Merge branch 'x86-eficross-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39 #include "mount.h"
40
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
46 *
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
53 *
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
57 *
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
60 *
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
67 */
68
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
76 *
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
84 */
85
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
88 *
89 * [10-Sep-98 Alan Modra] Another symlink change.
90 */
91
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
99 *
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
105 */
106 /*
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
110 */
111
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139 }
140
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 char *result = __getname();
144 int retval;
145
146 if (!result)
147 return ERR_PTR(-ENOMEM);
148
149 retval = do_getname(filename, result);
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(result);
155 return ERR_PTR(retval);
156 }
157 }
158 audit_getname(result);
159 return result;
160 }
161
162 char *getname(const char __user * filename)
163 {
164 return getname_flags(filename, 0, 0);
165 }
166
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
169 {
170 if (unlikely(!audit_dummy_context()))
171 audit_putname(name);
172 else
173 __putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177
178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
182
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 if (!acl)
186 return -EAGAIN;
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
189 return -ECHILD;
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 }
192
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194
195 /*
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
199 *
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
202 */
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 if (IS_ERR(acl))
207 return PTR_ERR(acl);
208 } else {
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 return -EAGAIN;
211 }
212 }
213
214 if (acl) {
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
217 return error;
218 }
219 #endif
220
221 return -EAGAIN;
222 }
223
224 /*
225 * This does the basic permission checking
226 */
227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 unsigned int mode = inode->i_mode;
230
231 if (current_user_ns() != inode_userns(inode))
232 goto other_perms;
233
234 if (likely(current_fsuid() == inode->i_uid))
235 mode >>= 6;
236 else {
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
240 return error;
241 }
242
243 if (in_group_p(inode->i_gid))
244 mode >>= 3;
245 }
246
247 other_perms:
248 /*
249 * If the DACs are ok we don't need any capability check.
250 */
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 return 0;
253 return -EACCES;
254 }
255
256 /**
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260 *
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
265 *
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
269 */
270 int generic_permission(struct inode *inode, int mask)
271 {
272 int ret;
273
274 /*
275 * Do the basic permission checks.
276 */
277 ret = acl_permission_check(inode, mask);
278 if (ret != -EACCES)
279 return ret;
280
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 return 0;
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 return 0;
288 return -EACCES;
289 }
290 /*
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
294 */
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 return 0;
298
299 /*
300 * Searching includes executable on directories, else just read.
301 */
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 return 0;
306
307 return -EACCES;
308 }
309
310 /*
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
315 */
316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
321
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
326 }
327 return generic_permission(inode, mask);
328 }
329
330 /**
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334 *
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
339 *
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341 */
342 int inode_permission(struct inode *inode, int mask)
343 {
344 int retval;
345
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
348
349 /*
350 * Nobody gets write access to a read-only fs.
351 */
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 return -EROFS;
355
356 /*
357 * Nobody gets write access to an immutable file.
358 */
359 if (IS_IMMUTABLE(inode))
360 return -EACCES;
361 }
362
363 retval = do_inode_permission(inode, mask);
364 if (retval)
365 return retval;
366
367 retval = devcgroup_inode_permission(inode, mask);
368 if (retval)
369 return retval;
370
371 return security_inode_permission(inode, mask);
372 }
373
374 /**
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
377 *
378 * Given a path increment the reference count to the dentry and the vfsmount.
379 */
380 void path_get(struct path *path)
381 {
382 mntget(path->mnt);
383 dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386
387 /**
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
390 *
391 * Given a path decrement the reference count to the dentry and the vfsmount.
392 */
393 void path_put(struct path *path)
394 {
395 dput(path->dentry);
396 mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399
400 /*
401 * Path walking has 2 modes, rcu-walk and ref-walk (see
402 * Documentation/filesystems/path-lookup.txt). In situations when we can't
403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405 * mode. Refcounts are grabbed at the last known good point before rcu-walk
406 * got stuck, so ref-walk may continue from there. If this is not successful
407 * (eg. a seqcount has changed), then failure is returned and it's up to caller
408 * to restart the path walk from the beginning in ref-walk mode.
409 */
410
411 /**
412 * unlazy_walk - try to switch to ref-walk mode.
413 * @nd: nameidata pathwalk data
414 * @dentry: child of nd->path.dentry or NULL
415 * Returns: 0 on success, -ECHILD on failure
416 *
417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
419 * @nd or NULL. Must be called from rcu-walk context.
420 */
421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 struct fs_struct *fs = current->fs;
424 struct dentry *parent = nd->path.dentry;
425 int want_root = 0;
426
427 BUG_ON(!(nd->flags & LOOKUP_RCU));
428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 want_root = 1;
430 spin_lock(&fs->lock);
431 if (nd->root.mnt != fs->root.mnt ||
432 nd->root.dentry != fs->root.dentry)
433 goto err_root;
434 }
435 spin_lock(&parent->d_lock);
436 if (!dentry) {
437 if (!__d_rcu_to_refcount(parent, nd->seq))
438 goto err_parent;
439 BUG_ON(nd->inode != parent->d_inode);
440 } else {
441 if (dentry->d_parent != parent)
442 goto err_parent;
443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 if (!__d_rcu_to_refcount(dentry, nd->seq))
445 goto err_child;
446 /*
447 * If the sequence check on the child dentry passed, then
448 * the child has not been removed from its parent. This
449 * means the parent dentry must be valid and able to take
450 * a reference at this point.
451 */
452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 BUG_ON(!parent->d_count);
454 parent->d_count++;
455 spin_unlock(&dentry->d_lock);
456 }
457 spin_unlock(&parent->d_lock);
458 if (want_root) {
459 path_get(&nd->root);
460 spin_unlock(&fs->lock);
461 }
462 mntget(nd->path.mnt);
463
464 rcu_read_unlock();
465 br_read_unlock(vfsmount_lock);
466 nd->flags &= ~LOOKUP_RCU;
467 return 0;
468
469 err_child:
470 spin_unlock(&dentry->d_lock);
471 err_parent:
472 spin_unlock(&parent->d_lock);
473 err_root:
474 if (want_root)
475 spin_unlock(&fs->lock);
476 return -ECHILD;
477 }
478
479 /**
480 * release_open_intent - free up open intent resources
481 * @nd: pointer to nameidata
482 */
483 void release_open_intent(struct nameidata *nd)
484 {
485 struct file *file = nd->intent.open.file;
486
487 if (file && !IS_ERR(file)) {
488 if (file->f_path.dentry == NULL)
489 put_filp(file);
490 else
491 fput(file);
492 }
493 }
494
495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 return dentry->d_op->d_revalidate(dentry, nd);
498 }
499
500 /**
501 * complete_walk - successful completion of path walk
502 * @nd: pointer nameidata
503 *
504 * If we had been in RCU mode, drop out of it and legitimize nd->path.
505 * Revalidate the final result, unless we'd already done that during
506 * the path walk or the filesystem doesn't ask for it. Return 0 on
507 * success, -error on failure. In case of failure caller does not
508 * need to drop nd->path.
509 */
510 static int complete_walk(struct nameidata *nd)
511 {
512 struct dentry *dentry = nd->path.dentry;
513 int status;
514
515 if (nd->flags & LOOKUP_RCU) {
516 nd->flags &= ~LOOKUP_RCU;
517 if (!(nd->flags & LOOKUP_ROOT))
518 nd->root.mnt = NULL;
519 spin_lock(&dentry->d_lock);
520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 spin_unlock(&dentry->d_lock);
522 rcu_read_unlock();
523 br_read_unlock(vfsmount_lock);
524 return -ECHILD;
525 }
526 BUG_ON(nd->inode != dentry->d_inode);
527 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
529 rcu_read_unlock();
530 br_read_unlock(vfsmount_lock);
531 }
532
533 if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 return 0;
535
536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 return 0;
538
539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 return 0;
541
542 /* Note: we do not d_invalidate() */
543 status = d_revalidate(dentry, nd);
544 if (status > 0)
545 return 0;
546
547 if (!status)
548 status = -ESTALE;
549
550 path_put(&nd->path);
551 return status;
552 }
553
554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 if (!nd->root.mnt)
557 get_fs_root(current->fs, &nd->root);
558 }
559
560 static int link_path_walk(const char *, struct nameidata *);
561
562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 if (!nd->root.mnt) {
565 struct fs_struct *fs = current->fs;
566 unsigned seq;
567
568 do {
569 seq = read_seqcount_begin(&fs->seq);
570 nd->root = fs->root;
571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 } while (read_seqcount_retry(&fs->seq, seq));
573 }
574 }
575
576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 int ret;
579
580 if (IS_ERR(link))
581 goto fail;
582
583 if (*link == '/') {
584 set_root(nd);
585 path_put(&nd->path);
586 nd->path = nd->root;
587 path_get(&nd->root);
588 nd->flags |= LOOKUP_JUMPED;
589 }
590 nd->inode = nd->path.dentry->d_inode;
591
592 ret = link_path_walk(link, nd);
593 return ret;
594 fail:
595 path_put(&nd->path);
596 return PTR_ERR(link);
597 }
598
599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 dput(path->dentry);
602 if (path->mnt != nd->path.mnt)
603 mntput(path->mnt);
604 }
605
606 static inline void path_to_nameidata(const struct path *path,
607 struct nameidata *nd)
608 {
609 if (!(nd->flags & LOOKUP_RCU)) {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
613 }
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
616 }
617
618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 struct inode *inode = link->dentry->d_inode;
621 if (!IS_ERR(cookie) && inode->i_op->put_link)
622 inode->i_op->put_link(link->dentry, nd, cookie);
623 path_put(link);
624 }
625
626 static __always_inline int
627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 int error;
630 struct dentry *dentry = link->dentry;
631
632 BUG_ON(nd->flags & LOOKUP_RCU);
633
634 if (link->mnt == nd->path.mnt)
635 mntget(link->mnt);
636
637 if (unlikely(current->total_link_count >= 40)) {
638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 path_put(&nd->path);
640 return -ELOOP;
641 }
642 cond_resched();
643 current->total_link_count++;
644
645 touch_atime(link);
646 nd_set_link(nd, NULL);
647
648 error = security_inode_follow_link(link->dentry, nd);
649 if (error) {
650 *p = ERR_PTR(error); /* no ->put_link(), please */
651 path_put(&nd->path);
652 return error;
653 }
654
655 nd->last_type = LAST_BIND;
656 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 error = PTR_ERR(*p);
658 if (!IS_ERR(*p)) {
659 char *s = nd_get_link(nd);
660 error = 0;
661 if (s)
662 error = __vfs_follow_link(nd, s);
663 else if (nd->last_type == LAST_BIND) {
664 nd->flags |= LOOKUP_JUMPED;
665 nd->inode = nd->path.dentry->d_inode;
666 if (nd->inode->i_op->follow_link) {
667 /* stepped on a _really_ weird one */
668 path_put(&nd->path);
669 error = -ELOOP;
670 }
671 }
672 }
673 return error;
674 }
675
676 static int follow_up_rcu(struct path *path)
677 {
678 struct mount *mnt = real_mount(path->mnt);
679 struct mount *parent;
680 struct dentry *mountpoint;
681
682 parent = mnt->mnt_parent;
683 if (&parent->mnt == path->mnt)
684 return 0;
685 mountpoint = mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = &parent->mnt;
688 return 1;
689 }
690
691 int follow_up(struct path *path)
692 {
693 struct mount *mnt = real_mount(path->mnt);
694 struct mount *parent;
695 struct dentry *mountpoint;
696
697 br_read_lock(vfsmount_lock);
698 parent = mnt->mnt_parent;
699 if (&parent->mnt == path->mnt) {
700 br_read_unlock(vfsmount_lock);
701 return 0;
702 }
703 mntget(&parent->mnt);
704 mountpoint = dget(mnt->mnt_mountpoint);
705 br_read_unlock(vfsmount_lock);
706 dput(path->dentry);
707 path->dentry = mountpoint;
708 mntput(path->mnt);
709 path->mnt = &parent->mnt;
710 return 1;
711 }
712
713 /*
714 * Perform an automount
715 * - return -EISDIR to tell follow_managed() to stop and return the path we
716 * were called with.
