Introduce path_put()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <asm/namei.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 if (current->fsuid == inode->i_uid)
188 mode >>= 6;
189 else {
190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 int error = check_acl(inode, mask);
192 if (error == -EACCES)
193 goto check_capabilities;
194 else if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 /*
203 * If the DACs are ok we don't need any capability check.
204 */
205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 return 0;
207
208 check_capabilities:
209 /*
210 * Read/write DACs are always overridable.
211 * Executable DACs are overridable if at least one exec bit is set.
212 */
213 if (!(mask & MAY_EXEC) ||
214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 if (capable(CAP_DAC_OVERRIDE))
216 return 0;
217
218 /*
219 * Searching includes executable on directories, else just read.
220 */
221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 if (capable(CAP_DAC_READ_SEARCH))
223 return 0;
224
225 return -EACCES;
226 }
227
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 int retval, submask;
231 struct vfsmount *mnt = NULL;
232
233 if (nd)
234 mnt = nd->path.mnt;
235
236 if (mask & MAY_WRITE) {
237 umode_t mode = inode->i_mode;
238
239 /*
240 * Nobody gets write access to a read-only fs.
241 */
242 if (IS_RDONLY(inode) &&
243 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
244 return -EROFS;
245
246 /*
247 * Nobody gets write access to an immutable file.
248 */
249 if (IS_IMMUTABLE(inode))
250 return -EACCES;
251 }
252
253 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
254 /*
255 * MAY_EXEC on regular files is denied if the fs is mounted
256 * with the "noexec" flag.
257 */
258 if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
259 return -EACCES;
260 }
261
262 /* Ordinary permission routines do not understand MAY_APPEND. */
263 submask = mask & ~MAY_APPEND;
264 if (inode->i_op && inode->i_op->permission) {
265 retval = inode->i_op->permission(inode, submask, nd);
266 if (!retval) {
267 /*
268 * Exec permission on a regular file is denied if none
269 * of the execute bits are set.
270 *
271 * This check should be done by the ->permission()
272 * method.
273 */
274 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
275 !(inode->i_mode & S_IXUGO))
276 return -EACCES;
277 }
278 } else {
279 retval = generic_permission(inode, submask, NULL);
280 }
281 if (retval)
282 return retval;
283
284 return security_inode_permission(inode, mask, nd);
285 }
286
287 /**
288 * vfs_permission - check for access rights to a given path
289 * @nd: lookup result that describes the path
290 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
291 *
292 * Used to check for read/write/execute permissions on a path.
293 * We use "fsuid" for this, letting us set arbitrary permissions
294 * for filesystem access without changing the "normal" uids which
295 * are used for other things.
296 */
297 int vfs_permission(struct nameidata *nd, int mask)
298 {
299 return permission(nd->path.dentry->d_inode, mask, nd);
300 }
301
302 /**
303 * file_permission - check for additional access rights to a given file
304 * @file: file to check access rights for
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
306 *
307 * Used to check for read/write/execute permissions on an already opened
308 * file.
309 *
310 * Note:
311 * Do not use this function in new code. All access checks should
312 * be done using vfs_permission().
313 */
314 int file_permission(struct file *file, int mask)
315 {
316 return permission(file->f_path.dentry->d_inode, mask, NULL);
317 }
318
319 /*
320 * get_write_access() gets write permission for a file.
321 * put_write_access() releases this write permission.
322 * This is used for regular files.
323 * We cannot support write (and maybe mmap read-write shared) accesses and
324 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
325 * can have the following values:
326 * 0: no writers, no VM_DENYWRITE mappings
327 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
328 * > 0: (i_writecount) users are writing to the file.
329 *
330 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
331 * except for the cases where we don't hold i_writecount yet. Then we need to
332 * use {get,deny}_write_access() - these functions check the sign and refuse
333 * to do the change if sign is wrong. Exclusion between them is provided by
334 * the inode->i_lock spinlock.
335 */
336
337 int get_write_access(struct inode * inode)
338 {
339 spin_lock(&inode->i_lock);
340 if (atomic_read(&inode->i_writecount) < 0) {
341 spin_unlock(&inode->i_lock);
342 return -ETXTBSY;
343 }
344 atomic_inc(&inode->i_writecount);
345 spin_unlock(&inode->i_lock);
346
347 return 0;
348 }
349
350 int deny_write_access(struct file * file)
351 {
352 struct inode *inode = file->f_path.dentry->d_inode;
353
354 spin_lock(&inode->i_lock);
355 if (atomic_read(&inode->i_writecount) > 0) {
356 spin_unlock(&inode->i_lock);
357 return -ETXTBSY;
358 }
359 atomic_dec(&inode->i_writecount);
360 spin_unlock(&inode->i_lock);
361
362 return 0;
363 }
364
365 /**
366 * path_put - put a reference to a path
367 * @path: path to put the reference to
368 *
369 * Given a path decrement the reference count to the dentry and the vfsmount.
370 */
371 void path_put(struct path *path)
372 {
373 dput(path->dentry);
374 mntput(path->mnt);
375 }
376 EXPORT_SYMBOL(path_put);
377
378 /**
379 * release_open_intent - free up open intent resources
380 * @nd: pointer to nameidata
381 */
382 void release_open_intent(struct nameidata *nd)
383 {
384 if (nd->intent.open.file->f_path.dentry == NULL)
385 put_filp(nd->intent.open.file);
386 else
387 fput(nd->intent.open.file);
388 }
389
390 static inline struct dentry *
391 do_revalidate(struct dentry *dentry, struct nameidata *nd)
392 {
393 int status = dentry->d_op->d_revalidate(dentry, nd);
394 if (unlikely(status <= 0)) {
395 /*
396 * The dentry failed validation.
397 * If d_revalidate returned 0 attempt to invalidate
398 * the dentry otherwise d_revalidate is asking us
399 * to return a fail status.
400 */
401 if (!status) {
402 if (!d_invalidate(dentry)) {
403 dput(dentry);
404 dentry = NULL;
405 }
406 } else {
407 dput(dentry);
408 dentry = ERR_PTR(status);
409 }
410 }
411 return dentry;
412 }
413
414 /*
415 * Internal lookup() using the new generic dcache.
416 * SMP-safe
417 */
418 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
419 {
420 struct dentry * dentry = __d_lookup(parent, name);
421
422 /* lockess __d_lookup may fail due to concurrent d_move()
423 * in some unrelated directory, so try with d_lookup
424 */
425 if (!dentry)
426 dentry = d_lookup(parent, name);
427
428 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
429 dentry = do_revalidate(dentry, nd);
430
431 return dentry;
432 }
433
434 /*
435 * Short-cut version of permission(), for calling by
436 * path_walk(), when dcache lock is held. Combines parts
437 * of permission() and generic_permission(), and tests ONLY for
438 * MAY_EXEC permission.
439 *
440 * If appropriate, check DAC only. If not appropriate, or
441 * short-cut DAC fails, then call permission() to do more
442 * complete permission check.
443 */
444 static int exec_permission_lite(struct inode *inode,
445 struct nameidata *nd)
446 {
447 umode_t mode = inode->i_mode;
448
449 if (inode->i_op && inode->i_op->permission)
450 return -EAGAIN;
451
452 if (current->fsuid == inode->i_uid)
453 mode >>= 6;
454 else if (in_group_p(inode->i_gid))
455 mode >>= 3;
456
457 if (mode & MAY_EXEC)
458 goto ok;
459
460 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
461 goto ok;
462
463 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
464 goto ok;
465
466 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
467 goto ok;
468
469 return -EACCES;
470 ok:
471 return security_inode_permission(inode, MAY_EXEC, nd);
472 }
473
474 /*
475 * This is called when everything else fails, and we actually have
476 * to go to the low-level filesystem to find out what we should do..
477 *
478 * We get the directory semaphore, and after getting that we also
479 * make sure that nobody added the entry to the dcache in the meantime..
480 * SMP-safe
481 */
482 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
483 {
484 struct dentry * result;
485 struct inode *dir = parent->d_inode;
486
487 mutex_lock(&dir->i_mutex);
488 /*
489 * First re-do the cached lookup just in case it was created
490 * while we waited for the directory semaphore..
491 *
492 * FIXME! This could use version numbering or similar to
493 * avoid unnecessary cache lookups.
494 *
495 * The "dcache_lock" is purely to protect the RCU list walker
496 * from concurrent renames at this point (we mustn't get false
497 * negatives from the RCU list walk here, unlike the optimistic
498 * fast walk).
499 *
500 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
501 */
502 result = d_lookup(parent, name);
503 if (!result) {
504 struct dentry * dentry = d_alloc(parent, name);
505 result = ERR_PTR(-ENOMEM);
506 if (dentry) {
507 result = dir->i_op->lookup(dir, dentry, nd);
508 if (result)
509 dput(dentry);
510 else
511 result = dentry;
512 }
513 mutex_unlock(&dir->i_mutex);
514 return result;
515 }
516
517 /*
518 * Uhhuh! Nasty case: the cache was re-populated while
519 * we waited on the semaphore. Need to revalidate.
