[CIFS] WARN_ON_ONCE if kernel_sendmsg() returns -ENOSPC
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * __inode_permission - Check for access rights to a given inode
319 * @inode: Inode to check permission on
320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321 *
322 * Check for read/write/execute permissions on an inode.
323 *
324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325 *
326 * This does not check for a read-only file system. You probably want
327 * inode_permission().
328 */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 /*
335 * Nobody gets write access to an immutable file.
336 */
337 if (IS_IMMUTABLE(inode))
338 return -EACCES;
339 }
340
341 retval = do_inode_permission(inode, mask);
342 if (retval)
343 return retval;
344
345 retval = devcgroup_inode_permission(inode, mask);
346 if (retval)
347 return retval;
348
349 return security_inode_permission(inode, mask);
350 }
351
352 /**
353 * sb_permission - Check superblock-level permissions
354 * @sb: Superblock of inode to check permission on
355 * @inode: Inode to check permission on
356 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
357 *
358 * Separate out file-system wide checks from inode-specific permission checks.
359 */
360 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
361 {
362 if (unlikely(mask & MAY_WRITE)) {
363 umode_t mode = inode->i_mode;
364
365 /* Nobody gets write access to a read-only fs. */
366 if ((sb->s_flags & MS_RDONLY) &&
367 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
368 return -EROFS;
369 }
370 return 0;
371 }
372
373 /**
374 * inode_permission - Check for access rights to a given inode
375 * @inode: Inode to check permission on
376 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
377 *
378 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
379 * this, letting us set arbitrary permissions for filesystem access without
380 * changing the "normal" UIDs which are used for other things.
381 *
382 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
383 */
384 int inode_permission(struct inode *inode, int mask)
385 {
386 int retval;
387
388 retval = sb_permission(inode->i_sb, inode, mask);
389 if (retval)
390 return retval;
391 return __inode_permission(inode, mask);
392 }
393
394 /**
395 * path_get - get a reference to a path
396 * @path: path to get the reference to
397 *
398 * Given a path increment the reference count to the dentry and the vfsmount.
399 */
400 void path_get(struct path *path)
401 {
402 mntget(path->mnt);
403 dget(path->dentry);
404 }
405 EXPORT_SYMBOL(path_get);
406
407 /**
408 * path_put - put a reference to a path
409 * @path: path to put the reference to
410 *
411 * Given a path decrement the reference count to the dentry and the vfsmount.
412 */
413 void path_put(struct path *path)
414 {
415 dput(path->dentry);
416 mntput(path->mnt);
417 }
418 EXPORT_SYMBOL(path_put);
419
420 /*
421 * Path walking has 2 modes, rcu-walk and ref-walk (see
422 * Documentation/filesystems/path-lookup.txt). In situations when we can't
423 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
424 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
425 * mode. Refcounts are grabbed at the last known good point before rcu-walk
426 * got stuck, so ref-walk may continue from there. If this is not successful
427 * (eg. a seqcount has changed), then failure is returned and it's up to caller
428 * to restart the path walk from the beginning in ref-walk mode.
429 */
430
431 static inline void lock_rcu_walk(void)
432 {
433 br_read_lock(&vfsmount_lock);
434 rcu_read_lock();
435 }
436
437 static inline void unlock_rcu_walk(void)
438 {
439 rcu_read_unlock();
440 br_read_unlock(&vfsmount_lock);
441 }
442
443 /**
444 * unlazy_walk - try to switch to ref-walk mode.
445 * @nd: nameidata pathwalk data
446 * @dentry: child of nd->path.dentry or NULL
447 * Returns: 0 on success, -ECHILD on failure
448 *
449 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
450 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
451 * @nd or NULL. Must be called from rcu-walk context.
452 */
453 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
454 {
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
457 int want_root = 0;
458
459 BUG_ON(!(nd->flags & LOOKUP_RCU));
460 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
461 want_root = 1;
462 spin_lock(&fs->lock);
463 if (nd->root.mnt != fs->root.mnt ||
464 nd->root.dentry != fs->root.dentry)
465 goto err_root;
466 }
467 spin_lock(&parent->d_lock);
468 if (!dentry) {
469 if (!__d_rcu_to_refcount(parent, nd->seq))
470 goto err_parent;
471 BUG_ON(nd->inode != parent->d_inode);
472 } else {
473 if (dentry->d_parent != parent)
474 goto err_parent;
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (!__d_rcu_to_refcount(dentry, nd->seq))
477 goto err_child;
478 /*
479 * If the sequence check on the child dentry passed, then
480 * the child has not been removed from its parent. This
481 * means the parent dentry must be valid and able to take
482 * a reference at this point.
483 */
484 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
485 BUG_ON(!parent->d_count);
486 parent->d_count++;
487 spin_unlock(&dentry->d_lock);
488 }
489 spin_unlock(&parent->d_lock);
490 if (want_root) {
491 path_get(&nd->root);
492 spin_unlock(&fs->lock);
493 }
494 mntget(nd->path.mnt);
495
496 unlock_rcu_walk();
497 nd->flags &= ~LOOKUP_RCU;
498 return 0;
499
500 err_child:
501 spin_unlock(&dentry->d_lock);
502 err_parent:
503 spin_unlock(&parent->d_lock);
504 err_root:
505 if (want_root)
506 spin_unlock(&fs->lock);
507 return -ECHILD;
508 }
509
510 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
511 {
512 return dentry->d_op->d_revalidate(dentry, flags);
513 }
514
515 /**
516 * complete_walk - successful completion of path walk
517 * @nd: pointer nameidata
518 *
519 * If we had been in RCU mode, drop out of it and legitimize nd->path.
520 * Revalidate the final result, unless we'd already done that during
521 * the path walk or the filesystem doesn't ask for it. Return 0 on
522 * success, -error on failure. In case of failure caller does not
523 * need to drop nd->path.
524 */
525 static int complete_walk(struct nameidata *nd)
526 {
527 struct dentry *dentry = nd->path.dentry;
528 int status;
529
530 if (nd->flags & LOOKUP_RCU) {
531 nd->flags &= ~LOOKUP_RCU;
532 if (!(nd->flags & LOOKUP_ROOT))
533 nd->root.mnt = NULL;
534 spin_lock(&dentry->d_lock);
535 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
536 spin_unlock(&dentry->d_lock);
537 unlock_rcu_walk();
538 return -ECHILD;
539 }
540 BUG_ON(nd->inode != dentry->d_inode);
541 spin_unlock(&dentry->d_lock);
542 mntget(nd->path.mnt);
543 unlock_rcu_walk();
544 }
545
546 if (likely(!(nd->flags & LOOKUP_JUMPED)))
547 return 0;
548
549 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
550 return 0;
551
552 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
553 return 0;
554
555 /* Note: we do not d_invalidate() */
556 status = d_revalidate(dentry, nd->flags);
557 if (status > 0)
558 return 0;
559
560 if (!status)
561 status = -ESTALE;
562
563 path_put(&nd->path);
564 return status;
565 }
566
567 static __always_inline void set_root(struct nameidata *nd)
568 {
569 if (!nd->root.mnt)
570 get_fs_root(current->fs, &nd->root);
571 }
572
573 static int link_path_walk(const char *, struct nameidata *);
574
575 static __always_inline void set_root_rcu(struct nameidata *nd)
576 {
577 if (!nd->root.mnt) {
578 struct fs_struct *fs = current->fs;
579 unsigned seq;
580
581 do {
582 seq = read_seqcount_begin(&fs->seq);
583 nd->root = fs->root;
584 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
585 } while (read_seqcount_retry(&fs->seq, seq));
586 }
587 }
588
589 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
590 {
591 int ret;
592
593 if (IS_ERR(link))
594 goto fail;
595
596 if (*link == '/') {
597 set_root(nd);
598 path_put(&nd->path);
599 nd->path = nd->root;
600 path_get(&nd->root);
601 nd->flags |= LOOKUP_JUMPED;
602 }
603 nd->inode = nd->path.dentry->d_inode;
604
605 ret = link_path_walk(link, nd);
606 return ret;
607 fail:
608 path_put(&nd->path);
609 return PTR_ERR(link);
610 }
611
612 static void path_put_conditional(struct path *path, struct nameidata *nd)
613 {
614 dput(path->dentry);
615 if (path->mnt != nd->path.mnt)
616 mntput(path->mnt);
617 }
618
619 static inline void path_to_nameidata(const struct path *path,
620 struct nameidata *nd)
621 {
622 if (!(nd->flags & LOOKUP_RCU)) {
623 dput(nd->path.dentry);
624 if (nd->path.mnt != path->mnt)
625 mntput(nd->path.mnt);
626 }
627 nd->path.mnt = path->mnt;
628 nd->path.dentry = path->dentry;
629 }
630
631 /*
632 * Helper to directly jump to a known parsed path from ->follow_link,
633 * caller must have taken a reference to path beforehand.
634 */
635 void nd_jump_link(struct nameidata *nd, struct path *path)
636 {
637 path_put(&nd->path);
638
639 nd->path = *path;
640 nd->inode = nd->path.dentry->d_inode;
641 nd->flags |= LOOKUP_JUMPED;
642
643 BUG_ON(nd->inode->i_op->follow_link);
644 }
645
646 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
647 {
648 struct inode *inode = link->dentry->d_inode;
649 if (inode->i_op->put_link)
650 inode->i_op->put_link(link->dentry, nd, cookie);
651 path_put(link);
652 }
653
654 int sysctl_protected_symlinks __read_mostly = 1;
655 int sysctl_protected_hardlinks __read_mostly = 1;
656
657 /**
658 * may_follow_link - Check symlink following for unsafe situations
659 * @link: The path of the symlink
660 * @nd: nameidata pathwalk data
661 *
662 * In the case of the sysctl_protected_symlinks sysctl being enabled,
663 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
664 * in a sticky world-writable directory. This is to protect privileged
665 * processes from failing races against path names that may change out
666 * from under them by way of other users creating malicious symlinks.
667 * It will permit symlinks to be followed only when outside a sticky
668 * world-writable directory, or when the uid of the symlink and follower
669 * match, or when the directory owner matches the symlink's owner.
670 *
671 * Returns 0 if following the symlink is allowed, -ve on error.
672 */
673 static inline int may_follow_link(struct path *link, struct nameidata *nd)
674 {
675 const struct inode *inode;
676 const struct inode *parent;
677
678 if (!sysctl_protected_symlinks)
679 return 0;
680
681 /* Allowed if owner and follower match. */
682 inode = link->dentry->d_inode;
683 if (uid_eq(current_cred()->fsuid, inode->i_uid))
684 return 0;
685
686 /* Allowed if parent directory not sticky and world-writable. */
687 parent = nd->path.dentry->d_inode;
688 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
689 return 0;
690
691 /* Allowed if parent directory and link owner match. */
692 if (uid_eq(parent->i_uid, inode->i_uid))
693 return 0;
694
695 path_put_conditional(link, nd);
696 path_put(&nd->path);
697 audit_log_link_denied("follow_link", link);
698 return -EACCES;
699 }
700
701 /**
702 * safe_hardlink_source - Check for safe hardlink conditions
703 * @inode: the source inode to hardlink from
704 *
705 * Return false if at least one of the following conditions:
706 * - inode is not a regular file
707 * - inode is setuid
708 * - inode is setgid and group-exec
709 * - access failure for read and write
710 *
711 * Otherwise returns true.
712 */
713 static bool safe_hardlink_source(struct inode *inode)
714 {
715 umode_t mode = inode->i_mode;
716
717 /* Special files should not get pinned to the filesystem. */
718 if (!S_ISREG(mode))
719 return false;
720
721 /* Setuid files should not get pinned to the filesystem. */
722 if (mode & S_ISUID)
723 return false;
724
725 /* Executable setgid files should not get pinned to the filesystem. */
726 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
727 return false;
728
729 /* Hardlinking to unreadable or unwritable sources is dangerous. */
730 if (inode_permission(inode, MAY_READ | MAY_WRITE))
731 return false;
732
733 return true;
734 }
735
736 /**
737 * may_linkat - Check permissions for creating a hardlink
738 * @link: the source to hardlink from
739 *
740 * Block hardlink when all of:
741 * - sysctl_protected_hardlinks enabled
742 * - fsuid does not match inode
743 * - hardlink source is unsafe (see safe_hardlink_source() above)
744 * - not CAP_FOWNER
745 *
746 * Returns 0 if successful, -ve on error.
747 */
748 static int may_linkat(struct path *link)
749 {
750 const struct cred *cred;
751 struct inode *inode;
752
753 if (!sysctl_protected_hardlinks)
754 return 0;
755
756 cred = current_cred();
757 inode = link->dentry->d_inode;
758
759 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
760 * otherwise, it must be a safe source.