717 */
718 static int follow_automount(struct path *path, unsigned flags,
719 bool *need_mntput)
720 {
721 struct vfsmount *mnt;
722 int err;
723
724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 return -EREMOTE;
726
727 /* We don't want to mount if someone's just doing a stat -
728 * unless they're stat'ing a directory and appended a '/' to
729 * the name.
730 *
731 * We do, however, want to mount if someone wants to open or
732 * create a file of any type under the mountpoint, wants to
733 * traverse through the mountpoint or wants to open the
734 * mounted directory. Also, autofs may mark negative dentries
735 * as being automount points. These will need the attentions
736 * of the daemon to instantiate them before they can be used.
737 */
738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 path->dentry->d_inode)
741 return -EISDIR;
742
743 current->total_link_count++;
744 if (current->total_link_count >= 40)
745 return -ELOOP;
746
747 mnt = path->dentry->d_op->d_automount(path);
748 if (IS_ERR(mnt)) {
749 /*
750 * The filesystem is allowed to return -EISDIR here to indicate
751 * it doesn't want to automount. For instance, autofs would do
752 * this so that its userspace daemon can mount on this dentry.
753 *
754 * However, we can only permit this if it's a terminal point in
755 * the path being looked up; if it wasn't then the remainder of
756 * the path is inaccessible and we should say so.
757 */
758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 return -EREMOTE;
760 return PTR_ERR(mnt);
761 }
762
763 if (!mnt) /* mount collision */
764 return 0;
765
766 if (!*need_mntput) {
767 /* lock_mount() may release path->mnt on error */
768 mntget(path->mnt);
769 *need_mntput = true;
770 }
771 err = finish_automount(mnt, path);
772
773 switch (err) {
774 case -EBUSY:
775 /* Someone else made a mount here whilst we were busy */
776 return 0;
777 case 0:
778 path_put(path);
779 path->mnt = mnt;
780 path->dentry = dget(mnt->mnt_root);
781 return 0;
782 default:
783 return err;
784 }
785
786 }
787
788 /*
789 * Handle a dentry that is managed in some way.
790 * - Flagged for transit management (autofs)
791 * - Flagged as mountpoint
792 * - Flagged as automount point
793 *
794 * This may only be called in refwalk mode.
795 *
796 * Serialization is taken care of in namespace.c
797 */
798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 unsigned managed;
802 bool need_mntput = false;
803 int ret = 0;
804
805 /* Given that we're not holding a lock here, we retain the value in a
806 * local variable for each dentry as we look at it so that we don't see
807 * the components of that value change under us */
808 while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 managed &= DCACHE_MANAGED_DENTRY,
810 unlikely(managed != 0)) {
811 /* Allow the filesystem to manage the transit without i_mutex
812 * being held. */
813 if (managed & DCACHE_MANAGE_TRANSIT) {
814 BUG_ON(!path->dentry->d_op);
815 BUG_ON(!path->dentry->d_op->d_manage);
816 ret = path->dentry->d_op->d_manage(path->dentry, false);
817 if (ret < 0)
818 break;
819 }
820
821 /* Transit to a mounted filesystem. */
822 if (managed & DCACHE_MOUNTED) {
823 struct vfsmount *mounted = lookup_mnt(path);
824 if (mounted) {
825 dput(path->dentry);
826 if (need_mntput)
827 mntput(path->mnt);
828 path->mnt = mounted;
829 path->dentry = dget(mounted->mnt_root);
830 need_mntput = true;
831 continue;
832 }
833
834 /* Something is mounted on this dentry in another
835 * namespace and/or whatever was mounted there in this
836 * namespace got unmounted before we managed to get the
837 * vfsmount_lock */
838 }
839
840 /* Handle an automount point */
841 if (managed & DCACHE_NEED_AUTOMOUNT) {
842 ret = follow_automount(path, flags, &need_mntput);
843 if (ret < 0)
844 break;
845 continue;
846 }
847
848 /* We didn't change the current path point */
849 break;
850 }
851
852 if (need_mntput && path->mnt == mnt)
853 mntput(path->mnt);
854 if (ret == -EISDIR)
855 ret = 0;
856 return ret < 0 ? ret : need_mntput;
857 }
858
859 int follow_down_one(struct path *path)
860 {
861 struct vfsmount *mounted;
862
863 mounted = lookup_mnt(path);
864 if (mounted) {
865 dput(path->dentry);
866 mntput(path->mnt);
867 path->mnt = mounted;
868 path->dentry = dget(mounted->mnt_root);
869 return 1;
870 }
871 return 0;
872 }
873
874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 dentry->d_op->d_manage(dentry, true) < 0);
878 }
879
880 /*
881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
882 * we meet a managed dentry that would need blocking.
883 */
884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 struct inode **inode)
886 {
887 for (;;) {
888 struct mount *mounted;
889 /*
890 * Don't forget we might have a non-mountpoint managed dentry
891 * that wants to block transit.
892 */
893 if (unlikely(managed_dentry_might_block(path->dentry)))
894 return false;
895
896 if (!d_mountpoint(path->dentry))
897 break;
898
899 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 if (!mounted)
901 break;
902 path->mnt = &mounted->mnt;
903 path->dentry = mounted->mnt.mnt_root;
904 nd->flags |= LOOKUP_JUMPED;
905 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 /*
907 * Update the inode too. We don't need to re-check the
908 * dentry sequence number here after this d_inode read,
909 * because a mount-point is always pinned.
910 */
911 *inode = path->dentry->d_inode;
912 }
913 return true;
914 }
915
916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 while (d_mountpoint(nd->path.dentry)) {
919 struct mount *mounted;
920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 if (!mounted)
922 break;
923 nd->path.mnt = &mounted->mnt;
924 nd->path.dentry = mounted->mnt.mnt_root;
925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 }
927 }
928
929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 set_root_rcu(nd);
932
933 while (1) {
934 if (nd->path.dentry == nd->root.dentry &&
935 nd->path.mnt == nd->root.mnt) {
936 break;
937 }
938 if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 struct dentry *old = nd->path.dentry;
940 struct dentry *parent = old->d_parent;
941 unsigned seq;
942
943 seq = read_seqcount_begin(&parent->d_seq);
944 if (read_seqcount_retry(&old->d_seq, nd->seq))
945 goto failed;
946 nd->path.dentry = parent;
947 nd->seq = seq;
948 break;
949 }
950 if (!follow_up_rcu(&nd->path))
951 break;
952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 }
954 follow_mount_rcu(nd);
955 nd->inode = nd->path.dentry->d_inode;
956 return 0;
957
958 failed:
959 nd->flags &= ~LOOKUP_RCU;
960 if (!(nd->flags & LOOKUP_ROOT))
961 nd->root.mnt = NULL;
962 rcu_read_unlock();
963 br_read_unlock(vfsmount_lock);
964 return -ECHILD;
965 }
966
967 /*
968 * Follow down to the covering mount currently visible to userspace. At each
969 * point, the filesystem owning that dentry may be queried as to whether the
970 * caller is permitted to proceed or not.
971 */
972 int follow_down(struct path *path)
973 {
974 unsigned managed;
975 int ret;
976
977 while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 /* Allow the filesystem to manage the transit without i_mutex
980 * being held.
981 *
982 * We indicate to the filesystem if someone is trying to mount
983 * something here. This gives autofs the chance to deny anyone
984 * other than its daemon the right to mount on its
985 * superstructure.
986 *
987 * The filesystem may sleep at this point.
988 */
989 if (managed & DCACHE_MANAGE_TRANSIT) {
990 BUG_ON(!path->dentry->d_op);
991 BUG_ON(!path->dentry->d_op->d_manage);
992 ret = path->dentry->d_op->d_manage(
993 path->dentry, false);
994 if (ret < 0)
995 return ret == -EISDIR ? 0 : ret;
996 }
997
998 /* Transit to a mounted filesystem. */
999 if (managed & DCACHE_MOUNTED) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1001 if (!mounted)
1002 break;
1003 dput(path->dentry);
1004 mntput(path->mnt);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1007 continue;
1008 }
1009
1010 /* Don't handle automount points here */
1011 break;
1012 }
1013 return 0;
1014 }
1015
1016 /*
1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018 */
1019 static void follow_mount(struct path *path)
1020 {
1021 while (d_mountpoint(path->dentry)) {
1022 struct vfsmount *mounted = lookup_mnt(path);
1023 if (!mounted)
1024 break;
1025 dput(path->dentry);
1026 mntput(path->mnt);
1027 path->mnt = mounted;
1028 path->dentry = dget(mounted->mnt_root);
1029 }
1030 }
1031
1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 set_root(nd);
1035
1036 while(1) {
1037 struct dentry *old = nd->path.dentry;
1038
1039 if (nd->path.dentry == nd->root.dentry &&
1040 nd->path.mnt == nd->root.mnt) {
1041 break;
1042 }
1043 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 /* rare case of legitimate dget_parent()... */
1045 nd->path.dentry = dget_parent(nd->path.dentry);
1046 dput(old);
1047 break;
1048 }
1049 if (!follow_up(&nd->path))
1050 break;
1051 }
1052 follow_mount(&nd->path);
1053 nd->inode = nd->path.dentry->d_inode;
1054 }
1055
1056 /*
1057 * Allocate a dentry with name and parent, and perform a parent
1058 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1059 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1060 * have verified that no child exists while under i_mutex.
1061 */
1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1063 struct qstr *name, struct nameidata *nd)
1064 {
1065 struct inode *inode = parent->d_inode;
1066 struct dentry *dentry;
1067 struct dentry *old;
1068
1069 /* Don't create child dentry for a dead directory. */
1070 if (unlikely(IS_DEADDIR(inode)))
1071 return ERR_PTR(-ENOENT);
1072
1073 dentry = d_alloc(parent, name);
1074 if (unlikely(!dentry))
1075 return ERR_PTR(-ENOMEM);
1076
1077 old = inode->i_op->lookup(inode, dentry, nd);
1078 if (unlikely(old)) {
1079 dput(dentry);
1080 dentry = old;
1081 }
1082 return dentry;
1083 }
1084
1085 /*
1086 * We already have a dentry, but require a lookup to be performed on the parent
1087 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1088 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1089 * child exists while under i_mutex.
1090 */
1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1092 struct nameidata *nd)
1093 {
1094 struct inode *inode = parent->d_inode;
1095 struct dentry *old;
1096
1097 /* Don't create child dentry for a dead directory. */
1098 if (unlikely(IS_DEADDIR(inode))) {
1099 dput(dentry);
1100 return ERR_PTR(-ENOENT);
1101 }
1102
1103 old = inode->i_op->lookup(inode, dentry, nd);
1104 if (unlikely(old)) {
1105 dput(dentry);
1106 dentry = old;
1107 }
1108 return dentry;
1109 }
1110
1111 /*
1112 * It's more convoluted than I'd like it to be, but... it's still fairly
1113 * small and for now I'd prefer to have fast path as straight as possible.
1114 * It _is_ time-critical.
1115 */
1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 struct path *path, struct inode **inode)
1118 {
1119 struct vfsmount *mnt = nd->path.mnt;
1120 struct dentry *dentry, *parent = nd->path.dentry;
1121 int need_reval = 1;
1122 int status = 1;
1123 int err;
1124
1125 /*
1126 * Rename seqlock is not required here because in the off chance
1127 * of a false negative due to a concurrent rename, we're going to
1128 * do the non-racy lookup, below.