520 */
521 mutex_unlock(&dir->i_mutex);
522 if (result->d_op && result->d_op->d_revalidate) {
523 result = do_revalidate(result, nd);
524 if (!result)
525 result = ERR_PTR(-ENOENT);
526 }
527 return result;
528 }
529
530 static int __emul_lookup_dentry(const char *, struct nameidata *);
531
532 /* SMP-safe */
533 static __always_inline int
534 walk_init_root(const char *name, struct nameidata *nd)
535 {
536 struct fs_struct *fs = current->fs;
537
538 read_lock(&fs->lock);
539 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
540 nd->path.mnt = mntget(fs->altrootmnt);
541 nd->path.dentry = dget(fs->altroot);
542 read_unlock(&fs->lock);
543 if (__emul_lookup_dentry(name,nd))
544 return 0;
545 read_lock(&fs->lock);
546 }
547 nd->path.mnt = mntget(fs->rootmnt);
548 nd->path.dentry = dget(fs->root);
549 read_unlock(&fs->lock);
550 return 1;
551 }
552
553 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
554 {
555 int res = 0;
556 char *name;
557 if (IS_ERR(link))
558 goto fail;
559
560 if (*link == '/') {
561 path_put(&nd->path);
562 if (!walk_init_root(link, nd))
563 /* weird __emul_prefix() stuff did it */
564 goto out;
565 }
566 res = link_path_walk(link, nd);
567 out:
568 if (nd->depth || res || nd->last_type!=LAST_NORM)
569 return res;
570 /*
571 * If it is an iterative symlinks resolution in open_namei() we
572 * have to copy the last component. And all that crap because of
573 * bloody create() on broken symlinks. Furrfu...
574 */
575 name = __getname();
576 if (unlikely(!name)) {
577 path_put(&nd->path);
578 return -ENOMEM;
579 }
580 strcpy(name, nd->last.name);
581 nd->last.name = name;
582 return 0;
583 fail:
584 path_put(&nd->path);
585 return PTR_ERR(link);
586 }
587
588 static void path_put_conditional(struct path *path, struct nameidata *nd)
589 {
590 dput(path->dentry);
591 if (path->mnt != nd->path.mnt)
592 mntput(path->mnt);
593 }
594
595 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
596 {
597 dput(nd->path.dentry);
598 if (nd->path.mnt != path->mnt)
599 mntput(nd->path.mnt);
600 nd->path.mnt = path->mnt;
601 nd->path.dentry = path->dentry;
602 }
603
604 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
605 {
606 int error;
607 void *cookie;
608 struct dentry *dentry = path->dentry;
609
610 touch_atime(path->mnt, dentry);
611 nd_set_link(nd, NULL);
612
613 if (path->mnt != nd->path.mnt) {
614 path_to_nameidata(path, nd);
615 dget(dentry);
616 }
617 mntget(path->mnt);
618 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
619 error = PTR_ERR(cookie);
620 if (!IS_ERR(cookie)) {
621 char *s = nd_get_link(nd);
622 error = 0;
623 if (s)
624 error = __vfs_follow_link(nd, s);
625 if (dentry->d_inode->i_op->put_link)
626 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
627 }
628 dput(dentry);
629 mntput(path->mnt);
630
631 return error;
632 }
633
634 /*
635 * This limits recursive symlink follows to 8, while
636 * limiting consecutive symlinks to 40.
637 *
638 * Without that kind of total limit, nasty chains of consecutive
639 * symlinks can cause almost arbitrarily long lookups.
640 */
641 static inline int do_follow_link(struct path *path, struct nameidata *nd)
642 {
643 int err = -ELOOP;
644 if (current->link_count >= MAX_NESTED_LINKS)
645 goto loop;
646 if (current->total_link_count >= 40)
647 goto loop;
648 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
649 cond_resched();
650 err = security_inode_follow_link(path->dentry, nd);
651 if (err)
652 goto loop;
653 current->link_count++;
654 current->total_link_count++;
655 nd->depth++;
656 err = __do_follow_link(path, nd);
657 current->link_count--;
658 nd->depth--;
659 return err;
660 loop:
661 path_put_conditional(path, nd);
662 path_put(&nd->path);
663 return err;
664 }
665
666 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
667 {
668 struct vfsmount *parent;
669 struct dentry *mountpoint;
670 spin_lock(&vfsmount_lock);
671 parent=(*mnt)->mnt_parent;
672 if (parent == *mnt) {
673 spin_unlock(&vfsmount_lock);
674 return 0;
675 }
676 mntget(parent);
677 mountpoint=dget((*mnt)->mnt_mountpoint);
678 spin_unlock(&vfsmount_lock);
679 dput(*dentry);
680 *dentry = mountpoint;
681 mntput(*mnt);
682 *mnt = parent;
683 return 1;
684 }
685
686 /* no need for dcache_lock, as serialization is taken care in
687 * namespace.c
688 */
689 static int __follow_mount(struct path *path)
690 {
691 int res = 0;
692 while (d_mountpoint(path->dentry)) {
693 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
694 if (!mounted)
695 break;
696 dput(path->dentry);
697 if (res)
698 mntput(path->mnt);
699 path->mnt = mounted;
700 path->dentry = dget(mounted->mnt_root);
701 res = 1;
702 }
703 return res;
704 }
705
706 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
707 {
708 while (d_mountpoint(*dentry)) {
709 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
710 if (!mounted)
711 break;
712 dput(*dentry);
713 mntput(*mnt);
714 *mnt = mounted;
715 *dentry = dget(mounted->mnt_root);
716 }
717 }
718
719 /* no need for dcache_lock, as serialization is taken care in
720 * namespace.c
721 */
722 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
723 {
724 struct vfsmount *mounted;
725
726 mounted = lookup_mnt(*mnt, *dentry);
727 if (mounted) {
728 dput(*dentry);
729 mntput(*mnt);
730 *mnt = mounted;
731 *dentry = dget(mounted->mnt_root);
732 return 1;
733 }
734 return 0;
735 }
736
737 static __always_inline void follow_dotdot(struct nameidata *nd)
738 {
739 struct fs_struct *fs = current->fs;
740
741 while(1) {
742 struct vfsmount *parent;
743 struct dentry *old = nd->path.dentry;
744
745 read_lock(&fs->lock);
746 if (nd->path.dentry == fs->root &&
747 nd->path.mnt == fs->rootmnt) {
748 read_unlock(&fs->lock);
749 break;
750 }
751 read_unlock(&fs->lock);
752 spin_lock(&dcache_lock);
753 if (nd->path.dentry != nd->path.mnt->mnt_root) {
754 nd->path.dentry = dget(nd->path.dentry->d_parent);
755 spin_unlock(&dcache_lock);
756 dput(old);
757 break;
758 }
759 spin_unlock(&dcache_lock);
760 spin_lock(&vfsmount_lock);
761 parent = nd->path.mnt->mnt_parent;
762 if (parent == nd->path.mnt) {
763 spin_unlock(&vfsmount_lock);
764 break;
765 }
766 mntget(parent);
767 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
768 spin_unlock(&vfsmount_lock);
769 dput(old);
770 mntput(nd->path.mnt);
771 nd->path.mnt = parent;
772 }
773 follow_mount(&nd->path.mnt, &nd->path.dentry);
774 }
775
776 /*
777 * It's more convoluted than I'd like it to be, but... it's still fairly
778 * small and for now I'd prefer to have fast path as straight as possible.
779 * It _is_ time-critical.
780 */
781 static int do_lookup(struct nameidata *nd, struct qstr *name,
782 struct path *path)
783 {
784 struct vfsmount *mnt = nd->path.mnt;
785 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
786
787 if (!dentry)
788 goto need_lookup;
789 if (dentry->d_op && dentry->d_op->d_revalidate)
790 goto need_revalidate;
791 done:
792 path->mnt = mnt;
793 path->dentry = dentry;
794 __follow_mount(path);
795 return 0;
796
797 need_lookup:
798 dentry = real_lookup(nd->path.dentry, name, nd);
799 if (IS_ERR(dentry))
800 goto fail;
801 goto done;
802
803 need_revalidate:
804 dentry = do_revalidate(dentry, nd);
805 if (!dentry)
806 goto need_lookup;
807 if (IS_ERR(dentry))
808 goto fail;
809 goto done;
810
811 fail:
812 return PTR_ERR(dentry);
813 }
814
815 /*
816 * Name resolution.
817 * This is the basic name resolution function, turning a pathname into
818 * the final dentry. We expect 'base' to be positive and a directory.
819 *
820 * Returns 0 and nd will have valid dentry and mnt on success.
821 * Returns error and drops reference to input namei data on failure.
822 */
823 static int __link_path_walk(const char *name, struct nameidata *nd)
824 {
825 struct path next;
826 struct inode *inode;
827 int err;
828 unsigned int lookup_flags = nd->flags;
829
830 while (*name=='/')
831 name++;
832 if (!*name)
833 goto return_reval;
834
835 inode = nd->path.dentry->d_inode;
836 if (nd->depth)
837 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
838
839 /* At this point we know we have a real path component. */
840 for(;;) {
841 unsigned long hash;
842 struct qstr this;
843 unsigned int c;
844
845 nd->flags |= LOOKUP_CONTINUE;
846 err = exec_permission_lite(inode, nd);
847 if (err == -EAGAIN)
848 err = vfs_permission(nd, MAY_EXEC);
849 if (err)
850 break;
851
852 this.name = name;
853 c = *(const unsigned char *)name;
854
855 hash = init_name_hash();
856 do {
857 name++;
858 hash = partial_name_hash(c, hash);
859 c = *(const unsigned char *)name;
860 } while (c && (c != '/'));
861 this.len = name - (const char *) this.name;
862 this.hash = end_name_hash(hash);
863
864 /* remove trailing slashes? */
865 if (!c)
866 goto last_component;
867 while (*++name == '/');
868 if (!*name)
869 goto last_with_slashes;
870
871 /*
872 * "." and ".." are special - ".." especially so because it has
873 * to be able to know about the current root directory and
874 * parent relationships.
875 */
876 if (this.name[0] == '.') switch (this.len) {
877 default:
878 break;
879 case 2:
880 if (this.name[1] != '.')
