if (flag & O_TRUNC)
1546 return -EPERM;
1547 }
1548
1549 /* O_NOATIME can only be set by the owner or superuser */
1550 if (flag & O_NOATIME)
1551 if (!is_owner_or_cap(inode))
1552 return -EPERM;
1553
1554 /*
1555 * Ensure there are no outstanding leases on the file.
1556 */
1557 error = break_lease(inode, flag);
1558 if (error)
1559 return error;
1560
1561 if (flag & O_TRUNC) {
1562 error = get_write_access(inode);
1563 if (error)
1564 return error;
1565
1566 /*
1567 * Refuse to truncate files with mandatory locks held on them.
1568 */
1569 error = locks_verify_locked(inode);
1570 if (!error) {
1571 DQUOT_INIT(inode);
1572
1573 error = do_truncate(dentry, 0,
1574 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1575 NULL);
1576 }
1577 put_write_access(inode);
1578 if (error)
1579 return error;
1580 } else
1581 if (flag & FMODE_WRITE)
1582 DQUOT_INIT(inode);
1583
1584 return 0;
1585 }
1586
1587 /*
1588 * Be careful about ever adding any more callers of this
1589 * function. Its flags must be in the namei format, not
1590 * what get passed to sys_open().
1591 */
1592 static int __open_namei_create(struct nameidata *nd, struct path *path,
1593 int flag, int mode)
1594 {
1595 int error;
1596 struct dentry *dir = nd->path.dentry;
1597
1598 if (!IS_POSIXACL(dir->d_inode))
1599 mode &= ~current->fs->umask;
1600 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1601 mutex_unlock(&dir->d_inode->i_mutex);
1602 dput(nd->path.dentry);
1603 nd->path.dentry = path->dentry;
1604 if (error)
1605 return error;
1606 /* Don't check for write permission, don't truncate */
1607 return may_open(nd, 0, flag & ~O_TRUNC);
1608 }
1609
1610 /*
1611 * Note that while the flag value (low two bits) for sys_open means:
1612 * 00 - read-only
1613 * 01 - write-only
1614 * 10 - read-write
1615 * 11 - special
1616 * it is changed into
1617 * 00 - no permissions needed
1618 * 01 - read-permission
1619 * 10 - write-permission
1620 * 11 - read-write
1621 * for the internal routines (ie open_namei()/follow_link() etc)
1622 * This is more logical, and also allows the 00 "no perm needed"
1623 * to be used for symlinks (where the permissions are checked
1624 * later).
1625 *
1626 */
1627 static inline int open_to_namei_flags(int flag)
1628 {
1629 if ((flag+1) & O_ACCMODE)
1630 flag++;
1631 return flag;
1632 }
1633
1634 static int open_will_write_to_fs(int flag, struct inode *inode)
1635 {
1636 /*
1637 * We'll never write to the fs underlying
1638 * a device file.
1639 */
1640 if (special_file(inode->i_mode))
1641 return 0;
1642 return (flag & O_TRUNC);
1643 }
1644
1645 /*
1646 * Note that the low bits of the passed in "open_flag"
1647 * are not the same as in the local variable "flag". See
1648 * open_to_namei_flags() for more details.
1649 */
1650 struct file *do_filp_open(int dfd, const char *pathname,
1651 int open_flag, int mode)
1652 {
1653 struct file *filp;
1654 struct nameidata nd;
1655 int acc_mode, error;
1656 struct path path;
1657 struct dentry *dir;
1658 int count = 0;
1659 int will_write;
1660 int flag = open_to_namei_flags(open_flag);
1661
1662 acc_mode = MAY_OPEN | ACC_MODE(flag);
1663
1664 /* O_TRUNC implies we need access checks for write permissions */
1665 if (flag & O_TRUNC)
1666 acc_mode |= MAY_WRITE;
1667
1668 /* Allow the LSM permission hook to distinguish append
1669 access from general write access. */
1670 if (flag & O_APPEND)
1671 acc_mode |= MAY_APPEND;
1672
1673 /*
1674 * The simplest case - just a plain lookup.
1675 */
1676 if (!(flag & O_CREAT)) {
1677 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1678 &nd, flag);
1679 if (error)
1680 return ERR_PTR(error);
1681 goto ok;
1682 }
1683
1684 /*
1685 * Create - we need to know the parent.
1686 */
1687 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1688 if (error)
1689 return ERR_PTR(error);
1690
1691 /*
1692 * We have the parent and last component. First of all, check
1693 * that we are not asked to creat(2) an obvious directory - that
1694 * will not do.