1129 */
1130 if (nd->flags & LOOKUP_RCU) {
1131 unsigned seq;
1132 *inode = nd->inode;
1133 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 if (!dentry)
1135 goto unlazy;
1136
1137 /* Memory barrier in read_seqcount_begin of child is enough */
1138 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 return -ECHILD;
1140 nd->seq = seq;
1141
1142 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 status = d_revalidate(dentry, nd);
1144 if (unlikely(status <= 0)) {
1145 if (status != -ECHILD)
1146 need_reval = 0;
1147 goto unlazy;
1148 }
1149 }
1150 if (unlikely(d_need_lookup(dentry)))
1151 goto unlazy;
1152 path->mnt = mnt;
1153 path->dentry = dentry;
1154 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 goto unlazy;
1156 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 goto unlazy;
1158 return 0;
1159 unlazy:
1160 if (unlazy_walk(nd, dentry))
1161 return -ECHILD;
1162 } else {
1163 dentry = __d_lookup(parent, name);
1164 }
1165
1166 if (dentry && unlikely(d_need_lookup(dentry))) {
1167 dput(dentry);
1168 dentry = NULL;
1169 }
1170 retry:
1171 if (unlikely(!dentry)) {
1172 struct inode *dir = parent->d_inode;
1173 BUG_ON(nd->inode != dir);
1174
1175 mutex_lock(&dir->i_mutex);
1176 dentry = d_lookup(parent, name);
1177 if (likely(!dentry)) {
1178 dentry = d_alloc_and_lookup(parent, name, nd);
1179 if (IS_ERR(dentry)) {
1180 mutex_unlock(&dir->i_mutex);
1181 return PTR_ERR(dentry);
1182 }
1183 /* known good */
1184 need_reval = 0;
1185 status = 1;
1186 } else if (unlikely(d_need_lookup(dentry))) {
1187 dentry = d_inode_lookup(parent, dentry, nd);
1188 if (IS_ERR(dentry)) {
1189 mutex_unlock(&dir->i_mutex);
1190 return PTR_ERR(dentry);
1191 }
1192 /* known good */
1193 need_reval = 0;
1194 status = 1;
1195 }
1196 mutex_unlock(&dir->i_mutex);
1197 }
1198 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 status = d_revalidate(dentry, nd);
1200 if (unlikely(status <= 0)) {
1201 if (status < 0) {
1202 dput(dentry);
1203 return status;
1204 }
1205 if (!d_invalidate(dentry)) {
1206 dput(dentry);
1207 dentry = NULL;
1208 need_reval = 1;
1209 goto retry;
1210 }
1211 }
1212
1213 path->mnt = mnt;
1214 path->dentry = dentry;
1215 err = follow_managed(path, nd->flags);
1216 if (unlikely(err < 0)) {
1217 path_put_conditional(path, nd);
1218 return err;
1219 }
1220 if (err)
1221 nd->flags |= LOOKUP_JUMPED;
1222 *inode = path->dentry->d_inode;
1223 return 0;
1224 }
1225
1226 static inline int may_lookup(struct nameidata *nd)
1227 {
1228 if (nd->flags & LOOKUP_RCU) {
1229 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1230 if (err != -ECHILD)
1231 return err;
1232 if (unlazy_walk(nd, NULL))
1233 return -ECHILD;
1234 }
1235 return inode_permission(nd->inode, MAY_EXEC);
1236 }
1237
1238 static inline int handle_dots(struct nameidata *nd, int type)
1239 {
1240 if (type == LAST_DOTDOT) {
1241 if (nd->flags & LOOKUP_RCU) {
1242 if (follow_dotdot_rcu(nd))
1243 return -ECHILD;
1244 } else
1245 follow_dotdot(nd);
1246 }
1247 return 0;
1248 }
1249
1250 static void terminate_walk(struct nameidata *nd)
1251 {
1252 if (!(nd->flags & LOOKUP_RCU)) {
1253 path_put(&nd->path);
1254 } else {
1255 nd->flags &= ~LOOKUP_RCU;
1256 if (!(nd->flags & LOOKUP_ROOT))
1257 nd->root.mnt = NULL;
1258 rcu_read_unlock();
1259 br_read_unlock(vfsmount_lock);
1260 }
1261 }
1262
1263 /*
1264 * Do we need to follow links? We _really_ want to be able
1265 * to do this check without having to look at inode->i_op,
1266 * so we keep a cache of "no, this doesn't need follow_link"
1267 * for the common case.
1268 */
1269 static inline int should_follow_link(struct inode *inode, int follow)
1270 {
1271 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1272 if (likely(inode->i_op->follow_link))
1273 return follow;
1274
1275 /* This gets set once for the inode lifetime */
1276 spin_lock(&inode->i_lock);
1277 inode->i_opflags |= IOP_NOFOLLOW;
1278 spin_unlock(&inode->i_lock);
1279 }
1280 return 0;
1281 }
1282
1283 static inline int walk_component(struct nameidata *nd, struct path *path,
1284 struct qstr *name, int type, int follow)
1285 {
1286 struct inode *inode;
1287 int err;
1288 /*
1289 * "." and ".." are special - ".." especially so because it has
1290 * to be able to know about the current root directory and
1291 * parent relationships.
1292 */
1293 if (unlikely(type != LAST_NORM))
1294 return handle_dots(nd, type);
1295 err = do_lookup(nd, name, path, &inode);
1296 if (unlikely(err)) {
1297 terminate_walk(nd);
1298 return err;
1299 }
1300 if (!inode) {
1301 path_to_nameidata(path, nd);
1302 terminate_walk(nd);
1303 return -ENOENT;
1304 }
1305 if (should_follow_link(inode, follow)) {
1306 if (nd->flags & LOOKUP_RCU) {
1307 if (unlikely(unlazy_walk(nd, path->dentry))) {
1308 terminate_walk(nd);
1309 return -ECHILD;
1310 }
1311 }
1312 BUG_ON(inode != path->dentry->d_inode);
1313 return 1;
1314 }
1315 path_to_nameidata(path, nd);
1316 nd->inode = inode;
1317 return 0;
1318 }
1319
1320 /*
1321 * This limits recursive symlink follows to 8, while
1322 * limiting consecutive symlinks to 40.
1323 *
1324 * Without that kind of total limit, nasty chains of consecutive
1325 * symlinks can cause almost arbitrarily long lookups.
1326 */
1327 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1328 {
1329 int res;
1330
1331 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1332 path_put_conditional(path, nd);
1333 path_put(&nd->path);
1334 return -ELOOP;
1335 }
1336 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1337
1338 nd->depth++;
1339 current->link_count++;
1340
1341 do {
1342 struct path link = *path;
1343 void *cookie;
1344
1345 res = follow_link(&link, nd, &cookie);
1346 if (!res)
1347 res = walk_component(nd, path, &nd->last,
1348 nd->last_type, LOOKUP_FOLLOW);
1349 put_link(nd, &link, cookie);
1350 } while (res > 0);
1351
1352 current->link_count--;
1353 nd->depth--;
1354 return res;
1355 }
1356
1357 /*
1358 * We really don't want to look at inode->i_op->lookup
1359 * when we don't have to. So we keep a cache bit in
1360 * the inode ->i_opflags field that says "yes, we can
1361 * do lookup on this inode".
1362 */
1363 static inline int can_lookup(struct inode *inode)
1364 {
1365 if (likely(inode->i_opflags & IOP_LOOKUP))
1366 return 1;
1367 if (likely(!inode->i_op->lookup))
1368 return 0;
1369
1370 /* We do this once for the lifetime of the inode */
1371 spin_lock(&inode->i_lock);
1372 inode->i_opflags |= IOP_LOOKUP;
1373 spin_unlock(&inode->i_lock);
1374 return 1;
1375 }
1376
1377 /*
1378 * We can do the critical dentry name comparison and hashing
1379 * operations one word at a time, but we are limited to:
1380 *
1381 * - Architectures with fast unaligned word accesses. We could
1382 * do a "get_unaligned()" if this helps and is sufficiently
1383 * fast.
1384 *
1385 * - Little-endian machines (so that we can generate the mask
1386 * of low bytes efficiently). Again, we *could* do a byte
1387 * swapping load on big-endian architectures if that is not
1388 * expensive enough to make the optimization worthless.
1389 *
1390 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1391 * do not trap on the (extremely unlikely) case of a page
1392 * crossing operation.
1393 *
1394 * - Furthermore, we need an efficient 64-bit compile for the
1395 * 64-bit case in order to generate the "number of bytes in
1396 * the final mask". Again, that could be replaced with a
1397 * efficient population count instruction or similar.
1398 */
1399 #ifdef CONFIG_DCACHE_WORD_ACCESS
1400
1401 #ifdef CONFIG_64BIT
1402
1403 /*
1404 * Jan Achrenius on G+: microoptimized version of
1405 * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
1406 * that works for the bytemasks without having to
1407 * mask them first.
1408 */
1409 static inline long count_masked_bytes(unsigned long mask)
1410 {
1411 return mask*0x0001020304050608 >> 56;
1412 }
1413
1414 static inline unsigned int fold_hash(unsigned long hash)
1415 {
1416 hash += hash >> (8*sizeof(int));
1417 return hash;
1418 }
1419
1420 #else /* 32-bit case */
1421
1422 /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
1423 static inline long count_masked_bytes(long mask)
1424 {
1425 /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
1426 long a = (0x0ff0001+mask) >> 23;
1427 /* Fix the 1 for 00 case */
1428 return a & mask;
1429 }
1430
1431 #define fold_hash(x) (x)
1432
1433 #endif
1434
1435 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1436 {
1437 unsigned long a, mask;
1438 unsigned long hash = 0;
1439
1440 for (;;) {
1441 a = *(unsigned long *)name;
1442 hash *= 9;
1443 if (len < sizeof(unsigned long))
1444 break;
1445 hash += a;
1446 name += sizeof(unsigned long);
1447 len -= sizeof(unsigned long);
1448 if (!len)
1449 goto done;
1450 }
1451 mask = ~(~0ul << len*8);
1452 hash += mask & a;
1453 done:
1454 return fold_hash(hash);
1455 }
1456 EXPORT_SYMBOL(full_name_hash);
1457
1458 #ifdef CONFIG_64BIT
1459 #define ONEBYTES 0x0101010101010101ul
1460 #define SLASHBYTES 0x2f2f2f2f2f2f2f2ful
1461 #define HIGHBITS 0x8080808080808080ul
1462 #else
1463 #define ONEBYTES 0x01010101ul
1464 #define SLASHBYTES 0x2f2f2f2ful
1465 #define HIGHBITS 0x80808080ul
1466 #endif
1467
1468 /* Return the high bit set in the first byte that is a zero */
1469 static inline unsigned long has_zero(unsigned long a)
1470 {
1471 return ((a - ONEBYTES) & ~a) & HIGHBITS;
1472 }
1473
1474 /*
1475 * Calculate the length and hash of the path component, and
1476 * return the length of the component;
1477 */
1478 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1479 {
1480 unsigned long a, mask, hash, len;
1481
1482 hash = a = 0;
1483 len = -sizeof(unsigned long);
1484 do {
1485 hash = (hash + a) * 9;
1486 len += sizeof(unsigned long);
1487 a = *(unsigned long *)(name+len);
1488 /* Do we have any NUL or '/' bytes in this word? */
1489 mask = has_zero(a) | has_zero(a ^ SLASHBYTES);
1490 } while (!mask);
1491
1492 /* The mask *below* the first high bit set */
1493 mask = (mask - 1) & ~mask;
1494 mask >>= 7;
1495 hash += a & mask;
1496 *hashp = fold_hash(hash);
1497
1498 return len + count_masked_bytes(mask);
1499 }
1500
1501 #else
1502
1503 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1504 {
1505 unsigned long hash = init_name_hash();
1506 while (len--)
1507 hash = partial_name_hash(*name++, hash);
1508 return end_name_hash(hash);
1509 }
1510 EXPORT_SYMBOL(full_name_hash);
1511
1512 /*
1513 * We know there's a real path component here of at least
1514 * one character.
1515 */
1516 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1517 {
1518 unsigned long hash = init_name_hash();
1519 unsigned long len = 0, c;
1520
1521 c = (unsigned char)*name;
1522 do {
1523 len++;
1524 hash = partial_name_hash(c, hash);
1525 c = (unsigned char)name[len];
1526 } while (c && c != '/');
1527 *hashp = end_name_hash(hash);
1528 return len;
1529 }
1530
1531 #endif
1532
1533 /*
1534 * Name resolution.