761 */
762 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
763 capable(CAP_FOWNER))
764 return 0;
765
766 audit_log_link_denied("linkat", link);
767 return -EPERM;
768 }
769
770 static __always_inline int
771 follow_link(struct path *link, struct nameidata *nd, void **p)
772 {
773 struct dentry *dentry = link->dentry;
774 int error;
775 char *s;
776
777 BUG_ON(nd->flags & LOOKUP_RCU);
778
779 if (link->mnt == nd->path.mnt)
780 mntget(link->mnt);
781
782 error = -ELOOP;
783 if (unlikely(current->total_link_count >= 40))
784 goto out_put_nd_path;
785
786 cond_resched();
787 current->total_link_count++;
788
789 touch_atime(link);
790 nd_set_link(nd, NULL);
791
792 error = security_inode_follow_link(link->dentry, nd);
793 if (error)
794 goto out_put_nd_path;
795
796 nd->last_type = LAST_BIND;
797 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
798 error = PTR_ERR(*p);
799 if (IS_ERR(*p))
800 goto out_put_nd_path;
801
802 error = 0;
803 s = nd_get_link(nd);
804 if (s) {
805 error = __vfs_follow_link(nd, s);
806 if (unlikely(error))
807 put_link(nd, link, *p);
808 }
809
810 return error;
811
812 out_put_nd_path:
813 path_put(&nd->path);
814 path_put(link);
815 return error;
816 }
817
818 static int follow_up_rcu(struct path *path)
819 {
820 struct mount *mnt = real_mount(path->mnt);
821 struct mount *parent;
822 struct dentry *mountpoint;
823
824 parent = mnt->mnt_parent;
825 if (&parent->mnt == path->mnt)
826 return 0;
827 mountpoint = mnt->mnt_mountpoint;
828 path->dentry = mountpoint;
829 path->mnt = &parent->mnt;
830 return 1;
831 }
832
833 /*
834 * follow_up - Find the mountpoint of path's vfsmount
835 *
836 * Given a path, find the mountpoint of its source file system.
837 * Replace @path with the path of the mountpoint in the parent mount.
838 * Up is towards /.
839 *
840 * Return 1 if we went up a level and 0 if we were already at the
841 * root.
842 */
843 int follow_up(struct path *path)
844 {
845 struct mount *mnt = real_mount(path->mnt);
846 struct mount *parent;
847 struct dentry *mountpoint;
848
849 br_read_lock(&vfsmount_lock);
850 parent = mnt->mnt_parent;
851 if (parent == mnt) {
852 br_read_unlock(&vfsmount_lock);
853 return 0;
854 }
855 mntget(&parent->mnt);
856 mountpoint = dget(mnt->mnt_mountpoint);
857 br_read_unlock(&vfsmount_lock);
858 dput(path->dentry);
859 path->dentry = mountpoint;
860 mntput(path->mnt);
861 path->mnt = &parent->mnt;
862 return 1;
863 }
864
865 /*
866 * Perform an automount
867 * - return -EISDIR to tell follow_managed() to stop and return the path we
868 * were called with.
869 */
870 static int follow_automount(struct path *path, unsigned flags,
871 bool *need_mntput)
872 {
873 struct vfsmount *mnt;
874 int err;
875
876 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
877 return -EREMOTE;
878
879 /* We don't want to mount if someone's just doing a stat -
880 * unless they're stat'ing a directory and appended a '/' to
881 * the name.
882 *
883 * We do, however, want to mount if someone wants to open or
884 * create a file of any type under the mountpoint, wants to
885 * traverse through the mountpoint or wants to open the
886 * mounted directory. Also, autofs may mark negative dentries
887 * as being automount points. These will need the attentions
888 * of the daemon to instantiate them before they can be used.
889 */
890 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
891 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
892 path->dentry->d_inode)
893 return -EISDIR;
894
895 current->total_link_count++;
896 if (current->total_link_count >= 40)
897 return -ELOOP;
898
899 mnt = path->dentry->d_op->d_automount(path);
900 if (IS_ERR(mnt)) {
901 /*
902 * The filesystem is allowed to return -EISDIR here to indicate
903 * it doesn't want to automount. For instance, autofs would do
904 * this so that its userspace daemon can mount on this dentry.
905 *
906 * However, we can only permit this if it's a terminal point in
907 * the path being looked up; if it wasn't then the remainder of
908 * the path is inaccessible and we should say so.
909 */
910 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
911 return -EREMOTE;
912 return PTR_ERR(mnt);
913 }
914
915 if (!mnt) /* mount collision */
916 return 0;
917
918 if (!*need_mntput) {
919 /* lock_mount() may release path->mnt on error */
920 mntget(path->mnt);
921 *need_mntput = true;
922 }
923 err = finish_automount(mnt, path);
924
925 switch (err) {
926 case -EBUSY:
927 /* Someone else made a mount here whilst we were busy */
928 return 0;
929 case 0:
930 path_put(path);
931 path->mnt = mnt;
932 path->dentry = dget(mnt->mnt_root);
933 return 0;
934 default:
935 return err;
936 }
937
938 }
939
940 /*
941 * Handle a dentry that is managed in some way.
942 * - Flagged for transit management (autofs)
943 * - Flagged as mountpoint
944 * - Flagged as automount point
945 *
946 * This may only be called in refwalk mode.
947 *
948 * Serialization is taken care of in namespace.c
949 */
950 static int follow_managed(struct path *path, unsigned flags)
951 {
952 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
953 unsigned managed;
954 bool need_mntput = false;
955 int ret = 0;
956
957 /* Given that we're not holding a lock here, we retain the value in a
958 * local variable for each dentry as we look at it so that we don't see
959 * the components of that value change under us */
960 while (managed = ACCESS_ONCE(path->dentry->d_flags),
961 managed &= DCACHE_MANAGED_DENTRY,
962 unlikely(managed != 0)) {
963 /* Allow the filesystem to manage the transit without i_mutex
964 * being held. */
965 if (managed & DCACHE_MANAGE_TRANSIT) {
966 BUG_ON(!path->dentry->d_op);
967 BUG_ON(!path->dentry->d_op->d_manage);
968 ret = path->dentry->d_op->d_manage(path->dentry, false);
969 if (ret < 0)
970 break;
971 }
972
973 /* Transit to a mounted filesystem. */
974 if (managed & DCACHE_MOUNTED) {
975 struct vfsmount *mounted = lookup_mnt(path);
976 if (mounted) {
977 dput(path->dentry);
978 if (need_mntput)
979 mntput(path->mnt);
980 path->mnt = mounted;
981 path->dentry = dget(mounted->mnt_root);
982 need_mntput = true;
983 continue;
984 }
985
986 /* Something is mounted on this dentry in another
987 * namespace and/or whatever was mounted there in this
988 * namespace got unmounted before we managed to get the
989 * vfsmount_lock */
990 }
991
992 /* Handle an automount point */
993 if (managed & DCACHE_NEED_AUTOMOUNT) {
994 ret = follow_automount(path, flags, &need_mntput);
995 if (ret < 0)
996 break;
997 continue;
998 }
999
1000 /* We didn't change the current path point */
1001 break;
1002 }
1003
1004 if (need_mntput && path->mnt == mnt)
1005 mntput(path->mnt);
1006 if (ret == -EISDIR)
1007 ret = 0;
1008 return ret < 0 ? ret : need_mntput;
1009 }
1010
1011 int follow_down_one(struct path *path)
1012 {
1013 struct vfsmount *mounted;
1014
1015 mounted = lookup_mnt(path);
1016 if (mounted) {
1017 dput(path->dentry);
1018 mntput(path->mnt);
1019 path->mnt = mounted;
1020 path->dentry = dget(mounted->mnt_root);
1021 return 1;
1022 }
1023 return 0;
1024 }
1025
1026 static inline bool managed_dentry_might_block(struct dentry *dentry)
1027 {
1028 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1029 dentry->d_op->d_manage(dentry, true) < 0);
1030 }
1031
1032 /*
1033 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1034 * we meet a managed dentry that would need blocking.
1035 */
1036 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1037 struct inode **inode)
1038 {
1039 for (;;) {
1040 struct mount *mounted;
1041 /*
1042 * Don't forget we might have a non-mountpoint managed dentry
1043 * that wants to block transit.
1044 */
1045 if (unlikely(managed_dentry_might_block(path->dentry)))
1046 return false;
1047
1048 if (!d_mountpoint(path->dentry))
1049 break;
1050
1051 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1052 if (!mounted)
1053 break;
1054 path->mnt = &mounted->mnt;
1055 path->dentry = mounted->mnt.mnt_root;
1056 nd->flags |= LOOKUP_JUMPED;
1057 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1058 /*
1059 * Update the inode too. We don't need to re-check the
1060 * dentry sequence number here after this d_inode read,
1061 * because a mount-point is always pinned.
1062 */
1063 *inode = path->dentry->d_inode;
1064 }
1065 return true;
1066 }
1067
1068 static void follow_mount_rcu(struct nameidata *nd)
1069 {
1070 while (d_mountpoint(nd->path.dentry)) {
1071 struct mount *mounted;
1072 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1073 if (!mounted)
1074 break;
1075 nd->path.mnt = &mounted->mnt;
1076 nd->path.dentry = mounted->mnt.mnt_root;
1077 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1078 }
1079 }
1080
1081 static int follow_dotdot_rcu(struct nameidata *nd)
1082 {
1083 set_root_rcu(nd);
1084
1085 while (1) {
1086 if (nd->path.dentry == nd->root.dentry &&
1087 nd->path.mnt == nd->root.mnt) {
1088 break;
1089 }
1090 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1091 struct dentry *old = nd->path.dentry;
1092 struct dentry *parent = old->d_parent;
1093 unsigned seq;
1094
1095 seq = read_seqcount_begin(&parent->d_seq);
1096 if (read_seqcount_retry(&old->d_seq, nd->seq))
1097 goto failed;
1098 nd->path.dentry = parent;
1099 nd->seq = seq;
1100 break;
1101 }
1102 if (!follow_up_rcu(&nd->path))
1103 break;
1104 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1105 }
1106 follow_mount_rcu(nd);
1107 nd->inode = nd->path.dentry->d_inode;
1108 return 0;
1109
1110 failed:
1111 nd->flags &= ~LOOKUP_RCU;
1112 if (!(nd->flags & LOOKUP_ROOT))
1113 nd->root.mnt = NULL;
1114 unlock_rcu_walk();
1115 return -ECHILD;
1116 }
1117
1118 /*
1119 * Follow down to the covering mount currently visible to userspace. At each
1120 * point, the filesystem owning that dentry may be queried as to whether the
1121 * caller is permitted to proceed or not.
1122 */
1123 int follow_down(struct path *path)
1124 {
1125 unsigned managed;
1126 int ret;
1127
1128 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1129 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1130 /* Allow the filesystem to manage the transit without i_mutex
1131 * being held.
1132 *
1133 * We indicate to the filesystem if someone is trying to mount
1134 * something here. This gives autofs the chance to deny anyone
1135 * other than its daemon the right to mount on its
1136 * superstructure.
1137 *
1138 * The filesystem may sleep at this point.
1139 */
1140 if (managed & DCACHE_MANAGE_TRANSIT) {
1141 BUG_ON(!path->dentry->d_op);
1142 BUG_ON(!path->dentry->d_op->d_manage);
1143 ret = path->dentry->d_op->d_manage(
1144 path->dentry, false);
1145 if (ret < 0)
1146 return ret == -EISDIR ? 0 : ret;
1147 }
1148
1149 /* Transit to a mounted filesystem. */
1150 if (managed & DCACHE_MOUNTED) {
1151 struct vfsmount *mounted = lookup_mnt(path);
1152 if (!mounted)
1153 break;
1154 dput(path->dentry);
1155 mntput(path->mnt);
1156 path->mnt = mounted;
1157 path->dentry = dget(mounted->mnt_root);
1158 continue;
1159 }
1160
1161 /* Don't handle automount points here */
1162 break;
1163 }
1164 return 0;
1165 }
1166
1167 /*
1168 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1169 */
1170 static void follow_mount(struct path *path)
1171 {
1172 while (d_mountpoint(path->dentry)) {
1173 struct vfsmount *mounted = lookup_mnt(path);
1174 if (!mounted)
1175 break;
1176 dput(path->dentry);
1177 mntput(path->mnt);
1178 path->mnt = mounted;
1179 path->dentry = dget(mounted->mnt_root);
1180 }
1181 }
1182
1183 static void follow_dotdot(struct nameidata *nd)
1184 {
1185 set_root(nd);
1186
1187 while(1) {
1188 struct dentry *old = nd->path.dentry;
1189
1190 if (nd->path.dentry == nd->root.dentry &&
1191 nd->path.mnt == nd->root.mnt) {
1192 break;
1193 }
1194 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1195 /* rare case of legitimate dget_parent()... */
1196 nd->path.dentry = dget_parent(nd->path.dentry);
1197 dput(old);
1198 break;
1199 }
1200 if (!follow_up(&nd->path))
1201 break;
1202 }
1203 follow_mount(&nd->path);
1204 nd->inode = nd->path.dentry->d_inode;
1205 }
1206
1207 /*
1208 * This looks up the name in dcache, possibly revalidates the old dentry and
1209 * allocates a new one if not found or not valid. In the need_lookup argument
1210 * returns whether i_op->lookup is necessary.