1695 */
1696 error = -EISDIR;
1697 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1698 goto exit_parent;
1699
1700 error = -ENFILE;
1701 filp = get_empty_filp();
1702 if (filp == NULL)
1703 goto exit_parent;
1704 nd.intent.open.file = filp;
1705 nd.intent.open.flags = flag;
1706 nd.intent.open.create_mode = mode;
1707 dir = nd.path.dentry;
1708 nd.flags &= ~LOOKUP_PARENT;
1709 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1710 if (flag & O_EXCL)
1711 nd.flags |= LOOKUP_EXCL;
1712 mutex_lock(&dir->d_inode->i_mutex);
1713 path.dentry = lookup_hash(&nd);
1714 path.mnt = nd.path.mnt;
1715
1716 do_last:
1717 error = PTR_ERR(path.dentry);
1718 if (IS_ERR(path.dentry)) {
1719 mutex_unlock(&dir->d_inode->i_mutex);
1720 goto exit;
1721 }
1722
1723 if (IS_ERR(nd.intent.open.file)) {
1724 error = PTR_ERR(nd.intent.open.file);
1725 goto exit_mutex_unlock;
1726 }
1727
1728 /* Negative dentry, just create the file */
1729 if (!path.dentry->d_inode) {
1730 /*
1731 * This write is needed to ensure that a
1732 * ro->rw transition does not occur between
1733 * the time when the file is created and when
1734 * a permanent write count is taken through
1735 * the 'struct file' in nameidata_to_filp().
1736 */
1737 error = mnt_want_write(nd.path.mnt);
1738 if (error)
1739 goto exit_mutex_unlock;
1740 error = __open_namei_create(&nd, &path, flag, mode);
1741 if (error) {
1742 mnt_drop_write(nd.path.mnt);
1743 goto exit;
1744 }
1745 filp = nameidata_to_filp(&nd, open_flag);
1746 mnt_drop_write(nd.path.mnt);
1747 return filp;
1748 }
1749
1750 /*
1751 * It already exists.
1752 */
1753 mutex_unlock(&dir->d_inode->i_mutex);
1754 audit_inode(pathname, path.dentry);
1755
1756 error = -EEXIST;
1757 if (flag & O_EXCL)
1758 goto exit_dput;
1759
1760 if (__follow_mount(&path)) {
1761 error = -ELOOP;
1762 if (flag & O_NOFOLLOW)
1763 goto exit_dput;
1764 }
1765
1766 error = -ENOENT;
1767 if (!path.dentry->d_inode)
1768 goto exit_dput;
1769 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1770 goto do_link;
1771
1772 path_to_nameidata(&path, &nd);
1773 error = -EISDIR;
1774 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1775 goto exit;
1776 ok:
1777 /*
1778 * Consider:
1779 * 1. may_open() truncates a file
1780 * 2. a rw->ro mount transition occurs
1781 * 3. nameidata_to_filp() fails due to
1782 * the ro mount.
1783 * That would be inconsistent, and should
1784 * be avoided. Taking this mnt write here
1785 * ensures that (2) can not occur.
1786 */
1787 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1788 if (will_write) {
1789 error = mnt_want_write(nd.path.mnt);
1790 if (error)
1791 goto exit;
1792 }
1793 error = may_open(&nd, acc_mode, flag);
1794 if (error) {
1795 if (will_write)
1796 mnt_drop_write(nd.path.mnt);
1797 goto exit;
1798 }
1799 filp = nameidata_to_filp(&nd, open_flag);
1800 /*
1801 * It is now safe to drop the mnt write
1802 * because the filp has had a write taken
1803 * on its behalf.
1804 */
1805 if (will_write)
1806 mnt_drop_write(nd.path.mnt);
1807 return filp;
1808
1809 exit_mutex_unlock:
1810 mutex_unlock(&dir->d_inode->i_mutex);
1811 exit_dput:
1812 path_put_conditional(&path, &nd);
1813 exit:
1814 if (!IS_ERR(nd.intent.open.file))
1815 release_open_intent(&nd);
1816 exit_parent:
1817 path_put(&nd.path);
1818 return ERR_PTR(error);
1819
1820 do_link:
1821 error = -ELOOP;
1822 if (flag & O_NOFOLLOW)
1823 goto exit_dput;
1824 /*
1825 * This is subtle. Instead of calling do_follow_link() we do the
1826 * thing by hands. The reason is that this way we have zero link_count
1827 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1828 * After that we have the parent and last component, i.e.
1829 * we are in the same situation as after the first path_walk().
1830 * Well, almost - if the last component is normal we get its copy
1831 * stored in nd->last.name and we will have to putname() it when we
1832 * are done. Procfs-like symlinks just set LAST_BIND.
1833 */
1834 nd.flags |= LOOKUP_PARENT;
1835 error = security_inode_follow_link(path.dentry, &nd);
1836 if (error)
1837 goto exit_dput;
1838 error = __do_follow_link(&path, &nd);
1839 if (error) {
1840 /* Does someone understand code flow here? Or it is only
1841 * me so stupid? Anathema to whoever designed this non-sense
1842 * with "intent.open".