1535 * This is the basic name resolution function, turning a pathname into
1536 * the final dentry. We expect 'base' to be positive and a directory.
1537 *
1538 * Returns 0 and nd will have valid dentry and mnt on success.
1539 * Returns error and drops reference to input namei data on failure.
1540 */
1541 static int link_path_walk(const char *name, struct nameidata *nd)
1542 {
1543 struct path next;
1544 int err;
1545
1546 while (*name=='/')
1547 name++;
1548 if (!*name)
1549 return 0;
1550
1551 /* At this point we know we have a real path component. */
1552 for(;;) {
1553 struct qstr this;
1554 long len;
1555 int type;
1556
1557 err = may_lookup(nd);
1558 if (err)
1559 break;
1560
1561 len = hash_name(name, &this.hash);
1562 this.name = name;
1563 this.len = len;
1564
1565 type = LAST_NORM;
1566 if (name[0] == '.') switch (len) {
1567 case 2:
1568 if (name[1] == '.') {
1569 type = LAST_DOTDOT;
1570 nd->flags |= LOOKUP_JUMPED;
1571 }
1572 break;
1573 case 1:
1574 type = LAST_DOT;
1575 }
1576 if (likely(type == LAST_NORM)) {
1577 struct dentry *parent = nd->path.dentry;
1578 nd->flags &= ~LOOKUP_JUMPED;
1579 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1580 err = parent->d_op->d_hash(parent, nd->inode,
1581 &this);
1582 if (err < 0)
1583 break;
1584 }
1585 }
1586
1587 if (!name[len])
1588 goto last_component;
1589 /*
1590 * If it wasn't NUL, we know it was '/'. Skip that
1591 * slash, and continue until no more slashes.
1592 */
1593 do {
1594 len++;
1595 } while (unlikely(name[len] == '/'));
1596 if (!name[len])
1597 goto last_component;
1598 name += len;
1599
1600 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1601 if (err < 0)
1602 return err;
1603
1604 if (err) {
1605 err = nested_symlink(&next, nd);
1606 if (err)
1607 return err;
1608 }
1609 if (can_lookup(nd->inode))
1610 continue;
1611 err = -ENOTDIR;
1612 break;
1613 /* here ends the main loop */
1614
1615 last_component:
1616 nd->last = this;
1617 nd->last_type = type;
1618 return 0;
1619 }
1620 terminate_walk(nd);
1621 return err;
1622 }
1623
1624 static int path_init(int dfd, const char *name, unsigned int flags,
1625 struct nameidata *nd, struct file **fp)
1626 {
1627 int retval = 0;
1628 int fput_needed;
1629 struct file *file;
1630
1631 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1632 nd->flags = flags | LOOKUP_JUMPED;
1633 nd->depth = 0;
1634 if (flags & LOOKUP_ROOT) {
1635 struct inode *inode = nd->root.dentry->d_inode;
1636 if (*name) {
1637 if (!inode->i_op->lookup)
1638 return -ENOTDIR;
1639 retval = inode_permission(inode, MAY_EXEC);
1640 if (retval)
1641 return retval;
1642 }
1643 nd->path = nd->root;
1644 nd->inode = inode;
1645 if (flags & LOOKUP_RCU) {
1646 br_read_lock(vfsmount_lock);
1647 rcu_read_lock();
1648 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1649 } else {
1650 path_get(&nd->path);
1651 }
1652 return 0;
1653 }
1654
1655 nd->root.mnt = NULL;
1656
1657 if (*name=='/') {
1658 if (flags & LOOKUP_RCU) {
1659 br_read_lock(vfsmount_lock);
1660 rcu_read_lock();
1661 set_root_rcu(nd);
1662 } else {
1663 set_root(nd);
1664 path_get(&nd->root);
1665 }
1666 nd->path = nd->root;
1667 } else if (dfd == AT_FDCWD) {
1668 if (flags & LOOKUP_RCU) {
1669 struct fs_struct *fs = current->fs;
1670 unsigned seq;
1671
1672 br_read_lock(vfsmount_lock);
1673 rcu_read_lock();
1674
1675 do {
1676 seq = read_seqcount_begin(&fs->seq);
1677 nd->path = fs->pwd;
1678 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1679 } while (read_seqcount_retry(&fs->seq, seq));
1680 } else {
1681 get_fs_pwd(current->fs, &nd->path);
1682 }
1683 } else {
1684 struct dentry *dentry;
1685
1686 file = fget_raw_light(dfd, &fput_needed);
1687 retval = -EBADF;
1688 if (!file)
1689 goto out_fail;
1690
1691 dentry = file->f_path.dentry;
1692
1693 if (*name) {
1694 retval = -ENOTDIR;
1695 if (!S_ISDIR(dentry->d_inode->i_mode))
1696 goto fput_fail;
1697
1698 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1699 if (retval)
1700 goto fput_fail;
1701 }
1702
1703 nd->path = file->f_path;
1704 if (flags & LOOKUP_RCU) {
1705 if (fput_needed)
1706 *fp = file;
1707 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1708 br_read_lock(vfsmount_lock);
1709 rcu_read_lock();
1710 } else {
1711 path_get(&file->f_path);
1712 fput_light(file, fput_needed);
1713 }
1714 }
1715
1716 nd->inode = nd->path.dentry->d_inode;
1717 return 0;
1718
1719 fput_fail:
1720 fput_light(file, fput_needed);
1721 out_fail:
1722 return retval;
1723 }
1724
1725 static inline int lookup_last(struct nameidata *nd, struct path *path)
1726 {
1727 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1728 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1729
1730 nd->flags &= ~LOOKUP_PARENT;
1731 return walk_component(nd, path, &nd->last, nd->last_type,
1732 nd->flags & LOOKUP_FOLLOW);
1733 }
1734
1735 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1736 static int path_lookupat(int dfd, const char *name,
1737 unsigned int flags, struct nameidata *nd)
1738 {
1739 struct file *base = NULL;
1740 struct path path;
1741 int err;
1742
1743 /*
1744 * Path walking is largely split up into 2 different synchronisation
1745 * schemes, rcu-walk and ref-walk (explained in
1746 * Documentation/filesystems/path-lookup.txt). These share much of the
1747 * path walk code, but some things particularly setup, cleanup, and
1748 * following mounts are sufficiently divergent that functions are
1749 * duplicated. Typically there is a function foo(), and its RCU
1750 * analogue, foo_rcu().
1751 *
1752 * -ECHILD is the error number of choice (just to avoid clashes) that
1753 * is returned if some aspect of an rcu-walk fails. Such an error must
1754 * be handled by restarting a traditional ref-walk (which will always
1755 * be able to complete).
1756 */
1757 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1758
1759 if (unlikely(err))
1760 return err;
1761
1762 current->total_link_count = 0;
1763 err = link_path_walk(name, nd);
1764
1765 if (!err && !(flags & LOOKUP_PARENT)) {
1766 err = lookup_last(nd, &path);
1767 while (err > 0) {
1768 void *cookie;
1769 struct path link = path;
1770 nd->flags |= LOOKUP_PARENT;
1771 err = follow_link(&link, nd, &cookie);
1772 if (!err)
1773 err = lookup_last(nd, &path);
1774 put_link(nd, &link, cookie);
1775 }
1776 }
1777
1778 if (!err)
1779 err = complete_walk(nd);
1780
1781 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1782 if (!nd->inode->i_op->lookup) {
1783 path_put(&nd->path);
1784 err = -ENOTDIR;
1785 }
1786 }
1787
1788 if (base)
1789 fput(base);
1790
1791 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1792 path_put(&nd->root);
1793 nd->root.mnt = NULL;
1794 }
1795 return err;
1796 }
1797
1798 static int do_path_lookup(int dfd, const char *name,
1799 unsigned int flags, struct nameidata *nd)
1800 {
1801 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1802 if (unlikely(retval == -ECHILD))
1803 retval = path_lookupat(dfd, name, flags, nd);
1804 if (unlikely(retval == -ESTALE))
1805 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1806
1807 if (likely(!retval)) {
1808 if (unlikely(!audit_dummy_context())) {
1809 if (nd->path.dentry && nd->inode)
1810 audit_inode(name, nd->path.dentry);
1811 }
1812 }
1813 return retval;
1814 }
1815
1816 int kern_path_parent(const char *name, struct nameidata *nd)
1817 {
1818 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1819 }
1820
1821 int kern_path(const char *name, unsigned int flags, struct path *path)
1822 {
1823 struct nameidata nd;
1824 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1825 if (!res)
1826 *path = nd.path;
1827 return res;
1828 }
1829
1830 /**
1831 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1832 * @dentry: pointer to dentry of the base directory
1833 * @mnt: pointer to vfs mount of the base directory
1834 * @name: pointer to file name
1835 * @flags: lookup flags
1836 * @path: pointer to struct path to fill
1837 */
1838 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1839 const char *name, unsigned int flags,
1840 struct path *path)
1841 {
1842 struct nameidata nd;
1843 int err;
1844 nd.root.dentry = dentry;
1845 nd.root.mnt = mnt;
1846 BUG_ON(flags & LOOKUP_PARENT);
1847 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1848 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1849 if (!err)
1850 *path = nd.path;
1851 return err;
1852 }
1853
1854 static struct dentry *__lookup_hash(struct qstr *name,
1855 struct dentry *base, struct nameidata *nd)
1856 {
1857 struct inode *inode = base->d_inode;
1858 struct dentry *dentry;
1859 int err;
1860
1861 err = inode_permission(inode, MAY_EXEC);
1862 if (err)
1863 return ERR_PTR(err);
1864
1865 /*
1866 * Don't bother with __d_lookup: callers are for creat as
1867 * well as unlink, so a lot of the time it would cost
1868 * a double lookup.
1869 */
1870 dentry = d_lookup(base, name);
1871
1872 if (dentry && d_need_lookup(dentry)) {
1873 /*
1874 * __lookup_hash is called with the parent dir's i_mutex already
1875 * held, so we are good to go here.
1876 */
1877 dentry = d_inode_lookup(base, dentry, nd);
1878 if (IS_ERR(dentry))
1879 return dentry;
1880 }
1881
1882 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1883 int status = d_revalidate(dentry, nd);
1884 if (unlikely(status <= 0)) {
1885 /*
1886 * The dentry failed validation.
1887 * If d_revalidate returned 0 attempt to invalidate
1888 * the dentry otherwise d_revalidate is asking us
1889 * to return a fail status.
1890 */
1891 if (status < 0) {
1892 dput(dentry);
1893 return ERR_PTR(status);
1894 } else if (!d_invalidate(dentry)) {
1895 dput(dentry);
1896 dentry = NULL;
1897 }
1898 }
1899 }
1900
1901 if (!dentry)
1902 dentry = d_alloc_and_lookup(base, name, nd);
1903
1904 return dentry;
1905 }
1906
1907 /*
1908 * Restricted form of lookup. Doesn't follow links, single-component only,
1909 * needs parent already locked. Doesn't follow mounts.
1910 * SMP-safe.
1911 */
1912 static struct dentry *lookup_hash(struct nameidata *nd)
1913 {
1914 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1915 }
1916
1917 /**
1918 * lookup_one_len - filesystem helper to lookup single pathname component
1919 * @name: pathname component to lookup
1920 * @base: base directory to lookup from
1921 * @len: maximum length @len should be interpreted to
1922 *
1923 * Note that this routine is purely a helper for filesystem usage and should
1924 * not be called by generic code. Also note that by using this function the
1925 * nameidata argument is passed to the filesystem methods and a filesystem
1926 * using this helper needs to be prepared for that.
1927 */
1928 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1929 {
1930 struct qstr this;
1931 unsigned int c;
1932
1933 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1934
1935 this.name = name;
1936 this.len = len;
1937 this.hash = full_name_hash(name, len);
1938 if (!len)
1939 return ERR_PTR(-EACCES);
1940
1941 while (len--) {
1942 c = *(const unsigned char *)name++;
1943 if (c == '/' || c == '\0')
1944 return ERR_PTR(-EACCES);
1945 }
1946 /*
1947 * See if the low-level filesystem might want
1948 * to use its own hash..