881 break;
882 follow_dotdot(nd);
883 inode = nd->path.dentry->d_inode;
884 /* fallthrough */
885 case 1:
886 continue;
887 }
888 /*
889 * See if the low-level filesystem might want
890 * to use its own hash..
891 */
892 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
893 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
894 &this);
895 if (err < 0)
896 break;
897 }
898 /* This does the actual lookups.. */
899 err = do_lookup(nd, &this, &next);
900 if (err)
901 break;
902
903 err = -ENOENT;
904 inode = next.dentry->d_inode;
905 if (!inode)
906 goto out_dput;
907 err = -ENOTDIR;
908 if (!inode->i_op)
909 goto out_dput;
910
911 if (inode->i_op->follow_link) {
912 err = do_follow_link(&next, nd);
913 if (err)
914 goto return_err;
915 err = -ENOENT;
916 inode = nd->path.dentry->d_inode;
917 if (!inode)
918 break;
919 err = -ENOTDIR;
920 if (!inode->i_op)
921 break;
922 } else
923 path_to_nameidata(&next, nd);
924 err = -ENOTDIR;
925 if (!inode->i_op->lookup)
926 break;
927 continue;
928 /* here ends the main loop */
929
930 last_with_slashes:
931 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
932 last_component:
933 /* Clear LOOKUP_CONTINUE iff it was previously unset */
934 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
935 if (lookup_flags & LOOKUP_PARENT)
936 goto lookup_parent;
937 if (this.name[0] == '.') switch (this.len) {
938 default:
939 break;
940 case 2:
941 if (this.name[1] != '.')
942 break;
943 follow_dotdot(nd);
944 inode = nd->path.dentry->d_inode;
945 /* fallthrough */
946 case 1:
947 goto return_reval;
948 }
949 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
950 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
951 &this);
952 if (err < 0)
953 break;
954 }
955 err = do_lookup(nd, &this, &next);
956 if (err)
957 break;
958 inode = next.dentry->d_inode;
959 if ((lookup_flags & LOOKUP_FOLLOW)
960 && inode && inode->i_op && inode->i_op->follow_link) {
961 err = do_follow_link(&next, nd);
962 if (err)
963 goto return_err;
964 inode = nd->path.dentry->d_inode;
965 } else
966 path_to_nameidata(&next, nd);
967 err = -ENOENT;
968 if (!inode)
969 break;
970 if (lookup_flags & LOOKUP_DIRECTORY) {
971 err = -ENOTDIR;
972 if (!inode->i_op || !inode->i_op->lookup)
973 break;
974 }
975 goto return_base;
976 lookup_parent:
977 nd->last = this;
978 nd->last_type = LAST_NORM;
979 if (this.name[0] != '.')
980 goto return_base;
981 if (this.len == 1)
982 nd->last_type = LAST_DOT;
983 else if (this.len == 2 && this.name[1] == '.')
984 nd->last_type = LAST_DOTDOT;
985 else
986 goto return_base;
987 return_reval:
988 /*
989 * We bypassed the ordinary revalidation routines.
990 * We may need to check the cached dentry for staleness.
991 */
992 if (nd->path.dentry && nd->path.dentry->d_sb &&
993 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
994 err = -ESTALE;
995 /* Note: we do not d_invalidate() */
996 if (!nd->path.dentry->d_op->d_revalidate(
997 nd->path.dentry, nd))
998 break;
999 }
1000 return_base:
1001 return 0;
1002 out_dput:
1003 path_put_conditional(&next, nd);
1004 break;
1005 }
1006 path_put(&nd->path);
1007 return_err:
1008 return err;
1009 }
1010
1011 /*
1012 * Wrapper to retry pathname resolution whenever the underlying
1013 * file system returns an ESTALE.
1014 *
1015 * Retry the whole path once, forcing real lookup requests
1016 * instead of relying on the dcache.
1017 */
1018 static int link_path_walk(const char *name, struct nameidata *nd)
1019 {
1020 struct nameidata save = *nd;
1021 int result;
1022
1023 /* make sure the stuff we saved doesn't go away */
1024 dget(save.path.dentry);
1025 mntget(save.path.mnt);
1026
1027 result = __link_path_walk(name, nd);
1028 if (result == -ESTALE) {
1029 *nd = save;
1030 dget(nd->path.dentry);
1031 mntget(nd->path.mnt);
1032 nd->flags |= LOOKUP_REVAL;
1033 result = __link_path_walk(name, nd);
1034 }
1035
1036 dput(save.path.dentry);
1037 mntput(save.path.mnt);
1038
1039 return result;
1040 }
1041
1042 static int path_walk(const char *name, struct nameidata *nd)
1043 {
1044 current->total_link_count = 0;
1045 return link_path_walk(name, nd);
1046 }
1047
1048 /*
1049 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1050 * everything is done. Returns 0 and drops input nd, if lookup failed;
1051 */
1052 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1053 {
1054 if (path_walk(name, nd))
1055 return 0; /* something went wrong... */
1056
1057 if (!nd->path.dentry->d_inode ||
1058 S_ISDIR(nd->path.dentry->d_inode->i_mode)) {
1059 struct dentry *old_dentry = nd->path.dentry;
1060 struct vfsmount *old_mnt = nd->path.mnt;
1061 struct qstr last = nd->last;
1062 int last_type = nd->last_type;
1063 struct fs_struct *fs = current->fs;
1064
1065 /*
1066 * NAME was not found in alternate root or it's a directory.
1067 * Try to find it in the normal root:
1068 */
1069 nd->last_type = LAST_ROOT;
1070 read_lock(&fs->lock);
1071 nd->path.mnt = mntget(fs->rootmnt);
1072 nd->path.dentry = dget(fs->root);
1073 read_unlock(&fs->lock);
1074 if (path_walk(name, nd) == 0) {
1075 if (nd->path.dentry->d_inode) {
1076 dput(old_dentry);
1077 mntput(old_mnt);
1078 return 1;
1079 }
1080 path_put(&nd->path);
1081 }
1082 nd->path.dentry = old_dentry;
1083 nd->path.mnt = old_mnt;
1084 nd->last = last;
1085 nd->last_type = last_type;
1086 }
1087 return 1;
1088 }
1089
1090 void set_fs_altroot(void)
1091 {
1092 char *emul = __emul_prefix();
1093 struct nameidata nd;
1094 struct vfsmount *mnt = NULL, *oldmnt;
1095 struct dentry *dentry = NULL, *olddentry;
1096 int err;
1097 struct fs_struct *fs = current->fs;
1098
1099 if (!emul)
1100 goto set_it;
1101 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1102 if (!err) {
1103 mnt = nd.path.mnt;
1104 dentry = nd.path.dentry;
1105 }
1106 set_it:
1107 write_lock(&fs->lock);
1108 oldmnt = fs->altrootmnt;
1109 olddentry = fs->altroot;
1110 fs->altrootmnt = mnt;
1111 fs->altroot = dentry;
1112 write_unlock(&fs->lock);
1113 if (olddentry) {
1114 dput(olddentry);
1115 mntput(oldmnt);
1116 }
1117 }
1118
1119 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1120 static int do_path_lookup(int dfd, const char *name,
1121 unsigned int flags, struct nameidata *nd)
1122 {
1123 int retval = 0;
1124 int fput_needed;
1125 struct file *file;
1126 struct fs_struct *fs = current->fs;
1127
1128 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1129 nd->flags = flags;
1130 nd->depth = 0;
1131
1132 if (*name=='/') {
1133 read_lock(&fs->lock);
1134 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1135 nd->path.mnt = mntget(fs->altrootmnt);
1136 nd->path.dentry = dget(fs->altroot);
1137 read_unlock(&fs->lock);
1138 if (__emul_lookup_dentry(name,nd))
1139 goto out; /* found in altroot */
1140 read_lock(&fs->lock);
1141 }
1142 nd->path.mnt = mntget(fs->rootmnt);
1143 nd->path.dentry = dget(fs->root);
1144 read_unlock(&fs->lock);
1145 } else if (dfd == AT_FDCWD) {
1146 read_lock(&fs->lock);
1147 nd->path.mnt = mntget(fs->pwdmnt);
1148 nd->path.dentry = dget(fs->pwd);
1149 read_unlock(&fs->lock);
1150 } else {
1151 struct dentry *dentry;
1152
1153 file = fget_light(dfd, &fput_needed);
1154 retval = -EBADF;
1155 if (!file)
1156 goto out_fail;
1157
1158 dentry = file->f_path.dentry;
1159
1160 retval = -ENOTDIR;
1161 if (!S_ISDIR(dentry->d_inode->i_mode))
1162 goto fput_fail;
1163
1164 retval = file_permission(file, MAY_EXEC);
1165 if (retval)
1166 goto fput_fail;
1167
1168 nd->path.mnt = mntget(file->f_path.mnt);
1169 nd->path.dentry = dget(dentry);
1170
1171 fput_light(file, fput_needed);
1172 }
1173
1174 retval = path_walk(name, nd);
1175 out:
1176 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1177 nd->path.dentry->d_inode))
1178 audit_inode(name, nd->path.dentry);
1179 out_fail:
1180 return retval;
1181
1182 fput_fail:
1183 fput_light(file, fput_needed);
1184 goto out_fail;
1185 }
1186
1187 int path_lookup(const char *name, unsigned int flags,
1188 struct nameidata *nd)
1189 {
1190 return do_path_lookup(AT_FDCWD, name, flags, nd);
1191 }
1192
1193 /**
1194 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1195 * @dentry: pointer to dentry of the base directory
1196 * @mnt: pointer to vfs mount of the base directory
1197 * @name: pointer to file name
1198 * @flags: lookup flags
1199 * @nd: pointer to nameidata
1200 */
1201 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1202 const char *name, unsigned int flags,
1203 struct nameidata *nd)
1204 {
1205 int retval;
1206
1207 /* same as do_path_lookup */
1208 nd->last_type = LAST_ROOT;
1209 nd->flags = flags;
1210 nd->depth = 0;
1211
1212 nd->path.mnt = mntget(mnt);
1213 nd->path.dentry = dget(dentry);
1214
1215 retval = path_walk(name, nd);
1216 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1217 nd->path.dentry->d_inode))
1218 audit_inode(name, nd->path.dentry);
1219