1843 */
1844 release_open_intent(&nd);
1845 return ERR_PTR(error);
1846 }
1847 nd.flags &= ~LOOKUP_PARENT;
1848 if (nd.last_type == LAST_BIND)
1849 goto ok;
1850 error = -EISDIR;
1851 if (nd.last_type != LAST_NORM)
1852 goto exit;
1853 if (nd.last.name[nd.last.len]) {
1854 __putname(nd.last.name);
1855 goto exit;
1856 }
1857 error = -ELOOP;
1858 if (count++==32) {
1859 __putname(nd.last.name);
1860 goto exit;
1861 }
1862 dir = nd.path.dentry;
1863 mutex_lock(&dir->d_inode->i_mutex);
1864 path.dentry = lookup_hash(&nd);
1865 path.mnt = nd.path.mnt;
1866 __putname(nd.last.name);
1867 goto do_last;
1868 }
1869
1870 /**
1871 * filp_open - open file and return file pointer
1872 *
1873 * @filename: path to open
1874 * @flags: open flags as per the open(2) second argument
1875 * @mode: mode for the new file if O_CREAT is set, else ignored
1876 *
1877 * This is the helper to open a file from kernelspace if you really
1878 * have to. But in generally you should not do this, so please move
1879 * along, nothing to see here..
1880 */
1881 struct file *filp_open(const char *filename, int flags, int mode)
1882 {
1883 return do_filp_open(AT_FDCWD, filename, flags, mode);
1884 }
1885 EXPORT_SYMBOL(filp_open);
1886
1887 /**
1888 * lookup_create - lookup a dentry, creating it if it doesn't exist
1889 * @nd: nameidata info
1890 * @is_dir: directory flag
1891 *
1892 * Simple function to lookup and return a dentry and create it
1893 * if it doesn't exist. Is SMP-safe.
1894 *
1895 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1896 */
1897 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1898 {
1899 struct dentry *dentry = ERR_PTR(-EEXIST);
1900
1901 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1902 /*
1903 * Yucky last component or no last component at all?
1904 * (foo/., foo/.., /////)
1905 */
1906 if (nd->last_type != LAST_NORM)
1907 goto fail;
1908 nd->flags &= ~LOOKUP_PARENT;
1909 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1910 nd->intent.open.flags = O_EXCL;
1911
1912 /*
1913 * Do the final lookup.
1914 */
1915 dentry = lookup_hash(nd);
1916 if (IS_ERR(dentry))
1917 goto fail;
1918
1919 if (dentry->d_inode)
1920 goto eexist;
1921 /*
1922 * Special case - lookup gave negative, but... we had foo/bar/
1923 * From the vfs_mknod() POV we just have a negative dentry -
1924 * all is fine. Let's be bastards - you had / on the end, you've
1925 * been asking for (non-existent) directory. -ENOENT for you.
1926 */
1927 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1928 dput(dentry);
1929 dentry = ERR_PTR(-ENOENT);
1930 }
1931 return dentry;
1932 eexist:
1933 dput(dentry);
1934 dentry = ERR_PTR(-EEXIST);
1935 fail:
1936 return dentry;
1937 }
1938 EXPORT_SYMBOL_GPL(lookup_create);
1939
1940 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1941 {
1942 int error = may_create(dir, dentry);
1943
1944 if (error)
1945 return error;
1946
1947 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1948 return -EPERM;
1949
1950 if (!dir->i_op || !dir->i_op->mknod)
1951 return -EPERM;
1952
1953 error = devcgroup_inode_mknod(mode, dev);
1954 if (error)
1955 return error;
1956
1957 error = security_inode_mknod(dir, dentry, mode, dev);
1958 if (error)
1959 return error;
1960
1961 DQUOT_INIT(dir);
1962 error = dir->i_op->mknod(dir, dentry, mode, dev);
1963 if (!error)
1964 fsnotify_create(dir, dentry);
1965 return error;
1966 }
1967
1968 static int may_mknod(mode_t mode)
1969 {
1970 switch (mode & S_IFMT) {
1971 case S_IFREG:
1972 case S_IFCHR:
1973 case S_IFBLK:
1974 case S_IFIFO:
1975 case S_IFSOCK:
1976 case 0: /* zero mode translates to S_IFREG */
1977 return 0;
1978 case S_IFDIR:
1979 return -EPERM;
1980 default:
1981 return -EINVAL;
1982 }
1983 }
1984
1985 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1986 unsigned dev)
1987 {
1988 int error;
1989 char *tmp;
1990 struct dentry *dentry;
1991 struct nameidata nd;
1992
1993 if (S_ISDIR(mode))
1994 return -EPERM;
1995
1996 error = user_path_parent(dfd, filename, &nd, &tmp);
1997 if (error)
1998 return error;
1999
2000 dentry = lookup_create(&nd, 0);
2001 if (IS_ERR(dentry)) {
2002 error = PTR_ERR(dentry);
2003 goto out_unlock;
2004 }
2005 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2006 mode &= ~current->fs->umask;
2007 error = may_mknod(mode);
2008 if (error)
2009 goto out_dput;
2010 error = mnt_want_write(nd.path.mnt);
2011 if (error)
2012 goto out_dput;
2013 switch (mode & S_IFMT) {
2014 case 0: case S_IFREG:
2015 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2016 break;
2017 case S_IFCHR: case S_IFBLK:
2018 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2019 new_decode_dev(dev));
2020 break;
2021 case S_IFIFO: case S_IFSOCK:
2022 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2023 break;
2024 }
2025 mnt_drop_write(nd.path.mnt);
2026 out_dput:
2027 dput(dentry);
2028 out_unlock:
2029 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2030 path_put(&nd.path);
2031 putname(tmp);
2032
2033 return error;
2034 }
2035
2036 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2037 {
2038 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2039 }
2040