1949 */
1950 if (base->d_flags & DCACHE_OP_HASH) {
1951 int err = base->d_op->d_hash(base, base->d_inode, &this);
1952 if (err < 0)
1953 return ERR_PTR(err);
1954 }
1955
1956 return __lookup_hash(&this, base, NULL);
1957 }
1958
1959 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1960 struct path *path, int *empty)
1961 {
1962 struct nameidata nd;
1963 char *tmp = getname_flags(name, flags, empty);
1964 int err = PTR_ERR(tmp);
1965 if (!IS_ERR(tmp)) {
1966
1967 BUG_ON(flags & LOOKUP_PARENT);
1968
1969 err = do_path_lookup(dfd, tmp, flags, &nd);
1970 putname(tmp);
1971 if (!err)
1972 *path = nd.path;
1973 }
1974 return err;
1975 }
1976
1977 int user_path_at(int dfd, const char __user *name, unsigned flags,
1978 struct path *path)
1979 {
1980 return user_path_at_empty(dfd, name, flags, path, 0);
1981 }
1982
1983 static int user_path_parent(int dfd, const char __user *path,
1984 struct nameidata *nd, char **name)
1985 {
1986 char *s = getname(path);
1987 int error;
1988
1989 if (IS_ERR(s))
1990 return PTR_ERR(s);
1991
1992 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1993 if (error)
1994 putname(s);
1995 else
1996 *name = s;
1997
1998 return error;
1999 }
2000
2001 /*
2002 * It's inline, so penalty for filesystems that don't use sticky bit is
2003 * minimal.
2004 */
2005 static inline int check_sticky(struct inode *dir, struct inode *inode)
2006 {
2007 uid_t fsuid = current_fsuid();
2008
2009 if (!(dir->i_mode & S_ISVTX))
2010 return 0;
2011 if (current_user_ns() != inode_userns(inode))
2012 goto other_userns;
2013 if (inode->i_uid == fsuid)
2014 return 0;
2015 if (dir->i_uid == fsuid)
2016 return 0;
2017
2018 other_userns:
2019 return !ns_capable(inode_userns(inode), CAP_FOWNER);
2020 }
2021
2022 /*
2023 * Check whether we can remove a link victim from directory dir, check
2024 * whether the type of victim is right.
2025 * 1. We can't do it if dir is read-only (done in permission())
2026 * 2. We should have write and exec permissions on dir
2027 * 3. We can't remove anything from append-only dir
2028 * 4. We can't do anything with immutable dir (done in permission())
2029 * 5. If the sticky bit on dir is set we should either
2030 * a. be owner of dir, or
2031 * b. be owner of victim, or
2032 * c. have CAP_FOWNER capability
2033 * 6. If the victim is append-only or immutable we can't do antyhing with
2034 * links pointing to it.
2035 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2036 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2037 * 9. We can't remove a root or mountpoint.
2038 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2039 * nfs_async_unlink().
2040 */
2041 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2042 {
2043 int error;
2044
2045 if (!victim->d_inode)
2046 return -ENOENT;
2047
2048 BUG_ON(victim->d_parent->d_inode != dir);
2049 audit_inode_child(victim, dir);
2050
2051 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2052 if (error)
2053 return error;
2054 if (IS_APPEND(dir))
2055 return -EPERM;
2056 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2057 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2058 return -EPERM;
2059 if (isdir) {
2060 if (!S_ISDIR(victim->d_inode->i_mode))
2061 return -ENOTDIR;
2062 if (IS_ROOT(victim))
2063 return -EBUSY;
2064 } else if (S_ISDIR(victim->d_inode->i_mode))
2065 return -EISDIR;
2066 if (IS_DEADDIR(dir))
2067 return -ENOENT;
2068 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2069 return -EBUSY;
2070 return 0;
2071 }
2072
2073 /* Check whether we can create an object with dentry child in directory
2074 * dir.
2075 * 1. We can't do it if child already exists (open has special treatment for
2076 * this case, but since we are inlined it's OK)
2077 * 2. We can't do it if dir is read-only (done in permission())
2078 * 3. We should have write and exec permissions on dir
2079 * 4. We can't do it if dir is immutable (done in permission())
2080 */
2081 static inline int may_create(struct inode *dir, struct dentry *child)
2082 {
2083 if (child->d_inode)
2084 return -EEXIST;
2085 if (IS_DEADDIR(dir))
2086 return -ENOENT;
2087 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2088 }
2089
2090 /*
2091 * p1 and p2 should be directories on the same fs.
2092 */
2093 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2094 {
2095 struct dentry *p;
2096
2097 if (p1 == p2) {
2098 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2099 return NULL;
2100 }
2101
2102 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2103
2104 p = d_ancestor(p2, p1);
2105 if (p) {
2106 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2107 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2108 return p;
2109 }
2110
2111 p = d_ancestor(p1, p2);
2112 if (p) {
2113 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2114 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2115 return p;
2116 }
2117
2118 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2119 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2120 return NULL;
2121 }
2122
2123 void unlock_rename(struct dentry *p1, struct dentry *p2)
2124 {
2125 mutex_unlock(&p1->d_inode->i_mutex);
2126 if (p1 != p2) {
2127 mutex_unlock(&p2->d_inode->i_mutex);
2128 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2129 }
2130 }
2131
2132 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2133 struct nameidata *nd)
2134 {
2135 int error = may_create(dir, dentry);
2136
2137 if (error)
2138 return error;
2139
2140 if (!dir->i_op->create)
2141 return -EACCES; /* shouldn't it be ENOSYS? */
2142 mode &= S_IALLUGO;
2143 mode |= S_IFREG;
2144 error = security_inode_create(dir, dentry, mode);
2145 if (error)
2146 return error;
2147 error = dir->i_op->create(dir, dentry, mode, nd);
2148 if (!error)
2149 fsnotify_create(dir, dentry);
2150 return error;
2151 }
2152
2153 static int may_open(struct path *path, int acc_mode, int flag)
2154 {
2155 struct dentry *dentry = path->dentry;
2156 struct inode *inode = dentry->d_inode;
2157 int error;
2158
2159 /* O_PATH? */
2160 if (!acc_mode)
2161 return 0;
2162
2163 if (!inode)
2164 return -ENOENT;
2165
2166 switch (inode->i_mode & S_IFMT) {
2167 case S_IFLNK:
2168 return -ELOOP;
2169 case S_IFDIR:
2170 if (acc_mode & MAY_WRITE)
2171 return -EISDIR;
2172 break;
2173 case S_IFBLK:
2174 case S_IFCHR:
2175 if (path->mnt->mnt_flags & MNT_NODEV)
2176 return -EACCES;
2177 /*FALLTHRU*/
2178 case S_IFIFO:
2179 case S_IFSOCK:
2180 flag &= ~O_TRUNC;
2181 break;
2182 }
2183
2184 error = inode_permission(inode, acc_mode);
2185 if (error)
2186 return error;
2187
2188 /*
2189 * An append-only file must be opened in append mode for writing.
2190 */
2191 if (IS_APPEND(inode)) {
2192 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2193 return -EPERM;
2194 if (flag & O_TRUNC)
2195 return -EPERM;
2196 }
2197
2198 /* O_NOATIME can only be set by the owner or superuser */
2199 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2200 return -EPERM;
2201
2202 return 0;
2203 }
2204
2205 static int handle_truncate(struct file *filp)
2206 {
2207 struct path *path = &filp->f_path;
2208 struct inode *inode = path->dentry->d_inode;
2209 int error = get_write_access(inode);
2210 if (error)
2211 return error;
2212 /*
2213 * Refuse to truncate files with mandatory locks held on them.
2214 */
2215 error = locks_verify_locked(inode);
2216 if (!error)
2217 error = security_path_truncate(path);
2218 if (!error) {
2219 error = do_truncate(path->dentry, 0,
2220 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2221 filp);
2222 }
2223 put_write_access(inode);
2224 return error;
2225 }
2226
2227 static inline int open_to_namei_flags(int flag)
2228 {
2229 if ((flag & O_ACCMODE) == 3)
2230 flag--;
2231 return flag;
2232 }
2233
2234 /*
2235 * Handle the last step of open()
2236 */
2237 static struct file *do_last(struct nameidata *nd, struct path *path,
2238 const struct open_flags *op, const char *pathname)
2239 {
2240 struct dentry *dir = nd->path.dentry;
2241 struct dentry *dentry;
2242 int open_flag = op->open_flag;
2243 int will_truncate = open_flag & O_TRUNC;
2244 int want_write = 0;
2245 int acc_mode = op->acc_mode;
2246 struct file *filp;
2247 int error;
2248
2249 nd->flags &= ~LOOKUP_PARENT;
2250 nd->flags |= op->intent;
2251
2252 switch (nd->last_type) {
2253 case LAST_DOTDOT:
2254 case LAST_DOT:
2255 error = handle_dots(nd, nd->last_type);
2256 if (error)
2257 return ERR_PTR(error);
2258 /* fallthrough */
2259 case LAST_ROOT:
2260 error = complete_walk(nd);
2261 if (error)
2262 return ERR_PTR(error);
2263 audit_inode(pathname, nd->path.dentry);
2264 if (open_flag & O_CREAT) {
2265 error = -EISDIR;
2266 goto exit;
2267 }
2268 goto ok;
2269 case LAST_BIND:
2270 error = complete_walk(nd);
2271 if (error)
2272 return ERR_PTR(error);
2273 audit_inode(pathname, dir);
2274 goto ok;
2275 }
2276
2277 if (!(open_flag & O_CREAT)) {
2278 int symlink_ok = 0;
2279 if (nd->last.name[nd->last.len])
2280 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2281 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2282 symlink_ok = 1;
2283 /* we _can_ be in RCU mode here */
2284 error = walk_component(nd, path, &nd->last, LAST_NORM,
2285 !symlink_ok);
2286 if (error < 0)
2287 return ERR_PTR(error);
2288 if (error) /* symlink */
2289 return NULL;
2290 /* sayonara */
2291 error = complete_walk(nd);
2292 if (error)
2293 return ERR_PTR(error);
2294
2295 error = -ENOTDIR;
2296 if (nd->flags & LOOKUP_DIRECTORY) {
2297 if (!nd->inode->i_op->lookup)
2298 goto exit;
2299 }
2300 audit_inode(pathname, nd->path.dentry);
2301 goto ok;
2302 }
2303
2304 /* create side of things */
2305 /*
2306 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2307 * cleared when we got to the last component we are about to look up
2308 */
2309 error = complete_walk(nd);
2310 if (error)
2311 return ERR_PTR(error);
2312
2313 audit_inode(pathname, dir);
2314 error = -EISDIR;
2315 /* trailing slashes? */
2316 if (nd->last.name[nd->last.len])
2317 goto exit;
2318
2319 mutex_lock(&dir->d_inode->i_mutex);
2320
2321 dentry = lookup_hash(nd);
2322 error = PTR_ERR(dentry);
2323 if (IS_ERR(dentry)) {
2324 mutex_unlock(&dir->d_inode->i_mutex);
2325 goto exit;
2326 }
2327
2328 path->dentry = dentry;
2329 path->mnt = nd->path.mnt;
2330
2331 /* Negative dentry, just create the file */
2332 if (!dentry->d_inode) {
2333 umode_t mode = op->mode;
2334 if (!IS_POSIXACL(dir->d_inode))
2335 mode &= ~current_umask();
2336 /*
2337 * This write is needed to ensure that a
2338 * rw->ro transition does not occur between
2339 * the time when the file is created and when
2340 * a permanent write count is taken through
2341 * the 'struct file' in nameidata_to_filp().