1220 return retval;
1221
1222 }
1223
1224 static int __path_lookup_intent_open(int dfd, const char *name,
1225 unsigned int lookup_flags, struct nameidata *nd,
1226 int open_flags, int create_mode)
1227 {
1228 struct file *filp = get_empty_filp();
1229 int err;
1230
1231 if (filp == NULL)
1232 return -ENFILE;
1233 nd->intent.open.file = filp;
1234 nd->intent.open.flags = open_flags;
1235 nd->intent.open.create_mode = create_mode;
1236 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1237 if (IS_ERR(nd->intent.open.file)) {
1238 if (err == 0) {
1239 err = PTR_ERR(nd->intent.open.file);
1240 path_put(&nd->path);
1241 }
1242 } else if (err != 0)
1243 release_open_intent(nd);
1244 return err;
1245 }
1246
1247 /**
1248 * path_lookup_open - lookup a file path with open intent
1249 * @dfd: the directory to use as base, or AT_FDCWD
1250 * @name: pointer to file name
1251 * @lookup_flags: lookup intent flags
1252 * @nd: pointer to nameidata
1253 * @open_flags: open intent flags
1254 */
1255 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1256 struct nameidata *nd, int open_flags)
1257 {
1258 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1259 open_flags, 0);
1260 }
1261
1262 /**
1263 * path_lookup_create - lookup a file path with open + create intent
1264 * @dfd: the directory to use as base, or AT_FDCWD
1265 * @name: pointer to file name
1266 * @lookup_flags: lookup intent flags
1267 * @nd: pointer to nameidata
1268 * @open_flags: open intent flags
1269 * @create_mode: create intent flags
1270 */
1271 static int path_lookup_create(int dfd, const char *name,
1272 unsigned int lookup_flags, struct nameidata *nd,
1273 int open_flags, int create_mode)
1274 {
1275 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1276 nd, open_flags, create_mode);
1277 }
1278
1279 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1280 struct nameidata *nd, int open_flags)
1281 {
1282 char *tmp = getname(name);
1283 int err = PTR_ERR(tmp);
1284
1285 if (!IS_ERR(tmp)) {
1286 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1287 putname(tmp);
1288 }
1289 return err;
1290 }
1291
1292 static struct dentry *__lookup_hash(struct qstr *name,
1293 struct dentry *base, struct nameidata *nd)
1294 {
1295 struct dentry *dentry;
1296 struct inode *inode;
1297 int err;
1298
1299 inode = base->d_inode;
1300
1301 /*
1302 * See if the low-level filesystem might want
1303 * to use its own hash..
1304 */
1305 if (base->d_op && base->d_op->d_hash) {
1306 err = base->d_op->d_hash(base, name);
1307 dentry = ERR_PTR(err);
1308 if (err < 0)
1309 goto out;
1310 }
1311
1312 dentry = cached_lookup(base, name, nd);
1313 if (!dentry) {
1314 struct dentry *new = d_alloc(base, name);
1315 dentry = ERR_PTR(-ENOMEM);
1316 if (!new)
1317 goto out;
1318 dentry = inode->i_op->lookup(inode, new, nd);
1319 if (!dentry)
1320 dentry = new;
1321 else
1322 dput(new);
1323 }
1324 out:
1325 return dentry;
1326 }
1327
1328 /*
1329 * Restricted form of lookup. Doesn't follow links, single-component only,
1330 * needs parent already locked. Doesn't follow mounts.
1331 * SMP-safe.
1332 */
1333 static struct dentry *lookup_hash(struct nameidata *nd)
1334 {
1335 int err;
1336
1337 err = permission(nd->path.dentry->d_inode, MAY_EXEC, nd);
1338 if (err)
1339 return ERR_PTR(err);
1340 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1341 }
1342
1343 static int __lookup_one_len(const char *name, struct qstr *this,
1344 struct dentry *base, int len)
1345 {
1346 unsigned long hash;
1347 unsigned int c;
1348
1349 this->name = name;
1350 this->len = len;
1351 if (!len)
1352 return -EACCES;
1353
1354 hash = init_name_hash();
1355 while (len--) {
1356 c = *(const unsigned char *)name++;
1357 if (c == '/' || c == '\0')
1358 return -EACCES;
1359 hash = partial_name_hash(c, hash);
1360 }
1361 this->hash = end_name_hash(hash);
1362 return 0;
1363 }
1364
1365 /**
1366 * lookup_one_len: filesystem helper to lookup single pathname component
1367 * @name: pathname component to lookup
1368 * @base: base directory to lookup from
1369 * @len: maximum length @len should be interpreted to
1370 *
1371 * Note that this routine is purely a helper for filesystem useage and should
1372 * not be called by generic code. Also note that by using this function to
1373 * nameidata argument is passed to the filesystem methods and a filesystem
1374 * using this helper needs to be prepared for that.
1375 */
1376 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1377 {
1378 int err;
1379 struct qstr this;
1380
1381 err = __lookup_one_len(name, &this, base, len);
1382 if (err)
1383 return ERR_PTR(err);
1384
1385 err = permission(base->d_inode, MAY_EXEC, NULL);
1386 if (err)
1387 return ERR_PTR(err);
1388 return __lookup_hash(&this, base, NULL);
1389 }
1390
1391 /**
1392 * lookup_one_noperm - bad hack for sysfs
1393 * @name: pathname component to lookup
1394 * @base: base directory to lookup from
1395 *
1396 * This is a variant of lookup_one_len that doesn't perform any permission
1397 * checks. It's a horrible hack to work around the braindead sysfs
1398 * architecture and should not be used anywhere else.
1399 *
1400 * DON'T USE THIS FUNCTION EVER, thanks.
1401 */
1402 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1403 {
1404 int err;
1405 struct qstr this;
1406
1407 err = __lookup_one_len(name, &this, base, strlen(name));
1408 if (err)
1409 return ERR_PTR(err);
1410 return __lookup_hash(&this, base, NULL);
1411 }
1412
1413 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1414 struct nameidata *nd)
1415 {
1416 char *tmp = getname(name);
1417 int err = PTR_ERR(tmp);
1418
1419 if (!IS_ERR(tmp)) {
1420 err = do_path_lookup(dfd, tmp, flags, nd);
1421 putname(tmp);
1422 }
1423 return err;
1424 }
1425
1426 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1427 {
1428 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1429 }
1430
1431 /*
1432 * It's inline, so penalty for filesystems that don't use sticky bit is
1433 * minimal.
1434 */
1435 static inline int check_sticky(struct inode *dir, struct inode *inode)
1436 {
1437 if (!(dir->i_mode & S_ISVTX))
1438 return 0;
1439 if (inode->i_uid == current->fsuid)
1440 return 0;
1441 if (dir->i_uid == current->fsuid)
1442 return 0;
1443 return !capable(CAP_FOWNER);
1444 }
1445
1446 /*
1447 * Check whether we can remove a link victim from directory dir, check
1448 * whether the type of victim is right.
1449 * 1. We can't do it if dir is read-only (done in permission())
1450 * 2. We should have write and exec permissions on dir
1451 * 3. We can't remove anything from append-only dir
1452 * 4. We can't do anything with immutable dir (done in permission())
1453 * 5. If the sticky bit on dir is set we should either
1454 * a. be owner of dir, or
1455 * b. be owner of victim, or
1456 * c. have CAP_FOWNER capability
1457 * 6. If the victim is append-only or immutable we can't do antyhing with
1458 * links pointing to it.
1459 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1460 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1461 * 9. We can't remove a root or mountpoint.
1462 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1463 * nfs_async_unlink().
1464 */
1465 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1466 {
1467 int error;
1468
1469 if (!victim->d_inode)
1470 return -ENOENT;
1471
1472 BUG_ON(victim->d_parent->d_inode != dir);
1473 audit_inode_child(victim->d_name.name, victim, dir);
1474
1475 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1476 if (error)
1477 return error;
1478 if (IS_APPEND(dir))
1479 return -EPERM;
1480 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1481 IS_IMMUTABLE(victim->d_inode))
1482 return -EPERM;
1483 if (isdir) {
1484 if (!S_ISDIR(victim->d_inode->i_mode))
1485 return -ENOTDIR;
1486 if (IS_ROOT(victim))
1487 return -EBUSY;
1488 } else if (S_ISDIR(victim->d_inode->i_mode))
1489 return -EISDIR;
1490 if (IS_DEADDIR(dir))
1491 return -ENOENT;
1492 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1493 return -EBUSY;
1494 return 0;
1495 }
1496
1497 /* Check whether we can create an object with dentry child in directory
1498 * dir.
1499 * 1. We can't do it if child already exists (open has special treatment for
1500 * this case, but since we are inlined it's OK)
1501 * 2. We can't do it if dir is read-only (done in permission())
1502 * 3. We should have write and exec permissions on dir
1503 * 4. We can't do it if dir is immutable (done in permission())
1504 */
1505 static inline int may_create(struct inode *dir, struct dentry *child,
1506 struct nameidata *nd)
1507 {
1508 if (child->d_inode)
1509 return -EEXIST;
1510 if (IS_DEADDIR(dir))
1511 return -ENOENT;
1512 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1513 }
1514
1515 /*
1516 * O_DIRECTORY translates into forcing a directory lookup.