2041 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2042 {
2043 int error = may_create(dir, dentry);
2044
2045 if (error)
2046 return error;
2047
2048 if (!dir->i_op || !dir->i_op->mkdir)
2049 return -EPERM;
2050
2051 mode &= (S_IRWXUGO|S_ISVTX);
2052 error = security_inode_mkdir(dir, dentry, mode);
2053 if (error)
2054 return error;
2055
2056 DQUOT_INIT(dir);
2057 error = dir->i_op->mkdir(dir, dentry, mode);
2058 if (!error)
2059 fsnotify_mkdir(dir, dentry);
2060 return error;
2061 }
2062
2063 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2064 {
2065 int error = 0;
2066 char * tmp;
2067 struct dentry *dentry;
2068 struct nameidata nd;
2069
2070 error = user_path_parent(dfd, pathname, &nd, &tmp);
2071 if (error)
2072 goto out_err;
2073
2074 dentry = lookup_create(&nd, 1);
2075 error = PTR_ERR(dentry);
2076 if (IS_ERR(dentry))
2077 goto out_unlock;
2078
2079 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2080 mode &= ~current->fs->umask;
2081 error = mnt_want_write(nd.path.mnt);
2082 if (error)
2083 goto out_dput;
2084 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2085 mnt_drop_write(nd.path.mnt);
2086 out_dput:
2087 dput(dentry);
2088 out_unlock:
2089 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2090 path_put(&nd.path);
2091 putname(tmp);
2092 out_err:
2093 return error;
2094 }
2095
2096 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2097 {
2098 return sys_mkdirat(AT_FDCWD, pathname, mode);
2099 }
2100
2101 /*
2102 * We try to drop the dentry early: we should have
2103 * a usage count of 2 if we're the only user of this
2104 * dentry, and if that is true (possibly after pruning
2105 * the dcache), then we drop the dentry now.
2106 *
2107 * A low-level filesystem can, if it choses, legally
2108 * do a
2109 *
2110 * if (!d_unhashed(dentry))
2111 * return -EBUSY;
2112 *
2113 * if it cannot handle the case of removing a directory
2114 * that is still in use by something else..
2115 */
2116 void dentry_unhash(struct dentry *dentry)
2117 {
2118 dget(dentry);
2119 shrink_dcache_parent(dentry);
2120 spin_lock(&dcache_lock);
2121 spin_lock(&dentry->d_lock);
2122 if (atomic_read(&dentry->d_count) == 2)
2123 __d_drop(dentry);
2124 spin_unlock(&dentry->d_lock);
2125 spin_unlock(&dcache_lock);
2126 }
2127
2128 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2129 {
2130 int error = may_delete(dir, dentry, 1);
2131
2132 if (error)
2133 return error;
2134
2135 if (!dir->i_op || !dir->i_op->rmdir)
2136 return -EPERM;
2137
2138 DQUOT_INIT(dir);
2139
2140 mutex_lock(&dentry->d_inode->i_mutex);
2141 dentry_unhash(dentry);
2142 if (d_mountpoint(dentry))
2143 error = -EBUSY;
2144 else {
2145 error = security_inode_rmdir(dir, dentry);
2146 if (!error) {
2147 error = dir->i_op->rmdir(dir, dentry);
2148 if (!error)
2149 dentry->d_inode->i_flags |= S_DEAD;
2150 }
2151 }
2152 mutex_unlock(&dentry->d_inode->i_mutex);
2153 if (!error) {
2154 d_delete(dentry);
2155 }
2156 dput(dentry);
2157
2158 return error;
2159 }
2160
2161 static long do_rmdir(int dfd, const char __user *pathname)
2162 {
2163 int error = 0;
2164 char * name;
2165 struct dentry *dentry;
2166 struct nameidata nd;
2167
2168 error = user_path_parent(dfd, pathname, &nd, &name);
2169 if (error)
2170 return error;
2171
2172 switch(nd.last_type) {
2173 case LAST_DOTDOT:
2174 error = -ENOTEMPTY;
2175 goto exit1;
2176 case LAST_DOT:
2177 error = -EINVAL;
2178 goto exit1;
2179 case LAST_ROOT:
2180 error = -EBUSY;
2181 goto exit1;
2182 }
2183
2184 nd.flags &= ~LOOKUP_PARENT;
2185
2186 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2187 dentry = lookup_hash(&nd);
2188 error = PTR_ERR(dentry);
2189 if (IS_ERR(dentry))
2190 goto exit2;
2191 error = mnt_want_write(nd.path.mnt);
2192 if (error)
2193 goto exit3;
2194 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2195 mnt_drop_write(nd.path.mnt);
2196 exit3:
2197 dput(dentry);
2198 exit2:
2199 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2200 exit1:
2201 path_put(&nd.path);
2202 putname(name);
2203 return error;
2204 }
2205
2206 asmlinkage long sys_rmdir(const char __user *pathname)
2207 {
2208 return do_rmdir(AT_FDCWD, pathname);
2209 }
2210
2211 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2212 {
2213 int error = may_delete(dir, dentry, 0);
2214
2215 if (error)
2216 return error;
2217
2218 if (!dir->i_op || !dir->i_op->unlink)
2219 return -EPERM;
2220
2221 DQUOT_INIT(dir);
2222
2223 mutex_lock(&dentry->d_inode->i_mutex);
2224 if (d_mountpoint(dentry))
2225 error = -EBUSY;
2226 else {
2227 error = security_inode_unlink(dir, dentry);
2228 if (!error)
2229 error = dir->i_op->unlink(dir, dentry);
2230 }
2231 mutex_unlock(&dentry->d_inode->i_mutex);
2232
2233 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2234 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2235 fsnotify_link_count(dentry->d_inode);
2236 d_delete(dentry);
2237 }
2238
2239 return error;
2240 }
2241
2242 /*
2243 * Make sure that the actual truncation of the file will occur outside its
2244 * directory's i_mutex. Truncate can take a long time if there is a lot of
2245 * writeout happening, and we don't want to prevent access to the directory
2246 * while waiting on the I/O.