2342 */
2343 error = mnt_want_write(nd->path.mnt);
2344 if (error)
2345 goto exit_mutex_unlock;
2346 want_write = 1;
2347 /* Don't check for write permission, don't truncate */
2348 open_flag &= ~O_TRUNC;
2349 will_truncate = 0;
2350 acc_mode = MAY_OPEN;
2351 error = security_path_mknod(&nd->path, dentry, mode, 0);
2352 if (error)
2353 goto exit_mutex_unlock;
2354 error = vfs_create(dir->d_inode, dentry, mode, nd);
2355 if (error)
2356 goto exit_mutex_unlock;
2357 mutex_unlock(&dir->d_inode->i_mutex);
2358 dput(nd->path.dentry);
2359 nd->path.dentry = dentry;
2360 goto common;
2361 }
2362
2363 /*
2364 * It already exists.
2365 */
2366 mutex_unlock(&dir->d_inode->i_mutex);
2367 audit_inode(pathname, path->dentry);
2368
2369 error = -EEXIST;
2370 if (open_flag & O_EXCL)
2371 goto exit_dput;
2372
2373 error = follow_managed(path, nd->flags);
2374 if (error < 0)
2375 goto exit_dput;
2376
2377 if (error)
2378 nd->flags |= LOOKUP_JUMPED;
2379
2380 error = -ENOENT;
2381 if (!path->dentry->d_inode)
2382 goto exit_dput;
2383
2384 if (path->dentry->d_inode->i_op->follow_link)
2385 return NULL;
2386
2387 path_to_nameidata(path, nd);
2388 nd->inode = path->dentry->d_inode;
2389 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2390 error = complete_walk(nd);
2391 if (error)
2392 return ERR_PTR(error);
2393 error = -EISDIR;
2394 if (S_ISDIR(nd->inode->i_mode))
2395 goto exit;
2396 ok:
2397 if (!S_ISREG(nd->inode->i_mode))
2398 will_truncate = 0;
2399
2400 if (will_truncate) {
2401 error = mnt_want_write(nd->path.mnt);
2402 if (error)
2403 goto exit;
2404 want_write = 1;
2405 }
2406 common:
2407 error = may_open(&nd->path, acc_mode, open_flag);
2408 if (error)
2409 goto exit;
2410 filp = nameidata_to_filp(nd);
2411 if (!IS_ERR(filp)) {
2412 error = ima_file_check(filp, op->acc_mode);
2413 if (error) {
2414 fput(filp);
2415 filp = ERR_PTR(error);
2416 }
2417 }
2418 if (!IS_ERR(filp)) {
2419 if (will_truncate) {
2420 error = handle_truncate(filp);
2421 if (error) {
2422 fput(filp);
2423 filp = ERR_PTR(error);
2424 }
2425 }
2426 }
2427 out:
2428 if (want_write)
2429 mnt_drop_write(nd->path.mnt);
2430 path_put(&nd->path);
2431 return filp;
2432
2433 exit_mutex_unlock:
2434 mutex_unlock(&dir->d_inode->i_mutex);
2435 exit_dput:
2436 path_put_conditional(path, nd);
2437 exit:
2438 filp = ERR_PTR(error);
2439 goto out;
2440 }
2441
2442 static struct file *path_openat(int dfd, const char *pathname,
2443 struct nameidata *nd, const struct open_flags *op, int flags)
2444 {
2445 struct file *base = NULL;
2446 struct file *filp;
2447 struct path path;
2448 int error;
2449
2450 filp = get_empty_filp();
2451 if (!filp)
2452 return ERR_PTR(-ENFILE);
2453
2454 filp->f_flags = op->open_flag;
2455 nd->intent.open.file = filp;
2456 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2457 nd->intent.open.create_mode = op->mode;
2458
2459 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2460 if (unlikely(error))
2461 goto out_filp;
2462
2463 current->total_link_count = 0;
2464 error = link_path_walk(pathname, nd);
2465 if (unlikely(error))
2466 goto out_filp;
2467
2468 filp = do_last(nd, &path, op, pathname);
2469 while (unlikely(!filp)) { /* trailing symlink */
2470 struct path link = path;
2471 void *cookie;
2472 if (!(nd->flags & LOOKUP_FOLLOW)) {
2473 path_put_conditional(&path, nd);
2474 path_put(&nd->path);
2475 filp = ERR_PTR(-ELOOP);
2476 break;
2477 }
2478 nd->flags |= LOOKUP_PARENT;
2479 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2480 error = follow_link(&link, nd, &cookie);
2481 if (unlikely(error))
2482 filp = ERR_PTR(error);
2483 else
2484 filp = do_last(nd, &path, op, pathname);
2485 put_link(nd, &link, cookie);
2486 }
2487 out:
2488 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2489 path_put(&nd->root);
2490 if (base)
2491 fput(base);
2492 release_open_intent(nd);
2493 return filp;
2494
2495 out_filp:
2496 filp = ERR_PTR(error);
2497 goto out;
2498 }
2499
2500 struct file *do_filp_open(int dfd, const char *pathname,
2501 const struct open_flags *op, int flags)
2502 {
2503 struct nameidata nd;
2504 struct file *filp;
2505
2506 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2507 if (unlikely(filp == ERR_PTR(-ECHILD)))
2508 filp = path_openat(dfd, pathname, &nd, op, flags);
2509 if (unlikely(filp == ERR_PTR(-ESTALE)))
2510 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2511 return filp;
2512 }
2513
2514 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2515 const char *name, const struct open_flags *op, int flags)
2516 {
2517 struct nameidata nd;
2518 struct file *file;
2519
2520 nd.root.mnt = mnt;
2521 nd.root.dentry = dentry;
2522
2523 flags |= LOOKUP_ROOT;
2524
2525 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2526 return ERR_PTR(-ELOOP);
2527
2528 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2529 if (unlikely(file == ERR_PTR(-ECHILD)))
2530 file = path_openat(-1, name, &nd, op, flags);
2531 if (unlikely(file == ERR_PTR(-ESTALE)))
2532 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2533 return file;
2534 }
2535
2536 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2537 {
2538 struct dentry *dentry = ERR_PTR(-EEXIST);
2539 struct nameidata nd;
2540 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2541 if (error)
2542 return ERR_PTR(error);
2543
2544 /*
2545 * Yucky last component or no last component at all?
2546 * (foo/., foo/.., /////)
2547 */
2548 if (nd.last_type != LAST_NORM)
2549 goto out;
2550 nd.flags &= ~LOOKUP_PARENT;
2551 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2552 nd.intent.open.flags = O_EXCL;
2553
2554 /*
2555 * Do the final lookup.
2556 */
2557 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2558 dentry = lookup_hash(&nd);
2559 if (IS_ERR(dentry))
2560 goto fail;
2561
2562 if (dentry->d_inode)
2563 goto eexist;
2564 /*
2565 * Special case - lookup gave negative, but... we had foo/bar/
2566 * From the vfs_mknod() POV we just have a negative dentry -
2567 * all is fine. Let's be bastards - you had / on the end, you've
2568 * been asking for (non-existent) directory. -ENOENT for you.
2569 */
2570 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2571 dput(dentry);
2572 dentry = ERR_PTR(-ENOENT);
2573 goto fail;
2574 }
2575 *path = nd.path;
2576 return dentry;
2577 eexist:
2578 dput(dentry);
2579 dentry = ERR_PTR(-EEXIST);
2580 fail:
2581 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2582 out:
2583 path_put(&nd.path);
2584 return dentry;
2585 }
2586 EXPORT_SYMBOL(kern_path_create);
2587
2588 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2589 {
2590 char *tmp = getname(pathname);
2591 struct dentry *res;
2592 if (IS_ERR(tmp))
2593 return ERR_CAST(tmp);
2594 res = kern_path_create(dfd, tmp, path, is_dir);
2595 putname(tmp);
2596 return res;
2597 }
2598 EXPORT_SYMBOL(user_path_create);
2599
2600 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2601 {
2602 int error = may_create(dir, dentry);
2603
2604 if (error)
2605 return error;
2606
2607 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2608 !ns_capable(inode_userns(dir), CAP_MKNOD))
2609 return -EPERM;
2610
2611 if (!dir->i_op->mknod)
2612 return -EPERM;
2613
2614 error = devcgroup_inode_mknod(mode, dev);
2615 if (error)
2616 return error;
2617
2618 error = security_inode_mknod(dir, dentry, mode, dev);
2619 if (error)
2620 return error;
2621
2622 error = dir->i_op->mknod(dir, dentry, mode, dev);
2623 if (!error)
2624 fsnotify_create(dir, dentry);
2625 return error;
2626 }
2627
2628 static int may_mknod(umode_t mode)
2629 {
2630 switch (mode & S_IFMT) {
2631 case S_IFREG:
2632 case S_IFCHR:
2633 case S_IFBLK:
2634 case S_IFIFO:
2635 case S_IFSOCK:
2636 case 0: /* zero mode translates to S_IFREG */
2637 return 0;
2638 case S_IFDIR:
2639 return -EPERM;
2640 default:
2641 return -EINVAL;
2642 }
2643 }
2644
2645 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2646 unsigned, dev)
2647 {
2648 struct dentry *dentry;
2649 struct path path;
2650 int error;
2651
2652 if (S_ISDIR(mode))
2653 return -EPERM;
2654
2655 dentry = user_path_create(dfd, filename, &path, 0);
2656 if (IS_ERR(dentry))
2657 return PTR_ERR(dentry);
2658
2659 if (!IS_POSIXACL(path.dentry->d_inode))
2660 mode &= ~current_umask();
2661 error = may_mknod(mode);
2662 if (error)
2663 goto out_dput;
2664 error = mnt_want_write(path.mnt);
2665 if (error)
2666 goto out_dput;
2667 error = security_path_mknod(&path, dentry, mode, dev);
2668 if (error)
2669 goto out_drop_write;
2670 switch (mode & S_IFMT) {
2671 case 0: case S_IFREG:
2672 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2673 break;
2674 case S_IFCHR: case S_IFBLK:
2675 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2676 new_decode_dev(dev));
2677 break;
2678 case S_IFIFO: case S_IFSOCK:
2679 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2680 break;
2681 }
2682 out_drop_write:
2683 mnt_drop_write(path.mnt);
2684 out_dput:
2685 dput(dentry);
2686 mutex_unlock(&path.dentry->d_inode->i_mutex);
2687 path_put(&path);
2688
2689 return error;
2690 }
2691
2692 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2693 {
2694 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2695 }
2696
2697 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2698 {
2699 int error = may_create(dir, dentry);
2700 unsigned max_links = dir->i_sb->s_max_links;
2701
2702 if (error)
2703 return error;
2704
2705 if (!dir->i_op->mkdir)
2706 return -EPERM;
2707
2708 mode &= (S_IRWXUGO|S_ISVTX);
2709 error = security_inode_mkdir(dir, dentry, mode);
2710 if (error)
2711 return error;
2712
2713 if (max_links && dir->i_nlink >= max_links)
2714 return -EMLINK;
2715
2716 error = dir->i_op->mkdir(dir, dentry, mode);
2717 if (!error)
2718 fsnotify_mkdir(dir, dentry);
2719 return error;
2720 }
2721
2722 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2723 {
2724 struct dentry *dentry;
2725 struct path path;
2726 int error;
2727
2728 dentry = user_path_create(dfd, pathname, &path, 1);
2729 if (IS_ERR(dentry))
2730 return PTR_ERR(dentry);
2731
2732 if (!IS_POSIXACL(path.dentry->d_inode))
2733 mode &= ~current_umask();
2734 error = mnt_want_write(path.mnt);
2735 if (error)
2736 goto out_dput;
2737 error = security_path_mkdir(&path, dentry, mode);
2738 if (error)
2739 goto out_drop_write;
2740 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2741 out_drop_write:
2742 mnt_drop_write(path.mnt);
2743 out_dput:
2744 dput(dentry);
2745 mutex_unlock(&path.dentry->d_inode->i_mutex);
2746 path_put(&path);
2747 return error;
2748 }
2749
2750 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2751 {
2752 return sys_mkdirat(AT_FDCWD, pathname, mode);
2753 }
2754
2755 /*
2756 * The dentry_unhash() helper will try to drop the dentry early: we
2757 * should have a usage count of 2 if we're the only user of this
2758 * dentry, and if that is true (possibly after pruning the dcache),
2759 * then we drop the dentry now.