1211 *
1212 * dir->d_inode->i_mutex must be held
1213 */
1214 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1215 unsigned int flags, bool *need_lookup)
1216 {
1217 struct dentry *dentry;
1218 int error;
1219
1220 *need_lookup = false;
1221 dentry = d_lookup(dir, name);
1222 if (dentry) {
1223 if (d_need_lookup(dentry)) {
1224 *need_lookup = true;
1225 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1226 error = d_revalidate(dentry, flags);
1227 if (unlikely(error <= 0)) {
1228 if (error < 0) {
1229 dput(dentry);
1230 return ERR_PTR(error);
1231 } else if (!d_invalidate(dentry)) {
1232 dput(dentry);
1233 dentry = NULL;
1234 }
1235 }
1236 }
1237 }
1238
1239 if (!dentry) {
1240 dentry = d_alloc(dir, name);
1241 if (unlikely(!dentry))
1242 return ERR_PTR(-ENOMEM);
1243
1244 *need_lookup = true;
1245 }
1246 return dentry;
1247 }
1248
1249 /*
1250 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1251 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1252 *
1253 * dir->d_inode->i_mutex must be held
1254 */
1255 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1256 unsigned int flags)
1257 {
1258 struct dentry *old;
1259
1260 /* Don't create child dentry for a dead directory. */
1261 if (unlikely(IS_DEADDIR(dir))) {
1262 dput(dentry);
1263 return ERR_PTR(-ENOENT);
1264 }
1265
1266 old = dir->i_op->lookup(dir, dentry, flags);
1267 if (unlikely(old)) {
1268 dput(dentry);
1269 dentry = old;
1270 }
1271 return dentry;
1272 }
1273
1274 static struct dentry *__lookup_hash(struct qstr *name,
1275 struct dentry *base, unsigned int flags)
1276 {
1277 bool need_lookup;
1278 struct dentry *dentry;
1279
1280 dentry = lookup_dcache(name, base, flags, &need_lookup);
1281 if (!need_lookup)
1282 return dentry;
1283
1284 return lookup_real(base->d_inode, dentry, flags);
1285 }
1286
1287 /*
1288 * It's more convoluted than I'd like it to be, but... it's still fairly
1289 * small and for now I'd prefer to have fast path as straight as possible.
1290 * It _is_ time-critical.
1291 */
1292 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1293 struct path *path, struct inode **inode)
1294 {
1295 struct vfsmount *mnt = nd->path.mnt;
1296 struct dentry *dentry, *parent = nd->path.dentry;
1297 int need_reval = 1;
1298 int status = 1;
1299 int err;
1300
1301 /*
1302 * Rename seqlock is not required here because in the off chance
1303 * of a false negative due to a concurrent rename, we're going to
1304 * do the non-racy lookup, below.
1305 */
1306 if (nd->flags & LOOKUP_RCU) {
1307 unsigned seq;
1308 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1309 if (!dentry)
1310 goto unlazy;
1311
1312 /*
1313 * This sequence count validates that the inode matches
1314 * the dentry name information from lookup.
1315 */
1316 *inode = dentry->d_inode;
1317 if (read_seqcount_retry(&dentry->d_seq, seq))
1318 return -ECHILD;
1319
1320 /*
1321 * This sequence count validates that the parent had no
1322 * changes while we did the lookup of the dentry above.
1323 *
1324 * The memory barrier in read_seqcount_begin of child is
1325 * enough, we can use __read_seqcount_retry here.
1326 */
1327 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1328 return -ECHILD;
1329 nd->seq = seq;
1330
1331 if (unlikely(d_need_lookup(dentry)))
1332 goto unlazy;
1333 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1334 status = d_revalidate(dentry, nd->flags);
1335 if (unlikely(status <= 0)) {
1336 if (status != -ECHILD)
1337 need_reval = 0;
1338 goto unlazy;
1339 }
1340 }
1341 path->mnt = mnt;
1342 path->dentry = dentry;
1343 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1344 goto unlazy;
1345 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1346 goto unlazy;
1347 return 0;
1348 unlazy:
1349 if (unlazy_walk(nd, dentry))
1350 return -ECHILD;
1351 } else {
1352 dentry = __d_lookup(parent, name);
1353 }
1354
1355 if (unlikely(!dentry))
1356 goto need_lookup;
1357
1358 if (unlikely(d_need_lookup(dentry))) {
1359 dput(dentry);
1360 goto need_lookup;
1361 }
1362
1363 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1364 status = d_revalidate(dentry, nd->flags);
1365 if (unlikely(status <= 0)) {
1366 if (status < 0) {
1367 dput(dentry);
1368 return status;
1369 }
1370 if (!d_invalidate(dentry)) {
1371 dput(dentry);
1372 goto need_lookup;
1373 }
1374 }
1375
1376 path->mnt = mnt;
1377 path->dentry = dentry;
1378 err = follow_managed(path, nd->flags);
1379 if (unlikely(err < 0)) {
1380 path_put_conditional(path, nd);
1381 return err;
1382 }
1383 if (err)
1384 nd->flags |= LOOKUP_JUMPED;
1385 *inode = path->dentry->d_inode;
1386 return 0;
1387
1388 need_lookup:
1389 return 1;
1390 }
1391
1392 /* Fast lookup failed, do it the slow way */
1393 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1394 struct path *path)
1395 {
1396 struct dentry *dentry, *parent;
1397 int err;
1398
1399 parent = nd->path.dentry;
1400 BUG_ON(nd->inode != parent->d_inode);
1401
1402 mutex_lock(&parent->d_inode->i_mutex);
1403 dentry = __lookup_hash(name, parent, nd->flags);
1404 mutex_unlock(&parent->d_inode->i_mutex);
1405 if (IS_ERR(dentry))
1406 return PTR_ERR(dentry);
1407 path->mnt = nd->path.mnt;
1408 path->dentry = dentry;
1409 err = follow_managed(path, nd->flags);
1410 if (unlikely(err < 0)) {
1411 path_put_conditional(path, nd);
1412 return err;
1413 }
1414 if (err)
1415 nd->flags |= LOOKUP_JUMPED;
1416 return 0;
1417 }
1418
1419 static inline int may_lookup(struct nameidata *nd)
1420 {
1421 if (nd->flags & LOOKUP_RCU) {
1422 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1423 if (err != -ECHILD)
1424 return err;
1425 if (unlazy_walk(nd, NULL))
1426 return -ECHILD;
1427 }
1428 return inode_permission(nd->inode, MAY_EXEC);
1429 }
1430
1431 static inline int handle_dots(struct nameidata *nd, int type)
1432 {
1433 if (type == LAST_DOTDOT) {
1434 if (nd->flags & LOOKUP_RCU) {
1435 if (follow_dotdot_rcu(nd))
1436 return -ECHILD;
1437 } else
1438 follow_dotdot(nd);
1439 }
1440 return 0;
1441 }
1442
1443 static void terminate_walk(struct nameidata *nd)
1444 {
1445 if (!(nd->flags & LOOKUP_RCU)) {
1446 path_put(&nd->path);
1447 } else {
1448 nd->flags &= ~LOOKUP_RCU;
1449 if (!(nd->flags & LOOKUP_ROOT))
1450 nd->root.mnt = NULL;
1451 unlock_rcu_walk();
1452 }
1453 }
1454
1455 /*
1456 * Do we need to follow links? We _really_ want to be able
1457 * to do this check without having to look at inode->i_op,
1458 * so we keep a cache of "no, this doesn't need follow_link"
1459 * for the common case.
1460 */
1461 static inline int should_follow_link(struct inode *inode, int follow)
1462 {
1463 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1464 if (likely(inode->i_op->follow_link))
1465 return follow;
1466
1467 /* This gets set once for the inode lifetime */
1468 spin_lock(&inode->i_lock);
1469 inode->i_opflags |= IOP_NOFOLLOW;
1470 spin_unlock(&inode->i_lock);
1471 }
1472 return 0;
1473 }
1474
1475 static inline int walk_component(struct nameidata *nd, struct path *path,
1476 struct qstr *name, int type, int follow)
1477 {
1478 struct inode *inode;
1479 int err;
1480 /*
1481 * "." and ".." are special - ".." especially so because it has
1482 * to be able to know about the current root directory and
1483 * parent relationships.
1484 */
1485 if (unlikely(type != LAST_NORM))
1486 return handle_dots(nd, type);
1487 err = lookup_fast(nd, name, path, &inode);
1488 if (unlikely(err)) {
1489 if (err < 0)
1490 goto out_err;
1491
1492 err = lookup_slow(nd, name, path);
1493 if (err < 0)
1494 goto out_err;
1495
1496 inode = path->dentry->d_inode;
1497 }
1498 err = -ENOENT;
1499 if (!inode)
1500 goto out_path_put;
1501
1502 if (should_follow_link(inode, follow)) {
1503 if (nd->flags & LOOKUP_RCU) {
1504 if (unlikely(unlazy_walk(nd, path->dentry))) {
1505 err = -ECHILD;
1506 goto out_err;
1507 }
1508 }
1509 BUG_ON(inode != path->dentry->d_inode);
1510 return 1;
1511 }
1512 path_to_nameidata(path, nd);
1513 nd->inode = inode;
1514 return 0;
1515
1516 out_path_put:
1517 path_to_nameidata(path, nd);
1518 out_err:
1519 terminate_walk(nd);
1520 return err;
1521 }
1522
1523 /*
1524 * This limits recursive symlink follows to 8, while
1525 * limiting consecutive symlinks to 40.
1526 *
1527 * Without that kind of total limit, nasty chains of consecutive
1528 * symlinks can cause almost arbitrarily long lookups.
1529 */
1530 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1531 {
1532 int res;
1533
1534 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1535 path_put_conditional(path, nd);
1536 path_put(&nd->path);
1537 return -ELOOP;
1538 }
1539 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1540
1541 nd->depth++;
1542 current->link_count++;
1543
1544 do {
1545 struct path link = *path;
1546 void *cookie;
1547
1548 res = follow_link(&link, nd, &cookie);
1549 if (res)
1550 break;
1551 res = walk_component(nd, path, &nd->last,
1552 nd->last_type, LOOKUP_FOLLOW);
1553 put_link(nd, &link, cookie);
1554 } while (res > 0);
1555
1556 current->link_count--;
1557 nd->depth--;
1558 return res;
1559 }
1560
1561 /*
1562 * We really don't want to look at inode->i_op->lookup
1563 * when we don't have to. So we keep a cache bit in
1564 * the inode ->i_opflags field that says "yes, we can
1565 * do lookup on this inode".
1566 */
1567 static inline int can_lookup(struct inode *inode)
1568 {
1569 if (likely(inode->i_opflags & IOP_LOOKUP))
1570 return 1;
1571 if (likely(!inode->i_op->lookup))
1572 return 0;
1573
1574 /* We do this once for the lifetime of the inode */
1575 spin_lock(&inode->i_lock);
1576 inode->i_opflags |= IOP_LOOKUP;
1577 spin_unlock(&inode->i_lock);
1578 return 1;
1579 }
1580
1581 /*
1582 * We can do the critical dentry name comparison and hashing
1583 * operations one word at a time, but we are limited to:
1584 *
1585 * - Architectures with fast unaligned word accesses. We could
1586 * do a "get_unaligned()" if this helps and is sufficiently
1587 * fast.
1588 *
1589 * - Little-endian machines (so that we can generate the mask
1590 * of low bytes efficiently). Again, we *could* do a byte
1591 * swapping load on big-endian architectures if that is not
1592 * expensive enough to make the optimization worthless.
1593 *
1594 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1595 * do not trap on the (extremely unlikely) case of a page
1596 * crossing operation.
1597 *
1598 * - Furthermore, we need an efficient 64-bit compile for the
1599 * 64-bit case in order to generate the "number of bytes in
1600 * the final mask". Again, that could be replaced with a
1601 * efficient population count instruction or similar.
1602 */
1603 #ifdef CONFIG_DCACHE_WORD_ACCESS
1604
1605 #include <asm/word-at-a-time.h>
1606
1607 #ifdef CONFIG_64BIT
1608
1609 static inline unsigned int fold_hash(unsigned long hash)
1610 {
1611 hash += hash >> (8*sizeof(int));
1612 return hash;
1613 }
1614
1615 #else /* 32-bit case */
1616
1617 #define fold_hash(x) (x)
1618
1619 #endif
1620
1621 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1622 {
1623 unsigned long a, mask;
1624 unsigned long hash = 0;
1625
1626 for (;;) {
1627 a = load_unaligned_zeropad(name);
1628 if (len < sizeof(unsigned long))
1629 break;
1630 hash += a;
1631 hash *= 9;
1632 name += sizeof(unsigned long);
1633 len -= sizeof(unsigned long);
1634 if (!len)
1635 goto done;
1636 }
1637 mask = ~(~0ul << len*8);
1638 hash += mask & a;
1639 done:
1640 return fold_hash(hash);
1641 }
1642 EXPORT_SYMBOL(full_name_hash);
1643
1644 /*
1645 * Calculate the length and hash of the path component, and
1646 * return the length of the component;
1647 */
1648 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1649 {
1650 unsigned long a, b, adata, bdata, mask, hash, len;
1651 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1652
1653 hash = a = 0;
1654 len = -sizeof(unsigned long);
1655 do {
1656 hash = (hash + a) * 9;
1657 len += sizeof(unsigned long);
1658 a = load_unaligned_zeropad(name+len);
1659 b = a ^ REPEAT_BYTE('/');
1660 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1661
1662 adata = prep_zero_mask(a, adata, &constants);
1663 bdata = prep_zero_mask(b, bdata, &constants);
1664
1665 mask = create_zero_mask(adata | bdata);
1666
1667 hash += a & zero_bytemask(mask);
1668 *hashp = fold_hash(hash);
1669
1670 return len + find_zero(mask);
1671 }
1672
1673 #else
1674
1675 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1676 {
1677 unsigned long hash = init_name_hash();
1678 while (len--)
1679 hash = partial_name_hash(*name++, hash);
1680 return end_name_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683
1684 /*
1685 * We know there's a real path component here of at least
1686 * one character.