1517 */
1518 static inline int lookup_flags(unsigned int f)
1519 {
1520 unsigned long retval = LOOKUP_FOLLOW;
1521
1522 if (f & O_NOFOLLOW)
1523 retval &= ~LOOKUP_FOLLOW;
1524
1525 if (f & O_DIRECTORY)
1526 retval |= LOOKUP_DIRECTORY;
1527
1528 return retval;
1529 }
1530
1531 /*
1532 * p1 and p2 should be directories on the same fs.
1533 */
1534 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1535 {
1536 struct dentry *p;
1537
1538 if (p1 == p2) {
1539 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1540 return NULL;
1541 }
1542
1543 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1544
1545 for (p = p1; p->d_parent != p; p = p->d_parent) {
1546 if (p->d_parent == p2) {
1547 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1548 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1549 return p;
1550 }
1551 }
1552
1553 for (p = p2; p->d_parent != p; p = p->d_parent) {
1554 if (p->d_parent == p1) {
1555 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1556 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1557 return p;
1558 }
1559 }
1560
1561 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1562 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1563 return NULL;
1564 }
1565
1566 void unlock_rename(struct dentry *p1, struct dentry *p2)
1567 {
1568 mutex_unlock(&p1->d_inode->i_mutex);
1569 if (p1 != p2) {
1570 mutex_unlock(&p2->d_inode->i_mutex);
1571 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1572 }
1573 }
1574
1575 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1576 struct nameidata *nd)
1577 {
1578 int error = may_create(dir, dentry, nd);
1579
1580 if (error)
1581 return error;
1582
1583 if (!dir->i_op || !dir->i_op->create)
1584 return -EACCES; /* shouldn't it be ENOSYS? */
1585 mode &= S_IALLUGO;
1586 mode |= S_IFREG;
1587 error = security_inode_create(dir, dentry, mode);
1588 if (error)
1589 return error;
1590 DQUOT_INIT(dir);
1591 error = dir->i_op->create(dir, dentry, mode, nd);
1592 if (!error)
1593 fsnotify_create(dir, dentry);
1594 return error;
1595 }
1596
1597 int may_open(struct nameidata *nd, int acc_mode, int flag)
1598 {
1599 struct dentry *dentry = nd->path.dentry;
1600 struct inode *inode = dentry->d_inode;
1601 int error;
1602
1603 if (!inode)
1604 return -ENOENT;
1605
1606 if (S_ISLNK(inode->i_mode))
1607 return -ELOOP;
1608
1609 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1610 return -EISDIR;
1611
1612 /*
1613 * FIFO's, sockets and device files are special: they don't
1614 * actually live on the filesystem itself, and as such you
1615 * can write to them even if the filesystem is read-only.
1616 */
1617 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1618 flag &= ~O_TRUNC;
1619 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1620 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1621 return -EACCES;
1622
1623 flag &= ~O_TRUNC;
1624 } else if (IS_RDONLY(inode) && (acc_mode & MAY_WRITE))
1625 return -EROFS;
1626
1627 error = vfs_permission(nd, acc_mode);
1628 if (error)
1629 return error;
1630 /*
1631 * An append-only file must be opened in append mode for writing.
1632 */
1633 if (IS_APPEND(inode)) {
1634 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1635 return -EPERM;
1636 if (flag & O_TRUNC)
1637 return -EPERM;
1638 }
1639
1640 /* O_NOATIME can only be set by the owner or superuser */
1641 if (flag & O_NOATIME)
1642 if (!is_owner_or_cap(inode))
1643 return -EPERM;
1644
1645 /*
1646 * Ensure there are no outstanding leases on the file.
1647 */
1648 error = break_lease(inode, flag);
1649 if (error)
1650 return error;
1651
1652 if (flag & O_TRUNC) {
1653 error = get_write_access(inode);
1654 if (error)
1655 return error;
1656
1657 /*
1658 * Refuse to truncate files with mandatory locks held on them.
1659 */
1660 error = locks_verify_locked(inode);
1661 if (!error) {
1662 DQUOT_INIT(inode);
1663
1664 error = do_truncate(dentry, 0,
1665 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1666 NULL);
1667 }
1668 put_write_access(inode);
1669 if (error)
1670 return error;
1671 } else
1672 if (flag & FMODE_WRITE)
1673 DQUOT_INIT(inode);
1674
1675 return 0;
1676 }
1677
1678 static int open_namei_create(struct nameidata *nd, struct path *path,
1679 int flag, int mode)
1680 {
1681 int error;
1682 struct dentry *dir = nd->path.dentry;
1683
1684 if (!IS_POSIXACL(dir->d_inode))
1685 mode &= ~current->fs->umask;
1686 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1687 mutex_unlock(&dir->d_inode->i_mutex);
1688 dput(nd->path.dentry);
1689 nd->path.dentry = path->dentry;
1690 if (error)
1691 return error;
1692 /* Don't check for write permission, don't truncate */
1693 return may_open(nd, 0, flag & ~O_TRUNC);
1694 }
1695
1696 /*
1697 * open_namei()
1698 *
1699 * namei for open - this is in fact almost the whole open-routine.
1700 *
1701 * Note that the low bits of "flag" aren't the same as in the open
1702 * system call - they are 00 - no permissions needed
1703 * 01 - read permission needed
1704 * 10 - write permission needed
1705 * 11 - read/write permissions needed
1706 * which is a lot more logical, and also allows the "no perm" needed
1707 * for symlinks (where the permissions are checked later).
1708 * SMP-safe
1709 */
1710 int open_namei(int dfd, const char *pathname, int flag,
1711 int mode, struct nameidata *nd)
1712 {
1713 int acc_mode, error;
1714 struct path path;
1715 struct dentry *dir;
1716 int count = 0;
1717
1718 acc_mode = ACC_MODE(flag);
1719
1720 /* O_TRUNC implies we need access checks for write permissions */
1721 if (flag & O_TRUNC)
1722 acc_mode |= MAY_WRITE;
1723
1724 /* Allow the LSM permission hook to distinguish append
1725 access from general write access. */
1726 if (flag & O_APPEND)
1727 acc_mode |= MAY_APPEND;
1728
1729 /*
1730 * The simplest case - just a plain lookup.
1731 */
1732 if (!(flag & O_CREAT)) {
1733 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1734 nd, flag);
1735 if (error)
1736 return error;
1737 goto ok;
1738 }
1739
1740 /*
1741 * Create - we need to know the parent.
1742 */
1743 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1744 if (error)
1745 return error;
1746
1747 /*
1748 * We have the parent and last component. First of all, check
1749 * that we are not asked to creat(2) an obvious directory - that
1750 * will not do.
1751 */
1752 error = -EISDIR;
1753 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1754 goto exit;
1755
1756 dir = nd->path.dentry;
1757 nd->flags &= ~LOOKUP_PARENT;
1758 mutex_lock(&dir->d_inode->i_mutex);
1759 path.dentry = lookup_hash(nd);
1760 path.mnt = nd->path.mnt;
1761
1762 do_last:
1763 error = PTR_ERR(path.dentry);
1764 if (IS_ERR(path.dentry)) {
1765 mutex_unlock(&dir->d_inode->i_mutex);
1766 goto exit;
1767 }
1768
1769 if (IS_ERR(nd->intent.open.file)) {
1770 mutex_unlock(&dir->d_inode->i_mutex);
1771 error = PTR_ERR(nd->intent.open.file);
1772 goto exit_dput;
1773 }
1774
1775 /* Negative dentry, just create the file */
1776 if (!path.dentry->d_inode) {
1777 error = open_namei_create(nd, &path, flag, mode);
1778 if (error)
1779 goto exit;
1780 return 0;
1781 }
1782
1783 /*
1784 * It already exists.
1785 */
1786 mutex_unlock(&dir->d_inode->i_mutex);
1787 audit_inode(pathname, path.dentry);
1788
1789 error = -EEXIST;
1790 if (flag & O_EXCL)
1791 goto exit_dput;
1792
1793 if (__follow_mount(&path)) {
1794 error = -ELOOP;
1795 if (flag & O_NOFOLLOW)
1796 goto exit_dput;
1797 }
1798
1799 error = -ENOENT;
1800 if (!path.dentry->d_inode)
1801 goto exit_dput;
1802 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1803 goto do_link;
1804
1805 path_to_nameidata(&path, nd);
1806 error = -EISDIR;
1807 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1808 goto exit;
1809 ok:
1810 error = may_open(nd, acc_mode, flag);
1811 if (error)
1812 goto exit;
1813 return 0;
1814
1815 exit_dput:
1816 path_put_conditional(&path, nd);
1817 exit:
1818 if (!IS_ERR(nd->intent.open.file))
1819 release_open_intent(nd);
1820 path_put(&nd->path);
1821 return error;
1822
1823 do_link:
1824 error = -ELOOP;
1825 if (flag & O_NOFOLLOW)
1826 goto exit_dput;
1827 /*
1828 * This is subtle. Instead of calling do_follow_link() we do the
1829 * thing by hands. The reason is that this way we have zero link_count
1830 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1831 * After that we have the parent and last component, i.e.
1832 * we are in the same situation as after the first path_walk().
1833 * Well, almost - if the last component is normal we get its copy
1834 * stored in nd->last.name and we will have to putname() it when we
1835 * are done. Procfs-like symlinks just set LAST_BIND.
1836 */
1837 nd->flags |= LOOKUP_PARENT;
1838 error = security_inode_follow_link(path.dentry, nd);
1839 if (error)
1840 goto exit_dput;
1841 error = __do_follow_link(&path, nd);
1842 if (error) {
1843 /* Does someone understand code flow here? Or it is only
1844 * me so stupid? Anathema to whoever designed this non-sense
1845 * with "intent.open".