2760 *
2761 * A low-level filesystem can, if it choses, legally
2762 * do a
2763 *
2764 * if (!d_unhashed(dentry))
2765 * return -EBUSY;
2766 *
2767 * if it cannot handle the case of removing a directory
2768 * that is still in use by something else..
2769 */
2770 void dentry_unhash(struct dentry *dentry)
2771 {
2772 shrink_dcache_parent(dentry);
2773 spin_lock(&dentry->d_lock);
2774 if (dentry->d_count == 1)
2775 __d_drop(dentry);
2776 spin_unlock(&dentry->d_lock);
2777 }
2778
2779 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2780 {
2781 int error = may_delete(dir, dentry, 1);
2782
2783 if (error)
2784 return error;
2785
2786 if (!dir->i_op->rmdir)
2787 return -EPERM;
2788
2789 dget(dentry);
2790 mutex_lock(&dentry->d_inode->i_mutex);
2791
2792 error = -EBUSY;
2793 if (d_mountpoint(dentry))
2794 goto out;
2795
2796 error = security_inode_rmdir(dir, dentry);
2797 if (error)
2798 goto out;
2799
2800 shrink_dcache_parent(dentry);
2801 error = dir->i_op->rmdir(dir, dentry);
2802 if (error)
2803 goto out;
2804
2805 dentry->d_inode->i_flags |= S_DEAD;
2806 dont_mount(dentry);
2807
2808 out:
2809 mutex_unlock(&dentry->d_inode->i_mutex);
2810 dput(dentry);
2811 if (!error)
2812 d_delete(dentry);
2813 return error;
2814 }
2815
2816 static long do_rmdir(int dfd, const char __user *pathname)
2817 {
2818 int error = 0;
2819 char * name;
2820 struct dentry *dentry;
2821 struct nameidata nd;
2822
2823 error = user_path_parent(dfd, pathname, &nd, &name);
2824 if (error)
2825 return error;
2826
2827 switch(nd.last_type) {
2828 case LAST_DOTDOT:
2829 error = -ENOTEMPTY;
2830 goto exit1;
2831 case LAST_DOT:
2832 error = -EINVAL;
2833 goto exit1;
2834 case LAST_ROOT:
2835 error = -EBUSY;
2836 goto exit1;
2837 }
2838
2839 nd.flags &= ~LOOKUP_PARENT;
2840
2841 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2842 dentry = lookup_hash(&nd);
2843 error = PTR_ERR(dentry);
2844 if (IS_ERR(dentry))
2845 goto exit2;
2846 if (!dentry->d_inode) {
2847 error = -ENOENT;
2848 goto exit3;
2849 }
2850 error = mnt_want_write(nd.path.mnt);
2851 if (error)
2852 goto exit3;
2853 error = security_path_rmdir(&nd.path, dentry);
2854 if (error)
2855 goto exit4;
2856 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2857 exit4:
2858 mnt_drop_write(nd.path.mnt);
2859 exit3:
2860 dput(dentry);
2861 exit2:
2862 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2863 exit1:
2864 path_put(&nd.path);
2865 putname(name);
2866 return error;
2867 }
2868
2869 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2870 {
2871 return do_rmdir(AT_FDCWD, pathname);
2872 }
2873
2874 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2875 {
2876 int error = may_delete(dir, dentry, 0);
2877
2878 if (error)
2879 return error;
2880
2881 if (!dir->i_op->unlink)
2882 return -EPERM;
2883
2884 mutex_lock(&dentry->d_inode->i_mutex);
2885 if (d_mountpoint(dentry))
2886 error = -EBUSY;
2887 else {
2888 error = security_inode_unlink(dir, dentry);
2889 if (!error) {
2890 error = dir->i_op->unlink(dir, dentry);
2891 if (!error)
2892 dont_mount(dentry);
2893 }
2894 }
2895 mutex_unlock(&dentry->d_inode->i_mutex);
2896
2897 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2898 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2899 fsnotify_link_count(dentry->d_inode);
2900 d_delete(dentry);
2901 }
2902
2903 return error;
2904 }
2905
2906 /*
2907 * Make sure that the actual truncation of the file will occur outside its
2908 * directory's i_mutex. Truncate can take a long time if there is a lot of
2909 * writeout happening, and we don't want to prevent access to the directory
2910 * while waiting on the I/O.
2911 */
2912 static long do_unlinkat(int dfd, const char __user *pathname)
2913 {
2914 int error;
2915 char *name;
2916 struct dentry *dentry;
2917 struct nameidata nd;
2918 struct inode *inode = NULL;
2919
2920 error = user_path_parent(dfd, pathname, &nd, &name);
2921 if (error)
2922 return error;
2923
2924 error = -EISDIR;
2925 if (nd.last_type != LAST_NORM)
2926 goto exit1;
2927
2928 nd.flags &= ~LOOKUP_PARENT;
2929
2930 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2931 dentry = lookup_hash(&nd);
2932 error = PTR_ERR(dentry);
2933 if (!IS_ERR(dentry)) {
2934 /* Why not before? Because we want correct error value */
2935 if (nd.last.name[nd.last.len])
2936 goto slashes;
2937 inode = dentry->d_inode;
2938 if (!inode)
2939 goto slashes;
2940 ihold(inode);
2941 error = mnt_want_write(nd.path.mnt);
2942 if (error)
2943 goto exit2;
2944 error = security_path_unlink(&nd.path, dentry);
2945 if (error)
2946 goto exit3;
2947 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2948 exit3:
2949 mnt_drop_write(nd.path.mnt);
2950 exit2:
2951 dput(dentry);
2952 }
2953 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2954 if (inode)
2955 iput(inode); /* truncate the inode here */
2956 exit1:
2957 path_put(&nd.path);
2958 putname(name);
2959 return error;
2960
2961 slashes:
2962 error = !dentry->d_inode ? -ENOENT :
2963 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2964 goto exit2;
2965 }
2966
2967 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2968 {
2969 if ((flag & ~AT_REMOVEDIR) != 0)
2970 return -EINVAL;
2971
2972 if (flag & AT_REMOVEDIR)
2973 return do_rmdir(dfd, pathname);
2974
2975 return do_unlinkat(dfd, pathname);
2976 }
2977
2978 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2979 {
2980 return do_unlinkat(AT_FDCWD, pathname);
2981 }
2982
2983 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2984 {
2985 int error = may_create(dir, dentry);
2986
2987 if (error)
2988 return error;
2989
2990 if (!dir->i_op->symlink)
2991 return -EPERM;
2992
2993 error = security_inode_symlink(dir, dentry, oldname);
2994 if (error)
2995 return error;
2996
2997 error = dir->i_op->symlink(dir, dentry, oldname);
2998 if (!error)
2999 fsnotify_create(dir, dentry);
3000 return error;
3001 }
3002
3003 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3004 int, newdfd, const char __user *, newname)
3005 {
3006 int error;
3007 char *from;
3008 struct dentry *dentry;
3009 struct path path;
3010
3011 from = getname(oldname);
3012 if (IS_ERR(from))
3013 return PTR_ERR(from);
3014
3015 dentry = user_path_create(newdfd, newname, &path, 0);
3016 error = PTR_ERR(dentry);
3017 if (IS_ERR(dentry))
3018 goto out_putname;
3019
3020 error = mnt_want_write(path.mnt);
3021 if (error)
3022 goto out_dput;
3023 error = security_path_symlink(&path, dentry, from);
3024 if (error)
3025 goto out_drop_write;
3026 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3027 out_drop_write:
3028 mnt_drop_write(path.mnt);
3029 out_dput:
3030 dput(dentry);
3031 mutex_unlock(&path.dentry->d_inode->i_mutex);
3032 path_put(&path);
3033 out_putname:
3034 putname(from);
3035 return error;
3036 }
3037
3038 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3039 {
3040 return sys_symlinkat(oldname, AT_FDCWD, newname);
3041 }
3042
3043 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3044 {
3045 struct inode *inode = old_dentry->d_inode;
3046 unsigned max_links = dir->i_sb->s_max_links;
3047 int error;
3048
3049 if (!inode)
3050 return -ENOENT;
3051
3052 error = may_create(dir, new_dentry);
3053 if (error)
3054 return error;
3055
3056 if (dir->i_sb != inode->i_sb)
3057 return -EXDEV;
3058
3059 /*
3060 * A link to an append-only or immutable file cannot be created.
3061 */
3062 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3063 return -EPERM;
3064 if (!dir->i_op->link)
3065 return -EPERM;
3066 if (S_ISDIR(inode->i_mode))
3067 return -EPERM;
3068
3069 error = security_inode_link(old_dentry, dir, new_dentry);
3070 if (error)
3071 return error;
3072
3073 mutex_lock(&inode->i_mutex);
3074 /* Make sure we don't allow creating hardlink to an unlinked file */
3075 if (inode->i_nlink == 0)
3076 error = -ENOENT;
3077 else if (max_links && inode->i_nlink >= max_links)
3078 error = -EMLINK;
3079 else
3080 error = dir->i_op->link(old_dentry, dir, new_dentry);
3081 mutex_unlock(&inode->i_mutex);
3082 if (!error)
3083 fsnotify_link(dir, inode, new_dentry);
3084 return error;
3085 }
3086
3087 /*
3088 * Hardlinks are often used in delicate situations. We avoid
3089 * security-related surprises by not following symlinks on the
3090 * newname. --KAB
3091 *
3092 * We don't follow them on the oldname either to be compatible
3093 * with linux 2.0, and to avoid hard-linking to directories
3094 * and other special files. --ADM
3095 */
3096 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3097 int, newdfd, const char __user *, newname, int, flags)
3098 {
3099 struct dentry *new_dentry;
3100 struct path old_path, new_path;
3101 int how = 0;
3102 int error;
3103
3104 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3105 return -EINVAL;
3106 /*
3107 * To use null names we require CAP_DAC_READ_SEARCH
3108 * This ensures that not everyone will be able to create
3109 * handlink using the passed filedescriptor.
3110 */
3111 if (flags & AT_EMPTY_PATH) {
3112 if (!capable(CAP_DAC_READ_SEARCH))
3113 return -ENOENT;
3114 how = LOOKUP_EMPTY;
3115 }
3116
3117 if (flags & AT_SYMLINK_FOLLOW)
3118 how |= LOOKUP_FOLLOW;
3119
3120 error = user_path_at(olddfd, oldname, how, &old_path);
3121 if (error)
3122 return error;
3123
3124 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3125 error = PTR_ERR(new_dentry);
3126 if (IS_ERR(new_dentry))
3127 goto out;
3128
3129 error = -EXDEV;
3130 if (old_path.mnt != new_path.mnt)
3131 goto out_dput;
3132 error = mnt_want_write(new_path.mnt);
3133 if (error)
3134 goto out_dput;
3135 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3136 if (error)
3137 goto out_drop_write;
3138 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3139 out_drop_write:
3140 mnt_drop_write(new_path.mnt);
3141 out_dput:
3142 dput(new_dentry);
3143 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3144 path_put(&new_path);
3145 out:
3146 path_put(&old_path);
3147
3148 return error;
3149 }
3150
3151 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3152 {
3153 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3154 }
3155
3156 /*
3157 * The worst of all namespace operations - renaming directory. "Perverted"
3158 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3159 * Problems:
3160 * a) we can get into loop creation. Check is done in is_subdir().
3161 * b) race potential - two innocent renames can create a loop together.
3162 * That's where 4.4 screws up. Current fix: serialization on
3163 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3164 * story.
3165 * c) we have to lock _three_ objects - parents and victim (if it exists).