1687 */
1688 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1689 {
1690 unsigned long hash = init_name_hash();
1691 unsigned long len = 0, c;
1692
1693 c = (unsigned char)*name;
1694 do {
1695 len++;
1696 hash = partial_name_hash(c, hash);
1697 c = (unsigned char)name[len];
1698 } while (c && c != '/');
1699 *hashp = end_name_hash(hash);
1700 return len;
1701 }
1702
1703 #endif
1704
1705 /*
1706 * Name resolution.
1707 * This is the basic name resolution function, turning a pathname into
1708 * the final dentry. We expect 'base' to be positive and a directory.
1709 *
1710 * Returns 0 and nd will have valid dentry and mnt on success.
1711 * Returns error and drops reference to input namei data on failure.
1712 */
1713 static int link_path_walk(const char *name, struct nameidata *nd)
1714 {
1715 struct path next;
1716 int err;
1717
1718 while (*name=='/')
1719 name++;
1720 if (!*name)
1721 return 0;
1722
1723 /* At this point we know we have a real path component. */
1724 for(;;) {
1725 struct qstr this;
1726 long len;
1727 int type;
1728
1729 err = may_lookup(nd);
1730 if (err)
1731 break;
1732
1733 len = hash_name(name, &this.hash);
1734 this.name = name;
1735 this.len = len;
1736
1737 type = LAST_NORM;
1738 if (name[0] == '.') switch (len) {
1739 case 2:
1740 if (name[1] == '.') {
1741 type = LAST_DOTDOT;
1742 nd->flags |= LOOKUP_JUMPED;
1743 }
1744 break;
1745 case 1:
1746 type = LAST_DOT;
1747 }
1748 if (likely(type == LAST_NORM)) {
1749 struct dentry *parent = nd->path.dentry;
1750 nd->flags &= ~LOOKUP_JUMPED;
1751 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1752 err = parent->d_op->d_hash(parent, nd->inode,
1753 &this);
1754 if (err < 0)
1755 break;
1756 }
1757 }
1758
1759 if (!name[len])
1760 goto last_component;
1761 /*
1762 * If it wasn't NUL, we know it was '/'. Skip that
1763 * slash, and continue until no more slashes.
1764 */
1765 do {
1766 len++;
1767 } while (unlikely(name[len] == '/'));
1768 if (!name[len])
1769 goto last_component;
1770 name += len;
1771
1772 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1773 if (err < 0)
1774 return err;
1775
1776 if (err) {
1777 err = nested_symlink(&next, nd);
1778 if (err)
1779 return err;
1780 }
1781 if (can_lookup(nd->inode))
1782 continue;
1783 err = -ENOTDIR;
1784 break;
1785 /* here ends the main loop */
1786
1787 last_component:
1788 nd->last = this;
1789 nd->last_type = type;
1790 return 0;
1791 }
1792 terminate_walk(nd);
1793 return err;
1794 }
1795
1796 static int path_init(int dfd, const char *name, unsigned int flags,
1797 struct nameidata *nd, struct file **fp)
1798 {
1799 int retval = 0;
1800
1801 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1802 nd->flags = flags | LOOKUP_JUMPED;
1803 nd->depth = 0;
1804 if (flags & LOOKUP_ROOT) {
1805 struct inode *inode = nd->root.dentry->d_inode;
1806 if (*name) {
1807 if (!inode->i_op->lookup)
1808 return -ENOTDIR;
1809 retval = inode_permission(inode, MAY_EXEC);
1810 if (retval)
1811 return retval;
1812 }
1813 nd->path = nd->root;
1814 nd->inode = inode;
1815 if (flags & LOOKUP_RCU) {
1816 lock_rcu_walk();
1817 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1818 } else {
1819 path_get(&nd->path);
1820 }
1821 return 0;
1822 }
1823
1824 nd->root.mnt = NULL;
1825
1826 if (*name=='/') {
1827 if (flags & LOOKUP_RCU) {
1828 lock_rcu_walk();
1829 set_root_rcu(nd);
1830 } else {
1831 set_root(nd);
1832 path_get(&nd->root);
1833 }
1834 nd->path = nd->root;
1835 } else if (dfd == AT_FDCWD) {
1836 if (flags & LOOKUP_RCU) {
1837 struct fs_struct *fs = current->fs;
1838 unsigned seq;
1839
1840 lock_rcu_walk();
1841
1842 do {
1843 seq = read_seqcount_begin(&fs->seq);
1844 nd->path = fs->pwd;
1845 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1846 } while (read_seqcount_retry(&fs->seq, seq));
1847 } else {
1848 get_fs_pwd(current->fs, &nd->path);
1849 }
1850 } else {
1851 struct fd f = fdget_raw(dfd);
1852 struct dentry *dentry;
1853
1854 if (!f.file)
1855 return -EBADF;
1856
1857 dentry = f.file->f_path.dentry;
1858
1859 if (*name) {
1860 if (!S_ISDIR(dentry->d_inode->i_mode)) {
1861 fdput(f);
1862 return -ENOTDIR;
1863 }
1864
1865 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1866 if (retval) {
1867 fdput(f);
1868 return retval;
1869 }
1870 }
1871
1872 nd->path = f.file->f_path;
1873 if (flags & LOOKUP_RCU) {
1874 if (f.need_put)
1875 *fp = f.file;
1876 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1877 lock_rcu_walk();
1878 } else {
1879 path_get(&nd->path);
1880 fdput(f);
1881 }
1882 }
1883
1884 nd->inode = nd->path.dentry->d_inode;
1885 return 0;
1886 }
1887
1888 static inline int lookup_last(struct nameidata *nd, struct path *path)
1889 {
1890 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1891 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1892
1893 nd->flags &= ~LOOKUP_PARENT;
1894 return walk_component(nd, path, &nd->last, nd->last_type,
1895 nd->flags & LOOKUP_FOLLOW);
1896 }
1897
1898 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1899 static int path_lookupat(int dfd, const char *name,
1900 unsigned int flags, struct nameidata *nd)
1901 {
1902 struct file *base = NULL;
1903 struct path path;
1904 int err;
1905
1906 /*
1907 * Path walking is largely split up into 2 different synchronisation
1908 * schemes, rcu-walk and ref-walk (explained in
1909 * Documentation/filesystems/path-lookup.txt). These share much of the
1910 * path walk code, but some things particularly setup, cleanup, and
1911 * following mounts are sufficiently divergent that functions are
1912 * duplicated. Typically there is a function foo(), and its RCU
1913 * analogue, foo_rcu().
1914 *
1915 * -ECHILD is the error number of choice (just to avoid clashes) that
1916 * is returned if some aspect of an rcu-walk fails. Such an error must
1917 * be handled by restarting a traditional ref-walk (which will always
1918 * be able to complete).
1919 */
1920 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1921
1922 if (unlikely(err))
1923 return err;
1924
1925 current->total_link_count = 0;
1926 err = link_path_walk(name, nd);
1927
1928 if (!err && !(flags & LOOKUP_PARENT)) {
1929 err = lookup_last(nd, &path);
1930 while (err > 0) {
1931 void *cookie;
1932 struct path link = path;
1933 err = may_follow_link(&link, nd);
1934 if (unlikely(err))
1935 break;
1936 nd->flags |= LOOKUP_PARENT;
1937 err = follow_link(&link, nd, &cookie);
1938 if (err)
1939 break;
1940 err = lookup_last(nd, &path);
1941 put_link(nd, &link, cookie);
1942 }
1943 }
1944
1945 if (!err)
1946 err = complete_walk(nd);
1947
1948 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1949 if (!nd->inode->i_op->lookup) {
1950 path_put(&nd->path);
1951 err = -ENOTDIR;
1952 }
1953 }
1954
1955 if (base)
1956 fput(base);
1957
1958 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1959 path_put(&nd->root);
1960 nd->root.mnt = NULL;
1961 }
1962 return err;
1963 }
1964
1965 static int do_path_lookup(int dfd, const char *name,
1966 unsigned int flags, struct nameidata *nd)
1967 {
1968 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1969 if (unlikely(retval == -ECHILD))
1970 retval = path_lookupat(dfd, name, flags, nd);
1971 if (unlikely(retval == -ESTALE))
1972 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1973
1974 if (likely(!retval)) {
1975 if (unlikely(!audit_dummy_context())) {
1976 if (nd->path.dentry && nd->inode)
1977 audit_inode(name, nd->path.dentry);
1978 }
1979 }
1980 return retval;
1981 }
1982
1983 /* does lookup, returns the object with parent locked */
1984 struct dentry *kern_path_locked(const char *name, struct path *path)
1985 {
1986 struct nameidata nd;
1987 struct dentry *d;
1988 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1989 if (err)
1990 return ERR_PTR(err);
1991 if (nd.last_type != LAST_NORM) {
1992 path_put(&nd.path);
1993 return ERR_PTR(-EINVAL);
1994 }
1995 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1996 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
1997 if (IS_ERR(d)) {
1998 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1999 path_put(&nd.path);
2000 return d;
2001 }
2002 *path = nd.path;
2003 return d;
2004 }
2005
2006 int kern_path(const char *name, unsigned int flags, struct path *path)
2007 {
2008 struct nameidata nd;
2009 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2010 if (!res)
2011 *path = nd.path;
2012 return res;
2013 }
2014
2015 /**
2016 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2017 * @dentry: pointer to dentry of the base directory
2018 * @mnt: pointer to vfs mount of the base directory
2019 * @name: pointer to file name
2020 * @flags: lookup flags
2021 * @path: pointer to struct path to fill
2022 */
2023 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2024 const char *name, unsigned int flags,
2025 struct path *path)
2026 {
2027 struct nameidata nd;
2028 int err;
2029 nd.root.dentry = dentry;
2030 nd.root.mnt = mnt;
2031 BUG_ON(flags & LOOKUP_PARENT);
2032 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2033 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2034 if (!err)
2035 *path = nd.path;
2036 return err;
2037 }
2038
2039 /*
2040 * Restricted form of lookup. Doesn't follow links, single-component only,
2041 * needs parent already locked. Doesn't follow mounts.
2042 * SMP-safe.
2043 */
2044 static struct dentry *lookup_hash(struct nameidata *nd)
2045 {
2046 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2047 }
2048
2049 /**
2050 * lookup_one_len - filesystem helper to lookup single pathname component
2051 * @name: pathname component to lookup
2052 * @base: base directory to lookup from
2053 * @len: maximum length @len should be interpreted to
2054 *
2055 * Note that this routine is purely a helper for filesystem usage and should
2056 * not be called by generic code. Also note that by using this function the
2057 * nameidata argument is passed to the filesystem methods and a filesystem
2058 * using this helper needs to be prepared for that.
2059 */
2060 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2061 {
2062 struct qstr this;
2063 unsigned int c;
2064 int err;
2065
2066 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2067
2068 this.name = name;
2069 this.len = len;
2070 this.hash = full_name_hash(name, len);
2071 if (!len)
2072 return ERR_PTR(-EACCES);
2073
2074 while (len--) {
2075 c = *(const unsigned char *)name++;
2076 if (c == '/' || c == '\0')
2077 return ERR_PTR(-EACCES);
2078 }
2079 /*
2080 * See if the low-level filesystem might want
2081 * to use its own hash..
2082 */
2083 if (base->d_flags & DCACHE_OP_HASH) {
2084 int err = base->d_op->d_hash(base, base->d_inode, &this);
2085 if (err < 0)
2086 return ERR_PTR(err);
2087 }
2088
2089 err = inode_permission(base->d_inode, MAY_EXEC);
2090 if (err)
2091 return ERR_PTR(err);
2092
2093 return __lookup_hash(&this, base, 0);
2094 }
2095
2096 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2097 struct path *path, int *empty)
2098 {
2099 struct nameidata nd;
2100 char *tmp = getname_flags(name, flags, empty);
2101 int err = PTR_ERR(tmp);
2102 if (!IS_ERR(tmp)) {
2103
2104 BUG_ON(flags & LOOKUP_PARENT);
2105
2106 err = do_path_lookup(dfd, tmp, flags, &nd);
2107 putname(tmp);
2108 if (!err)
2109 *path = nd.path;
2110 }
2111 return err;
2112 }
2113
2114 int user_path_at(int dfd, const char __user *name, unsigned flags,
2115 struct path *path)
2116 {
2117 return user_path_at_empty(dfd, name, flags, path, NULL);
2118 }
2119
2120 static int user_path_parent(int dfd, const char __user *path,
2121 struct nameidata *nd, char **name)
2122 {
2123 char *s = getname(path);
2124 int error;
2125
2126 if (IS_ERR(s))
2127 return PTR_ERR(s);
2128
2129 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2130 if (error)
2131 putname(s);
2132 else
2133 *name = s;
2134
2135 return error;
2136 }
2137
2138 /*
2139 * It's inline, so penalty for filesystems that don't use sticky bit is
2140 * minimal.
2141 */
2142 static inline int check_sticky(struct inode *dir, struct inode *inode)
2143 {
2144 kuid_t fsuid = current_fsuid();
2145
2146 if (!(dir->i_mode & S_ISVTX))
2147 return 0;
2148 if (uid_eq(inode->i_uid, fsuid))
2149 return 0;
2150 if (uid_eq(dir->i_uid, fsuid))
2151 return 0;
2152 return !inode_capable(inode, CAP_FOWNER);
2153 }
2154
2155 /*
2156 * Check whether we can remove a link victim from directory dir, check
2157 * whether the type of victim is right.