2247 */
2248 static long do_unlinkat(int dfd, const char __user *pathname)
2249 {
2250 int error;
2251 char *name;
2252 struct dentry *dentry;
2253 struct nameidata nd;
2254 struct inode *inode = NULL;
2255
2256 error = user_path_parent(dfd, pathname, &nd, &name);
2257 if (error)
2258 return error;
2259
2260 error = -EISDIR;
2261 if (nd.last_type != LAST_NORM)
2262 goto exit1;
2263
2264 nd.flags &= ~LOOKUP_PARENT;
2265
2266 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2267 dentry = lookup_hash(&nd);
2268 error = PTR_ERR(dentry);
2269 if (!IS_ERR(dentry)) {
2270 /* Why not before? Because we want correct error value */
2271 if (nd.last.name[nd.last.len])
2272 goto slashes;
2273 inode = dentry->d_inode;
2274 if (inode)
2275 atomic_inc(&inode->i_count);
2276 error = mnt_want_write(nd.path.mnt);
2277 if (error)
2278 goto exit2;
2279 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2280 mnt_drop_write(nd.path.mnt);
2281 exit2:
2282 dput(dentry);
2283 }
2284 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2285 if (inode)
2286 iput(inode); /* truncate the inode here */
2287 exit1:
2288 path_put(&nd.path);
2289 putname(name);
2290 return error;
2291
2292 slashes:
2293 error = !dentry->d_inode ? -ENOENT :
2294 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2295 goto exit2;
2296 }
2297
2298 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2299 {
2300 if ((flag & ~AT_REMOVEDIR) != 0)
2301 return -EINVAL;
2302
2303 if (flag & AT_REMOVEDIR)
2304 return do_rmdir(dfd, pathname);
2305
2306 return do_unlinkat(dfd, pathname);
2307 }
2308
2309 asmlinkage long sys_unlink(const char __user *pathname)
2310 {
2311 return do_unlinkat(AT_FDCWD, pathname);
2312 }
2313
2314 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2315 {
2316 int error = may_create(dir, dentry);
2317
2318 if (error)
2319 return error;
2320
2321 if (!dir->i_op || !dir->i_op->symlink)
2322 return -EPERM;
2323
2324 error = security_inode_symlink(dir, dentry, oldname);
2325 if (error)
2326 return error;
2327
2328 DQUOT_INIT(dir);
2329 error = dir->i_op->symlink(dir, dentry, oldname);
2330 if (!error)
2331 fsnotify_create(dir, dentry);
2332 return error;
2333 }
2334
2335 asmlinkage long sys_symlinkat(const char __user *oldname,
2336 int newdfd, const char __user *newname)
2337 {
2338 int error;
2339 char *from;
2340 char *to;
2341 struct dentry *dentry;
2342 struct nameidata nd;
2343
2344 from = getname(oldname);
2345 if (IS_ERR(from))
2346 return PTR_ERR(from);
2347
2348 error = user_path_parent(newdfd, newname, &nd, &to);
2349 if (error)
2350 goto out_putname;
2351
2352 dentry = lookup_create(&nd, 0);
2353 error = PTR_ERR(dentry);
2354 if (IS_ERR(dentry))
2355 goto out_unlock;
2356
2357 error = mnt_want_write(nd.path.mnt);
2358 if (error)
2359 goto out_dput;
2360 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2361 mnt_drop_write(nd.path.mnt);
2362 out_dput:
2363 dput(dentry);
2364 out_unlock:
2365 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2366 path_put(&nd.path);
2367 putname(to);
2368 out_putname:
2369 putname(from);
2370 return error;
2371 }
2372
2373 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2374 {
2375 return sys_symlinkat(oldname, AT_FDCWD, newname);
2376 }
2377
2378 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2379 {
2380 struct inode *inode = old_dentry->d_inode;
2381 int error;
2382
2383 if (!inode)
2384 return -ENOENT;
2385
2386 error = may_create(dir, new_dentry);
2387 if (error)
2388 return error;
2389
2390 if (dir->i_sb != inode->i_sb)
2391 return -EXDEV;
2392
2393 /*
2394 * A link to an append-only or immutable file cannot be created.