1846 */
1847 release_open_intent(nd);
1848 return error;
1849 }
1850 nd->flags &= ~LOOKUP_PARENT;
1851 if (nd->last_type == LAST_BIND)
1852 goto ok;
1853 error = -EISDIR;
1854 if (nd->last_type != LAST_NORM)
1855 goto exit;
1856 if (nd->last.name[nd->last.len]) {
1857 __putname(nd->last.name);
1858 goto exit;
1859 }
1860 error = -ELOOP;
1861 if (count++==32) {
1862 __putname(nd->last.name);
1863 goto exit;
1864 }
1865 dir = nd->path.dentry;
1866 mutex_lock(&dir->d_inode->i_mutex);
1867 path.dentry = lookup_hash(nd);
1868 path.mnt = nd->path.mnt;
1869 __putname(nd->last.name);
1870 goto do_last;
1871 }
1872
1873 /**
1874 * lookup_create - lookup a dentry, creating it if it doesn't exist
1875 * @nd: nameidata info
1876 * @is_dir: directory flag
1877 *
1878 * Simple function to lookup and return a dentry and create it
1879 * if it doesn't exist. Is SMP-safe.
1880 *
1881 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1882 */
1883 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1884 {
1885 struct dentry *dentry = ERR_PTR(-EEXIST);
1886
1887 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1888 /*
1889 * Yucky last component or no last component at all?
1890 * (foo/., foo/.., /////)
1891 */
1892 if (nd->last_type != LAST_NORM)
1893 goto fail;
1894 nd->flags &= ~LOOKUP_PARENT;
1895 nd->flags |= LOOKUP_CREATE;
1896 nd->intent.open.flags = O_EXCL;
1897
1898 /*
1899 * Do the final lookup.
1900 */
1901 dentry = lookup_hash(nd);
1902 if (IS_ERR(dentry))
1903 goto fail;
1904
1905 /*
1906 * Special case - lookup gave negative, but... we had foo/bar/
1907 * From the vfs_mknod() POV we just have a negative dentry -
1908 * all is fine. Let's be bastards - you had / on the end, you've
1909 * been asking for (non-existent) directory. -ENOENT for you.
1910 */
1911 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1912 goto enoent;
1913 return dentry;
1914 enoent:
1915 dput(dentry);
1916 dentry = ERR_PTR(-ENOENT);
1917 fail:
1918 return dentry;
1919 }
1920 EXPORT_SYMBOL_GPL(lookup_create);
1921
1922 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1923 {
1924 int error = may_create(dir, dentry, NULL);
1925
1926 if (error)
1927 return error;
1928
1929 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1930 return -EPERM;
1931
1932 if (!dir->i_op || !dir->i_op->mknod)
1933 return -EPERM;
1934
1935 error = security_inode_mknod(dir, dentry, mode, dev);
1936 if (error)
1937 return error;
1938
1939 DQUOT_INIT(dir);
1940 error = dir->i_op->mknod(dir, dentry, mode, dev);
1941 if (!error)
1942 fsnotify_create(dir, dentry);
1943 return error;
1944 }
1945
1946 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1947 unsigned dev)
1948 {
1949 int error = 0;
1950 char * tmp;
1951 struct dentry * dentry;
1952 struct nameidata nd;
1953
1954 if (S_ISDIR(mode))
1955 return -EPERM;
1956 tmp = getname(filename);
1957 if (IS_ERR(tmp))
1958 return PTR_ERR(tmp);
1959
1960 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1961 if (error)
1962 goto out;
1963 dentry = lookup_create(&nd, 0);
1964 error = PTR_ERR(dentry);
1965
1966 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1967 mode &= ~current->fs->umask;
1968 if (!IS_ERR(dentry)) {
1969 switch (mode & S_IFMT) {
1970 case 0: case S_IFREG:
1971 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
1972 break;
1973 case S_IFCHR: case S_IFBLK:
1974 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
1975 new_decode_dev(dev));
1976 break;
1977 case S_IFIFO: case S_IFSOCK:
1978 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
1979 break;
1980 case S_IFDIR:
1981 error = -EPERM;
1982 break;
1983 default:
1984 error = -EINVAL;
1985 }
1986 dput(dentry);
1987 }
1988 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1989 path_put(&nd.path);
1990 out:
1991 putname(tmp);
1992
1993 return error;
1994 }
1995
1996 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1997 {
1998 return sys_mknodat(AT_FDCWD, filename, mode, dev);
1999 }
2000
2001 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2002 {
2003 int error = may_create(dir, dentry, NULL);
2004
2005 if (error)
2006 return error;
2007
2008 if (!dir->i_op || !dir->i_op->mkdir)
2009 return -EPERM;
2010
2011 mode &= (S_IRWXUGO|S_ISVTX);
2012 error = security_inode_mkdir(dir, dentry, mode);
2013 if (error)
2014 return error;
2015
2016 DQUOT_INIT(dir);
2017 error = dir->i_op->mkdir(dir, dentry, mode);
2018 if (!error)
2019 fsnotify_mkdir(dir, dentry);
2020 return error;
2021 }
2022
2023 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2024 {
2025 int error = 0;
2026 char * tmp;
2027 struct dentry *dentry;
2028 struct nameidata nd;
2029
2030 tmp = getname(pathname);
2031 error = PTR_ERR(tmp);
2032 if (IS_ERR(tmp))
2033 goto out_err;
2034
2035 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2036 if (error)
2037 goto out;
2038 dentry = lookup_create(&nd, 1);
2039 error = PTR_ERR(dentry);
2040 if (IS_ERR(dentry))
2041 goto out_unlock;
2042
2043 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2044 mode &= ~current->fs->umask;
2045 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2046 dput(dentry);
2047 out_unlock:
2048 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2049 path_put(&nd.path);
2050 out:
2051 putname(tmp);
2052 out_err:
2053 return error;
2054 }
2055
2056 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2057 {
2058 return sys_mkdirat(AT_FDCWD, pathname, mode);
2059 }
2060
2061 /*
2062 * We try to drop the dentry early: we should have
2063 * a usage count of 2 if we're the only user of this
2064 * dentry, and if that is true (possibly after pruning
2065 * the dcache), then we drop the dentry now.
2066 *
2067 * A low-level filesystem can, if it choses, legally
2068 * do a
2069 *
2070 * if (!d_unhashed(dentry))
2071 * return -EBUSY;
2072 *
2073 * if it cannot handle the case of removing a directory
2074 * that is still in use by something else..
2075 */
2076 void dentry_unhash(struct dentry *dentry)
2077 {
2078 dget(dentry);
2079 shrink_dcache_parent(dentry);
2080 spin_lock(&dcache_lock);
2081 spin_lock(&dentry->d_lock);
2082 if (atomic_read(&dentry->d_count) == 2)
2083 __d_drop(dentry);
2084 spin_unlock(&dentry->d_lock);
2085 spin_unlock(&dcache_lock);
2086 }
2087
2088 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2089 {
2090 int error = may_delete(dir, dentry, 1);
2091
2092 if (error)
2093 return error;
2094
2095 if (!dir->i_op || !dir->i_op->rmdir)
2096 return -EPERM;
2097
2098 DQUOT_INIT(dir);
2099
2100 mutex_lock(&dentry->d_inode->i_mutex);
2101 dentry_unhash(dentry);
2102 if (d_mountpoint(dentry))
2103 error = -EBUSY;
2104 else {
2105 error = security_inode_rmdir(dir, dentry);
2106 if (!error) {
2107 error = dir->i_op->rmdir(dir, dentry);
2108 if (!error)
2109 dentry->d_inode->i_flags |= S_DEAD;
2110 }
2111 }
2112 mutex_unlock(&dentry->d_inode->i_mutex);
2113 if (!error) {
2114 d_delete(dentry);
2115 }
2116 dput(dentry);
2117
2118 return error;
2119 }
2120
2121 static long do_rmdir(int dfd, const char __user *pathname)
2122 {
2123 int error = 0;
2124 char * name;
2125 struct dentry *dentry;
2126 struct nameidata nd;
2127
2128 name = getname(pathname);
2129 if(IS_ERR(name))
2130 return PTR_ERR(name);
2131
2132 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2133 if (error)
2134 goto exit;
2135
2136 switch(nd.last_type) {
2137 case LAST_DOTDOT:
2138 error = -ENOTEMPTY;
2139 goto exit1;
2140 case LAST_DOT:
2141 error = -EINVAL;
2142 goto exit1;
2143 case LAST_ROOT:
2144 error = -EBUSY;
2145 goto exit1;
2146 }
2147 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2148 dentry = lookup_hash(&nd);
2149 error = PTR_ERR(dentry);
2150 if (IS_ERR(dentry))
2151 goto exit2;
2152 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2153 dput(dentry);
2154 exit2:
2155 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2156 exit1:
2157 path_put(&nd.path);
2158 exit:
2159 putname(name);
2160 return error;
2161 }
2162
2163 asmlinkage long sys_rmdir(const char __user *pathname)
2164 {
2165 return do_rmdir(AT_FDCWD, pathname);
2166 }
2167
2168 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2169 {
2170 int error = may_delete(dir, dentry, 0);
2171
2172 if (error)
2173 return error;
2174
2175 if (!dir->i_op || !dir->i_op->unlink)
2176 return -EPERM;
2177
2178 DQUOT_INIT(dir);
2179
2180 mutex_lock(&dentry->d_inode->i_mutex);
2181 if (d_mountpoint(dentry))
2182 error = -EBUSY;
2183 else {
2184 error = security_inode_unlink(dir, dentry);
2185 if (!error)
2186 error = dir->i_op->unlink(dir, dentry);
2187 }
2188 mutex_unlock(&dentry->d_inode->i_mutex);
2189
2190 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2191 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2192 fsnotify_link_count(dentry->d_inode);
2193 d_delete(dentry);
2194 }
2195
2196 return error;
2197 }
2198
2199 /*
2200 * Make sure that the actual truncation of the file will occur outside its
2201 * directory's i_mutex. Truncate can take a long time if there is a lot of
2202 * writeout happening, and we don't want to prevent access to the directory
2203 * while waiting on the I/O.