2158 * 1. We can't do it if dir is read-only (done in permission())
2159 * 2. We should have write and exec permissions on dir
2160 * 3. We can't remove anything from append-only dir
2161 * 4. We can't do anything with immutable dir (done in permission())
2162 * 5. If the sticky bit on dir is set we should either
2163 * a. be owner of dir, or
2164 * b. be owner of victim, or
2165 * c. have CAP_FOWNER capability
2166 * 6. If the victim is append-only or immutable we can't do antyhing with
2167 * links pointing to it.
2168 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2169 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2170 * 9. We can't remove a root or mountpoint.
2171 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2172 * nfs_async_unlink().
2173 */
2174 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2175 {
2176 int error;
2177
2178 if (!victim->d_inode)
2179 return -ENOENT;
2180
2181 BUG_ON(victim->d_parent->d_inode != dir);
2182 audit_inode_child(victim, dir);
2183
2184 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2185 if (error)
2186 return error;
2187 if (IS_APPEND(dir))
2188 return -EPERM;
2189 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2190 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2191 return -EPERM;
2192 if (isdir) {
2193 if (!S_ISDIR(victim->d_inode->i_mode))
2194 return -ENOTDIR;
2195 if (IS_ROOT(victim))
2196 return -EBUSY;
2197 } else if (S_ISDIR(victim->d_inode->i_mode))
2198 return -EISDIR;
2199 if (IS_DEADDIR(dir))
2200 return -ENOENT;
2201 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2202 return -EBUSY;
2203 return 0;
2204 }
2205
2206 /* Check whether we can create an object with dentry child in directory
2207 * dir.
2208 * 1. We can't do it if child already exists (open has special treatment for
2209 * this case, but since we are inlined it's OK)
2210 * 2. We can't do it if dir is read-only (done in permission())
2211 * 3. We should have write and exec permissions on dir
2212 * 4. We can't do it if dir is immutable (done in permission())
2213 */
2214 static inline int may_create(struct inode *dir, struct dentry *child)
2215 {
2216 if (child->d_inode)
2217 return -EEXIST;
2218 if (IS_DEADDIR(dir))
2219 return -ENOENT;
2220 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2221 }
2222
2223 /*
2224 * p1 and p2 should be directories on the same fs.
2225 */
2226 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2227 {
2228 struct dentry *p;
2229
2230 if (p1 == p2) {
2231 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2232 return NULL;
2233 }
2234
2235 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2236
2237 p = d_ancestor(p2, p1);
2238 if (p) {
2239 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2240 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2241 return p;
2242 }
2243
2244 p = d_ancestor(p1, p2);
2245 if (p) {
2246 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2247 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2248 return p;
2249 }
2250
2251 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2252 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2253 return NULL;
2254 }
2255
2256 void unlock_rename(struct dentry *p1, struct dentry *p2)
2257 {
2258 mutex_unlock(&p1->d_inode->i_mutex);
2259 if (p1 != p2) {
2260 mutex_unlock(&p2->d_inode->i_mutex);
2261 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2262 }
2263 }
2264
2265 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2266 bool want_excl)
2267 {
2268 int error = may_create(dir, dentry);
2269 if (error)
2270 return error;
2271
2272 if (!dir->i_op->create)
2273 return -EACCES; /* shouldn't it be ENOSYS? */
2274 mode &= S_IALLUGO;
2275 mode |= S_IFREG;
2276 error = security_inode_create(dir, dentry, mode);
2277 if (error)
2278 return error;
2279 error = dir->i_op->create(dir, dentry, mode, want_excl);
2280 if (!error)
2281 fsnotify_create(dir, dentry);
2282 return error;
2283 }
2284
2285 static int may_open(struct path *path, int acc_mode, int flag)
2286 {
2287 struct dentry *dentry = path->dentry;
2288 struct inode *inode = dentry->d_inode;
2289 int error;
2290
2291 /* O_PATH? */
2292 if (!acc_mode)
2293 return 0;
2294
2295 if (!inode)
2296 return -ENOENT;
2297
2298 switch (inode->i_mode & S_IFMT) {
2299 case S_IFLNK:
2300 return -ELOOP;
2301 case S_IFDIR:
2302 if (acc_mode & MAY_WRITE)
2303 return -EISDIR;
2304 break;
2305 case S_IFBLK:
2306 case S_IFCHR:
2307 if (path->mnt->mnt_flags & MNT_NODEV)
2308 return -EACCES;
2309 /*FALLTHRU*/
2310 case S_IFIFO:
2311 case S_IFSOCK:
2312 flag &= ~O_TRUNC;
2313 break;
2314 }
2315
2316 error = inode_permission(inode, acc_mode);
2317 if (error)
2318 return error;
2319
2320 /*
2321 * An append-only file must be opened in append mode for writing.
2322 */
2323 if (IS_APPEND(inode)) {
2324 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2325 return -EPERM;
2326 if (flag & O_TRUNC)
2327 return -EPERM;
2328 }
2329
2330 /* O_NOATIME can only be set by the owner or superuser */
2331 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2332 return -EPERM;
2333
2334 return 0;
2335 }
2336
2337 static int handle_truncate(struct file *filp)
2338 {
2339 struct path *path = &filp->f_path;
2340 struct inode *inode = path->dentry->d_inode;
2341 int error = get_write_access(inode);
2342 if (error)
2343 return error;
2344 /*
2345 * Refuse to truncate files with mandatory locks held on them.
2346 */
2347 error = locks_verify_locked(inode);
2348 if (!error)
2349 error = security_path_truncate(path);
2350 if (!error) {
2351 error = do_truncate(path->dentry, 0,
2352 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2353 filp);
2354 }
2355 put_write_access(inode);
2356 return error;
2357 }
2358
2359 static inline int open_to_namei_flags(int flag)
2360 {
2361 if ((flag & O_ACCMODE) == 3)
2362 flag--;
2363 return flag;
2364 }
2365
2366 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2367 {
2368 int error = security_path_mknod(dir, dentry, mode, 0);
2369 if (error)
2370 return error;
2371
2372 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2373 if (error)
2374 return error;
2375
2376 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2377 }
2378
2379 /*
2380 * Attempt to atomically look up, create and open a file from a negative
2381 * dentry.
2382 *
2383 * Returns 0 if successful. The file will have been created and attached to
2384 * @file by the filesystem calling finish_open().
2385 *
2386 * Returns 1 if the file was looked up only or didn't need creating. The
2387 * caller will need to perform the open themselves. @path will have been
2388 * updated to point to the new dentry. This may be negative.
2389 *
2390 * Returns an error code otherwise.
2391 */
2392 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2393 struct path *path, struct file *file,
2394 const struct open_flags *op,
2395 bool got_write, bool need_lookup,
2396 int *opened)
2397 {
2398 struct inode *dir = nd->path.dentry->d_inode;
2399 unsigned open_flag = open_to_namei_flags(op->open_flag);
2400 umode_t mode;
2401 int error;
2402 int acc_mode;
2403 int create_error = 0;
2404 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2405
2406 BUG_ON(dentry->d_inode);
2407
2408 /* Don't create child dentry for a dead directory. */
2409 if (unlikely(IS_DEADDIR(dir))) {
2410 error = -ENOENT;
2411 goto out;
2412 }
2413
2414 mode = op->mode;
2415 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2416 mode &= ~current_umask();
2417
2418 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2419 open_flag &= ~O_TRUNC;
2420 *opened |= FILE_CREATED;
2421 }
2422
2423 /*
2424 * Checking write permission is tricky, bacuse we don't know if we are
2425 * going to actually need it: O_CREAT opens should work as long as the
2426 * file exists. But checking existence breaks atomicity. The trick is
2427 * to check access and if not granted clear O_CREAT from the flags.
2428 *
2429 * Another problem is returing the "right" error value (e.g. for an
2430 * O_EXCL open we want to return EEXIST not EROFS).
2431 */
2432 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2433 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2434 if (!(open_flag & O_CREAT)) {
2435 /*
2436 * No O_CREATE -> atomicity not a requirement -> fall
2437 * back to lookup + open
2438 */
2439 goto no_open;
2440 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2441 /* Fall back and fail with the right error */
2442 create_error = -EROFS;
2443 goto no_open;
2444 } else {
2445 /* No side effects, safe to clear O_CREAT */
2446 create_error = -EROFS;
2447 open_flag &= ~O_CREAT;
2448 }
2449 }
2450
2451 if (open_flag & O_CREAT) {
2452 error = may_o_create(&nd->path, dentry, mode);
2453 if (error) {
2454 create_error = error;
2455 if (open_flag & O_EXCL)
2456 goto no_open;
2457 open_flag &= ~O_CREAT;
2458 }
2459 }
2460
2461 if (nd->flags & LOOKUP_DIRECTORY)
2462 open_flag |= O_DIRECTORY;
2463
2464 file->f_path.dentry = DENTRY_NOT_SET;
2465 file->f_path.mnt = nd->path.mnt;
2466 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2467 opened);
2468 if (error < 0) {
2469 if (create_error && error == -ENOENT)
2470 error = create_error;
2471 goto out;
2472 }
2473
2474 acc_mode = op->acc_mode;
2475 if (*opened & FILE_CREATED) {
2476 fsnotify_create(dir, dentry);
2477 acc_mode = MAY_OPEN;
2478 }
2479
2480 if (error) { /* returned 1, that is */
2481 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2482 error = -EIO;
2483 goto out;
2484 }
2485 if (file->f_path.dentry) {
2486 dput(dentry);
2487 dentry = file->f_path.dentry;
2488 }
2489 if (create_error && dentry->d_inode == NULL) {
2490 error = create_error;
2491 goto out;
2492 }
2493 goto looked_up;
2494 }
2495
2496 /*
2497 * We didn't have the inode before the open, so check open permission
2498 * here.
2499 */
2500 error = may_open(&file->f_path, acc_mode, open_flag);
2501 if (error)
2502 fput(file);
2503
2504 out:
2505 dput(dentry);
2506 return error;
2507
2508 no_open:
2509 if (need_lookup) {
2510 dentry = lookup_real(dir, dentry, nd->flags);
2511 if (IS_ERR(dentry))
2512 return PTR_ERR(dentry);
2513
2514 if (create_error) {
2515 int open_flag = op->open_flag;
2516
2517 error = create_error;
2518 if ((open_flag & O_EXCL)) {
2519 if (!dentry->d_inode)
2520 goto out;
2521 } else if (!dentry->d_inode) {
2522 goto out;
2523 } else if ((open_flag & O_TRUNC) &&
2524 S_ISREG(dentry->d_inode->i_mode)) {
2525 goto out;
2526 }
2527 /* will fail later, go on to get the right error */
2528 }
2529 }
2530 looked_up:
2531 path->dentry = dentry;
2532 path->mnt = nd->path.mnt;
2533 return 1;
2534 }
2535
2536 /*
2537 * Look up and maybe create and open the last component.
2538 *
2539 * Must be called with i_mutex held on parent.
2540 *
2541 * Returns 0 if the file was successfully atomically created (if necessary) and
2542 * opened. In this case the file will be returned attached to @file.
2543 *
2544 * Returns 1 if the file was not completely opened at this time, though lookups
2545 * and creations will have been performed and the dentry returned in @path will
2546 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2547 * specified then a negative dentry may be returned.
2548 *
2549 * An error code is returned otherwise.
2550 *
2551 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2552 * cleared otherwise prior to returning.
2553 */
2554 static int lookup_open(struct nameidata *nd, struct path *path,
2555 struct file *file,
2556 const struct open_flags *op,
2557 bool got_write, int *opened)
2558 {
2559 struct dentry *dir = nd->path.dentry;
2560 struct inode *dir_inode = dir->d_inode;
2561 struct dentry *dentry;
2562 int error;
2563 bool need_lookup;
2564
2565 *opened &= ~FILE_CREATED;
2566 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2567 if (IS_ERR(dentry))
2568 return PTR_ERR(dentry);
2569
2570 /* Cached positive dentry: will open in f_op->open */
2571 if (!need_lookup && dentry->d_inode)
2572 goto out_no_open;
2573
2574 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2575 return atomic_open(nd, dentry, path, file, op, got_write,
2576 need_lookup, opened);
2577 }
2578
2579 if (need_lookup) {
2580 BUG_ON(dentry->d_inode);
2581
2582 dentry = lookup_real(dir_inode, dentry, nd->flags);
2583 if (IS_ERR(dentry))
2584 return PTR_ERR(dentry);
2585 }
2586
2587 /* Negative dentry, just create the file */
2588 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2589 umode_t mode = op->mode;
2590 if (!IS_POSIXACL(dir->d_inode))
2591 mode &= ~current_umask();
2592 /*
2593 * This write is needed to ensure that a
2594 * rw->ro transition does not occur between
2595 * the time when the file is created and when
2596 * a permanent write count is taken through
2597 * the 'struct file' in finish_open().