2395 */
2396 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2397 return -EPERM;
2398 if (!dir->i_op || !dir->i_op->link)
2399 return -EPERM;
2400 if (S_ISDIR(inode->i_mode))
2401 return -EPERM;
2402
2403 error = security_inode_link(old_dentry, dir, new_dentry);
2404 if (error)
2405 return error;
2406
2407 mutex_lock(&inode->i_mutex);
2408 DQUOT_INIT(dir);
2409 error = dir->i_op->link(old_dentry, dir, new_dentry);
2410 mutex_unlock(&inode->i_mutex);
2411 if (!error)
2412 fsnotify_link(dir, inode, new_dentry);
2413 return error;
2414 }
2415
2416 /*
2417 * Hardlinks are often used in delicate situations. We avoid
2418 * security-related surprises by not following symlinks on the
2419 * newname. --KAB
2420 *
2421 * We don't follow them on the oldname either to be compatible
2422 * with linux 2.0, and to avoid hard-linking to directories
2423 * and other special files. --ADM
2424 */
2425 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2426 int newdfd, const char __user *newname,
2427 int flags)
2428 {
2429 struct dentry *new_dentry;
2430 struct nameidata nd;
2431 struct path old_path;
2432 int error;
2433 char *to;
2434
2435 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2436 return -EINVAL;
2437
2438 error = user_path_at(olddfd, oldname,
2439 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2440 &old_path);
2441 if (error)
2442 return error;
2443
2444 error = user_path_parent(newdfd, newname, &nd, &to);
2445 if (error)
2446 goto out;
2447 error = -EXDEV;
2448 if (old_path.mnt != nd.path.mnt)
2449 goto out_release;
2450 new_dentry = lookup_create(&nd, 0);
2451 error = PTR_ERR(new_dentry);
2452 if (IS_ERR(new_dentry))
2453 goto out_unlock;
2454 error = mnt_want_write(nd.path.mnt);
2455 if (error)
2456 goto out_dput;
2457 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2458 mnt_drop_write(nd.path.mnt);
2459 out_dput:
2460 dput(new_dentry);
2461 out_unlock:
2462 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2463 out_release:
2464 path_put(&nd.path);
2465 putname(to);
2466 out:
2467 path_put(&old_path);
2468
2469 return error;
2470 }
2471
2472 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2473 {
2474 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2475 }
2476
2477 /*
2478 * The worst of all namespace operations - renaming directory. "Perverted"
2479 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2480 * Problems:
2481 * a) we can get into loop creation. Check is done in is_subdir().
2482 * b) race potential - two innocent renames can create a loop together.
2483 * That's where 4.4 screws up. Current fix: serialization on
2484 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2485 * story.
2486 * c) we have to lock _three_ objects - parents and victim (if it exists).
2487 * And that - after we got ->i_mutex on parents (until then we don't know
2488 * whether the target exists). Solution: try to be smart with locking
2489 * order for inodes. We rely on the fact that tree topology may change
2490 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2491 * move will be locked. Thus we can rank directories by the tree
2492 * (ancestors first) and rank all non-directories after them.
2493 * That works since everybody except rename does "lock parent, lookup,
2494 * lock child" and rename is under ->s_vfs_rename_mutex.
2495 * HOWEVER, it relies on the assumption that any object with ->lookup()
2496 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2497 * we'd better make sure that there's no link(2) for them.
2498 * d) some filesystems don't support opened-but-unlinked directories,
2499 * either because of layout or because they are not ready to deal with
2500 * all cases correctly. The latter will be fixed (taking this sort of
2501 * stuff into VFS), but the former is not going away. Solution: the same
2502 * trick as in rmdir().
2503 * e) conversion from fhandle to dentry may come in the wrong moment - when
2504 * we are removing the target. Solution: we will have to grab ->i_mutex
2505 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2506 * ->i_mutex on parents, which works but leads to some truely excessive
2507 * locking].
2508 */
2509 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2510 struct inode *new_dir, struct dentry *new_dentry)
2511 {
2512 int error = 0;
2513 struct inode *target;
2514
2515 /*
2516 * If we are going to change the parent - check write permissions,
2517 * we'll need to flip '..'.