3166 * And that - after we got ->i_mutex on parents (until then we don't know
3167 * whether the target exists). Solution: try to be smart with locking
3168 * order for inodes. We rely on the fact that tree topology may change
3169 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3170 * move will be locked. Thus we can rank directories by the tree
3171 * (ancestors first) and rank all non-directories after them.
3172 * That works since everybody except rename does "lock parent, lookup,
3173 * lock child" and rename is under ->s_vfs_rename_mutex.
3174 * HOWEVER, it relies on the assumption that any object with ->lookup()
3175 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3176 * we'd better make sure that there's no link(2) for them.
3177 * d) conversion from fhandle to dentry may come in the wrong moment - when
3178 * we are removing the target. Solution: we will have to grab ->i_mutex
3179 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3180 * ->i_mutex on parents, which works but leads to some truly excessive
3181 * locking].
3182 */
3183 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3184 struct inode *new_dir, struct dentry *new_dentry)
3185 {
3186 int error = 0;
3187 struct inode *target = new_dentry->d_inode;
3188 unsigned max_links = new_dir->i_sb->s_max_links;
3189
3190 /*
3191 * If we are going to change the parent - check write permissions,
3192 * we'll need to flip '..'.
3193 */
3194 if (new_dir != old_dir) {
3195 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3196 if (error)
3197 return error;
3198 }
3199
3200 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3201 if (error)
3202 return error;
3203
3204 dget(new_dentry);
3205 if (target)
3206 mutex_lock(&target->i_mutex);
3207
3208 error = -EBUSY;
3209 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3210 goto out;
3211
3212 error = -EMLINK;
3213 if (max_links && !target && new_dir != old_dir &&
3214 new_dir->i_nlink >= max_links)
3215 goto out;
3216
3217 if (target)
3218 shrink_dcache_parent(new_dentry);
3219 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3220 if (error)
3221 goto out;
3222
3223 if (target) {
3224 target->i_flags |= S_DEAD;
3225 dont_mount(new_dentry);
3226 }
3227 out:
3228 if (target)
3229 mutex_unlock(&target->i_mutex);
3230 dput(new_dentry);
3231 if (!error)
3232 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3233 d_move(old_dentry,new_dentry);
3234 return error;
3235 }
3236
3237 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3238 struct inode *new_dir, struct dentry *new_dentry)
3239 {
3240 struct inode *target = new_dentry->d_inode;
3241 int error;
3242
3243 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3244 if (error)
3245 return error;
3246
3247 dget(new_dentry);
3248 if (target)
3249 mutex_lock(&target->i_mutex);
3250
3251 error = -EBUSY;
3252 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3253 goto out;
3254
3255 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3256 if (error)
3257 goto out;
3258
3259 if (target)
3260 dont_mount(new_dentry);
3261 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3262 d_move(old_dentry, new_dentry);
3263 out:
3264 if (target)
3265 mutex_unlock(&target->i_mutex);
3266 dput(new_dentry);
3267 return error;
3268 }
3269
3270 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3271 struct inode *new_dir, struct dentry *new_dentry)
3272 {
3273 int error;
3274 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3275 const unsigned char *old_name;
3276
3277 if (old_dentry->d_inode == new_dentry->d_inode)
3278 return 0;
3279
3280 error = may_delete(old_dir, old_dentry, is_dir);
3281 if (error)
3282 return error;
3283
3284 if (!new_dentry->d_inode)
3285 error = may_create(new_dir, new_dentry);
3286 else
3287 error = may_delete(new_dir, new_dentry, is_dir);
3288 if (error)
3289 return error;
3290
3291 if (!old_dir->i_op->rename)
3292 return -EPERM;
3293
3294 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3295
3296 if (is_dir)
3297 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3298 else
3299 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3300 if (!error)
3301 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3302 new_dentry->d_inode, old_dentry);
3303 fsnotify_oldname_free(old_name);
3304
3305 return error;
3306 }
3307
3308 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3309 int, newdfd, const char __user *, newname)
3310 {
3311 struct dentry *old_dir, *new_dir;
3312 struct dentry *old_dentry, *new_dentry;
3313 struct dentry *trap;
3314 struct nameidata oldnd, newnd;
3315 char *from;
3316 char *to;
3317 int error;
3318
3319 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3320 if (error)
3321 goto exit;
3322
3323 error = user_path_parent(newdfd, newname, &newnd, &to);
3324 if (error)
3325 goto exit1;
3326
3327 error = -EXDEV;
3328 if (oldnd.path.mnt != newnd.path.mnt)
3329 goto exit2;
3330
3331 old_dir = oldnd.path.dentry;
3332 error = -EBUSY;
3333 if (oldnd.last_type != LAST_NORM)
3334 goto exit2;
3335
3336 new_dir = newnd.path.dentry;
3337 if (newnd.last_type != LAST_NORM)
3338 goto exit2;
3339
3340 oldnd.flags &= ~LOOKUP_PARENT;
3341 newnd.flags &= ~LOOKUP_PARENT;
3342 newnd.flags |= LOOKUP_RENAME_TARGET;
3343
3344 trap = lock_rename(new_dir, old_dir);
3345
3346 old_dentry = lookup_hash(&oldnd);
3347 error = PTR_ERR(old_dentry);
3348 if (IS_ERR(old_dentry))
3349 goto exit3;
3350 /* source must exist */
3351 error = -ENOENT;
3352 if (!old_dentry->d_inode)
3353 goto exit4;
3354 /* unless the source is a directory trailing slashes give -ENOTDIR */
3355 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3356 error = -ENOTDIR;
3357 if (oldnd.last.name[oldnd.last.len])
3358 goto exit4;
3359 if (newnd.last.name[newnd.last.len])
3360 goto exit4;
3361 }
3362 /* source should not be ancestor of target */
3363 error = -EINVAL;
3364 if (old_dentry == trap)
3365 goto exit4;
3366 new_dentry = lookup_hash(&newnd);
3367 error = PTR_ERR(new_dentry);
3368 if (IS_ERR(new_dentry))
3369 goto exit4;
3370 /* target should not be an ancestor of source */
3371 error = -ENOTEMPTY;
3372 if (new_dentry == trap)
3373 goto exit5;
3374
3375 error = mnt_want_write(oldnd.path.mnt);
3376 if (error)
3377 goto exit5;
3378 error = security_path_rename(&oldnd.path, old_dentry,
3379 &newnd.path, new_dentry);
3380 if (error)
3381 goto exit6;
3382 error = vfs_rename(old_dir->d_inode, old_dentry,
3383 new_dir->d_inode, new_dentry);
3384 exit6:
3385 mnt_drop_write(oldnd.path.mnt);
3386 exit5:
3387 dput(new_dentry);
3388 exit4:
3389 dput(old_dentry);
3390 exit3:
3391 unlock_rename(new_dir, old_dir);
3392 exit2:
3393 path_put(&newnd.path);
3394 putname(to);
3395 exit1:
3396 path_put(&oldnd.path);
3397 putname(from);
3398 exit:
3399 return error;
3400 }
3401
3402 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3403 {
3404 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3405 }
3406
3407 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3408 {
3409 int len;
3410
3411 len = PTR_ERR(link);
3412 if (IS_ERR(link))
3413 goto out;
3414
3415 len = strlen(link);
3416 if (len > (unsigned) buflen)
3417 len = buflen;
3418 if (copy_to_user(buffer, link, len))
3419 len = -EFAULT;
3420 out:
3421 return len;
3422 }
3423
3424 /*
3425 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3426 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3427 * using) it for any given inode is up to filesystem.
3428 */
3429 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3430 {
3431 struct nameidata nd;
3432 void *cookie;
3433 int res;
3434
3435 nd.depth = 0;
3436 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3437 if (IS_ERR(cookie))
3438 return PTR_ERR(cookie);
3439
3440 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3441 if (dentry->d_inode->i_op->put_link)
3442 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3443 return res;
3444 }
3445
3446 int vfs_follow_link(struct nameidata *nd, const char *link)
3447 {
3448 return __vfs_follow_link(nd, link);
3449 }
3450
3451 /* get the link contents into pagecache */
3452 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3453 {
3454 char *kaddr;
3455 struct page *page;
3456 struct address_space *mapping = dentry->d_inode->i_mapping;
3457 page = read_mapping_page(mapping, 0, NULL);
3458 if (IS_ERR(page))
3459 return (char*)page;
3460 *ppage = page;
3461 kaddr = kmap(page);
3462 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3463 return kaddr;
3464 }
3465
3466 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3467 {
3468 struct page *page = NULL;
3469 char *s = page_getlink(dentry, &page);
3470 int res = vfs_readlink(dentry,buffer,buflen,s);
3471 if (page) {
3472 kunmap(page);
3473 page_cache_release(page);
3474 }
3475 return res;
3476 }
3477
3478 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3479 {
3480 struct page *page = NULL;
3481 nd_set_link(nd, page_getlink(dentry, &page));
3482 return page;
3483 }
3484
3485 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3486 {
3487 struct page *page = cookie;
3488
3489 if (page) {
3490 kunmap(page);
3491 page_cache_release(page);
3492 }
3493 }
3494
3495 /*
3496 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3497 */
3498 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3499 {
3500 struct address_space *mapping = inode->i_mapping;
3501 struct page *page;
3502 void *fsdata;
3503 int err;
3504 char *kaddr;
3505 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3506 if (nofs)
3507 flags |= AOP_FLAG_NOFS;
3508
3509 retry:
3510 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3511 flags, &page, &fsdata);
3512 if (err)
3513 goto fail;
3514
3515 kaddr = kmap_atomic(page);
3516 memcpy(kaddr, symname, len-1);
3517 kunmap_atomic(kaddr);
3518
3519 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3520 page, fsdata);
3521 if (err < 0)
3522 goto fail;
3523 if (err < len-1)
3524 goto retry;
3525
3526 mark_inode_dirty(inode);
3527 return 0;
3528 fail:
3529 return err;
3530 }
3531
3532 int page_symlink(struct inode *inode, const char *symname, int len)
3533 {
3534 return __page_symlink(inode, symname, len,
3535 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3536 }
3537
3538 const struct inode_operations page_symlink_inode_operations = {
3539 .readlink = generic_readlink,
3540 .follow_link = page_follow_link_light,
3541 .put_link = page_put_link,
3542 };
3543
3544 EXPORT_SYMBOL(user_path_at);
3545 EXPORT_SYMBOL(follow_down_one);
3546 EXPORT_SYMBOL(follow_down);
3547 EXPORT_SYMBOL(follow_up);
3548 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3549 EXPORT_SYMBOL(getname);
3550 EXPORT_SYMBOL(lock_rename);
3551 EXPORT_SYMBOL(lookup_one_len);
3552 EXPORT_SYMBOL(page_follow_link_light);
3553 EXPORT_SYMBOL(page_put_link);
3554 EXPORT_SYMBOL(page_readlink);
3555 EXPORT_SYMBOL(__page_symlink);
3556 EXPORT_SYMBOL(page_symlink);
3557 EXPORT_SYMBOL(page_symlink_inode_operations);
3558 EXPORT_SYMBOL(kern_path);
3559 EXPORT_SYMBOL(vfs_path_lookup);
3560 EXPORT_SYMBOL(inode_permission);
3561 EXPORT_SYMBOL(unlock_rename);
3562 EXPORT_SYMBOL(vfs_create);
3563 EXPORT_SYMBOL(vfs_follow_link);
3564 EXPORT_SYMBOL(vfs_link);
3565 EXPORT_SYMBOL(vfs_mkdir);
3566 EXPORT_SYMBOL(vfs_mknod);
3567 EXPORT_SYMBOL(generic_permission);
3568 EXPORT_SYMBOL(vfs_readlink);
3569 EXPORT_SYMBOL(vfs_rename);
3570 EXPORT_SYMBOL(vfs_rmdir);
3571 EXPORT_SYMBOL(vfs_symlink);
3572 EXPORT_SYMBOL(vfs_unlink);
3573 EXPORT_SYMBOL(dentry_unhash);
3574 EXPORT_SYMBOL(generic_readlink);
This page took 0.113364 seconds and 5 git commands to generate.