2598 */
2599 if (!got_write) {
2600 error = -EROFS;
2601 goto out_dput;
2602 }
2603 *opened |= FILE_CREATED;
2604 error = security_path_mknod(&nd->path, dentry, mode, 0);
2605 if (error)
2606 goto out_dput;
2607 error = vfs_create(dir->d_inode, dentry, mode,
2608 nd->flags & LOOKUP_EXCL);
2609 if (error)
2610 goto out_dput;
2611 }
2612 out_no_open:
2613 path->dentry = dentry;
2614 path->mnt = nd->path.mnt;
2615 return 1;
2616
2617 out_dput:
2618 dput(dentry);
2619 return error;
2620 }
2621
2622 /*
2623 * Handle the last step of open()
2624 */
2625 static int do_last(struct nameidata *nd, struct path *path,
2626 struct file *file, const struct open_flags *op,
2627 int *opened, const char *pathname)
2628 {
2629 struct dentry *dir = nd->path.dentry;
2630 int open_flag = op->open_flag;
2631 bool will_truncate = (open_flag & O_TRUNC) != 0;
2632 bool got_write = false;
2633 int acc_mode = op->acc_mode;
2634 struct inode *inode;
2635 bool symlink_ok = false;
2636 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2637 bool retried = false;
2638 int error;
2639
2640 nd->flags &= ~LOOKUP_PARENT;
2641 nd->flags |= op->intent;
2642
2643 switch (nd->last_type) {
2644 case LAST_DOTDOT:
2645 case LAST_DOT:
2646 error = handle_dots(nd, nd->last_type);
2647 if (error)
2648 return error;
2649 /* fallthrough */
2650 case LAST_ROOT:
2651 error = complete_walk(nd);
2652 if (error)
2653 return error;
2654 audit_inode(pathname, nd->path.dentry);
2655 if (open_flag & O_CREAT) {
2656 error = -EISDIR;
2657 goto out;
2658 }
2659 goto finish_open;
2660 case LAST_BIND:
2661 error = complete_walk(nd);
2662 if (error)
2663 return error;
2664 audit_inode(pathname, dir);
2665 goto finish_open;
2666 }
2667
2668 if (!(open_flag & O_CREAT)) {
2669 if (nd->last.name[nd->last.len])
2670 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2671 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2672 symlink_ok = true;
2673 /* we _can_ be in RCU mode here */
2674 error = lookup_fast(nd, &nd->last, path, &inode);
2675 if (likely(!error))
2676 goto finish_lookup;
2677
2678 if (error < 0)
2679 goto out;
2680
2681 BUG_ON(nd->inode != dir->d_inode);
2682 } else {
2683 /* create side of things */
2684 /*
2685 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2686 * has been cleared when we got to the last component we are
2687 * about to look up
2688 */
2689 error = complete_walk(nd);
2690 if (error)
2691 return error;
2692
2693 audit_inode(pathname, dir);
2694 error = -EISDIR;
2695 /* trailing slashes? */
2696 if (nd->last.name[nd->last.len])
2697 goto out;
2698 }
2699
2700 retry_lookup:
2701 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2702 error = mnt_want_write(nd->path.mnt);
2703 if (!error)
2704 got_write = true;
2705 /*
2706 * do _not_ fail yet - we might not need that or fail with
2707 * a different error; let lookup_open() decide; we'll be
2708 * dropping this one anyway.
2709 */
2710 }
2711 mutex_lock(&dir->d_inode->i_mutex);
2712 error = lookup_open(nd, path, file, op, got_write, opened);
2713 mutex_unlock(&dir->d_inode->i_mutex);
2714
2715 if (error <= 0) {
2716 if (error)
2717 goto out;
2718
2719 if ((*opened & FILE_CREATED) ||
2720 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2721 will_truncate = false;
2722
2723 audit_inode(pathname, file->f_path.dentry);
2724 goto opened;
2725 }
2726
2727 if (*opened & FILE_CREATED) {
2728 /* Don't check for write permission, don't truncate */
2729 open_flag &= ~O_TRUNC;
2730 will_truncate = false;
2731 acc_mode = MAY_OPEN;
2732 path_to_nameidata(path, nd);
2733 goto finish_open_created;
2734 }
2735
2736 /*
2737 * create/update audit record if it already exists.
2738 */
2739 if (path->dentry->d_inode)
2740 audit_inode(pathname, path->dentry);
2741
2742 /*
2743 * If atomic_open() acquired write access it is dropped now due to
2744 * possible mount and symlink following (this might be optimized away if
2745 * necessary...)
2746 */
2747 if (got_write) {
2748 mnt_drop_write(nd->path.mnt);
2749 got_write = false;
2750 }
2751
2752 error = -EEXIST;
2753 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2754 goto exit_dput;
2755
2756 error = follow_managed(path, nd->flags);
2757 if (error < 0)
2758 goto exit_dput;
2759
2760 if (error)
2761 nd->flags |= LOOKUP_JUMPED;
2762
2763 BUG_ON(nd->flags & LOOKUP_RCU);
2764 inode = path->dentry->d_inode;
2765 finish_lookup:
2766 /* we _can_ be in RCU mode here */
2767 error = -ENOENT;
2768 if (!inode) {
2769 path_to_nameidata(path, nd);
2770 goto out;
2771 }
2772
2773 if (should_follow_link(inode, !symlink_ok)) {
2774 if (nd->flags & LOOKUP_RCU) {
2775 if (unlikely(unlazy_walk(nd, path->dentry))) {
2776 error = -ECHILD;
2777 goto out;
2778 }
2779 }
2780 BUG_ON(inode != path->dentry->d_inode);
2781 return 1;
2782 }
2783
2784 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2785 path_to_nameidata(path, nd);
2786 } else {
2787 save_parent.dentry = nd->path.dentry;
2788 save_parent.mnt = mntget(path->mnt);
2789 nd->path.dentry = path->dentry;
2790
2791 }
2792 nd->inode = inode;
2793 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2794 error = complete_walk(nd);
2795 if (error) {
2796 path_put(&save_parent);
2797 return error;
2798 }
2799 error = -EISDIR;
2800 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2801 goto out;
2802 error = -ENOTDIR;
2803 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2804 goto out;
2805 audit_inode(pathname, nd->path.dentry);
2806 finish_open:
2807 if (!S_ISREG(nd->inode->i_mode))
2808 will_truncate = false;
2809
2810 if (will_truncate) {
2811 error = mnt_want_write(nd->path.mnt);
2812 if (error)
2813 goto out;
2814 got_write = true;
2815 }
2816 finish_open_created:
2817 error = may_open(&nd->path, acc_mode, open_flag);
2818 if (error)
2819 goto out;
2820 file->f_path.mnt = nd->path.mnt;
2821 error = finish_open(file, nd->path.dentry, NULL, opened);
2822 if (error) {
2823 if (error == -EOPENSTALE)
2824 goto stale_open;
2825 goto out;
2826 }
2827 opened:
2828 error = open_check_o_direct(file);
2829 if (error)
2830 goto exit_fput;
2831 error = ima_file_check(file, op->acc_mode);
2832 if (error)
2833 goto exit_fput;
2834
2835 if (will_truncate) {
2836 error = handle_truncate(file);
2837 if (error)
2838 goto exit_fput;
2839 }
2840 out:
2841 if (got_write)
2842 mnt_drop_write(nd->path.mnt);
2843 path_put(&save_parent);
2844 terminate_walk(nd);
2845 return error;
2846
2847 exit_dput:
2848 path_put_conditional(path, nd);
2849 goto out;
2850 exit_fput:
2851 fput(file);
2852 goto out;
2853
2854 stale_open:
2855 /* If no saved parent or already retried then can't retry */
2856 if (!save_parent.dentry || retried)
2857 goto out;
2858
2859 BUG_ON(save_parent.dentry != dir);
2860 path_put(&nd->path);
2861 nd->path = save_parent;
2862 nd->inode = dir->d_inode;
2863 save_parent.mnt = NULL;
2864 save_parent.dentry = NULL;
2865 if (got_write) {
2866 mnt_drop_write(nd->path.mnt);
2867 got_write = false;
2868 }
2869 retried = true;
2870 goto retry_lookup;
2871 }
2872
2873 static struct file *path_openat(int dfd, const char *pathname,
2874 struct nameidata *nd, const struct open_flags *op, int flags)
2875 {
2876 struct file *base = NULL;
2877 struct file *file;
2878 struct path path;
2879 int opened = 0;
2880 int error;
2881
2882 file = get_empty_filp();
2883 if (!file)
2884 return ERR_PTR(-ENFILE);
2885
2886 file->f_flags = op->open_flag;
2887
2888 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2889 if (unlikely(error))
2890 goto out;
2891
2892 current->total_link_count = 0;
2893 error = link_path_walk(pathname, nd);
2894 if (unlikely(error))
2895 goto out;
2896
2897 error = do_last(nd, &path, file, op, &opened, pathname);
2898 while (unlikely(error > 0)) { /* trailing symlink */
2899 struct path link = path;
2900 void *cookie;
2901 if (!(nd->flags & LOOKUP_FOLLOW)) {
2902 path_put_conditional(&path, nd);
2903 path_put(&nd->path);
2904 error = -ELOOP;
2905 break;
2906 }
2907 error = may_follow_link(&link, nd);
2908 if (unlikely(error))
2909 break;
2910 nd->flags |= LOOKUP_PARENT;
2911 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2912 error = follow_link(&link, nd, &cookie);
2913 if (unlikely(error))
2914 break;
2915 error = do_last(nd, &path, file, op, &opened, pathname);
2916 put_link(nd, &link, cookie);
2917 }
2918 out:
2919 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2920 path_put(&nd->root);
2921 if (base)
2922 fput(base);
2923 if (!(opened & FILE_OPENED)) {
2924 BUG_ON(!error);
2925 put_filp(file);
2926 }
2927 if (unlikely(error)) {
2928 if (error == -EOPENSTALE) {
2929 if (flags & LOOKUP_RCU)
2930 error = -ECHILD;
2931 else
2932 error = -ESTALE;
2933 }
2934 file = ERR_PTR(error);
2935 }
2936 return file;
2937 }
2938
2939 struct file *do_filp_open(int dfd, const char *pathname,
2940 const struct open_flags *op, int flags)
2941 {
2942 struct nameidata nd;
2943 struct file *filp;
2944
2945 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2946 if (unlikely(filp == ERR_PTR(-ECHILD)))
2947 filp = path_openat(dfd, pathname, &nd, op, flags);
2948 if (unlikely(filp == ERR_PTR(-ESTALE)))
2949 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2950 return filp;
2951 }
2952
2953 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2954 const char *name, const struct open_flags *op, int flags)
2955 {
2956 struct nameidata nd;
2957 struct file *file;
2958
2959 nd.root.mnt = mnt;
2960 nd.root.dentry = dentry;
2961
2962 flags |= LOOKUP_ROOT;
2963
2964 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2965 return ERR_PTR(-ELOOP);
2966
2967 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2968 if (unlikely(file == ERR_PTR(-ECHILD)))
2969 file = path_openat(-1, name, &nd, op, flags);
2970 if (unlikely(file == ERR_PTR(-ESTALE)))
2971 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2972 return file;
2973 }
2974
2975 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2976 {
2977 struct dentry *dentry = ERR_PTR(-EEXIST);
2978 struct nameidata nd;
2979 int err2;
2980 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2981 if (error)
2982 return ERR_PTR(error);
2983
2984 /*
2985 * Yucky last component or no last component at all?
2986 * (foo/., foo/.., /////)
2987 */
2988 if (nd.last_type != LAST_NORM)
2989 goto out;
2990 nd.flags &= ~LOOKUP_PARENT;
2991 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2992
2993 /* don't fail immediately if it's r/o, at least try to report other errors */
2994 err2 = mnt_want_write(nd.path.mnt);
2995 /*
2996 * Do the final lookup.
2997 */
2998 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2999 dentry = lookup_hash(&nd);
3000 if (IS_ERR(dentry))
3001 goto unlock;
3002
3003 error = -EEXIST;
3004 if (dentry->d_inode)
3005 goto fail;
3006 /*
3007 * Special case - lookup gave negative, but... we had foo/bar/
3008 * From the vfs_mknod() POV we just have a negative dentry -
3009 * all is fine. Let's be bastards - you had / on the end, you've
3010 * been asking for (non-existent) directory. -ENOENT for you.