2518 */
2519 if (new_dir != old_dir) {
2520 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2521 if (error)
2522 return error;
2523 }
2524
2525 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2526 if (error)
2527 return error;
2528
2529 target = new_dentry->d_inode;
2530 if (target) {
2531 mutex_lock(&target->i_mutex);
2532 dentry_unhash(new_dentry);
2533 }
2534 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2535 error = -EBUSY;
2536 else
2537 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2538 if (target) {
2539 if (!error)
2540 target->i_flags |= S_DEAD;
2541 mutex_unlock(&target->i_mutex);
2542 if (d_unhashed(new_dentry))
2543 d_rehash(new_dentry);
2544 dput(new_dentry);
2545 }
2546 if (!error)
2547 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2548 d_move(old_dentry,new_dentry);
2549 return error;
2550 }
2551
2552 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2553 struct inode *new_dir, struct dentry *new_dentry)
2554 {
2555 struct inode *target;
2556 int error;
2557
2558 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2559 if (error)
2560 return error;
2561
2562 dget(new_dentry);
2563 target = new_dentry->d_inode;
2564 if (target)
2565 mutex_lock(&target->i_mutex);
2566 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2567 error = -EBUSY;
2568 else
2569 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2570 if (!error) {
2571 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2572 d_move(old_dentry, new_dentry);
2573 }
2574 if (target)
2575 mutex_unlock(&target->i_mutex);
2576 dput(new_dentry);
2577 return error;
2578 }
2579
2580 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2581 struct inode *new_dir, struct dentry *new_dentry)
2582 {
2583 int error;
2584 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2585 const char *old_name;
2586
2587 if (old_dentry->d_inode == new_dentry->d_inode)
2588 return 0;
2589
2590 error = may_delete(old_dir, old_dentry, is_dir);
2591 if (error)
2592 return error;
2593
2594 if (!new_dentry->d_inode)
2595 error = may_create(new_dir, new_dentry);
2596 else
2597 error = may_delete(new_dir, new_dentry, is_dir);
2598 if (error)
2599 return error;
2600
2601 if (!old_dir->i_op || !old_dir->i_op->rename)
2602 return -EPERM;
2603
2604 DQUOT_INIT(old_dir);
2605 DQUOT_INIT(new_dir);
2606
2607 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2608
2609 if (is_dir)
2610 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2611 else
2612 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2613 if (!error) {
2614 const char *new_name = old_dentry->d_name.name;
2615 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2616 new_dentry->d_inode, old_dentry);
2617 }
2618 fsnotify_oldname_free(old_name);
2619
2620 return error;
2621 }
2622
2623 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2624 int newdfd, const char __user *newname)
2625 {
2626 struct dentry *old_dir, *new_dir;
2627 struct dentry *old_dentry, *new_dentry;
2628 struct dentry *trap;
2629 struct nameidata oldnd, newnd;
2630 char *from;
2631 char *to;
2632 int error;
2633
2634 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2635 if (error)
2636 goto exit;
2637
2638 error = user_path_parent(newdfd, newname, &newnd, &to);
2639 if (error)
2640 goto exit1;
2641
2642 error = -EXDEV;
2643 if (oldnd.path.mnt != newnd.path.mnt)
2644 goto exit2;
2645
2646 old_dir = oldnd.path.dentry;
2647 error = -EBUSY;
2648 if (oldnd.last_type != LAST_NORM)
2649 goto exit2;
2650
2651 new_dir = newnd.path.dentry;
2652 if (newnd.last_type != LAST_NORM)
2653 goto exit2;
2654
2655 oldnd.flags &= ~LOOKUP_PARENT;
2656 newnd.flags &= ~LOOKUP_PARENT;
2657 newnd.flags |= LOOKUP_RENAME_TARGET;
2658
2659 trap = lock_rename(new_dir, old_dir);
2660
2661 old_dentry = lookup_hash(&oldnd);
2662 error = PTR_ERR(old_dentry);
2663 if (IS_ERR(old_dentry))
2664 goto exit3;
2665 /* source must exist */
2666 error = -ENOENT;
2667 if (!old_dentry->d_inode)
2668 goto exit4;
2669 /* unless the source is a directory trailing slashes give -ENOTDIR */
2670 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2671 error = -ENOTDIR;
2672 if (oldnd.last.name[oldnd.last.len])
2673 goto exit4;
2674 if (newnd.last.name[newnd.last.len])
2675 goto exit4;
2676 }
2677 /* source should not be ancestor of target */
2678 error = -EINVAL;
2679 if (old_dentry == trap)
2680 goto exit4;
2681 new_dentry = lookup_hash(&newnd);
2682 error = PTR_ERR(new_dentry);
2683 if (IS_ERR(new_dentry))
2684 goto exit4;
2685 /* target should not be an ancestor of source */
2686 error = -ENOTEMPTY;
2687 if (new_dentry == trap)
2688 goto exit5;
2689
2690 error = mnt_want_write(oldnd.path.mnt);
2691 if (error)
2692 goto exit5;
2693 error = vfs_rename(old_dir->d_inode, old_dentry,
2694 new_dir->d_inode, new_dentry);
2695 mnt_drop_write(oldnd.path.mnt);
2696 exit5:
2697 dput(new_dentry);
2698 exit4:
2699 dput(old_dentry);
2700 exit3:
2701 unlock_rename(new_dir, old_dir);
2702 exit2:
2703 path_put(&newnd.path);
2704 putname(to);
2705 exit1:
2706 path_put(&oldnd.path);
2707 putname(from);
2708 exit:
2709 return error;
2710 }
2711
2712 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2713 {
2714 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2715 }
2716
2717 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2718 {
2719 int len;
2720
2721 len = PTR_ERR(link);
2722 if (IS_ERR(link))
2723 goto out;
2724
2725 len = strlen(link);
2726 if (len > (unsigned) buflen)
2727 len = buflen;
2728 if (copy_to_user(buffer, link, len))
2729 len = -EFAULT;
2730 out:
2731 return len;
2732 }
2733
2734 /*
2735 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2736 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2737 * using) it for any given inode is up to filesystem.