2204 */
2205 static long do_unlinkat(int dfd, const char __user *pathname)
2206 {
2207 int error = 0;
2208 char * name;
2209 struct dentry *dentry;
2210 struct nameidata nd;
2211 struct inode *inode = NULL;
2212
2213 name = getname(pathname);
2214 if(IS_ERR(name))
2215 return PTR_ERR(name);
2216
2217 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2218 if (error)
2219 goto exit;
2220 error = -EISDIR;
2221 if (nd.last_type != LAST_NORM)
2222 goto exit1;
2223 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2224 dentry = lookup_hash(&nd);
2225 error = PTR_ERR(dentry);
2226 if (!IS_ERR(dentry)) {
2227 /* Why not before? Because we want correct error value */
2228 if (nd.last.name[nd.last.len])
2229 goto slashes;
2230 inode = dentry->d_inode;
2231 if (inode)
2232 atomic_inc(&inode->i_count);
2233 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2234 exit2:
2235 dput(dentry);
2236 }
2237 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2238 if (inode)
2239 iput(inode); /* truncate the inode here */
2240 exit1:
2241 path_put(&nd.path);
2242 exit:
2243 putname(name);
2244 return error;
2245
2246 slashes:
2247 error = !dentry->d_inode ? -ENOENT :
2248 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2249 goto exit2;
2250 }
2251
2252 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2253 {
2254 if ((flag & ~AT_REMOVEDIR) != 0)
2255 return -EINVAL;
2256
2257 if (flag & AT_REMOVEDIR)
2258 return do_rmdir(dfd, pathname);
2259
2260 return do_unlinkat(dfd, pathname);
2261 }
2262
2263 asmlinkage long sys_unlink(const char __user *pathname)
2264 {
2265 return do_unlinkat(AT_FDCWD, pathname);
2266 }
2267
2268 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2269 {
2270 int error = may_create(dir, dentry, NULL);
2271
2272 if (error)
2273 return error;
2274
2275 if (!dir->i_op || !dir->i_op->symlink)
2276 return -EPERM;
2277
2278 error = security_inode_symlink(dir, dentry, oldname);
2279 if (error)
2280 return error;
2281
2282 DQUOT_INIT(dir);
2283 error = dir->i_op->symlink(dir, dentry, oldname);
2284 if (!error)
2285 fsnotify_create(dir, dentry);
2286 return error;
2287 }
2288
2289 asmlinkage long sys_symlinkat(const char __user *oldname,
2290 int newdfd, const char __user *newname)
2291 {
2292 int error = 0;
2293 char * from;
2294 char * to;
2295 struct dentry *dentry;
2296 struct nameidata nd;
2297
2298 from = getname(oldname);
2299 if(IS_ERR(from))
2300 return PTR_ERR(from);
2301 to = getname(newname);
2302 error = PTR_ERR(to);
2303 if (IS_ERR(to))
2304 goto out_putname;
2305
2306 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2307 if (error)
2308 goto out;
2309 dentry = lookup_create(&nd, 0);
2310 error = PTR_ERR(dentry);
2311 if (IS_ERR(dentry))
2312 goto out_unlock;
2313
2314 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from, S_IALLUGO);
2315 dput(dentry);
2316 out_unlock:
2317 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2318 path_put(&nd.path);
2319 out:
2320 putname(to);
2321 out_putname:
2322 putname(from);
2323 return error;
2324 }
2325
2326 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2327 {
2328 return sys_symlinkat(oldname, AT_FDCWD, newname);
2329 }
2330
2331 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2332 {
2333 struct inode *inode = old_dentry->d_inode;
2334 int error;
2335
2336 if (!inode)
2337 return -ENOENT;
2338
2339 error = may_create(dir, new_dentry, NULL);
2340 if (error)
2341 return error;
2342
2343 if (dir->i_sb != inode->i_sb)
2344 return -EXDEV;
2345
2346 /*
2347 * A link to an append-only or immutable file cannot be created.
2348 */
2349 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2350 return -EPERM;
2351 if (!dir->i_op || !dir->i_op->link)
2352 return -EPERM;
2353 if (S_ISDIR(old_dentry->d_inode->i_mode))
2354 return -EPERM;
2355
2356 error = security_inode_link(old_dentry, dir, new_dentry);
2357 if (error)
2358 return error;
2359
2360 mutex_lock(&old_dentry->d_inode->i_mutex);
2361 DQUOT_INIT(dir);
2362 error = dir->i_op->link(old_dentry, dir, new_dentry);
2363 mutex_unlock(&old_dentry->d_inode->i_mutex);
2364 if (!error)
2365 fsnotify_link(dir, old_dentry->d_inode, new_dentry);
2366 return error;
2367 }
2368
2369 /*
2370 * Hardlinks are often used in delicate situations. We avoid
2371 * security-related surprises by not following symlinks on the
2372 * newname. --KAB
2373 *
2374 * We don't follow them on the oldname either to be compatible
2375 * with linux 2.0, and to avoid hard-linking to directories
2376 * and other special files. --ADM
2377 */
2378 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2379 int newdfd, const char __user *newname,
2380 int flags)
2381 {
2382 struct dentry *new_dentry;
2383 struct nameidata nd, old_nd;
2384 int error;
2385 char * to;
2386
2387 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2388 return -EINVAL;
2389
2390 to = getname(newname);
2391 if (IS_ERR(to))
2392 return PTR_ERR(to);
2393
2394 error = __user_walk_fd(olddfd, oldname,
2395 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2396 &old_nd);
2397 if (error)
2398 goto exit;
2399 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2400 if (error)
2401 goto out;
2402 error = -EXDEV;
2403 if (old_nd.path.mnt != nd.path.mnt)
2404 goto out_release;
2405 new_dentry = lookup_create(&nd, 0);
2406 error = PTR_ERR(new_dentry);
2407 if (IS_ERR(new_dentry))
2408 goto out_unlock;
2409 error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2410 dput(new_dentry);
2411 out_unlock:
2412 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2413 out_release:
2414 path_put(&nd.path);
2415 out:
2416 path_put(&old_nd.path);
2417 exit:
2418 putname(to);
2419
2420 return error;
2421 }
2422
2423 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2424 {
2425 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2426 }
2427
2428 /*
2429 * The worst of all namespace operations - renaming directory. "Perverted"
2430 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2431 * Problems:
2432 * a) we can get into loop creation. Check is done in is_subdir().
2433 * b) race potential - two innocent renames can create a loop together.
2434 * That's where 4.4 screws up. Current fix: serialization on
2435 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2436 * story.
2437 * c) we have to lock _three_ objects - parents and victim (if it exists).
2438 * And that - after we got ->i_mutex on parents (until then we don't know
2439 * whether the target exists). Solution: try to be smart with locking
2440 * order for inodes. We rely on the fact that tree topology may change
2441 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2442 * move will be locked. Thus we can rank directories by the tree
2443 * (ancestors first) and rank all non-directories after them.
2444 * That works since everybody except rename does "lock parent, lookup,
2445 * lock child" and rename is under ->s_vfs_rename_mutex.
2446 * HOWEVER, it relies on the assumption that any object with ->lookup()
2447 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2448 * we'd better make sure that there's no link(2) for them.
2449 * d) some filesystems don't support opened-but-unlinked directories,
2450 * either because of layout or because they are not ready to deal with
2451 * all cases correctly. The latter will be fixed (taking this sort of
2452 * stuff into VFS), but the former is not going away. Solution: the same
2453 * trick as in rmdir().
2454 * e) conversion from fhandle to dentry may come in the wrong moment - when
2455 * we are removing the target. Solution: we will have to grab ->i_mutex
2456 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2457 * ->i_mutex on parents, which works but leads to some truely excessive
2458 * locking].
2459 */
2460 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2461 struct inode *new_dir, struct dentry *new_dentry)
2462 {
2463 int error = 0;
2464 struct inode *target;
2465
2466 /*
2467 * If we are going to change the parent - check write permissions,
2468 * we'll need to flip '..'.