3011 */
3012 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3013 error = -ENOENT;
3014 goto fail;
3015 }
3016 if (unlikely(err2)) {
3017 error = err2;
3018 goto fail;
3019 }
3020 *path = nd.path;
3021 return dentry;
3022 fail:
3023 dput(dentry);
3024 dentry = ERR_PTR(error);
3025 unlock:
3026 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3027 if (!err2)
3028 mnt_drop_write(nd.path.mnt);
3029 out:
3030 path_put(&nd.path);
3031 return dentry;
3032 }
3033 EXPORT_SYMBOL(kern_path_create);
3034
3035 void done_path_create(struct path *path, struct dentry *dentry)
3036 {
3037 dput(dentry);
3038 mutex_unlock(&path->dentry->d_inode->i_mutex);
3039 mnt_drop_write(path->mnt);
3040 path_put(path);
3041 }
3042 EXPORT_SYMBOL(done_path_create);
3043
3044 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3045 {
3046 char *tmp = getname(pathname);
3047 struct dentry *res;
3048 if (IS_ERR(tmp))
3049 return ERR_CAST(tmp);
3050 res = kern_path_create(dfd, tmp, path, is_dir);
3051 putname(tmp);
3052 return res;
3053 }
3054 EXPORT_SYMBOL(user_path_create);
3055
3056 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3057 {
3058 int error = may_create(dir, dentry);
3059
3060 if (error)
3061 return error;
3062
3063 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3064 return -EPERM;
3065
3066 if (!dir->i_op->mknod)
3067 return -EPERM;
3068
3069 error = devcgroup_inode_mknod(mode, dev);
3070 if (error)
3071 return error;
3072
3073 error = security_inode_mknod(dir, dentry, mode, dev);
3074 if (error)
3075 return error;
3076
3077 error = dir->i_op->mknod(dir, dentry, mode, dev);
3078 if (!error)
3079 fsnotify_create(dir, dentry);
3080 return error;
3081 }
3082
3083 static int may_mknod(umode_t mode)
3084 {
3085 switch (mode & S_IFMT) {
3086 case S_IFREG:
3087 case S_IFCHR:
3088 case S_IFBLK:
3089 case S_IFIFO:
3090 case S_IFSOCK:
3091 case 0: /* zero mode translates to S_IFREG */
3092 return 0;
3093 case S_IFDIR:
3094 return -EPERM;
3095 default:
3096 return -EINVAL;
3097 }
3098 }
3099
3100 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3101 unsigned, dev)
3102 {
3103 struct dentry *dentry;
3104 struct path path;
3105 int error;
3106
3107 error = may_mknod(mode);
3108 if (error)
3109 return error;
3110
3111 dentry = user_path_create(dfd, filename, &path, 0);
3112 if (IS_ERR(dentry))
3113 return PTR_ERR(dentry);
3114
3115 if (!IS_POSIXACL(path.dentry->d_inode))
3116 mode &= ~current_umask();
3117 error = security_path_mknod(&path, dentry, mode, dev);
3118 if (error)
3119 goto out;
3120 switch (mode & S_IFMT) {
3121 case 0: case S_IFREG:
3122 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3123 break;
3124 case S_IFCHR: case S_IFBLK:
3125 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3126 new_decode_dev(dev));
3127 break;
3128 case S_IFIFO: case S_IFSOCK:
3129 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3130 break;
3131 }
3132 out:
3133 done_path_create(&path, dentry);
3134 return error;
3135 }
3136
3137 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3138 {
3139 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3140 }
3141
3142 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3143 {
3144 int error = may_create(dir, dentry);
3145 unsigned max_links = dir->i_sb->s_max_links;
3146
3147 if (error)
3148 return error;
3149
3150 if (!dir->i_op->mkdir)
3151 return -EPERM;
3152
3153 mode &= (S_IRWXUGO|S_ISVTX);
3154 error = security_inode_mkdir(dir, dentry, mode);
3155 if (error)
3156 return error;
3157
3158 if (max_links && dir->i_nlink >= max_links)
3159 return -EMLINK;
3160
3161 error = dir->i_op->mkdir(dir, dentry, mode);
3162 if (!error)
3163 fsnotify_mkdir(dir, dentry);
3164 return error;
3165 }
3166
3167 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3168 {
3169 struct dentry *dentry;
3170 struct path path;
3171 int error;
3172
3173 dentry = user_path_create(dfd, pathname, &path, 1);
3174 if (IS_ERR(dentry))
3175 return PTR_ERR(dentry);
3176
3177 if (!IS_POSIXACL(path.dentry->d_inode))
3178 mode &= ~current_umask();
3179 error = security_path_mkdir(&path, dentry, mode);
3180 if (!error)
3181 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3182 done_path_create(&path, dentry);
3183 return error;
3184 }
3185
3186 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3187 {
3188 return sys_mkdirat(AT_FDCWD, pathname, mode);
3189 }
3190
3191 /*
3192 * The dentry_unhash() helper will try to drop the dentry early: we
3193 * should have a usage count of 1 if we're the only user of this
3194 * dentry, and if that is true (possibly after pruning the dcache),
3195 * then we drop the dentry now.
3196 *
3197 * A low-level filesystem can, if it choses, legally
3198 * do a
3199 *
3200 * if (!d_unhashed(dentry))
3201 * return -EBUSY;
3202 *
3203 * if it cannot handle the case of removing a directory
3204 * that is still in use by something else..
3205 */
3206 void dentry_unhash(struct dentry *dentry)
3207 {
3208 shrink_dcache_parent(dentry);
3209 spin_lock(&dentry->d_lock);
3210 if (dentry->d_count == 1)
3211 __d_drop(dentry);
3212 spin_unlock(&dentry->d_lock);
3213 }
3214
3215 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3216 {
3217 int error = may_delete(dir, dentry, 1);
3218
3219 if (error)
3220 return error;
3221
3222 if (!dir->i_op->rmdir)
3223 return -EPERM;
3224
3225 dget(dentry);
3226 mutex_lock(&dentry->d_inode->i_mutex);
3227
3228 error = -EBUSY;
3229 if (d_mountpoint(dentry))
3230 goto out;
3231
3232 error = security_inode_rmdir(dir, dentry);
3233 if (error)
3234 goto out;
3235
3236 shrink_dcache_parent(dentry);
3237 error = dir->i_op->rmdir(dir, dentry);
3238 if (error)
3239 goto out;
3240
3241 dentry->d_inode->i_flags |= S_DEAD;
3242 dont_mount(dentry);
3243
3244 out:
3245 mutex_unlock(&dentry->d_inode->i_mutex);
3246 dput(dentry);
3247 if (!error)
3248 d_delete(dentry);
3249 return error;
3250 }
3251
3252 static long do_rmdir(int dfd, const char __user *pathname)
3253 {
3254 int error = 0;
3255 char * name;
3256 struct dentry *dentry;
3257 struct nameidata nd;
3258
3259 error = user_path_parent(dfd, pathname, &nd, &name);
3260 if (error)
3261 return error;
3262
3263 switch(nd.last_type) {
3264 case LAST_DOTDOT:
3265 error = -ENOTEMPTY;
3266 goto exit1;
3267 case LAST_DOT:
3268 error = -EINVAL;
3269 goto exit1;
3270 case LAST_ROOT:
3271 error = -EBUSY;
3272 goto exit1;
3273 }
3274
3275 nd.flags &= ~LOOKUP_PARENT;
3276 error = mnt_want_write(nd.path.mnt);
3277 if (error)
3278 goto exit1;
3279
3280 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3281 dentry = lookup_hash(&nd);
3282 error = PTR_ERR(dentry);
3283 if (IS_ERR(dentry))
3284 goto exit2;
3285 if (!dentry->d_inode) {
3286 error = -ENOENT;
3287 goto exit3;
3288 }
3289 error = security_path_rmdir(&nd.path, dentry);
3290 if (error)
3291 goto exit3;
3292 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3293 exit3:
3294 dput(dentry);
3295 exit2:
3296 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3297 mnt_drop_write(nd.path.mnt);
3298 exit1:
3299 path_put(&nd.path);
3300 putname(name);
3301 return error;
3302 }
3303
3304 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3305 {
3306 return do_rmdir(AT_FDCWD, pathname);
3307 }
3308
3309 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3310 {
3311 int error = may_delete(dir, dentry, 0);
3312
3313 if (error)
3314 return error;
3315
3316 if (!dir->i_op->unlink)
3317 return -EPERM;
3318
3319 mutex_lock(&dentry->d_inode->i_mutex);
3320 if (d_mountpoint(dentry))
3321 error = -EBUSY;
3322 else {
3323 error = security_inode_unlink(dir, dentry);
3324 if (!error) {
3325 error = dir->i_op->unlink(dir, dentry);
3326 if (!error)
3327 dont_mount(dentry);
3328 }
3329 }
3330 mutex_unlock(&dentry->d_inode->i_mutex);
3331
3332 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3333 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3334 fsnotify_link_count(dentry->d_inode);
3335 d_delete(dentry);
3336 }
3337
3338 return error;
3339 }
3340
3341 /*
3342 * Make sure that the actual truncation of the file will occur outside its
3343 * directory's i_mutex. Truncate can take a long time if there is a lot of
3344 * writeout happening, and we don't want to prevent access to the directory
3345 * while waiting on the I/O.
3346 */
3347 static long do_unlinkat(int dfd, const char __user *pathname)
3348 {
3349 int error;
3350 char *name;
3351 struct dentry *dentry;
3352 struct nameidata nd;
3353 struct inode *inode = NULL;
3354
3355 error = user_path_parent(dfd, pathname, &nd, &name);
3356 if (error)
3357 return error;
3358
3359 error = -EISDIR;
3360 if (nd.last_type != LAST_NORM)
3361 goto exit1;
3362
3363 nd.flags &= ~LOOKUP_PARENT;
3364 error = mnt_want_write(nd.path.mnt);
3365 if (error)
3366 goto exit1;
3367
3368 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3369 dentry = lookup_hash(&nd);
3370 error = PTR_ERR(dentry);
3371 if (!IS_ERR(dentry)) {
3372 /* Why not before? Because we want correct error value */
3373 if (nd.last.name[nd.last.len])
3374 goto slashes;
3375 inode = dentry->d_inode;
3376 if (!inode)
3377 goto slashes;
3378 ihold(inode);
3379 error = security_path_unlink(&nd.path, dentry);
3380 if (error)
3381 goto exit2;
3382 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3383 exit2:
3384 dput(dentry);
3385 }
3386 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3387 if (inode)
3388 iput(inode); /* truncate the inode here */
3389 mnt_drop_write(nd.path.mnt);
3390 exit1:
3391 path_put(&nd.path);
3392 putname(name);
3393 return error;
3394
3395 slashes:
3396 error = !dentry->d_inode ? -ENOENT :
3397 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3398 goto exit2;
3399 }
3400
3401 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3402 {
3403 if ((flag & ~AT_REMOVEDIR) != 0)
3404 return -EINVAL;
3405
3406 if (flag & AT_REMOVEDIR)
3407 return do_rmdir(dfd, pathname);
3408
3409 return do_unlinkat(dfd, pathname);
3410 }
3411
3412 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3413 {
3414 return do_unlinkat(AT_FDCWD, pathname);
3415 }
3416
3417 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3418 {
3419 int error = may_create(dir, dentry);
3420
3421 if (error)
3422 return error;
3423
3424 if (!dir->i_op->symlink)
3425 return -EPERM;
3426
3427 error = security_inode_symlink(dir, dentry, oldname);
3428 if (error)
3429 return error;
3430
3431 error = dir->i_op->symlink(dir, dentry, oldname);
3432 if (!error)
3433 fsnotify_create(dir, dentry);
3434 return error;
3435 }
3436
3437 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3438 int, newdfd, const char __user *, newname)
3439 {
3440 int error;
3441 char *from;
3442 struct dentry *dentry;
3443 struct path path;
3444
3445 from = getname(oldname);
3446 if (IS_ERR(from))
3447 return PTR_ERR(from);
3448
3449 dentry = user_path_create(newdfd, newname, &path, 0);
3450 error = PTR_ERR(dentry);
3451 if (IS_ERR(dentry))
3452 goto out_putname;
3453
3454 error = security_path_symlink(&path, dentry, from);
3455 if (!error)
3456 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3457 done_path_create(&path, dentry);
3458 out_putname:
3459 putname(from);
3460 return error;
3461 }
3462
3463 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3464 {
3465 return sys_symlinkat(oldname, AT_FDCWD, newname);
3466 }
3467
3468 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3469 {
3470 struct inode *inode = old_dentry->d_inode;
3471 unsigned max_links = dir->i_sb->s_max_links;
3472 int error;
3473
3474 if (!inode)
3475 return -ENOENT;
3476
3477 error = may_create(dir, new_dentry);
3478 if (error)
3479 return error;
3480
3481 if (dir->i_sb != inode->i_sb)
3482 return -EXDEV;
3483
3484 /*
3485 * A link to an append-only or immutable file cannot be created.
3486 */
3487 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3488 return -EPERM;
3489 if (!dir->i_op->link)
3490 return -EPERM;
3491 if (S_ISDIR(inode->i_mode))
3492 return -EPERM;
3493
3494 error = security_inode_link(old_dentry, dir, new_dentry);
3495 if (error)
3496 return error;
3497
3498 mutex_lock(&inode->i_mutex);
3499 /* Make sure we don't allow creating hardlink to an unlinked file */
3500 if (inode->i_nlink == 0)
3501 error = -ENOENT;
3502 else if (max_links && inode->i_nlink >= max_links)
3503 error = -EMLINK;
3504 else
3505 error = dir->i_op->link(old_dentry, dir, new_dentry);
3506 mutex_unlock(&inode->i_mutex);
3507 if (!error)
3508 fsnotify_link(dir, inode, new_dentry);
3509 return error;
3510 }
3511
3512 /*
3513 * Hardlinks are often used in delicate situations. We avoid
3514 * security-related surprises by not following symlinks on the
3515 * newname. --KAB
3516 *
3517 * We don't follow them on the oldname either to be compatible
3518 * with linux 2.0, and to avoid hard-linking to directories
3519 * and other special files. --ADM
3520 */
3521 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3522 int, newdfd, const char __user *, newname, int, flags)
3523 {
3524 struct dentry *new_dentry;
3525 struct path old_path, new_path;
3526 int how = 0;
3527 int error;
3528
3529 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3530 return -EINVAL;
3531 /*
3532 * To use null names we require CAP_DAC_READ_SEARCH
3533 * This ensures that not everyone will be able to create
3534 * handlink using the passed filedescriptor.