2738 */
2739 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2740 {
2741 struct nameidata nd;
2742 void *cookie;
2743 int res;
2744
2745 nd.depth = 0;
2746 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2747 if (IS_ERR(cookie))
2748 return PTR_ERR(cookie);
2749
2750 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2751 if (dentry->d_inode->i_op->put_link)
2752 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2753 return res;
2754 }
2755
2756 int vfs_follow_link(struct nameidata *nd, const char *link)
2757 {
2758 return __vfs_follow_link(nd, link);
2759 }
2760
2761 /* get the link contents into pagecache */
2762 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2763 {
2764 struct page * page;
2765 struct address_space *mapping = dentry->d_inode->i_mapping;
2766 page = read_mapping_page(mapping, 0, NULL);
2767 if (IS_ERR(page))
2768 return (char*)page;
2769 *ppage = page;
2770 return kmap(page);
2771 }
2772
2773 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2774 {
2775 struct page *page = NULL;
2776 char *s = page_getlink(dentry, &page);
2777 int res = vfs_readlink(dentry,buffer,buflen,s);
2778 if (page) {
2779 kunmap(page);
2780 page_cache_release(page);
2781 }
2782 return res;
2783 }
2784
2785 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2786 {
2787 struct page *page = NULL;
2788 nd_set_link(nd, page_getlink(dentry, &page));
2789 return page;
2790 }
2791
2792 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2793 {
2794 struct page *page = cookie;
2795
2796 if (page) {
2797 kunmap(page);
2798 page_cache_release(page);
2799 }
2800 }
2801
2802 int __page_symlink(struct inode *inode, const char *symname, int len,
2803 gfp_t gfp_mask)
2804 {
2805 struct address_space *mapping = inode->i_mapping;
2806 struct page *page;
2807 void *fsdata;
2808 int err;
2809 char *kaddr;
2810
2811 retry:
2812 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2813 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2814 if (err)
2815 goto fail;
2816
2817 kaddr = kmap_atomic(page, KM_USER0);
2818 memcpy(kaddr, symname, len-1);
2819 kunmap_atomic(kaddr, KM_USER0);
2820
2821 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2822 page, fsdata);
2823 if (err < 0)
2824 goto fail;
2825 if (err < len-1)
2826 goto retry;
2827
2828 mark_inode_dirty(inode);
2829 return 0;
2830 fail:
2831 return err;
2832 }
2833
2834 int page_symlink(struct inode *inode, const char *symname, int len)
2835 {
2836 return __page_symlink(inode, symname, len,
2837 mapping_gfp_mask(inode->i_mapping));
2838 }
2839
2840 const struct inode_operations page_symlink_inode_operations = {
2841 .readlink = generic_readlink,
2842 .follow_link = page_follow_link_light,
2843 .put_link = page_put_link,
2844 };
2845
2846 EXPORT_SYMBOL(user_path_at);
2847 EXPORT_SYMBOL(follow_down);
2848 EXPORT_SYMBOL(follow_up);
2849 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2850 EXPORT_SYMBOL(getname);
2851 EXPORT_SYMBOL(lock_rename);
2852 EXPORT_SYMBOL(lookup_one_len);
2853 EXPORT_SYMBOL(page_follow_link_light);
2854 EXPORT_SYMBOL(page_put_link);
2855 EXPORT_SYMBOL(page_readlink);
2856 EXPORT_SYMBOL(__page_symlink);
2857 EXPORT_SYMBOL(page_symlink);
2858 EXPORT_SYMBOL(page_symlink_inode_operations);
2859 EXPORT_SYMBOL(path_lookup);
2860 EXPORT_SYMBOL(kern_path);
2861 EXPORT_SYMBOL(vfs_path_lookup);
2862 EXPORT_SYMBOL(inode_permission);
2863 EXPORT_SYMBOL(vfs_permission);
2864 EXPORT_SYMBOL(file_permission);
2865 EXPORT_SYMBOL(unlock_rename);
2866 EXPORT_SYMBOL(vfs_create);
2867 EXPORT_SYMBOL(vfs_follow_link);
2868 EXPORT_SYMBOL(vfs_link);
2869 EXPORT_SYMBOL(vfs_mkdir);
2870 EXPORT_SYMBOL(vfs_mknod);
2871 EXPORT_SYMBOL(generic_permission);
2872 EXPORT_SYMBOL(vfs_readlink);
2873 EXPORT_SYMBOL(vfs_rename);
2874 EXPORT_SYMBOL(vfs_rmdir);
2875 EXPORT_SYMBOL(vfs_symlink);
2876 EXPORT_SYMBOL(vfs_unlink);
2877 EXPORT_SYMBOL(dentry_unhash);
2878 EXPORT_SYMBOL(generic_readlink);
This page took 0.140561 seconds and 5 git commands to generate.