2469 */
2470 if (new_dir != old_dir) {
2471 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2472 if (error)
2473 return error;
2474 }
2475
2476 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2477 if (error)
2478 return error;
2479
2480 target = new_dentry->d_inode;
2481 if (target) {
2482 mutex_lock(&target->i_mutex);
2483 dentry_unhash(new_dentry);
2484 }
2485 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2486 error = -EBUSY;
2487 else
2488 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2489 if (target) {
2490 if (!error)
2491 target->i_flags |= S_DEAD;
2492 mutex_unlock(&target->i_mutex);
2493 if (d_unhashed(new_dentry))
2494 d_rehash(new_dentry);
2495 dput(new_dentry);
2496 }
2497 if (!error)
2498 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2499 d_move(old_dentry,new_dentry);
2500 return error;
2501 }
2502
2503 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2504 struct inode *new_dir, struct dentry *new_dentry)
2505 {
2506 struct inode *target;
2507 int error;
2508
2509 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2510 if (error)
2511 return error;
2512
2513 dget(new_dentry);
2514 target = new_dentry->d_inode;
2515 if (target)
2516 mutex_lock(&target->i_mutex);
2517 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2518 error = -EBUSY;
2519 else
2520 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2521 if (!error) {
2522 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2523 d_move(old_dentry, new_dentry);
2524 }
2525 if (target)
2526 mutex_unlock(&target->i_mutex);
2527 dput(new_dentry);
2528 return error;
2529 }
2530
2531 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2532 struct inode *new_dir, struct dentry *new_dentry)
2533 {
2534 int error;
2535 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2536 const char *old_name;
2537
2538 if (old_dentry->d_inode == new_dentry->d_inode)
2539 return 0;
2540
2541 error = may_delete(old_dir, old_dentry, is_dir);
2542 if (error)
2543 return error;
2544
2545 if (!new_dentry->d_inode)
2546 error = may_create(new_dir, new_dentry, NULL);
2547 else
2548 error = may_delete(new_dir, new_dentry, is_dir);
2549 if (error)
2550 return error;
2551
2552 if (!old_dir->i_op || !old_dir->i_op->rename)
2553 return -EPERM;
2554
2555 DQUOT_INIT(old_dir);
2556 DQUOT_INIT(new_dir);
2557
2558 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2559
2560 if (is_dir)
2561 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2562 else
2563 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2564 if (!error) {
2565 const char *new_name = old_dentry->d_name.name;
2566 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2567 new_dentry->d_inode, old_dentry);
2568 }
2569 fsnotify_oldname_free(old_name);
2570
2571 return error;
2572 }
2573
2574 static int do_rename(int olddfd, const char *oldname,
2575 int newdfd, const char *newname)
2576 {
2577 int error = 0;
2578 struct dentry * old_dir, * new_dir;
2579 struct dentry * old_dentry, *new_dentry;
2580 struct dentry * trap;
2581 struct nameidata oldnd, newnd;
2582
2583 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2584 if (error)
2585 goto exit;
2586
2587 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2588 if (error)
2589 goto exit1;
2590
2591 error = -EXDEV;
2592 if (oldnd.path.mnt != newnd.path.mnt)
2593 goto exit2;
2594
2595 old_dir = oldnd.path.dentry;
2596 error = -EBUSY;
2597 if (oldnd.last_type != LAST_NORM)
2598 goto exit2;
2599
2600 new_dir = newnd.path.dentry;
2601 if (newnd.last_type != LAST_NORM)
2602 goto exit2;
2603
2604 trap = lock_rename(new_dir, old_dir);
2605
2606 old_dentry = lookup_hash(&oldnd);
2607 error = PTR_ERR(old_dentry);
2608 if (IS_ERR(old_dentry))
2609 goto exit3;
2610 /* source must exist */
2611 error = -ENOENT;
2612 if (!old_dentry->d_inode)
2613 goto exit4;
2614 /* unless the source is a directory trailing slashes give -ENOTDIR */
2615 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2616 error = -ENOTDIR;
2617 if (oldnd.last.name[oldnd.last.len])
2618 goto exit4;
2619 if (newnd.last.name[newnd.last.len])
2620 goto exit4;
2621 }
2622 /* source should not be ancestor of target */
2623 error = -EINVAL;
2624 if (old_dentry == trap)
2625 goto exit4;
2626 new_dentry = lookup_hash(&newnd);
2627 error = PTR_ERR(new_dentry);
2628 if (IS_ERR(new_dentry))
2629 goto exit4;
2630 /* target should not be an ancestor of source */
2631 error = -ENOTEMPTY;
2632 if (new_dentry == trap)
2633 goto exit5;
2634
2635 error = vfs_rename(old_dir->d_inode, old_dentry,
2636 new_dir->d_inode, new_dentry);
2637 exit5:
2638 dput(new_dentry);
2639 exit4:
2640 dput(old_dentry);
2641 exit3:
2642 unlock_rename(new_dir, old_dir);
2643 exit2:
2644 path_put(&newnd.path);
2645 exit1:
2646 path_put(&oldnd.path);
2647 exit:
2648 return error;
2649 }
2650
2651 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2652 int newdfd, const char __user *newname)
2653 {
2654 int error;
2655 char * from;
2656 char * to;
2657
2658 from = getname(oldname);
2659 if(IS_ERR(from))
2660 return PTR_ERR(from);
2661 to = getname(newname);
2662 error = PTR_ERR(to);
2663 if (!IS_ERR(to)) {
2664 error = do_rename(olddfd, from, newdfd, to);
2665 putname(to);
2666 }
2667 putname(from);
2668 return error;
2669 }
2670
2671 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2672 {
2673 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2674 }
2675
2676 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2677 {
2678 int len;
2679
2680 len = PTR_ERR(link);
2681 if (IS_ERR(link))
2682 goto out;
2683
2684 len = strlen(link);
2685 if (len > (unsigned) buflen)
2686 len = buflen;
2687 if (copy_to_user(buffer, link, len))
2688 len = -EFAULT;
2689 out:
2690 return len;
2691 }
2692
2693 /*
2694 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2695 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2696 * using) it for any given inode is up to filesystem.
2697 */
2698 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2699 {
2700 struct nameidata nd;
2701 void *cookie;
2702
2703 nd.depth = 0;
2704 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2705 if (!IS_ERR(cookie)) {
2706 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2707 if (dentry->d_inode->i_op->put_link)
2708 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2709 cookie = ERR_PTR(res);
2710 }
2711 return PTR_ERR(cookie);
2712 }
2713
2714 int vfs_follow_link(struct nameidata *nd, const char *link)
2715 {
2716 return __vfs_follow_link(nd, link);
2717 }
2718
2719 /* get the link contents into pagecache */
2720 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2721 {
2722 struct page * page;
2723 struct address_space *mapping = dentry->d_inode->i_mapping;
2724 page = read_mapping_page(mapping, 0, NULL);
2725 if (IS_ERR(page))
2726 return (char*)page;
2727 *ppage = page;
2728 return kmap(page);
2729 }
2730
2731 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2732 {
2733 struct page *page = NULL;
2734 char *s = page_getlink(dentry, &page);
2735 int res = vfs_readlink(dentry,buffer,buflen,s);
2736 if (page) {
2737 kunmap(page);
2738 page_cache_release(page);
2739 }
2740 return res;
2741 }
2742
2743 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2744 {
2745 struct page *page = NULL;
2746 nd_set_link(nd, page_getlink(dentry, &page));
2747 return page;
2748 }
2749
2750 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2751 {
2752 struct page *page = cookie;
2753
2754 if (page) {
2755 kunmap(page);
2756 page_cache_release(page);
2757 }
2758 }
2759
2760 int __page_symlink(struct inode *inode, const char *symname, int len,
2761 gfp_t gfp_mask)
2762 {
2763 struct address_space *mapping = inode->i_mapping;
2764 struct page *page;
2765 void *fsdata;
2766 int err;
2767 char *kaddr;
2768
2769 retry:
2770 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2771 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2772 if (err)
2773 goto fail;
2774
2775 kaddr = kmap_atomic(page, KM_USER0);
2776 memcpy(kaddr, symname, len-1);
2777 kunmap_atomic(kaddr, KM_USER0);
2778
2779 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2780 page, fsdata);
2781 if (err < 0)
2782 goto fail;
2783 if (err < len-1)
2784 goto retry;
2785
2786 mark_inode_dirty(inode);
2787 return 0;
2788 fail:
2789 return err;
2790 }
2791
2792 int page_symlink(struct inode *inode, const char *symname, int len)
2793 {
2794 return __page_symlink(inode, symname, len,
2795 mapping_gfp_mask(inode->i_mapping));
2796 }
2797
2798 const struct inode_operations page_symlink_inode_operations = {
2799 .readlink = generic_readlink,
2800 .follow_link = page_follow_link_light,
2801 .put_link = page_put_link,
2802 };
2803
2804 EXPORT_SYMBOL(__user_walk);
2805 EXPORT_SYMBOL(__user_walk_fd);
2806 EXPORT_SYMBOL(follow_down);
2807 EXPORT_SYMBOL(follow_up);
2808 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2809 EXPORT_SYMBOL(getname);
2810 EXPORT_SYMBOL(lock_rename);
2811 EXPORT_SYMBOL(lookup_one_len);
2812 EXPORT_SYMBOL(page_follow_link_light);
2813 EXPORT_SYMBOL(page_put_link);
2814 EXPORT_SYMBOL(page_readlink);
2815 EXPORT_SYMBOL(__page_symlink);
2816 EXPORT_SYMBOL(page_symlink);
2817 EXPORT_SYMBOL(page_symlink_inode_operations);
2818 EXPORT_SYMBOL(path_lookup);
2819 EXPORT_SYMBOL(vfs_path_lookup);
2820 EXPORT_SYMBOL(permission);
2821 EXPORT_SYMBOL(vfs_permission);
2822 EXPORT_SYMBOL(file_permission);
2823 EXPORT_SYMBOL(unlock_rename);
2824 EXPORT_SYMBOL(vfs_create);
2825 EXPORT_SYMBOL(vfs_follow_link);
2826 EXPORT_SYMBOL(vfs_link);
2827 EXPORT_SYMBOL(vfs_mkdir);
2828 EXPORT_SYMBOL(vfs_mknod);
2829 EXPORT_SYMBOL(generic_permission);
2830 EXPORT_SYMBOL(vfs_readlink);
2831 EXPORT_SYMBOL(vfs_rename);
2832 EXPORT_SYMBOL(vfs_rmdir);
2833 EXPORT_SYMBOL(vfs_symlink);
2834 EXPORT_SYMBOL(vfs_unlink);
2835 EXPORT_SYMBOL(dentry_unhash);
2836 EXPORT_SYMBOL(generic_readlink);
This page took 0.096638 seconds and 5 git commands to generate.