3535 */
3536 if (flags & AT_EMPTY_PATH) {
3537 if (!capable(CAP_DAC_READ_SEARCH))
3538 return -ENOENT;
3539 how = LOOKUP_EMPTY;
3540 }
3541
3542 if (flags & AT_SYMLINK_FOLLOW)
3543 how |= LOOKUP_FOLLOW;
3544
3545 error = user_path_at(olddfd, oldname, how, &old_path);
3546 if (error)
3547 return error;
3548
3549 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3550 error = PTR_ERR(new_dentry);
3551 if (IS_ERR(new_dentry))
3552 goto out;
3553
3554 error = -EXDEV;
3555 if (old_path.mnt != new_path.mnt)
3556 goto out_dput;
3557 error = may_linkat(&old_path);
3558 if (unlikely(error))
3559 goto out_dput;
3560 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3561 if (error)
3562 goto out_dput;
3563 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3564 out_dput:
3565 done_path_create(&new_path, new_dentry);
3566 out:
3567 path_put(&old_path);
3568
3569 return error;
3570 }
3571
3572 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3573 {
3574 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3575 }
3576
3577 /*
3578 * The worst of all namespace operations - renaming directory. "Perverted"
3579 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3580 * Problems:
3581 * a) we can get into loop creation. Check is done in is_subdir().
3582 * b) race potential - two innocent renames can create a loop together.
3583 * That's where 4.4 screws up. Current fix: serialization on
3584 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3585 * story.
3586 * c) we have to lock _three_ objects - parents and victim (if it exists).
3587 * And that - after we got ->i_mutex on parents (until then we don't know
3588 * whether the target exists). Solution: try to be smart with locking
3589 * order for inodes. We rely on the fact that tree topology may change
3590 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3591 * move will be locked. Thus we can rank directories by the tree
3592 * (ancestors first) and rank all non-directories after them.
3593 * That works since everybody except rename does "lock parent, lookup,
3594 * lock child" and rename is under ->s_vfs_rename_mutex.
3595 * HOWEVER, it relies on the assumption that any object with ->lookup()
3596 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3597 * we'd better make sure that there's no link(2) for them.
3598 * d) conversion from fhandle to dentry may come in the wrong moment - when
3599 * we are removing the target. Solution: we will have to grab ->i_mutex
3600 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3601 * ->i_mutex on parents, which works but leads to some truly excessive
3602 * locking].
3603 */
3604 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3605 struct inode *new_dir, struct dentry *new_dentry)
3606 {
3607 int error = 0;
3608 struct inode *target = new_dentry->d_inode;
3609 unsigned max_links = new_dir->i_sb->s_max_links;
3610
3611 /*
3612 * If we are going to change the parent - check write permissions,
3613 * we'll need to flip '..'.
3614 */
3615 if (new_dir != old_dir) {
3616 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3617 if (error)
3618 return error;
3619 }
3620
3621 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3622 if (error)
3623 return error;
3624
3625 dget(new_dentry);
3626 if (target)
3627 mutex_lock(&target->i_mutex);
3628
3629 error = -EBUSY;
3630 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3631 goto out;
3632
3633 error = -EMLINK;
3634 if (max_links && !target && new_dir != old_dir &&
3635 new_dir->i_nlink >= max_links)
3636 goto out;
3637
3638 if (target)
3639 shrink_dcache_parent(new_dentry);
3640 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3641 if (error)
3642 goto out;
3643
3644 if (target) {
3645 target->i_flags |= S_DEAD;
3646 dont_mount(new_dentry);
3647 }
3648 out:
3649 if (target)
3650 mutex_unlock(&target->i_mutex);
3651 dput(new_dentry);
3652 if (!error)
3653 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3654 d_move(old_dentry,new_dentry);
3655 return error;
3656 }
3657
3658 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3659 struct inode *new_dir, struct dentry *new_dentry)
3660 {
3661 struct inode *target = new_dentry->d_inode;
3662 int error;
3663
3664 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3665 if (error)
3666 return error;
3667
3668 dget(new_dentry);
3669 if (target)
3670 mutex_lock(&target->i_mutex);
3671
3672 error = -EBUSY;
3673 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3674 goto out;
3675
3676 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3677 if (error)
3678 goto out;
3679
3680 if (target)
3681 dont_mount(new_dentry);
3682 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3683 d_move(old_dentry, new_dentry);
3684 out:
3685 if (target)
3686 mutex_unlock(&target->i_mutex);
3687 dput(new_dentry);
3688 return error;
3689 }
3690
3691 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3692 struct inode *new_dir, struct dentry *new_dentry)
3693 {
3694 int error;
3695 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3696 const unsigned char *old_name;
3697
3698 if (old_dentry->d_inode == new_dentry->d_inode)
3699 return 0;
3700
3701 error = may_delete(old_dir, old_dentry, is_dir);
3702 if (error)
3703 return error;
3704
3705 if (!new_dentry->d_inode)
3706 error = may_create(new_dir, new_dentry);
3707 else
3708 error = may_delete(new_dir, new_dentry, is_dir);
3709 if (error)
3710 return error;
3711
3712 if (!old_dir->i_op->rename)
3713 return -EPERM;
3714
3715 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3716
3717 if (is_dir)
3718 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3719 else
3720 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3721 if (!error)
3722 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3723 new_dentry->d_inode, old_dentry);
3724 fsnotify_oldname_free(old_name);
3725
3726 return error;
3727 }
3728
3729 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3730 int, newdfd, const char __user *, newname)
3731 {
3732 struct dentry *old_dir, *new_dir;
3733 struct dentry *old_dentry, *new_dentry;
3734 struct dentry *trap;
3735 struct nameidata oldnd, newnd;
3736 char *from;
3737 char *to;
3738 int error;
3739
3740 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3741 if (error)
3742 goto exit;
3743
3744 error = user_path_parent(newdfd, newname, &newnd, &to);
3745 if (error)
3746 goto exit1;
3747
3748 error = -EXDEV;
3749 if (oldnd.path.mnt != newnd.path.mnt)
3750 goto exit2;
3751
3752 old_dir = oldnd.path.dentry;
3753 error = -EBUSY;
3754 if (oldnd.last_type != LAST_NORM)
3755 goto exit2;
3756
3757 new_dir = newnd.path.dentry;
3758 if (newnd.last_type != LAST_NORM)
3759 goto exit2;
3760
3761 error = mnt_want_write(oldnd.path.mnt);
3762 if (error)
3763 goto exit2;
3764
3765 oldnd.flags &= ~LOOKUP_PARENT;
3766 newnd.flags &= ~LOOKUP_PARENT;
3767 newnd.flags |= LOOKUP_RENAME_TARGET;
3768
3769 trap = lock_rename(new_dir, old_dir);
3770
3771 old_dentry = lookup_hash(&oldnd);
3772 error = PTR_ERR(old_dentry);
3773 if (IS_ERR(old_dentry))
3774 goto exit3;
3775 /* source must exist */
3776 error = -ENOENT;
3777 if (!old_dentry->d_inode)
3778 goto exit4;
3779 /* unless the source is a directory trailing slashes give -ENOTDIR */
3780 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3781 error = -ENOTDIR;
3782 if (oldnd.last.name[oldnd.last.len])
3783 goto exit4;
3784 if (newnd.last.name[newnd.last.len])
3785 goto exit4;
3786 }
3787 /* source should not be ancestor of target */
3788 error = -EINVAL;
3789 if (old_dentry == trap)
3790 goto exit4;
3791 new_dentry = lookup_hash(&newnd);
3792 error = PTR_ERR(new_dentry);
3793 if (IS_ERR(new_dentry))
3794 goto exit4;
3795 /* target should not be an ancestor of source */
3796 error = -ENOTEMPTY;
3797 if (new_dentry == trap)
3798 goto exit5;
3799
3800 error = security_path_rename(&oldnd.path, old_dentry,
3801 &newnd.path, new_dentry);
3802 if (error)
3803 goto exit5;
3804 error = vfs_rename(old_dir->d_inode, old_dentry,
3805 new_dir->d_inode, new_dentry);
3806 exit5:
3807 dput(new_dentry);
3808 exit4:
3809 dput(old_dentry);
3810 exit3:
3811 unlock_rename(new_dir, old_dir);
3812 mnt_drop_write(oldnd.path.mnt);
3813 exit2:
3814 path_put(&newnd.path);
3815 putname(to);
3816 exit1:
3817 path_put(&oldnd.path);
3818 putname(from);
3819 exit:
3820 return error;
3821 }
3822
3823 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3824 {
3825 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3826 }
3827
3828 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3829 {
3830 int len;
3831
3832 len = PTR_ERR(link);
3833 if (IS_ERR(link))
3834 goto out;
3835
3836 len = strlen(link);
3837 if (len > (unsigned) buflen)
3838 len = buflen;
3839 if (copy_to_user(buffer, link, len))
3840 len = -EFAULT;
3841 out:
3842 return len;
3843 }
3844
3845 /*
3846 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3847 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3848 * using) it for any given inode is up to filesystem.
3849 */
3850 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3851 {
3852 struct nameidata nd;
3853 void *cookie;
3854 int res;
3855
3856 nd.depth = 0;
3857 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3858 if (IS_ERR(cookie))
3859 return PTR_ERR(cookie);
3860
3861 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3862 if (dentry->d_inode->i_op->put_link)
3863 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3864 return res;
3865 }
3866
3867 int vfs_follow_link(struct nameidata *nd, const char *link)
3868 {
3869 return __vfs_follow_link(nd, link);
3870 }
3871
3872 /* get the link contents into pagecache */
3873 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3874 {
3875 char *kaddr;
3876 struct page *page;
3877 struct address_space *mapping = dentry->d_inode->i_mapping;
3878 page = read_mapping_page(mapping, 0, NULL);
3879 if (IS_ERR(page))
3880 return (char*)page;
3881 *ppage = page;
3882 kaddr = kmap(page);
3883 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3884 return kaddr;
3885 }
3886
3887 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3888 {
3889 struct page *page = NULL;
3890 char *s = page_getlink(dentry, &page);
3891 int res = vfs_readlink(dentry,buffer,buflen,s);
3892 if (page) {
3893 kunmap(page);
3894 page_cache_release(page);
3895 }
3896 return res;
3897 }
3898
3899 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3900 {
3901 struct page *page = NULL;
3902 nd_set_link(nd, page_getlink(dentry, &page));
3903 return page;
3904 }
3905
3906 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3907 {
3908 struct page *page = cookie;
3909
3910 if (page) {
3911 kunmap(page);
3912 page_cache_release(page);
3913 }
3914 }
3915
3916 /*
3917 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3918 */
3919 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3920 {
3921 struct address_space *mapping = inode->i_mapping;
3922 struct page *page;
3923 void *fsdata;
3924 int err;
3925 char *kaddr;
3926 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3927 if (nofs)
3928 flags |= AOP_FLAG_NOFS;
3929
3930 retry:
3931 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3932 flags, &page, &fsdata);
3933 if (err)
3934 goto fail;
3935
3936 kaddr = kmap_atomic(page);
3937 memcpy(kaddr, symname, len-1);
3938 kunmap_atomic(kaddr);
3939
3940 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3941 page, fsdata);
3942 if (err < 0)
3943 goto fail;
3944 if (err < len-1)
3945 goto retry;
3946
3947 mark_inode_dirty(inode);
3948 return 0;
3949 fail:
3950 return err;
3951 }
3952
3953 int page_symlink(struct inode *inode, const char *symname, int len)
3954 {
3955 return __page_symlink(inode, symname, len,
3956 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3957 }
3958
3959 const struct inode_operations page_symlink_inode_operations = {
3960 .readlink = generic_readlink,
3961 .follow_link = page_follow_link_light,
3962 .put_link = page_put_link,
3963 };
3964
3965 EXPORT_SYMBOL(user_path_at);
3966 EXPORT_SYMBOL(follow_down_one);
3967 EXPORT_SYMBOL(follow_down);
3968 EXPORT_SYMBOL(follow_up);
3969 EXPORT_SYMBOL(get_write_access); /* nfsd */
3970 EXPORT_SYMBOL(getname);
3971 EXPORT_SYMBOL(lock_rename);
3972 EXPORT_SYMBOL(lookup_one_len);
3973 EXPORT_SYMBOL(page_follow_link_light);
3974 EXPORT_SYMBOL(page_put_link);
3975 EXPORT_SYMBOL(page_readlink);
3976 EXPORT_SYMBOL(__page_symlink);
3977 EXPORT_SYMBOL(page_symlink);
3978 EXPORT_SYMBOL(page_symlink_inode_operations);
3979 EXPORT_SYMBOL(kern_path);
3980 EXPORT_SYMBOL(vfs_path_lookup);
3981 EXPORT_SYMBOL(inode_permission);
3982 EXPORT_SYMBOL(unlock_rename);
3983 EXPORT_SYMBOL(vfs_create);
3984 EXPORT_SYMBOL(vfs_follow_link);
3985 EXPORT_SYMBOL(vfs_link);
3986 EXPORT_SYMBOL(vfs_mkdir);
3987 EXPORT_SYMBOL(vfs_mknod);
3988 EXPORT_SYMBOL(generic_permission);
3989 EXPORT_SYMBOL(vfs_readlink);
3990 EXPORT_SYMBOL(vfs_rename);
3991 EXPORT_SYMBOL(vfs_rmdir);
3992 EXPORT_SYMBOL(vfs_symlink);
3993 EXPORT_SYMBOL(vfs_unlink);
3994 EXPORT_SYMBOL(dentry_unhash);
3995 EXPORT_SYMBOL(generic_readlink);
This page took 0.119535 seconds and 5 git commands to generate.